The Input Data of The New Member-Set of Problem 21 Family (P21^e)

Contents

1. Model Design Parameters and Material Electric Properties(P21 ^e)	3
1.1 Design Parameters of E-coils & C-coils	3
1.2 Specifications of Magnetic and Non-magnetic Load-components	3
1.3 Conductivities of Magnetic and Non-magnetic Materials	3
1.3.1 Conductivity of Copper material	3
1.3.2 Conductivity of GO silicon steel	4
2. Measured Magnetic Properties (B27R090)	5
2.1 Magnetic Properties (Case I)	6
2.1.1 <i>B</i> - <i>H</i> curves	6
2.1.2 W_t - B_m curves	7
2.2 Magnetic Properties(Case II)	8
2.2.1 <i>B</i> - <i>H</i> curves	8
2.2.2 W_t - B_m curves	9
2.3 Magnetic Properties (Case III)	
2.3.1 <i>B</i> - <i>H</i> curves	
2.3.2 W_t - B_m curves	11
2.4 Magnetic Properties(Case IV)	12
2.4.1 <i>B</i> - <i>H</i> curves	12
2.4.2 W_t - B_m curves with different DC-biases (in rolling direction)	13
2.4.3 W_t - B_m curves with different DC-biases (in transverse direction)	
2.5 Simplification of multiple measured specific total loss curves(B27R090)	29
2.6 DC magnetization <i>B-H</i> curves(B27R090)	32
2.7 Magnetic Properties at low frequency (5Hz, B27R090)	
3. Measured Exciting Current Waveforms(P21 ^e)	35
3.1 Measured Exciting Currents (Model P21e-EM(NS))	35
3.1.1 On the Exciting currents (Case I)	
3.1.2 Sampled Points and Waveform of Exciting currents (Case II)	
3.1.3 Sampled Points and Waveform of Exciting currents (Case III)	
3.1.4 Sampled Points and Waveform of Exciting currents (Case IV)	
3.1.5 Sampled Points and Waveform of Exciting currents (Case V)	
3.2 Measured Exciting Currents (Model P21 ^e -M(NS))	40
3.2.1 Sampled Points and Waveform of Exciting currents (Case I)	40
3.2.2 Sampled Points and Waveform of Exciting currents (Case II)	41
3.2.3 Sampled Points and Waveform of Exciting currents (Case III)	
3.2.4 Sampled Points and Waveform of Exciting currents (Case IV)	
3.2.5 Sampled Points and Curve of Exciting currents (Case V)	

The Input Data of The New Member-Set of Problem 21 Family (P21^e)

All the input data used in the modeling and simulation of the new member-set of Problem 21 (P21°) have been determined, including the design parameters of the upgraded models, the electric and magnetic properties of models' materials, and the excitation current waveforms measured under specified nonsinusoidal excitation conditions.

1. Model Design Parameters and Material Electric Properties(P21^e)

This section includes the relevant design parameters of the updated model (P21^e) and the electric properties of the model materials.

1.1 Design Parameters of E-coils & C-coils

The specifications of the two excitation coils and the two compensation coils used in the new memberset(P21^c) are the same. The constructure design of the coils can be seen in Fig.1 in Section II. Table A1-1 shows further detail of the coils and copper wire.

	1		
	Paramete	ers of Coil and Wire	
Number of turns of coils	Dimension of square copper wire (mm)	Net sectional area of copper wire (mm ²)	Remarks
400	9.0×3.0	26.45	511.3m Ω (DC resistance of 2 coils in series)

Ta	able A1-1	
	0.0.1	

1.2 Specifications of Magnetic and Non-magnetic Load-components

The specifications of upgraded models' load-components can be found in Table II. A brief description of models' load-components is as follows:

- (a) The dimensions of the laminated sheets (B27R090, a bonded stack of 24 sheets) used in Model $P21^{e}$ -M(NS): $1000 \times 500 \times 6.6$ (mm); The dimension of single sheet: $1000 \times 500 \times 0.27$ (mm), total 24 sheets; The assumed density of silicon steel: 7.65×10^3 kg/m³.
- (b) The dimensions of the copper plate(T2Y) used in Model P21^e-EM(NS): 1000×500×6 (mm); The assumed density of copper plate: 8.9×10³kg/m³.

1.3 Conductivities of Magnetic and Non-magnetic Materials

1.3.1 Conductivity of Copper material

In this benchmarking, both the resistance results measured by the LCR meter (40Hz-200kHz, NF) at different frequencies, and the resistance results measured under multi-harmonic hybrid excitations using a non-inductance coils have been obtained. In the lower frequency range, different frequency and multiharmonic excitation have little effect on the conductivity of the conducting material.

It is recommended using AC (equivalent) conductivity in modeling and simulation.

(a) Conductivity of the coil wire

The conductivities of copper wire used in both exciting coils and compensating coils are shown in Table A1-2.

	Table A1-2 Conductivity of Copper Wire	
Cases	Conductivity (S/m)	Remarks
AC	5.559 ×10 ⁷	Copper wire(equivalent)
DC	5.850×10 ⁷	

(b) Conductivity of copper plate

The conductivities of copper plate(T2Y) used in Model P21^e-EM(NS) are shown in Table A1-3.

	Table A1-3	
	Conductivity of Copper Plate	(T2Y)
Cases	Conductivity (S/m)	Remarks
AC	5.350×10 ⁷	
DC	5.550×10 ⁷	20°C

1.3.2 Conductivity of GO silicon steel

The conductivity of GO silicon steel(B27R090) in both rolling and transverse directions are shown in Table A1-4.

Table A1-4 GO Silicon Steel Sheets Used in P21°-M(NS)

Cases	Conductiv	vity (×10 ⁶ S/m)	Domonica
	Rolling direction	Transverse direction	Kemarks
AC	1.874	1.869	26°C(B27R090)
DC	1.887	1.889	× ×

2 Measured Magnetic Properties (B27R090)

The magnetic properties of GO silicon steel(B27R090, Baosteel) have been measured under different excitation conditions (Cases I-IV) using the SST(500×500 mm, Brockhaus), as shown in Fig.A2.0.

(1) The magnetic properties, including *B*-*H* curves and specific total loss curve(W_t - B_m), are measured in both the rolling and transverse directions.

(2) Three kinds of *B*-*H* curves are available, i.e., the initial magnetization curve, the DC magnetization curve, and the B_m - H_b curve. Note that H_b in the B_m - H_b curve of GO silicon steel, is the value of the magnetic field intensity *H* when the magnetic flux density becomes the maximum (B_m). In addition, it is recommended to use the initial magnetization *B*-*H* curve in Cases IV and V due to the consideration of the feasibility of the 3-D transient calculation (with DC-bias). While the B_m - H_b curves are recommended for Cases I~III.

(3) The W_t - B_m curve represents the relationship between the specific total loss W_t (including hysteresis, classical eddy current, and excess loss generated in silicon steel) and the peak value of the flux density, B_m .

(4) In Cases IV and V, the magnetic property measured under AC-DC hybrid excitation, H_{dc} represents the DC bias to be applied, which can be implemented using the enhanced magnetic measurement system (SST, Brockhaus). As a conventional value, the length of the equivalent magnetic path for 500×500 mm sample used in SST is 0.45m.

(5) In order to simplify the calculation of the iron loss inside the laminated sheets (in both the rolling and transverse directions), the average specific total loss curves are proposed based on the measured multiple specific total loss curves of different H_{dc} (B27R090) to be used in modeling and simulation.

(6) The measured DC magnetization B-H curves (B27R090) in both the rolling and transverse directions are also included to be used in the DC magnetic field computation.

(7) Finally, the magnetic properties of GO silicon steel (B27R090) at low frequency(5Hz) have been measured to possibly further examine the effect of very low frequency on magnetization and loss behaviors.

Fig. A2.0 Magnetic measuring system (Brockhaus)

Table A2.0 shows the magnetization conditions specified in magnetic measurements of GO silicon steel (B27R090) used in Model P21^e-M(NS). Refer to Table III of the benchmarking report.

Cases	Excitation conditions	Remarks
Ι	$U_l \sin(\omega t + 0)$	In each case, the <i>B</i> - <i>H</i> curve and W_t - B_m curves were measured in rolling
II	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$	and transverse direction under different excitation conditions (without
III	$U_1 \sin (\omega t+0)+U_3 \sin(3\omega t+0)$ + $U_5 \sin(5\omega t+0)+U_7 \sin(7\omega t+0)$	DC bias).
IV	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$ (with DC biases)	The <i>B</i> - <i>H</i> curves and $W_r B_m$ curves were measured in rolling and transverse directions under AC and DC hybrid excitation, including 15 different DC biases.

Table A2.0 Magnetic Measurements under Different Excitation Conditions

The *B*-*H* curves, the W_t - B_m curves, and the corresponding sampled points data(B27R090) under different excitation conditions (Cases I~IV) are shown below.

2.1 Magnetic Properties (Case I)

2.1.1 *B*-*H* curves

$B_m[T]$	H _b [A/m]	$B_m[T]$	$H_b \left[A/m\right]$	Curve
0.10000469	3.010206172	1.050139135	15.21423989	
0.150015016	3.993985182	1.099929428	16.31049701	
0.200016048	4.87402967	1.149906012	17.57968917	
0.250018625	5.678724223	1.199995784	19.30525612	
0.299999813	6.444878086	1.25003205	21.6576704	
0.350013156	7.107262797	1.300004957	24.18055723	B _m -H _b
0.400000755	7.763501947	1.350023126	27.11492951	2.0
0.450021865	8.296741786	1.400088518	30.80280115	
0.499990618	8.852781554	1.450092337	35.53167756	1.5
0.550008272	9.428059603	1.499933424	41.28936168	ξ ₁₀
0.599982679	9.911688618	1.550112005	49.54685951	
0.650087968	10.38596569	1.599954912	60.86645043	0.5
0.700025127	10.80920788	1.650302972	78.28824889	
0.749972209	11.31768634	1.700027693	106.2220024	0.0
0.800017684	11.79089462	1.750051073	157.7164686	
0.849991894	12.29803709	1.800092657	262.0151559	- н _ь (А/М)
0.900000461	12.93877873	1.849961979	494.7181995	1
0.950028231	13.46783147	1.900017198	1071.087888	1
1.000025804	14.21839163			1

Fig. A2.1 B_m - H_b curve of silicon steel (in rolling direction, B27R090).

Fig.A2.2 B_m-H_b curve of silicon steel (in transverse direction, B27R090)

$2.1.2 W_t - B_m$ curves

B _m [T]	W _t [W/kg]	$B_m[T]$	W _t [W/kg]	Curve
0.100008453	0.003213466	1.050158469	0.306049481	
0.150020018	0.006986827	1.099950193	0.336184973	
0.200022134	0.012088933	1.149928593	0.367743601	
0.25002576	0.018535027	1.200020518	0.400758306	
0.300007891	0.026253151	1.250059349	0.435248011	<i>W_t-B_m</i>
0.350022088	0.035227537	1.300035352	0.47117578	16
0.400010499	0.045443681	1.350057288	0.508746216	
0.450032339	0.056892524	1.400127407	0.548425352	1.2
0.500001777	0.069670431	1.450137012	0.590373333	
0.550020105	0.083704639	1.499985428	0.635238394	0.8
0.599995109	0.099214849	1.550174027	0.684456	≥ 0.6
0.65010099	0.116219095	1.600031205	0.739400845	0.4
0.700038736	0.134650192	1.650401158	0.803273386	0.2
0.749986437	0.154590999	1.700161616	0.878080281	0
0.80003252	0.176035192	1.7502497	0.973723037	0 0.5 1 1.5 2
0.850007397	0.199047694	1.800421478	1.09978189	В _т (Т)
0.900016696	0.223685659	1.850583444	1.265569109	
0.950045319	0.24967139	1.90136245	1.483415783	
1.000043913	0.277089942			

Fig. A2.3 W_t - B_m Curve of Silicon Steel in Rolling Direction (B27R090)

Fig. A2.4 W_t - B_m Curve of Silicon Steel in Transverse Direction (B27R090)

2.2 Magnetic Properties(Case II)

2.2.1 *B*-*H* curves

Fig. A2.5 B_m - H_b curve of silicon steel (in rolling direction, B27R090).

	Tig	$A2.5 D_m - \Pi_b V$		steet (in forming direction, B27R090).
$B_m[T]$	$H_b \left[A/m\right]$	$B_m[T]$	$H_b \left[A/m\right]$	Curve
0.099997505	165.0457193	0.950007832	293.9667346	
0.149983823	211.1726537	0.99994997	299.4977405	
0.200042162	234.2265274	1.049989645	308.2084067	D 11
0.249981402	245.7160565	1.099994892	321.6003881	B _m -H _b
0.300001434	252.0807212	1.149998247	344.7130454	
0.350006295	256.1848878	1.200015559	390.0405736	1.6
0.399996215	259.1026938	1.249983648	473.9301678	1.2
0.45001277	262.0632516	1.299955984	637.7013809	£ 1
0.500017189	264.8528023	1.350024268	989.6992708	ه ^E 0.8
0.550005902	266.9903891	1.400007848	1665.230141	0.6
0.59998068	269.5448054	1.449763089	2760.924646	0.2
0.650001818	272.2755725	1.499596787	4283.483694	0
0.700030881	274.3917835	1.549636658	6209.770043	0 5000 10000 15000
0.749990567	277.4538766	1.599536248	8489.873609	H _b (A/m)
0.800015803	280.6549128	1.649517365	11097.81331	
0.849956824	284.4811932	1.699391398	13988.89946	
0.899982292	288.7510228			

Fig.A2.6 B_m - H_b curve of silicon steel (in transverse direction, B27R090)

2.2.2 W_t - B_m curves

$B_m[T]$	W _t [W/kg]	$B_m[T]$	W _t [W/kg]				C	urve		
0.100051974	0.002985051	1.049875002	0.286070419							
0.150015623	0.006474398	1.09999822	0.315066313							
0.200013242	0.011198559	1.149660496	0.345058472							
0.250015558	0.017151114	1.200000184	0.376947406				<i>W</i> _t -	·B _m		
0.300013559	0.024291392	1.249965908	0.410061572		1.6					
0.350025207	0.032576373	1.299956057	0.444604741		1.4					
0.400019545	0.041963522	1.350190102	0.481354572		1.2					
0.450031594	0.052587874	1.399975347	0.519736364	6	1					
0.500022621	0.064333622	1.44984788	0.560375453	(w/k	0.8				/	
0.549957811	0.077353812	1.500121141	0.604752682	Š	0.6					
0.600034851	0.091754886	1.550125725	0.652891233		0.4					
0.649977876	0.107455984	1.600064543	0.706899399		0.2					
0.700022158	0.12455997	1.650073927	0.770003664		0					
0.750027228	0.143182266	1.700076011	0.845613688			0	0.5	1	1.5	2
0.799843382	0.163248952	1.750178845	0.940275792	1				B _m (T)		
0.850049755	0.185006735	1.800279916	1.064847893							
0.900020411	0.208094284	1.850385415	1.229904174	ĺ						
0.950253014	0.232768457	1.901353965	1.448224159							
1.000041563	0.258713405									

Fig. A2.7 W_t - B_m Curve of Silicon Steel in Rolling Direction (B27R090)

Fig. A2.8 W_t - B_m Curve of Silicon Steel in Transverse Direction (B27R090)

2.3 Magnetic Properties (Case III)

2.3.1 *B*-*H* curves

$B_m[T]$	H _b [A/m]	$B_m[T]$	$H_b\left[A/m\right]$	Curve
0.100021813	3.039063594	1.050002638	16.55845707	
0.150006549	4.095627435	1.099756451	17.72771706	
0.200002569	5.033600525	1.149952915	19.46183435	
0.250002912	5.938537211	1.200038618	21.07197161	B _m -H _b
0.299984272	6.676539056	1.250040509	23.19245773	2
0.349923062	7.440905469	1.299864391	25.54166563	
0.40000047	8.124933247	1.349959946	28.87042268	1.4
0.450028062	8.724259147	1.400066173	32.45729334	1.2
0.499994144	9.356717643	1.44996041	37.02915117	
0.550013969	9.921842155	1.500042365	43.08279701	
0.600017617	10.47841632	1.550047754	50.64023516	0.6
0.650035685	11.04300643	1.599955233	61.86149709	0.2
0.699998302	11.56270723	1.650043863	79.12725171	0
0.749998605	12.02816675	1.699935244	105.636838	0 500 1000 1500
0.80000744	12.6526093	1.750081485	157.5267577	H _b (A/m)
0.850036263	13.20063312	1.800058997	261.4593833	
0.900014203	13.90090228	1.849907294	492.2599747	
0.950006993	14.63676654	1.900055606	1063.793373	
0.999888914	15.60028379			

$B_m[T]$	$H_{b}\left[A/m\right]$	$B_m[T]$	$H_{b}\left[A/m\right]$	Curve
0.100017579	167.9207736	0.949986504	296.018818	
0.149998379	214.9187746	0.99989202	302.4155465	
0.200010308	238.656676	1.049951594	311.1369007	B _m -H _b
0.250029454	250.648538	1.099993	324.4059707	1.8
0.299961909	257.13077	1.149955842	346.7544408	1.6
0.349988869	260.3104304	1.199989287	387.6464764	1.4
0.399986677	263.3725235	1.250082558	471.5574464	1.2
0.449995008	266.2422338	1.299843867	633.7361574	
0.50003625	268.801994	1.350096193	990.313827	0.6
0.550027533	270.907517	1.399938957	1653.152776	0.4
0.599984235	273.2161107	1.449897444	2746.923453	0.2
0.650007404	275.7544951	1.499846436	4270.551293	0
0.699983971	278.6135174	1.549536855	6173.00355	0 5000 10000 15000
0.750065015	281.5580432	1.599423024	8447.121873	H _b (A/m)
0.800015524	283.220017	1.61672975	9306.431769	
0.850016006	286.944762	1.628635776	9938.355868	
0.900021949	290.9206734			

Fig.A2.10 B_m - H_b curve of silicon steel (in transverse direction, B27R090)

2.3.2 W_t - B_m curves

Fig. A2.11 W_t - B_m Curve of Silicon Steel in Rolling Direction (B27R090)

Fig. A2.12 W_t -B_m Curve of Silicon Steel in Transverse Direction (B27R090)

2.4 Magnetic Properties(Case IV)

2.4.1 *B*-*H* curves

As mentioned above, the initial magnetization B-H curves are recommended to be used in Case IV and V due to the consideration of the feasibility of the 3-D transient calculation (with DC-bias).

<i>B</i> [T]	<i>H</i> [A/m]	<i>B</i> [T]	<i>H</i> [A/m]			Curv	e	
0.034613644	4.392352272	1.144132303	16.3828105					
0.239500343	5.14847444	1.14416046	17.77780499					
0.280571392	5.803612732	1.215773664	19.33268029					
0.330653364	6.486208327	1.261208571	21.45002522					
0.380742348	7.072150796	1.312197759	24.11559596					
0.425231008	7.651497742	1.334881378	27.47425786		Initial I (B27R0)	magnetiza 90. rolling	tion curve derection	e n)
0.479177073	8.231296787	1.403817594	31.53633544		02710	<i>50,</i> 1011115	uerection	''
0.522190343	8.77742884	1.422775606	36.71534488		1.8			
0.589952366	9.325770623	1.491253512	43.27019924		1.6 1.4			
0.635503419	9.850981152	1.551442681	51.8564793	E	1.2			
0.696426703	10.40620329	1.593906185	63.87709182	Bm	0.8			
0.742007361	10.9949802	1.646445169	81.5338271		0.4			
0.807984884	11.62362845	1.697507608	109.2971882		0.2		1	
0.863904029	12.22248943	1.747641103	157.6954133		0	50	00	1000
0.911731214	12.92055581	1.799666179	252.7948889			Hb (Δ/r	n)	
1.014894169	13.62763746	1.851106746	464.3965306				,	
1.073494206	14.47248123	1.882815177	996.2568528					
1.056623641	15.35924309							
Fig.A2.13 Initial magnetization <i>B-H</i> curve of silicon steel (in rolling direction, B27R090)								
$B_m[T]$	$H_b \left[A/m\right]$	$B_m[T]$	$H_b \left[A/m\right]$			Curv	e	
0.0950471	155.4528176	0.9308006	295.8550788					
0.145940272	202.048685	0.982553789	303.7840296					
0.190697539	225.783487	1.035742331	315.442428					
0.236419706	239.4089997	1.08753488	331.77466		Initial I	magnetiza	tion curve	2
0.282676719	247.2581116	1.142844667	358.7251407		(B27R090	, transver	se derecti	ion)
0.325085612	252.2126103	1.19657356	402.3150246		1.8 г			
0.367585157	256.1977134	1.247461547	477.6835565		1.6			
0.415050077	259.6291815	1.296077238	623.7991747		1.4			
0.460052135	262.5373683	1.350996136	983.423316	E	1			
0.513020104	265.5142786	1.400546505	1630.753538	6	0.8			
0.563593314	268.2377779	1.450572111	2695.738937		0.4			
0.613842126	271.0523385	1.500224699	4171.566061		0.2	1	1	
0.667094867	274.110477	1.550240131	6041.520586		0	4000	8000	12000
0.721825875	277.5010104	1.600006906	8283.209045	1				
0.772892937	280.9862388	1.650051761	10824.04188	1		H _b (A/m	1)	
	1	1	l	1				
0.826208456	285.0693502	1.657756764	11223.97368					
0.826208456 0.877100417	285.0693502 289.7226629	1.657756764	11223.97368					

D [T]	0		e measarea wi		3 under	AC-DC hybrid excitations.
B _m [1]	W _t [W/kg]	$B_m[T]$	W _t [W/kg]			Curve
0.099997094	0.002932884	1.049988788	0.305364506			
0.150014806	0.006584082	1.100075633	0.332470425			
0.200004825	0.011789214	1.150118574	0.360771548]		
0.249998707	0.018462137	1.199980364	0.391070001]		W _t -B _m
0.300016054	0.027414803	1.25006471	0.423320057		1.6	
0.350009979	0.037651814	1.300040081	0.457132665		1.4	
0.399998157	0.051403248	1.350027123	0.493253751		1.2	
0.449992581	0.064474716	1.399770335	0.531340129	1	1	
0.500005153	0.079657344	1.449986038	0.572490994	(g	0.8	
0.550003132	0.096390747	1.500020714	0.616679881	×/×	0.6	
0.599980352	0.112999632	1.549726989	0.664380752	ب م	0.4	
0.649979316	0.131022454	1.599866872	0.717108576		0.2	
0.70000865	0.150023795	1.650009304	0.778348355	1	0.2	
0.750002974	0.169579701	1.699846221	0.850786665		0	0 0.5 1 1.5 2
0.799977813	0.190047575	1.749978649	0.943257662			B _m (T)
0.850019594	0.211317151	1.799957196	1.064792977	1		
0.899992001	0.232932571	1.850028692	1.23011362			
0.949984077	0.256071712	1.900075981	1.447518691			
0.999982685	0.280095495]		
	Fig. A2.15 V	W_t - B_m curve of s	ilicon steel with	n 5A/m E	C bias	(in rolling direction, B27R090)
B _m [T]	W _t [W/kg]	B _m [T]	W/ FW//1			Curve
		-m[-]	W _t [W/Kg]			Curve
0.100032807	0.004148486	1.050026054	0.338069619			Curve
0.100032807 0.150002619	0.004148486 0.009363303	1.050026054 1.099989863	wt [w/kg] 0.338069619 0.364830407			
0.100032807 0.150002619 0.200003897	0.004148486 0.009363303 0.017211149	1.050026054 1.099989863 1.15002504	w _t [w/kg] 0.338069619 0.364830407 0.392496121			W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542	0.004148486 0.009363303 0.017211149 0.027386817	1.050026054 1.099989863 1.15002504 1.200032786	wt [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888		1.6	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657		1.6 1.4	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056		1.6 1.4 1.2	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056 0.522467403		1.6 1.4 1.2	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.452124657 0.487334056 0.5522467403 0.559862528		1.6 1.4 1.2 1	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056 0.522467403 0.559862528 0.600472363	//kg)	1.6 1.4 1.2 1 0.8	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194 1.49992866	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.452124657 0.487334056 0.5522467403 0.559862528 0.600472363 0.642882692	(W/kg)	1.6 1.4 1.2 1 0.8 0.6	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194 1.499992866 1.55008216	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056 0.552467403 0.559862528 0.600472363 0.6428826922 0.689510094	W _t (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.259954164 1.350007265 1.399997592 1.449975194 1.499992866 1.55008216 1.599940005	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056 0.522467403 0.559862528 0.600472363 0.6489510094 0.73934293	Wt (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.69997227	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.175166124	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194 1.55008216 1.599940005 1.6499532	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.487334056 0.552862528 0.600472363 0.642882692 0.689510094 0.73934293 0.796251168	W _t (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.659097227 0.750023906	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.175166124 0.196051094	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.259954164 1.350007265 1.399997592 1.449975194 1.55008216 1.599940005 1.6499532 1.699924484	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.45212888 0.454124657 0.487334056 0.522467403 0.559862528 0.600472363 0.642882692 0.689510094 0.73934293 0.796251168 0.864337697	Wt (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.650018266 0.69997227 0.750023906 0.800032522	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.155079648 0.175166124 0.196051094 0.218077556	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194 1.55008216 1.599940005 1.6499532 1.699924484 1.75007067	w1 [w/kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.454124657 0.45512467403 0.522467403 0.559862528 0.600472363 0.6489510094 0.73934293 0.796251168 0.864337697 0.950116646	Wt (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.650018266 0.659997227 0.750023906 0.800032522 0.849997231	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.175166124 0.196051094 0.218077556 0.240170619	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.259954164 1.350007265 1.399997592 1.449975194 1.55008216 1.599940005 1.6499532 1.699924484 1.75007067 1.79990495	w ₁ [w/kg] 0.338069619 0.338069619 0.392496121 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.522467403 0.559862528 0.600472363 0.642882692 0.649510094 0.73934293 0.796251168 0.864337697 0.950116646 1.067076428	Wt (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m 0 0.5 1 1.5 2 B _m (T)
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.650018266 0.69997227 0.750023906 0.800032522 0.849997231 0.899990627	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.155079648 0.175166124 0.196051094 0.218077556 0.240170619 0.263295418	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.299954164 1.350007265 1.399997592 1.449975194 1.55008216 1.599940005 1.6499532 1.699924484 1.75007067 1.799909495 1.849878203	w1 [w7kg] 0.338069619 0.364830407 0.392496121 0.4221888 0.454124657 0.454124657 0.454124657 0.45512467403 0.522467403 0.559862528 0.600472363 0.642882692 0.689510094 0.73934293 0.796251168 0.864337697 0.950116646 1.067076428 1.228600233	W _t (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m
0.100032807 0.150002619 0.200003897 0.249974542 0.299986399 0.349999335 0.400001662 0.450010971 0.499989333 0.550022636 0.600006566 0.650018266 0.650018266 0.650018266 0.69997227 0.750023906 0.800032522 0.849997231 0.899990627 0.950045133	0.004148486 0.009363303 0.017211149 0.027386817 0.039249085 0.052098247 0.066787339 0.082230205 0.099379893 0.117090638 0.135809897 0.155079648 0.175166124 0.196051094 0.218077556 0.240170619 0.263295418 0.287463308	1.050026054 1.099989863 1.15002504 1.200032786 1.249961847 1.250954164 1.350007265 1.399997592 1.449975194 1.55008216 1.5599940005 1.6499532 1.699924484 1.75007067 1.799909495 1.849878203 1.89995682	w ₁ [w/kg] 0.338069619 0.364830407 0.392496121 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4521888 0.4559862528 0.600472363 0.642882692 0.642882692 0.642882692 0.642882692 0.64337697 0.950116646 1.067076428 1.228600233 1.446388237	Wt (W/kg)	1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0	W _t -B _m

2.4.2 W_{t} - B_{m} curves with different DC-biases (in rolling direction) See Figs. A2.15-30 for the measured W_{r} - B_{m} curves under AC-DC hybrid excitations.

Fig. A2.16 $W_r B_m$ curve of silicon steel with 10A/m DC bias (in rolling direction, B27R090)

Fig. A2.17 W_t - B_m curve of silicon steel with 15A/m DC bias (in rolling direction, B27R090)

Fig. A2.18 W_t - B_m curve of silicon steel with 20A/m DC bias (in rolling direction, B27R090)

Fig. A2.19 W_t - B_m curve of silicon steel with 25A/m DC bias (in rolling direction, B27R090)

Fig. A2.20 W_t - B_m curve of silicon steel with 30A/m DC bias (in rolling direction, B27R090)

Fig. A2.21 W_t-B_m curve of silicon steel with 35A/m DC bias (in rolling direction, B27R090)

Fig. A2.22 W_t - B_m curve of silicon steel with 40A/m DC bias (in rolling direction, B27R090)

Fig. A2.23 W_r - B_m curve of silicon steel with 45A/m DC bias (in rolling direction, B27R090)

Fig. A2.24 W_t - B_m curve of silicon steel with 50A/m DC bias (in rolling direction, B27R090)

Fig. A2.25 W_t-B_m curve of silicon steel with 60A/m DC bias (in rolling direction, B27R090)

Fig. A2.26 W_t - B_m curve of silicon steel with 70A/m DC bias (in rolling direction, B27R090)

Fig. A2.27 W_t-B_m curve of silicon steel with 80A/m DC bias (in rolling direction, B27R090)

Fig. A2.28 W_t - B_m curve of silicon steel with 90A/m DC bias (in rolling direction, B27R090)

Fig. A2.29 W_t - B_m curve of silicon steel with 100A/m DC bias (in rolling direction, B27R090)

Fig. A2.30 W_t - B_m curves of silicon steel with different DC-biases (in rolling direction, B27R090)

B _m [T]	W _t [W/kg]	B _m [T]	W _t [W/kg]				С	urve	e		
0.100007353	0.0614354	0.950000744	1.476202655								
0.149991882	0.124147593	0.999854612	1.574695395								
0.199962934	0.199241105	1.050028481	1.679603589								
0.250008155	0.279395611	1.100025197	1.792907246					W _t -	B _m		
0.300005255	0.360943458	1.150028409	1.91633949		5	Г					
0.350006452	0.442426192	1.199910509	2.06152613		4						
0.399965403	0.523818039	1.249981042	2.23992038		4						
0.450019024	0.606622476	1.299950308	2.469984257		3	┝	 			+	
0.500024599	0.689170629	1.349996569	2.761814972	/kg)	2						
0.550031816	0.77222377	1.400044567	3.107501262	Š	-						
0.599976782	0.855391317	1.450013702	3.457824395	Š	1	┢	 /				
0.649895291	0.939363779	1.499969726	3.763997008		0	L					
0.700044345	1.024629495	1.549835549	4.016039641			0	0.5		1	1.5	2
0.749930785	1.111288827	1.600040544	4.222375932						B _m (T)		
0.800002824	1.19893046	1.650054215	4.413882456								
0.849965819	1.288831353	1.699979505	4.613352701								
0.900008814	1.381503926										

2.4.3 W_t - B_m curves with different DC-biases (in transverse direction) See Figs. A2.31-46 for the measured W_t - B_m curves under AC-DC hybrid excitations

Fig. A2.31 W_r - B_m curve of silicon steel with 5A/m DC bias (in transverse direction, B27R090)

Fig. A2.32 W₁-B_m curve of silicon steel with 10A/m DC bias (in transverse direction, B27R090)

Fig. A2.33 W_t - B_m curve of silicon steel with 15A/m DC bias (in transverse direction, B27R090)

Fig. A2.34 W_r - B_m curve of silicon steel with 20A/m DC bias (in transverse direction, B27R090)

Fig. A2.35 W_t - B_m curve of silicon steel with 25A/m DC bias (in transverse direction, B27R090)

Fig. A2.36 W_r-B_m curve of silicon steel with 30A/m DC bias (in transverse direction, B27R090)

Fig. A2.37 W_t - B_m curve of silicon steel with 35A/m DC bias (in transverse direction, B27R090)

Fig. A2.38 W_r - B_m curve of silicon steel with 40A/m DC bias (in transverse direction, B27R090)

Fig. A2.39 W_r-B_m curve of silicon steel with 45A/m DC bias (in transverse direction, B27R090)

Fig. A2.40 W_r - B_m curve of silicon steel with 50A/m DC bias (in transverse direction, B27R090)

Fig. A2.41 W_t - B_m curve of silicon steel with 60A/m DC bias (in transverse direction, B27R090)

Fig. A2.42 W_r - B_m curve of silicon steel with 70A/m DC bias (in transverse direction, B27R090)

Fig. A2.43 W_t - B_m curve of silicon steel with 80A/m DC bias (in transverse direction, B27R090)

Fig. A2.44 Wr-Bm curve of silicon steel with 90A/m DC bias (in transverse direction, B27R090)

Fig. A2.45 W_t - B_m curve of silicon steel with 100A/m DC bias (in transverse direction, B27R090)

 W_t - B_m Curves with different DC-biases in transverse direction

Fig. A2.46 W_r-B_m curves of silicon steel with different DC-biases (in transverse direction, B27R090)

2.5 Simplification of multiple measured specific total loss curves(B27R090)

In order to simplify the calculation of the iron loss inside the laminated sheets under complex AC-DC hybrid excitation, the average specific total loss curve is proposed, which represents the average specific total loss in a certain DC-bias (i.e., H_{dc}) range.

As an example, herein 16 W_t - B_m curves with different degrees of DC bias(H_{dc}) measured in the rolling direction (see below) are treated as three average specific total loss curves, i.e., 0-25A/m, 26-50 A/m and 51-100 A/m. See Fig.A2.47 and Table A2.01.

Note that the determination of the average specific total loss curves should take account of the actual H_{dc} distribution in the solved field region.

W_t-B_m curves of silicon steel with different DC-biases (in rolling direction, B27R090)

Fig. A2.47 Average specific total loss curves (in rolling direction)

Average specific total loss curves with different $H_{dc}(A/m)$							
	5-25A/m		30-45A/m		50-100A/m		
$B_m(T)$	W _t (W/kg)	$B_m(T)$	W _t (W/kg)	$B_m(T)$	$W_t(W/kg)$		
0.1	0.005552	0.1	0.014121	0.1	0.030206		
0.15	0.012328	0.15	0.030729	0.15	0.057268		
0.2	0.022317	0.2	0.050708	0.2	0.084543		
0.25	0.034604	0.25	0.072267	0.25	0.112243		
0.3	0.048609	0.3	0.095136	0.3	0.139719		
0.35	0.06406	0.35	0.118856	0.35	0.166955		
0.4	0.080809	0.4	0.142896	0.4	0.194112		
0.45	0.098696	0.45	0.166911	0.45	0.221165		
0.5	0.117525	0.5	0.190794	0.5	0.247926		
0.55	0.137098	0.55	0.214585	0.55	0.274247		
0.6	0.157274	0.6	0.238374	0.6	0.300162		
0.65	0.177986	0.65	0.262247	0.65	0.325885		
0.7	0.199242	0.7	0.286267	0.7	0.351692		
0.75	0.221078	0.75	0.310489	0.75	0.377786		
0.8	0.243525	0.8	0.33496	0.8	0.404214		
0.85	0.266591	0.85	0.35972	0.85	0.430873		
0.9	0.290266	0.9	0.38481	0.9	0.457601		
0.95	0.314562	0.95	0.410282	0.95	0.484281		
1	0.339541	1	0.436224	1	0.510935		
1.05	0.365345	1.05	0.462779	1.05	0.537749		
1.1	0.392181	1.1	0.490147	1.1	0.565035		
1.15	0.420292	1.15	0.518562	1.15	0.593158		
1.2	0.449909	1.2	0.548248	1.2	0.62244		
1.25	0.481209	1.25	0.579373	1.25	0.653115		
1.3	0.514311	1.3	0.612037	1.3	0.685313		
1.35	0.549309	1.35	0.646307	1.35	0.719099		
1.4	0.58633	1.4	0.682281	1.4	0.754523		
1.45	0.625598	1.45	0.720164	1.45	0.791663		
1.5	0.667474	1.5	0.760272	1.5	0.830633		
1.55	0.712509	1.55	0.802965	1.55	0.871606		
1.6	0.761622	1.6	0.848596	1.6	0.914898		
1.65	0.816602	1.65	0.897771	1.65	0.961247		
1.7	0.881193	1.7	0.952419	1.7	1.012441		
1.75	0.962787	1.75	1.018135	1.75	1.072566		
1.8	1.074003	1.8	1.10759	1.8	1.150359		

Table A2.01 Average specific total loss curves (in rolling direction)

1.85	1.231606	1.85	1.242625	1.85	1.263893
1.9	1.446504	1.9	1.447678	1.9	1.450376

For the same reason, considering that there is little difference among the measured 16 specific total loss curves (in the transverse direction, see below), it is treated as one average specific total loss curve. See Fig. A2.48 and Table A2.02.

 W_t - B_m Curves with different DC-biases in transverse direction

Fig. A2.48 Average specific total loss curves (in transverse direction, B27R090)

$B_m(T)$	W _t (W/kg)	$B_m(T)$	W _t (W/kg)	
0.1	0.061918	0.95	1.491917	
0.15	0.125051	1	1.604428	
0.2	0.194351	1.05	1.725351	
0.25	0.276826	1.1	1.851669	
0.3	0.355565	1.15	1.982501	
0.35	0.43332	1.2	2.124027	
0.4	0.514996	1.25	2.291486	
0.45	0.599435	1.3	2.504841	
0.5	0.683019	1.35	2.777676	
0.55	0.764591	1.4	3.103791	
0.6	0.846233	1.45	3.45064	
0.65	0.93071	1.5	3.769377	
0.7	1.018908	1.55	4.023843	
0.75	1.10951	1.6	4.223221	
0.8	1.200839	1.65	4.419734	
0.85	1.293055	1.7	4.620948	
0.9	1.388842			

Table A2.02 Average specific total loss curves (in transverse direction, B27R090)

2.6 DC magnetization B-H curves(B27R090)

The measured DC magnetization *B-H* curves in both rolling and transverse directions are shown Figs.A2.49-50.

1.000761689	14.29602344	1.900086662	964.3478823	
1.052642966	15.34223899			
	Fig.A2.49	DC magnetizat	ion B-H curve o	of silicon steel (in rolling direction, B27R090)
$B_m[T]$	$H_{b}\left[A/m\right]$	$B_m[T]$	$H_b \left[A/m\right]$	Curve
0.097368237	154.1994435	0.926641716	294.3144131	
0.145608989	198.6409442	0.981684124	302.6779353	
0.192293012	223.5414791	1.035455585	314.1235369	
0.236815599	237.4562073	1.086259009	330.2955568	
0.281685947	245.2669495	1.141893947	357.2976602	DC momentiantion survey (8278000
0.328292861	250.6151917	1.19553356	399.9408069	transverse direction)
0.373546033	254.5839422	1.246659578	475.3929184	19
0.42581341	258.3092216	1.282580513	569.8013635	1.6
0.468644962	261.423365	1.351088172	974.8294047	
0.516750409	264.5680758	1.400721917	1618.99681	
0.568740461	267.3583747	1.453583445	2682.091403	<u>سّ</u> 0.8 0.6
0.610742193	270.187364	1.500033837	4163.47957	0.4 0.2
0.665002711	273.1501662	1.549585051	6025.67038	0
0.717334688	276.3077025	1.599628214	8267.030184	0 4000 8000 12000
0.770914147	279.8764037	1.65031179	10842.32359	H _b (A/m)
0.821544846	283.7236324	1.657231248	11230.1513	
0.874320472	288.2960375			

Fig.A2.50 DC magnetization B-H curve of silicon steel (in transverse direction, B27R090)

2.7 Magnetic Properties at low frequency (5Hz, B27R090)

The magnetic properties of GO silicon steel (B27R090) at low frequency(5Hz) have been measured by using SST(Brockhaus) to possibly extend the model to include the effect of very low frequency on magnetization and loss behaviors.

1.900223229 0.085625767	1.80002034	0.058456408						
	1.900223229	0.085625767						

Fig.A2.51 W_t - B_m curve of silicon steel at low frequency(5Hz, in rolling direction, B2/
--

$B_m[T]$	$H_{b}\left[A/m\right]$				Curve		
0.099996474	2.936322835						
0.199980888	4.755115289						
0.299998007	6.25677002						
0.399953039	7.521045736				B _m -H _b)	
0.499953481	8.609531657		2				
0.599992859	9.616602241						
0.699930678	10.5946818		1.5	/			
0.799965605	11.57329576						
0.89983523	12.75952284	(E)"	I				
0.99993646	14.25423041	B	0.5				
1.100041474	16.42120904		0.5				
1.200044793	19.69679362		0				
1.299992785	24.70863308		(0	500	1000	1500
1.400027088	32.28023275				H _b (A	\/m)	
1.500059807	44.25018446						
1.600061282	65.52665473						
1.700029621	113.0262383						
1.80002034	266.2444526						
1.900223229	1069.795397						

Fig.A2.52 B_m - H_b curve of silicon steel (in rolling direction, B27R090)

3 Measured Exciting Current Waveforms(P21^e)

The measured exciting current waveforms and corresponding sampled point data under different excitation conditions are sorted out to be used in modeling and simulation of stray magnetic field loss inside models' load-components(P21^e-EM(NS) and P21^e-M(NS)) and magnetic flux densities at specified positions of the models.

Note that all the hybrid excitation cases applied in the upgraded models of the new member-set of Problem 21 Family (P21^e-EM(NS) and P21^e-M(NS)) have been specified in the benchmarking report. Table A3.0 below shows the hybrid excitation cases in more detail.

Cases	Excitation conditions	Remarks
Ι	$U_1 \sin(\omega t + 0)$	In each case, the excitation
II	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$	current (AC) reaches 10A
Ш	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$	(rms), but without DC bias.
	$+U_5 \sin(5\omega t+0)+U_7 \sin(7\omega t+0)$	
IV (ADH1)	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$ (with DC biases)	Hybrid excitation at the same side of model's load- component, AC reaches 7A (rms), and includes DC (5A).
V (ADH2)	$U_1 \sin(\omega t+0)+U_3 \sin(3\omega t+0)$ (with DC biases)	Hybrid excitation at the two side of model's load- component, AC reaches 7A (rms) at one side, and DC reaches 5A at another side.

Table A3.0
AC-DC Hybrid Excitation Cases(in Model-based Measurement)

Notes:

All phase angles of fundamental and harmonics are set to zero.

 U_1 (fundamental, 50Hz, rms); U_3, U_5 , and U_7 are of 30% $U_{1,*}$.

3.1 Measured Exciting Currents (Model P21^e-EM(NS))

The measured exciting current waveforms and the corresponding sampled points under different excitation conditions based on P21^e-EM(NS) are shown in Tables A3.1-A3.4 and Figs.A3.1-A3.4.

3.1.1 On the Exciting currents (Case I)

Case I (P21^e-EM(NS)): with copper plate and sinusoidal voltage source excitation.

3.1.2 Sampled Points and Waveform of Exciting currents (Case II)

Table A3.1 Sampled Points from Current Waveform	(Case II: fundamental +3rd	harmonic)
---	----------------------------	-----------

Time	Current(A)	Time	Current(A)	Time	Current(A)
(ms)		(ms)		(ms)	
0	0.3	13.5	11.2	27	-12.8
0.5	-1.26	14	12.9	27.5	-10.9
1	-2.79	14.5	14.3	28	-8.84
1.5	-4.38	15	15.2	28.5	-6.68
2	-6.1	15.5	15.5	29	-4.62
2.5	-7.92	16	15	29.5	-2.72
3	-9.81	16.5	13.9	30	-0.98
3.5	-11.7	17	12.3	30.5	0.6
4	-13.3	17.5	10.4	31	2.13
4.5	-14.6	18	8.25	31.5	3.69

5	-15.3	18.5	6.12	32	5.35
5.5	-15.5	19	4.07	32.5	7.12
6	-15.1	19.5	2.23	33	9.02
6.5	-14	20	0.55	33.5	10.9
7	-12.5	20.5	-1	34	12.6
7.5	-10.6	21	-2.54	34.5	14.1
8	-8.47	21.5	-4.12	35	15.1
8.5	-6.35	22	-5.8	35.5	15.5
9	-4.31	22.5	-7.63	36	15.1
9.5	-2.42	23	-9.52	36.5	14.1
10	-0.73	23.5	-11.4	37	12.6
10.5	0.85	24 -13.1		37.5	10.7
11	2.39	24.5	-14.4	38	8.58
11.5	3.94	25	-15.2	38.5	6.45
12	5.61	25.5	-15.5	39	4.41
12.5	7.41	26	-15.2	39.5	2.51
13	9.31	26.5	-14.3	40	0.8

Fig.A3.1 Measured current waveform (Case II : fundamental + 3^{rd} harmonic)

3.1.3 Sampled Points and Waveform of Exciting currents (Case III)

Time	Current(A)	Time	Current(A)	Time	Current(A)
(ms)		(ms)		(ms)	
0	12	13.5	-9.23	27	-2.74
0.5	14.1	14	-7.96	27.5	-4.6
1	16.1	14.5	-6.64	28	-6.64
1.5	16.8	15	-4.84	28.5	-8.4
2	15.4	15.5	-2.68	29	-9.57
2.5	13	16	-0.64	29.5	-10.5
3	10.6	16.5	1	30	-11.9
3.5	8.84	17	2.55	30.5	-14
4	7.63	17.5	4.39	31	-16
4.5	6.22	18	6.43	31.5	-16.9

Table A3.2 Sampled Points from Current Waveform

5	4.26	18.5	8.23	32	-16.2
5.5	2.09	19	9.47	32.5	-14.1
6	0.18	19.5	10.4	33	-11.5
6.5	-1.42	20	11.7	33.5	-9.48
7	-3.01	20.5	13.8	34	-8.14
7.5	-4.92	21	15.8	34.5	-6.87
8	-6.94	21.5	16.9	35	-5.15
8.5	-8.62	22	15.8	35.5	-3.02
9	-9.72	22.5	13.4	36	-0.93
9.5	-10.7	23	10.9	36.5	0.77
10	-12.2	23.5	9.09	37	2.3
10.5	-14.3	24	7.82	37.5	4.06
11	-16.3	24.5	6.48	38	6.11
11.5	-16.9	25	4.62	38.5	7.98
12	-16	25.5	2.43	39	9.3
12.5	-13.7	26	0.45	39.5	10.3
13	-11.1	26.5	-1.17	40	11.5

3.1.4 Sampled Points and Waveform of Exciting currents (Case IV)

Time	Current(A)	Time	Current(A)	Time	Current(A)
(ms)		(ms)		(ms)	
0	-14	13.5	2.74	27	-4.04
0.5	-14.9	14	1.32	27.5	-2.94
1	-15.6	14.5	-0.15	28	-1.79
1.5	-15.8	15	-1.56	28.5	-0.52
2	-15.7	15.5	-2.88	29	0.8
2.5	-15.1	16	-4.07	29.5	2.17
3	-14.1	16.5	-5.17	30	3.45
3.5	-12.9	17	-6.24	30.5	4.57
4	-11.5	17.5	-7.35	31	5.38

4.5	-10	18	-8.53	31.5	5.8
5	-8.58	18.5	-9.81	32	5.71
5.5	-7.25	19	-11.2	32.5	5.15
6	-6.06	19.5	-12.5	33	4.21
6.5	-4.93	20	-13.8	33.5	2.97
7	-3.87	20.5	-14.8	34	1.55
7.5	-2.76	21	-15.5	34.5	0.09
8	-1.6	21.5	-15.8	35	-1.34
8.5	-0.32	22	-15.7	35.5	-2.68
9	1.01	22.5	-15.2	36	-3.88
9.5	2.38	23	-14.3	36.5	-5.01
10	3.65	23.5	-13.1	37	-6.07
10.5	4.72	24	-11.7	37.5	-7.17
11	5.48	24.5	-10.2	38	-8.34
11.5	5.82	25	-8.8	38.5	-9.61
12	5.65	25.5	-7.47	39	-10.9
12.5	5.03	26	-6.24	39.5	-12.3
13	4.02	26.5	-5.12	40	-13.6

3.1.5 Sampled Points and Waveform of Exciting currents (Case V)

Table A3.4 Sampled Points from Current Waves	form (Case V: fundamental + 3 rd harmonic + DC; ADH2)
	DC U

AC side(fundamental +3 rd harmonic)					DC	side	
Time	Current(A)	Time	Current(A)	Time	Current(A)	Time	Current(A)
0.0	9.20	20.5	8.16	0.0	-5.17	20.5	-5.17
0.5	7.95	21.0	6.76	0.5	-5.17	21.0	-5.17
1.0	6.50	21.5	5.26	1.0	-5.17	21.5	-5.17
1.5	5.02	22.0	3.77	1.5	-5.16	22.0	-5.16
2.0	3.54	22.5	2.40	2.0	-5.16	22.5	-5.15
2.5	2.19	23.0	1.14	2.5	-5.15	23.0	-5.13
3.0	0.95	23.5	0.00	3.0	-5.13	23.5	-5.12
3.5	-0.16	24.0	-1.08	3.5	-5.12	24.0	-5.11
4.0	-1.25	24.5	-2.15	4.0	-5.10	24.5	-5.09
4.5	-2.33	25.0	-3.29	4.5	-5.09	25.0	-5.07

5.0	-3.47	25.5	-4.50	5.0	-5.07	25.5	-5.05
5.5	-4.71	26.0	-5.79	5.5	-5.05	26.0	-5.02
6.0	-6.01	26.5	-7.12	6.0	-5.02	26.5	-5.00
6.5	-7.34	27.0	-8.40	6.5	-5.00	27.0	-4.97
7.0	-8.59	27.5	-9.51	7.0	-4.97	27.5	-4.94
7.5	-9.67	28.0	-10.30	7.5	-4.94	28.0	-4.91
8.0	-10.40	28.5	-10.80	8.0	-4.91	28.5	-4.89
8.5	-10.80	29.0	-10.70	8.5	-4.89	29.0	-4.87
9.0	-10.70	29.5	-10.20	9.0	-4.87	29.5	-4.85
9.5	-10.10	30.0	-9.26	9.5	-4.85	30.0	-4.85
10.0	-9.08	30.5	-8.02	10.0	-4.84	30.5	-4.84
10.5	-7.80	31.0	-6.59	10.5	-4.84	31.0	-4.84
11.0	-6.35	31.5	-5.10	11.0	-4.84	31.5	-4.84
11.5	-4.86	32.0	-3.62	11.5	-4.85	32.0	-4.85
12.0	-3.40	32.5	-2.26	12.0	-4.85	32.5	-4.86
12.5	-2.06	33.0	-1.02	12.5	-4.86	33.0	-4.87
13.0	-0.83	33.5	0.11	13.0	-4.87	33.5	-4.88
13.5	0.30	34.0	1.20	13.5	-4.89	34.0	-4.90
14.0	1.36	34.5	2.26	14.0	-4.90	34.5	-4.91
14.5	2.45	35.0	3.41	14.5	-4.92	35.0	-4.93
15.0	3.60	35.5	4.64	15.0	-4.94	35.5	-4.95
15.5	4.84	36.0	5.94	15.5	-4.96	36.0	-4.98
16.0	6.14	36.5	7.27	16.0	-4.98	36.5	-5.01
16.5	7.48	37.0	8.52	16.5	-5.01	37.0	-5.03
17.0	8.71	37.5	9.61	17.0	-5.04	37.5	-5.06
17.5	9.75	38.0	10.40	17.5	-5.07	38.0	-5.09
18.0	10.50	38.5	10.80	18.0	-5.09	38.5	-5.12
18.5	10.80	39.0	10.80	18.5	-5.12	39.0	-5.14
19.0	10.70	39.5	10.40	19.0	-5.14	39.5	-5.15
19.5	10.30	40.0	9.54	19.5	-5.16	40.0	-5.16
20.0	9.37			20.0	-5.17		

Fig.A3.4 Measured current waveform (Case V: fundamental + 3rd harmonic +DC; two-side excitation: ADH2)

It can be seen from Table A3.4 and Fig. A3.4 that the measured DC actually varies in a very small range, so it is not an accurate DC current. Therefore, the actual current waveform should be used in modeling and simulation.

3.2 Measured Exciting Currents (Model P21e-M(NS))

3.2.1 Sampled Points and Waveform of Exciting currents (Case I)

The measured exciting current waveforms and the corresponding sampled points under different excitation conditions based on P21^e-M(NS) are shown in Tables A3.5-A3.9 and Figs.A3.5-A3.9.

Time (s)	Current (A)						
0	-11.60	10.00	11.20	20.00	-11.30	30.00	11.00
0.50	-12.70	10.50	12.40	20.50	-12.50	30.50	12.20
1.00	-13.50	11.00	13.30	21.00	-13.40	31.00	13.20
1.50	-14.00	11.50	13.90	21.50	-13.90	31.50	13.80
2.00	-14.10	12.00	14.10	22.00	-14.10	32.00	14.10
2.50	-14.00	12.50	14.00	22.50	-14.00	32.50	14.00
3.00	-13.50	13.00	13.50	23.00	-13.60	33.00	13.60
3.50	-12.70	13.50	12.60	23.50	-12.90	33.50	12.80
4.00	-11.60	14.00	11.50	24.00	-11.80	34.00	11.70
4.50	-10.20	14.50	10.10	24.50	-10.50	34.50	10.30
5.00	-8.60	15.00	8.41	25.00	-8.87	35.00	8.69
5.50	-6.73	15.50	6.53	25.50	-7.05	35.50	6.83
6.00	-4.72	16.00	4.50	26.00	-5.05	36.00	4.84
6.50	-2.57	16.50	2.35	26.50	-2.94	36.50	2.69
7.00	-0.39	17.00	0.16	27.00	-0.73	37.00	0.51
7.50	1.84	17.50	-2.06	27.50	1.49	37.50	-1.72
8.00	3.99	18.00	-4.21	28.00	3.66	38.00	-3.87
8.50	6.07	18.50	-6.28	28.50	5.76	38.50	-5.96
9.00	7.98	19.00	-8.18	29.00	7.69	39.00	-7.87
9.50	9.72	19.50	-9.88	29.50	9.46	39.50	-9.62
						40.00	-11.10

Table A3.5 Sampled Points from Current Waveform (Case J: fundamental)

Fig.A3.5 Measured current waveform (Case I: fundamental)

Time (ms)	Current (A)						
0.00	-15.40	10.00	15.40	20.00	-15.50	30.00	15.40
0.50	-14.90	10.50	14.70	20.50	-15.00	30.50	14.90
1.00	-13.70	11.00	13.50	21.00	-13.90	31.00	13.80
1.50	-12.10	11.50	11.90	21.50	-12.30	31.50	12.20
2.00	-10.10	12.00	9.88	22.00	-10.40	32.00	10.20
2.50	-8.01	12.50	7.78	22.50	-8.34	32.50	8.12
3.00	-5.90	13.00	5.68	23.00	-6.22	33.00	6.01
3.50	-3.93	13.50	3.71	23.50	-4.23	33.50	4.03
4.00	-2.11	14.00	1.93	24.00	-2.38	34.00	2.20
4.50	-0.47	14.50	0.28	24.50	-0.72	34.50	0.55
5.00	1.09	15.00	-1.25	25.00	0.85	35.00	-1.02
5.50	2.64	15.50	-2.81	25.50	2.37	35.50	-2.56
6.00	4.24	16.00	-4.41	26.00	3.98	36.00	-4.16
6.50	5.98	16.50	-6.18	26.50	5.68	36.50	-5.89
7.00	7.84	17.00	-8.04	27.00	7.53	37.00	-7.74
7.50	9.76	17.50	-9.97	27.50	9.46	37.50	-9.67
8.00	11.60	18.00	-11.80	28.00	11.30	38.00	-11.50
8.50	13.30	18.50	-13.40	28.50	13.10	38.50	-13.20
9.00	14.60	19.00	-14.70	29.00	14.40	39.00	-14.50
9.50	15.30	19.50	-15.40	29.50	15.20	39.50	-15.30
						40.00	-15.50

3.2.2 Sampled Points and Waveform of Exciting currents (Case II)

Fig.A3.6 Measured Current waveform (Case II : fundamental + 3^{rd} harmonic)

Time (ms)	Current (A)						
0.00	3.98	10.00	-4.19	20.00	3.65	30.00	-3.88
0.50	6.03	10.50	-6.25	20.50	5.70	30.50	-5.92
1.00	7.91	11.00	-8.07	21.00	7.63	31.00	-7.82
1.50	9.20	11.50	-9.31	21.50	9.04	31.50	-9.15
2.00	10.20	12.00	-10.30	22.00	10.00	32.00	-10.10
2.50	11.50	12.50	-11.70	22.50	11.20	32.50	-11.40
3.00	13.50	13.00	-13.70	23.00	13.10	33.00	-13.40
3.50	15.70	13.50	-15.90	23.50	15.30	33.50	-15.60
4.00	16.90	14.00	-16.90	24.00	16.80	34.00	-16.80
4.50	16.00	14.50	-16.40	24.50	16.20	34.50	-16.60
5.00	13.70	15.00	-14.40	25.00	14.10	35.00	-14.80
5.50	11.20	15.50	-11.90	25.50	11.60	35.50	-12.30
6.00	9.37	16.00	-9.79	26.00	9.62	36.00	-10.10
6.50	8.12	16.50	-8.42	26.50	8.30	36.50	-8.62
7.00	6.85	17.00	-7.22	27.00	7.08	37.00	-7.43
7.50	5.04	17.50	-5.56	27.50	5.35	37.50	-5.88
8.00	2.86	18.00	-3.46	28.00	3.23	38.00	-3.81
8.50	0.86	18.50	-1.36	28.50	1.15	38.50	-1.67
9.00	-0.80	19.00	0.37	29.00	-0.54	39.00	0.13
9.50	-2.34	19.50	1.92	29.50	-2.08	39.50	1.67
						40.00	3.35

3.2.3 Sampled Points and Waveform of Exciting currents (Case III)

Table A3.7 Sampled Points from Current Waveform (Case III: fundamental + (3rd + 5th +7th) harmonics)

Fig.A3.7 Measured Current waveform (Case III: fundamental $+(3^{\rm rd}+5^{\rm th}+7^{\rm th})$ harmonics)

Time (ms)	Current (A)						
0.00	-15.60	10.00	5.55	20.00	-15.70	30.00	5.62
0.50	-15.00	10.50	4.85	20.50	-15.10	30.50	4.98
1.00	-13.90	11.00	3.79	21.00	-14.10	31.00	3.98
1.50	-12.70	11.50	2.50	21.50	-12.90	31.50	2.72
2.00	-11.20	12.00	1.07	22.00	-11.50	32.00	1.29
2.50	-9.80	12.50	-0.37	22.50	-10.00	32.50	-0.14
3.00	-8.40	13.00	-1.76	23.00	-8.61	33.00	-1.55
3.50	-7.12	13.50	-3.04	23.50	-7.32	33.50	-2.83
4.00	-5.94	14.00	-4.19	24.00	-6.13	34.00	-4.02
4.50	-4.86	14.50	-5.29	24.50	-5.03	34.50	-5.11
5.00	-3.77	15.00	-6.36	25.00	-3.95	35.00	-6.19
5.50	-2.64	15.50	-7.50	25.50	-2.84	35.50	-7.31
6.00	-1.44	16.00	-8.71	26.00	-1.64	36.00	-8.51
6.50	-0.13	16.50	-10.00	26.50	-0.36	36.50	-9.82
7.00	1.24	17.00	-11.40	27.00	1.02	37.00	-11.20
7.50	2.61	17.50	-12.80	27.50	2.40	37.50	-12.60
8.00	3.87	18.00	-14.00	28.00	3.67	38.00	-13.80
8.50	4.88	18.50	-15.00	28.50	4.74	38.50	-14.90
9.00	5.56	19.00	-15.60	29.00	5.49	39.00	-15.60
9.50	5.82	19.50	-15.90	29.50	5.81	39.50	-15.80
						40.00	-15.70

3.2.4 Sampled Points and Waveform of Exciting currents (Case IV)

Table A3.8 Sampled Points from Current Waveform (Case IV: fundamental + 3rd harmonic + DC; ADH1)

Fig. A3.8 Measured current waveform (Case IV: fundamental + 3rd harmonic +DC; one-side excitation: ADH1)

Time (ms)	Current (A)						
0.00	10.70	10.00	-10.70	20.00	10.70	30.00	-10.70
0.50	10.80	10.50	-10.80	20.50	10.80	30.50	-10.80
1.00	10.30	11.00	-10.50	21.00	10.40	31.00	-10.60
1.50	9.50	11.50	-9.76	21.50	9.66	31.50	-9.91
2.00	8.33	12.00	-8.66	22.00	8.53	32.00	-8.86
2.50	6.93	12.50	-7.33	22.50	7.17	32.50	-7.55
3.00	5.46	13.00	-5.86	23.00	5.69	33.00	-6.09
3.50	3.99	13.50	-4.39	23.50	4.23	33.50	-4.62
4.00	2.62	14.00	-2.98	24.00	2.83	34.00	-3.20
4.50	1.36	14.50	-1.70	24.50	1.55	34.50	-1.89
5.00	0.22	15.00	-0.51	25.00	0.40	35.00	-0.70
5.50	-0.87	15.50	0.57	25.50	-0.70	35.50	0.40
6.00	-1.94	16.00	1.65	26.00	-1.77	36.00	1.48
6.50	-3.08	16.50	2.77	26.50	-2.89	36.50	2.58
7.00	-4.29	17.00	3.96	27.00	-4.10	37.00	3.77
7.50	-5.61	17.50	5.25	27.50	-5.40	37.50	5.03
8.00	-6.97	18.00	6.59	28.00	-6.74	38.00	6.38
8.50	-8.26	18.50	7.92	28.50	-8.06	38.50	7.73
9.00	-9.40	19.00	9.11	29.00	-9.23	39.00	8.94
9.50	-10.30	19.50	10.10	29.50	-10.10	39.50	9.93
						40.00	10.60

3.2.5 Sampled Points and Curve of Exciting currents (Case V)

Fig.A3.9 Measured current waveform (Case V: fundamental + 3rd harmonic (AC side) +DC(DC-side); ADH2)