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Non-conforming Finite Elements

Abstract— We investigate flexible discretization techniques
for the approximate solution of electromagnetic field
problems. In order to keep as much flexibility as possible,
we use independently generated grids which are well
suited for approximating the solution of decoupled local
sub-problems in each subdomain, coupled on a common
interface. Therefore, we have to deal with the situation
of non-conforming grids appearing at the common interface
of two subdomains. Special care has to be taken in order
to define and implement the appropriate discrete coupling
operators. The Finite Element method is applied and used
in two approaches to handle non-conforming grids: (1)
Classical mortaring and (2) Nitsche-type mortaring. The
first approach guarantees a strong coupling of the flux by
introducing a Lagrange multiplier and a weak coupling of
the magnetic vector potential. The Nitsche-type mortaring
does not need the additional Lagrange multiplier and handles
the coupling by symmetrizing the bilinear form, as well as
adding a special interface term to penalize the jump of the
magnetic vector potential.
The first part of this contribution descibes step by step the
FE formulations of both non-conforming grid techniques and
its application to two 2D examples: solenoid and gear wheel
sensor. The second part focuses on the correct Nitsche-type
mortaring formulation for 3D electromagnetics and its
application to induction heating. Thereby, the application
of a multi-harmonic ansatz (harmonic balance finite element
method) allows to solve the nonlinear electromagnetic field
problem in the frequency domain.

I. Introduction

In many technical applications a device is immersed
in an acoustic fluid, e.g. ultrasound transducers for
non-destructive testing as well as medical diagnostic
and therapy, capacitive microphones, electrodynamic
loudspeakers, noise radiated by power transformers (see,
e.g. [1]). Furthermore, the numerical simulation of the
actuator mechanism within the structure is quite complex,
since in most cases we have to deal with a nonlinear
coupled problem (e.g. the magnetic-mechanical as well
as electrostatic-mechanical principle), where in addition to
the nonlinear coupling terms each single field is nonlinear
(e.g., geometric nonlinearity in mechanics, nonlinear or
even hysteretic modeling of ferromagnetic materials, moving
body problem in the electromagnetic field) [1]. Furtheron,
in most cases the discretization within the structure has
to be much finer than the one we need for the acoustic
wave propagation in the fluid. For standard Finite-Element
(FE) methods computational meshes are required to be
conforming. This means that either uniform grids which
result in many unknowns (c.f. Fig. 1) or many transition
elements between fine subdomain grids and coarse ones (c.f.
Fig. 2) need to be applied to maintain high quality and
accuracy of the result. This is the only possible choice,
if the standard conforming FE method is used, since it
can only handle a geometrically conforming triangulation.
Unfortunately, the accuracy of the numerical solution
depends very sensitively on the shape regularity of the
underlying mesh.
Thus, a small transition zone from fine to coarse meshes
results in a poor numerical approximation. Therefore, in
order to meet the requirements of different mesh sizes and to
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gain full flexibility for the discretization, we propose to use
a non-conforming FE method (c.f. Fig. 3). The advantages
of this method can be summarized as follows:

• Pre-processing is much more flexible and therefore
efficient, since mesh generations in the different subdomains
do not influence each other.

• The approximation order can be chosen independently
for each subdomain. This permits to use higher order
elements in regions, where the solution is known to be
smooth and fine discretizations using low order elements
may be used in regions, where singularities in the solution
occur.

• The method can be used for parallelization. If only
a single physical field is involved, our method can be
classified as a FE Tearing and Interconnection dual-primal
(FETI-DP) method in domain decomposition terms, see,
e.g. [2], [3].



Generally speaking, non-conforming methods deal with
solving the transmission problem [4], i.e., transferring a
physical field from one side of the non-conforming interface
to the other side. A straight forward approach is to perform
a strong point-wise coupling in the sense of nodal values
using a two- or three-field hybrid method, see, e.g. [5].
In the two-field method, the primary unknowns and the
Lagrange multipliers (constraining the primary unknowns)
along the interface between the master and the slave side
are considered as field variables. In the three-field methods,
a further unknown, having the properties of the primary
unknown, is introduced as an additional field variable. The
main drawback of these approaches is that just a suboptimal
convergence behavior is achieved (see, e.g. [6]). Being
precise, it means that in the H1-norm, which measures
both the error of the unknown and of the first order spatial
derivative (corresponding to the physical flux), is only
of order O(h1/2) with h as a characteristic discretization
size. Within the context of structural mechanics, these
methods of the master-slave concept have been combined
with the uniform strain approach [7] to improve the
convergence rate, especially for the computation of the
mechanical stresses. Such a method passes the patch test
but still shows oscillations of the mechanical stress between
a minimum and a maximum value, which is invariant
under mesh refinement [6], [7]. Therefore, further effort
was necessary and resulted in the framework of Mortar
FE formulations. Here, additional degrees of freedom
along the non-conforming interface in form of Lagrange
multipliers, now being the flux of the primary unknown,
are introduced and the strong continuity of the solution
across the interface is replaced by a weak one. Originally
introduced for coupling of spectral and finite element
methods [8], the analysis of Mortar methods has been
extended to three-dimensional problems (see, e.g. [9]) and
hp-finite elements (see, e.g. [10]). The introduction of dual
Lagrange multipliers in [11] allowed to locally eliminate
the Lagrange multipliers. Towards 3D electromagnetics,
care has to be taken to achieve appropriate Lagrange
multipliers. Mortar edge element methods with emphasis on
the proper construction of Lagrange multiplier spaces along
the skeleton of the decomposition as well as on the effcient
solution of the resulting discrete saddle point problem can
be found in [12], [13]. Still a major challenge within Mortar
methods is the quality of the intersection mesh needed to
evaluate the coupling integrals, e.g.∫

ΓI

N1iN2j ds ,

where along the common non-conforming interface ΓI Nni
is the ith basis function from side n. Since the two involved
basis functions are defined on different meshes (slave and
master side), the evaluation of the integral is not trivial, and
is even more involved, when curved interfaces are present
(for details see, e.g. [1]). A FE mesh is typically created
by means of an optimization strategy. The purpose of the
optimization algorithm is to maximize the element quality
under the given constraints (max. distortion ratio, element
size, ...). The intersection mesh is generated under the

constraint of the two adjacent surface meshes. Consider
the coplanar interface in Fig. 4a. Every vertex of either
surface mesh has to be contained in the intersection mesh.
For slightly mismatching meshes (see magnification), this
results in high aspect-ratio elements, high-lighted in Fig. 4b.
To avoid high aspect-ratio elements, one may discard them

(a) Surface meshes.

-

(b) Intersection mesh.

Fig. 4: Coplanar interface with the two surface meshes from
Ω1 and Ω2 and the resulting intersection mesh.

or allow slight overlaps. These mesh irregularities may
cause numerical oscillations for the Mortar method [14].
Therefore, further efforts to improve non-conforming mesh
techniques have been undertaken and resulted in so-called
Nitsche-type mortaring. The method of Nitsche [15] was
originally introduced to weakly impose essential boundary
conditions. This idea has been applied in [16] in the context
of non-conforming meshes for the classical Laplace equation.
Thereby, optimal a priori error estimates in both the energy
norm and the L2 norm for polynomials of arbitrary degree
(but the same at both sides) have been achieved. The
robustness of this approach has been strongly improved in
[17] for the cases of intersection elements with small volume
fractions and large material heterogeneities.

Within the last years, we have further improved
non-conforming mesh techniques and applied it to many
different coupled field problems: vibro-acoustics [18], [19],
electro-thermal coupling [20], incompressible free-surface
flow [21] and aeroacoustics [22], [23].

The rest of the paper is structured as follows. In
Sec. II we describe step by step the FE formulations of
both non-conforming mesh techniques and its application
to two 2D examples: solenoid and gear wheel sensor.
Next, Sec. III discusses the FE formulation and important
detailsype mortaring for 3D electromagnetics using edge
finite elements. The application of Nitsche-type mortaring
to 3D electromagnetics is demonstarted in Sec. IV for
induction heating. Thereby, the use of a multi-harmonic



ansatz (harmonic balance finite element method) allows to
solve the nonlinear electromagnetic field problem in the
frequency domain. Finally, we provide a conclusion and
an outlook for further for computer implementation of
Nitsche-t research.

II. Formulations

We consider Maxwell’s equation for the magnetostatic
case. For the 2D plane case (xy-plane is assumed), the
partial differential equation (PDE) for the magnetic vector
potential reads as

−∇ν(x)∇u = Jz in Ω , (1)

u = ue on Γ . (2)

Thereby, u is the z-component of the magnetic vector
potential A = (0, 0, u)>, ν the magnetic reluctivity and
Jz the z-component of the current density.

Ω1
Ω2 ΓI

Γa n

Ω1

Ω2

ΓI

Fig. 5: Computational domain with two subregions Ω1 and
Ω2 with different discretizations.

A. Classical Mortar

In order to reformulate (1) on the decomposed domain
with possibly discontinuous functions on the skeleton (see
Fig. 5), weak coupling conditions have to be introduced
within the Mortar framework. In a strong sense, the jump
[u] = u1 − u2 of the subdomain functions across the inner
interfaces is zero

[u] = 0 on ΓI .

This condition has to be reformulated as a weak condition
using test functions µ from a suitable Lagrange multiplier
space M (see [11], [6])

∫
ΓI

[u] µds = 0 ∀ µ ∈M and [u] ∈ H1/2(ΓI).

Furthermore, it is also postulated that the flux of the
unknown is continuous across the interfaces ΓI in normal
direction. The condition on the jump of the normal
derivatives is therefore [ν∂u/∂n] = 0, where n is defined
with respect to the outward pointing slave side. This can
be achieved by introducing a Lagrange multiplier

λ = −νs
∂us
∂n

= −νm
∂um
∂n
◦ Φ on ΓI . (3)

Here Φ denotes a spatial mapping, which relates the points
on the slave sides to the points on the master sides of the
interfaces. The weak formulation of the Laplace problem
can now be rewritten by substituting the definition of the

Lagrange multiplier according to (3). The arising boundary
integral over the outer boundary is set to zero for simplicity.
Summing up, one arrives at the symmetric saddle point
problem for two subdomains as displayed in Fig. 5: Finding
(ui, λ) and i = 1, 2 such that

2∑
i=1

 ∫
Ωi

νi(x)∇ui · ∇vi dx−
∫
Ωi

Jzi∇v dx


+

∫
ΓI

[v]λ ds = 0

∫
ΓI

[u]µ ds = 0 (4)

for all (µ, vi). It shall be noted that µ is a test function
with the same basis as the Lagrange multiplier λ. This
property is responsible for the symmetry of the arising
stiffness matrix.
A spatial discretization by standard finite elements results
in the following algebraic system of equationsK11 0 D

0 K22 M
D> M> 0

u1

u2

λ

 =

f1

f2

0

 . (5)

In (5) K11,K22 are standard stiffness matrices of the
subdomains. The matrices D and M are due to
the non-conforming interface and are formally mass-like
matrices. They compute element-wise, with

∧
as the

assembly operator,

D =

nes∧
e=1

de, de = [dab],

dab =

∫
Γe

Ns
aN

s
b ds , (6)

M =

nisec∧
e=1

me, me = [mab],

mab =

∫
Γe

(Nm
a ◦ F−1

m ◦ Φ)(Ns
b ◦ F−1

s ) ds . (7)

Here nes is the number of surface elements on the slave
side of the interface and nisec is the number of intersection
elements on the interface. The finite element basis functions
Ns
a and Nm

a denote the traces of the FE basis on the slave
and on the master side of the interface, Ns

b denotes the
Lagrange multiplier basis given with respect to the slave
side and F−1 is the mapping from element global to local
coordinates. The necessary steps for the computation of the
integrals in (7) are discussed in Sec. II-C.

B. Nitsche-Type Mortaring

The method of Nitsche [15] was originally introduced to
impose essential boundary conditions weakly. Unlike the
penalty method, it is consistent with the original differential
equation. The benefit of Nitsche’s method is that it retains
the convergence rate of the underlying FE method, whereas
the standard penalty method either requires a very large
penalty parameter or massively increases the condition
number of the resulting algebraic system of equations.



We apply Nitsche’s ansatz for a computational domain
consisting of two subdomains Ω1 and Ω2 with a common
interface ΓI as displayed in Fig. 5. We introduce two test
functions v1 and v2 and write the weak formulation of each
subdomain individually

∫
Ω1

ν1∇v1 · ∇u1d dx −
∫
ΓI

ν1 v1
∂u1

∂n1
ds

=

∫
Ω1

v1Jz1 dx (8)

∫
Ω2

ν2∇v2 · ∇u2 dx −
∫
ΓI

ν2 v2
∂u2

∂n2
ds

=

∫
Ω2

v2Jz2 dx . (9)

For the sake of a simpler notation, we choose ν1 and ν2

constant in Ω1 and Ω2, which is by no means a restriction.
In general, the material parameter can even depend on
the physical quantity u. In a next step, we add the two
equations (8) and (9), introduce a common normal direction
n = n1 = −n2, and thus use

ν1
∂u1

∂n1
= ν1

∂u1

∂n
= ν2

∂u2

∂n2
= −ν2

∂u2

∂n

to arrive at

∫
Ω1

ν1∇v1 · ∇u1 dx+

∫
Ω2

ν2∇v2 · ∇u2 dx

−
∫
ΓI

ν1 [v]
∂u1

∂n
ds =

∫
Ω1

v1Jz1 dx+

∫
Ω2

v2Jz2 dx .

In order to retain symmetry, we add the term

−
∫
ΓI

ν1
∂v1

∂n
[u] ds with [u] = u1 − u2 .

This operation is allowed, since we postulate on the interface
u1 = u2. In a final step, we add the penalization term

βν̄
∑
E(ΓI)

p2
E

hE

∫
ΓE

[v] [u] ds

with β a penalty factor, pE the polynomial degree of the
FE basis function, hE the characteristic element size, and
ν̄ the averaged reluctivity given by (ν1 + ν2)/2. Therewith,

we arrive at the final formulation for Nitsche’s approach∫
Ω1

ν1∇v1 · ∇u1 dx+

∫
Ω2

ν2∇v2 · ∇u2 dx

−
∫
ΓI

ν1 [v]
∂u1

∂n
ds

︸ ︷︷ ︸
Consistency

−
∫
ΓI

ν1
∂v1

∂n︸ ︷︷ ︸
Symmetrization

[u] ds

+βν̄
∑
E(ΓI)

p2
E

hE

∫
ΓE

[v] [u] ds

︸ ︷︷ ︸
Penalty/Stabilization

=

∫
Ω1

v1Jz1 dx+

∫
Ω2

v2Jz2 dx . (10)

If the penalty parameter β in (10) is chosen large enough,
the bilinear form is coercive on the discrete space Vh ⊂
H1 and one can derive optimal a priori error estimates in
both the energy norm and the L2 norm for polynomials of
arbitrary degree [16].
As in the case of classical Mortar formulation, we will also
need all operations (projection of coordinates, intersection
operations, etc.) between the two surface meshes in order
to compute the entries of the matrices. Now, the matrix
system of equations reads as follows(

K11 0

0 K22

)(
u1

u2

)

+

(
KΓ1

KΓ1Γ2

KΓ2Γ1 KΓ2

)(
u1

u2

)
=

(
f

1

f
2

)
. (11)

Here, K11, K22 are the standard stiffness matrices of
the individual subdomains. The entries of the additional
matrices compute as

Kij
Γ1

= −
∫
Γ1

ν1N1i
∂N1j

∂n
ds−

∫
Γ1

ν1
∂N1i

∂n
N1j ds

+βν̄
∑
E(Γ1)

p2
E

hE

∫
ΓE

N1iN1j ds

Kij
Γ1Γ2

=

∫
Γ1

ν1
∂N1i

∂n
N2j ds

−βν̄
∑
E(Γ1)

p2
E

hE

∫
ΓE

N1iN2j ds (12)

Kij
Γ2Γ1

=

∫
Γ1

ν1N2i
∂N1j

∂n
ds

−βν̄
∑
E(Γ1)

p2
E

hE

∫
ΓE

N2iN1j ds

Kij
Γ2

= βν̄
∑
E(Γ2)

p2
E

hE

∫
ΓE

N2iN2j ds .

Here, we have already substituted ΓI by Γ1 as well as Γ2,
which are the discretized interfaces (see Fig. 6). Note that
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Fig. 6: Discretized subdomains Ω1 and Ω2.

not only nodes on the interfaces but also neighboring nodes
in Ω1 and in Ω2 are involved, since the computation of some
entries require normal derivatives. Studying the structure
of our coupled system of equations, the formulation is
symmetric and does not introduce any additional unknowns
(we have no Lagrange multiplier as in case of Mortar FEM).
However, a penalty parameter β, must be chosen large
enough to guarantee u1 = u2 but not too large to deteriorate
the condition number of the system matrix.

Finally, we want to note that Nitsche-type mortaring is
equivalent to an IP-DG (Internal Penalty - Discontinuous
Galerkin) ansatz along the non-conforming interface ΓI.

C. Intersection Operations and Computation of Coupling
Matrices

To demonstarte the principle approach, we consider
intersections of line elements in 2D. If the interface is planar
this amounts to perform simple interval checks. If the
interface is curved, the elements have to be projected onto
a common line segment prior to the interval checks.

If an intersection of two co-linear line elements exists, it is
again a line element sharing two of the four endpoints of
both parent elements in the co-linear case. To check for
an intersection one has to project the endpoints [m1,m2]
of the element on the master side of the interface in
two dimensional coordinates to the one dimensional local
coordinate system defined by the endpoints of the slave
element [s1, s2].

The local coordinates of the slave nodes [s1, s2] are trivially
given by 0 and 1. The four local coordinates of the pair of
lines are then brought into ascending order and therefore
four possible cases for the intersection of two line elements
may be identified (see Fig. 7):

1. ξ1 < 0 ∧ 0 < ξ2 ≤ 1: the intersection is the line [s1,m2]

2. 0 ≤ ξ1 < 1 ∧ ξ2 > 1: the intersection is the line [m1, s2]

3. ξ1 ≤ 0 ∧ ξ2 ≥ 1: the intersection is the line [s1, s2]

4. ξ1 > 0 ∧ ξ2 < 1: the intersection is the line [m1,m2]

The intersection calculation on curved interfaces is more
complicated since the elements have to be mapped to a
common plane before the actual intersection calculation can
be performed. A possible approach, proposed in [6] relies
on pair-wise mappings of the elements to the plane or line

case 1

0 1 0 1

0 1

case 2

case 3

0 1

case 4

slave

master

slave

master

ξ1 ξ2 ξ1 ξ2

ξ1 ξ2 ξ1 ξ2

Fig. 7: Four possible cases of two lines intersecting each
other.

of the element on the slave side of the interface along the
face normal vector.

Once the intersection elements have been found, the
coupling integrals (7) and (12) can be evaluated by means
of standard Gauss quadrature. For a single element the
integral can be rewritten as follows

∫
Γe

(Nm
a ◦ F−1

m ◦ Φ)(Ns
b ◦ F−1

s ) ds ≈

nint∑
l=1

WlNa(ξml )Nb(ξ
s
l )JFe(ξel ) . (13)

Here nint is the number of integration points, Wl are the
integration weights and the determinant of the Jacobian
J e accounts for the change in volume due to the element
mapping. By using this integration formula the difficulty
arises that only the integration point ξel with respect to the
local coordinates of the intersection element is known in
advance and that the points ξml in the master element and
ξsl in the slave element have to be projected before the basis
functions can be evaluated (see Fig. 8).

master

slave

Fe

F−1
s

F−1
m

n
Φ

Element nodes

Integration points

Nodes of intersec.
element

ξelξsl

ξml

Fig. 8: Projection of integration points from the intersection
element into the master element which is of first order
and into the slave element which is of second order in this
example.

It is very important to notice that nodes of the intersection
element do not carry any degrees of freedom by themselves.
The intersection element is just an auxiliary geometrical
entity which only serves as integration domain. The



projection operation for general elements involves the
following steps [25]:

1. Map local coordinates ξel of integration point in
intersection element to global coordinates using Fe.

2. Project global coordinates of integration point on slave
side to global coordinate on master side using Φ.

3. Map global coordinates of integration point to local
coordinates ξml of master element using F−1

m .

4. Map global coordinates of integration point to local
coordinates ξsl of slave element using F−1

s .

Points 3 and 4 in general involve the application of a
Newton-Raphson algorithm. A linear mapping algorithm
may only be used for 2-node isoparametric line elements,
3-node isoparametric triangle elements or higher order
elements which just use a linear local-to-global mapping.
Once the values of the basis functions Na and Nb have
been obtained and (13) has been evaluated, the assembly
operator adds the contribution to the corresponding entry
in the coupling matrix.
For further details concerning intersection operations,
especially in the 3D case, see [25]. In addition, we want
to mention the idea of a virtual coupling interface on which
the degrees of freedom are defined globally with respect to
the geometry and represented by means of basis splines.
The interface geometry is given by non-uniform rational
basis splines (nurbs), or generalized basis splines, allowing
for an exact description of curved interfaces, an aspect
incorporated from isogeometric analysis [14], [26].

D. Computational Results

In order to investigate the different approaches, we
consider in a first case a solenoid as displayed in Fig. 9.
Here, we have generated three different meshes: (1)

Coil 

Yoke 

Non-conforming interface (mesh) 
Anchor 

Symmetry 

Fig. 9: Computational setup of the solenoid and detail
of non-conforming mesh with the non-conforming interface
just in the air region.

a conforming mesh for reference computations; (2) a
non-conforming mesh, where the interface is completely
inside the air region (see Fig. 9); (3) a non-conforming mesh,
where the interface includes a part of the surface of the
yoke (see Fig. 10). For the iron core (yoke and anchor), we
consider a nonlinear BH-curve and perform computations
on the conforming mesh as well as the two non-conforming
meshes. Figure 11 shows the resulting magnetic flux density.

Coil 

Yoke 

Non-conforming interface (mesh) 

Anchor 

Symmetry 

Fig. 10: Computational setup of the solenoid and detail
of non-conforming mesh with the non-conforming interface
including the iron core.

Comparing the computed fields, no visible differences can
be seen, and so Fig. 11 just displays the results obtained by
the classical Mortar approach. To perform a more detailed

Coil Iron core 
Magnetic induction (T) 

Fig. 11: Computed magnetic flux lines in case of
non-conforming mesh using Mortar formulation.

analysis, we compute the magnetic energy in the yoke and
the anchor region. Table I lists the results obtained by the
conforming mesh as well as non-conforming mesh according
to Fig. 9. We have also investigated in different penalty
factors β for the Nitsche-type mortaring method. As it can
be seen, in case of β = 500 we obtain the smallest error
compared to computations with the conforming mesh. In
conclusion, we can state that the Nitsche-type mortaring
approach is quite robust w.r.t. the penalty factor β and
can be even superior to the classical Mortar method if
the optimal value for β is chosen. These findings also
hold in the case, where the non-conforming interface is not
completely in air but also contains a part of the surface of
the yoke, where the magnetic reluctivity is discontinuous
(see Tab. II).

In a second case study, we consider a gear wheel sensor as
displayed in Fig. 12, consisting of a permanent magnet, a
coil, and the gear wheel. Since the wheel is rotating and the
sensor is fixed, we just have to use a fine mesh in the vicinity
of the sensor. As can be seen in Fig. 12, the other regions
have a quite coarse mesh. Here, we have to treat curved
interfaces, when applying the methods for non-conforming
meshes. Details of the mesh are displayed in Fig. 13. In
a first investigation, we have filled the air gaps of the gear
wheel also with iron, so that instead of the gear-wheel we
have an iron cylinder. When rotating the iron cylinder,
we should obtain no changes in the magnetic flux detected



TABLE I: Magnetic energy in Ws (computations with
classical Mortar and Nitsche-type mortaring on the
non-conforming mesh according to Fig. 9)

.

Conform Mortar
(Ws) (Ws) Error

Anchor 5288.62 5348.27 1.13 %
Yoke 8268.42 8372.63 1.26 %

Nitsche Nitsche
β = 20 β = 100

(Ws) Error (Ws) Error
Anchor 5347.38 1.11 % 5329.47 0.77 %
Yoke 8371.11 1.24 % 8339.55 0.86 %

Nitsche Nitsche
β = 500 β = 1000

(Ws) Error (Ws) Error
Anchor 5275.94 0.24 % 5233.28 1.05 %
Yoke 8243.98 0.30 % 8167.48 1.22 %

TABLE II: Magnetic energy in Ws (computations with
classical Mortar and Nitsche-type mortaring on the
non-conforming mesh according to Fig. 10).

Conform Mortar
(Ws) (Ws) Error

Anchor 5288.62 5347.8 1.12 %
Yoke 8268.42 8371.03 1.24 %

Nitsche Nitsche
β = 20 β = 100

(Ws) Error (Ws) Error
Anchor 5360.19 1.35 % 5340.34 0.97 %
Yoke 8393.31 1.50 % 8356.8 1.07 %

Nitsche Nitsche
β = 500 β = 1000

(Ws) Error (Ws) Error
Anchor 5303.95 0.29 % 5274.77 0.26 %
Yoke 8288.53 0.24 % 8233.72 0.42 %

by the sensor. Thereby, any change in the computed flux
has to be caused by the numerical scheme. Applying
the classical Mortar as well as Nitsche-type mortaring and
computing the flux for a rotation of 60 rpm, we obtain a
constant flux for all positions of the iron sphere. This
clearly demonstrates the robustness of both methods and
our implementation of the intersection operations on curved
interfaces.

In a second investigation, we rotate the gear-wheel at
60 rpm, apply both non-conforming formulations and
compute the magnetic fields. Figure 14 displays the
magnetic flux lines at a certain position of the gear-wheel
w.r.t. the sensor. One can observe smooth flux
lines over the non-conforming interface without any
perturbations. Furthermore, the computed flux is displayed

Permanent magnet 
Coil Gear  

wheel 

Fig. 12: Computational setup and mesh of the gear wheel
with sensor.

Permanent magnet 
Gear wheel Non-conforming interface 

Fig. 13: Detail of non-conforming mesh.

in Fig. 15 and shows no numerical disturbances. This
example strongly demonstrates the advantages of the
non-conforming methods. One can perform the geometric
modeling and meshing individually for all subdomains and
then glue them together by classical Mortar or Nitsche-type
mortaring. Furthermore, in case of rotating systems, e.g.,
in electrical drives, gear-wheel sensors, etc. we do not need
any re-meshing and interpolation, which often introduces
strong numerical errors.

III. Nitsche-type mortaring for 3D
electromagnetics

In this section, we will derive a non-conforming
Nitsche-type mortaring for the eddy current problem, using
the magnetic vector potential formulation. For very low
frequency applications, there is also the possibility to
introduce a scalar potential on the interface, as proposed
in [26], in order to scale the gradient and rotational
components differently.

A. Nitsche Method for the Eddy Current Case

We want to solve the general (static κ = 0, transient
κ = γ ∂/∂t, harmonic κ = jωγ) eddy current problem on
the domain Ω: Find A ∈ V := {A′ ∈ H(curl) : trτA

′ =
0 on ΓD} such that∫

Ω

∇×A · ν∇×A′ dx+

∫
Ω

κA ·A′ dx =

∫
Ω

J ·A′ dx,

∀A′ ∈ V,
(14)

where ΓD is the Dirichlet boundary. For non conducting
regions, we apply a regularization with a small artificial



Fig. 14: Magnetic flux lines.

Fig. 15: Magnetic flux change detected by the measurement
coil for 60rpm.

conductivity γ′ and it can be shown that the solution Aγ′

converges to the real solution A for γ′ → 0.
For Nitsche-type mortaring, we assume two domains Ω1 and
Ω2, as depicted in Fig. 5, with outer boundaries Γ1,Γ2 and
the common interface region ΓI. The eddy current problem
for the two domains reads as∫

Ω1

(
∇×A1 · ν1∇×A′1 + κA1 ·A′1

)
dx−∫

Γ1

(ν1 ∇×A1 × n) ·A′1 ds︸ ︷︷ ︸
standard BC

−

∫
ΓI

(ν1 ∇×A1 × n) ·A′1 ds =

∫
Ω1

J1 ·A′1 dx (15)

∫
Ω2

(
∇×A2 · ν2∇×A′2 + κA2 ·A′2

)
dx−∫

Γ2

(ν2 ∇×A2 × n) ·A′2 ds︸ ︷︷ ︸
standard BC

−

∫
ΓI

(ν2 ∇×A2 × n) ·A′2 ds =

∫
Ω2

J2 ·A′2 dx . (16)

The standard BC will be neglected in the following. We are
not restricted to write the surface terms in the above form.
We can use the following vector identities:

(∇×A× n) ·A′ ≡ (n×A′) · ∇ ×A ≡
(A′ ×∇×A)× n. (17)

At this point, let us review the interface conditions

A1 × n1 = −A2 × n2, (18)

ν1∇×A1 × n1 = −ν2∇×A2 × n2, (19)

where n1,n2 are the outward pointing normal vectors at
the common interface ΓI of the two subdomains.
Depending on the formulation we choose in (17), we use the
first or the second interface condition and add (15) and (16)

2∑
i=1

(∫
Ωi

(
∇×Ai · νi∇×A′i + κAi ·A′i

)
dx

)
−∫

ΓI

(
(ν1 ∇×A1 × n) ·A′1 − (ν1 ∇×A1 × n) ·A′2

)
ds =

2∑
i=1

(∫
Ωi

Ji ·A′i dx

)
,

(20)

where we have implicitely used n = n1 = −n2. Applying
the jump operator [u] = u1−u2, for a certain field quantity
u, we can compactly write

2∑
i=1

(∫
Ωi

(
∇×Ai · νi∇×A′i + κAi ·A′i

)
dx

)
−

∫
ΓI

(ν1 ∇×A1 × n) · [A′] ds =

2∑
i=1

(∫
Ωi

Ji ·A′i dx

)
.

(21)

To obtain the Nitsche-type mortaring formulation, we follow
the steps discussed in Sec. II-B and add in a first stept the
penalty term

βν

∫
ΓI

p2
E

hE
[A× n] · [A′ × n] ds . (22)

The second step is to add a symmetrization term to ensure
that the resulting system is symmetric. Thereby, we arrive
at the following form

2∑
i=1

(∫
Ωi

(
∇×Ai · νi∇×A′i + κAi ·A′i

)
dx

)
−∫

ΓI

(ν1 ∇×A1 × n) · [A′] ds︸ ︷︷ ︸
Consistency

−

∫
ΓI

(ν1 ∇×A′1 × n) · [A] ds︸ ︷︷ ︸
Symmetrization

+βν

∫
ΓI

p2
E

hE
[A× n] · [A′ × n] ds︸ ︷︷ ︸

Penalty

=

2∑
i=1

(∫
Ωi

Ji ·A′i dx

)
.

(23)

An important aspect when implementing this method is
to apply the correct transformation of vector quantities
(magnetic vector potential) to the reference element and
back. Therefore, the next section is dedicated to this issue.



B. Surface Integration and Transformation of Vector
Quantities

When using FE methods, it is essential to think about the
transformation from the parametric- (reference-) element to
the physical element via so called Piola transforms or to be
more precise Piola-like transforms, as mentioned in [27].
Before we elaborate on this transformations, we first have
to define the correct function space, in which the solution is
computed. In H(curl), the degrees of freedom are defined
using tangential components along edges and in H(div),
using normal components over faces [29]. To stay as general
as possible, one has to consider the de-Rham complex in
continuous and discrete form as displayed in Fig. 16 (see,
e.g. [29]), where Π denotes the interpolation from the
continuous function space to the discrete one.

R H1 H(curl) H(div) L2

R W V Y Q

id grad curl div

id grad curl div

Πid Πgrad
Πcurl Πdiv Πid

Fig. 16: De-Rham complex in continuous and discrete form.

For mapping a scalar or vector from a reference element
to the phyical one, one has to define a bijective smooth
mapping Φ : Ω̂ → Ω, see Fig. 17. This mapping Φ does,

Fig. 17: Non isometric mapping.

in general, not have to be isometric. An isometric mapping
means that the length-measure in vector space 1 is the same
as in the mapped space 2, for example when drawing a line
on a piece of paper and bending the paper, the length of the
line on the bent sheet is still equal to the non-mapped line
length. Since this mapping Φ does not have to be isometric,
we need to take care of the different metrics (notion of
length) between our two spaces [30].
According to [27], one can distinguish three cases:

• Mapping Cartesian- to Cartesian-coordinates,

• Mapping Curvilinear- to Cartesian-coordinates,

• Mapping Curvilinear- to Curvilinear-coordinates,

from which we will elaborate on the first one (for further
details, we refer to [27]).
In the following, the transformation rules for the four
different function spaces are presented, as outlined in the
de-Rham complex (see Fig. 16) and for the appropriate
operator. Therefore, we introduce four quantities and
perform the transformations (subspace Ω̂ for the reference
domain and Ω for the physical one):

w ∈ R :
vΩ̂ = J̃−>vΩ ◦ Φ−1,

∇Ω̂ × vΩ̂ = |J̃ |−1J̃ (∇Ω × vΩ) ◦ Φ−1

v ∈ H(curl) :
vΩ̂ = J̃−>vΩ ◦ Φ−1,

∇Ω̂ × vΩ̂ = |J̃ |−1J̃ (∇Ω × vΩ) ◦ Φ−1

y ∈ H(div) :
yΩ̂ = |J̃ |−1J̃ yΩ ◦ Φ−1,

∇Ω̂ · yΩ̂ = |J̃ |−1(∇Ω · yΩ) ◦ Φ−1

q ∈ L2 : qΩ̂ = |J̃ |−1qΩ,

where J̃ is the Jacobi matrix. Concluding, the normal and
tangential vectors can be transformed via tΩ̂ = J̃ tΩ and

nΩ̂ = |J̃ |J̃−> nΩ.

C. Implementation Details

In (23), the crucial terms, which have to be handled with
great care, are the surface integral terms. In the following,
the term providing consistency in (23) is chosen to be a
representative for the other two surface terms.
According to Ciarlet [41], a finite element consists of
a geometric domain Ω, a local element space VΩ of
dimension NΩ and a set of linearly independent functionals
{ψΩ,1, ..., ψΩ,NΩ

} on Ω, which are the degrees of freedom.
The local functionals can then be identified with global ones
to control the continuity of the global space. According to
the definition of a finite element from above, we can define
the (lowest order) Nédélec finite element on a triangle as

• triangle T

• local space N0, e.g. for a triangle:
N0 :=

{
v = (ax, ay)> + b(y, −x)>

}
• the functionals, associated with the edges Eα,β

ψEα,β : v→
∫
Eα,β

v · τ ds . (24)

According to [1], we can now discretize the continuous
function-space using edge elements

A ≈
meqns∑
a=1

Na · ψEα,β

and obtain ∫
ΓI

(ν1 ∇×A1 × n) · [A′] ds ≈

meqns∑
a=1

meqns∑
b=1

∫
ΓI

(ν1∇×Na × n) · [Nb] ds ψEα,β . (25)



Thereby, we have to keep three issues in mind:

1. H(curl) shape functions: Assume we have a 3D
geometry and ΓI is a surface interface between two regions,
meshed in a non-conforming way. We can use 2D reference
finite elements or it is also possible to use 3D H(curl)
elements and evaluate them at the surface. This is
possible because 3D H(curl) basis functions based on [28],
degenerate to the corresponding 2D shape functions on a
surface.

2. Surface integration: Looking at the jump operator
in (25), we have to evaluate the difference of the vector
potential, respectively the shape functions between the
master and slave surface mesh and integrate over the
master surface. In our implementation, this is achieved by
projecting in normal direction each point of evaluation from
Γ1 of the corresponding 3D element onto Γ2 and evaluate
there.

3. Transformation to the reference element: The last
part is the correct transformation of the surface integrals
from global to local coordinates, based on the presented
Cartesian to Cartesian mappings.

IV. Application to Induction Heating

When simulating induction heating processes, the
solution quantity is the temperature distribution T (x, t).
The equation, which has to be solved is the heat conduction
(diffusion) equation

∂(ρcm(T ) T )

∂t
(x, t) = ∇· (λ(T )∇T (x, t))+ Q̃(T,x, t), (26)

where ρ is the density, cm the specific heat capacity, λ the
conduction coefficient and Q̃ the heat source density.
For induction heating processes, we are mainly interested
in the steady state solution t→∞ and we can simplify the
time dependent equation to

−∇ · (λ(T )∇T (x, t)) = Q(T,x), (27)

where Q is the consistent steady state (period average) heat
source density (Joule and eddy current losses), which will
be derived in the following. These losses compute as

Q(t) = J ·E (28)

and the splitting of the total current density into an
impressed and a solenoidal part yields

J = Ji + γ(Es + v ×B) ,

ands simplifies to

Q = (Ji + γEs) ·E, (29)

when assuming v = 0. From the definition of the magnetic
vector potential, we obtain

Q = γ
∂A

∂t
· ∂A
∂t

+ Ji ·
∂A

∂t
. (30)

A. Multi-harmonic Ansatz

Let us now revisit (14) for the harmonic case with
κ = jωγ, because we are only interested in the efficient
computation of the quasi steady state solution [35], [36],
[37]. Thereby, the A(x, t) is called a periodic steady state
solution if:

• A(x, t) is periodic with period length τ , so that
A(x, t) = A(x, t+ τ),

• A(x, t) satisfies the eddy current problem (14) but not
necessarily the initial condition.

Using a Fourier expansion for the magnetic vector-potential
A(x, t), we obtain

A(x, t) = <

(
N∑
k=0

Âk(x) · ejkωt
)

=

N∑
k=−N

Âk(x) · ejkωt.

(31)
Following [31], a similar ansatz expands the (solution
dependent) magnetic reluctivity

ν(|∇ ×A(x, t)|) =

M∑
m=−M

ν̂m(x) · ejmωt, (32)

with M ≤ N . Inserting this relation into (14) results in the
time-harmonic pendants.

As already mentioned, we are now considering a
nonlinear (solution dependent material parameter) problem
and cannot investigate different harmonics kω, k ∈ Z
independent of each other as in the linear case, which results
in a complicated system involving coupled harmonics. In
the context of this section, the reluctivity is assumed to be
ν = ν(|B|) = ν(|∇×A|), continuous and the corresponding
BH-curve must be strongly monotone. Then, we can use
the Browder-Minty theorem [38] to show that a solution of
the nonlinear problem exists uniquely, as performed in [39].

Now we can start with the construction of the nonlinear
system by inserting the Fourier expansions (31) and (32)
into the eddy current problem (14)

∇×
M∑

m=−M
ν̂m(x)ejmωt ∇×

N∑
k=−N

Âk(x)ejkωt =

Ĵi(x)ejωt − jωγ
N∑

k=−N

kÂk(x)ejkωt. (33)

Multiplying this equation by e−iωnt for n ∈ [−N, ..., N ] and
integrating over one period τ = 2π/ω, we can rewrite the



system, corresponding to [31] as

∇×



ν̂0 ν̂−1 . . . ν̂−M

ν̂1 ν̂0 ν̂−1
. . .

... ν̂0 ν̂−M

ν̂M
. . .

...
. . . ν̂0 ν̂−1

ν̂M . . . ν̂1 ν̂0





∇× Â−N
...

∇× Â0

∇× Â1

...

∇× ÂN



+jωγ



−N
. . .

0
1

. . .

N





Â−N
...

Â0

Â1

...

ÂN


=



0
...
0

Ĵ1

...
0


(34)

The next step is to use a Galerkin ansatz for the spatial
discretization of the vector potential, which results in the
following system





K(ν̂0) K(ν̂−1) . . . K(ν̂−M )

K(ν̂1) K(ν̂0) K(ν̂−1)
. . .

... K(ν̂0) K(ν̂−M )

K(ν̂M )
. . .

...

. . . K(ν̂0) K(ν̂−1)
K(ν̂M ) . . . K(ν̂1) K(ν̂0)



+jω



−NM

. . .
0

M

. . .
NM







Â−N

...
Â0

Â1
...
ÂN


=



0
...
0
Q̂

...
0


, (35)

where K(νk) is the stiffness matrix associated to the k-th
harmonics of the reluctivity and M the mass matrix, which
is the same for all harmonics. The vectors Âk contain the
values of the unknown vector potential for harmonic k and
Q̂ is the right hand side vector, containing the excitition
current in fundamental frequency.
Finally, the global system

Ks(ul) · ul = f, (36)

is solved via a damped fixed point scheme, where Ks is the
whole system matrix

Ks = K(ν̂k) + jωkM , for k ∈ [−N,N ] ⊂ Z, (37)

ul the current solution vector (consisting of all harmonic

vectors Âk from above) and the right hand side vector
f . The system matrix Ks is a complex matrix Ks ∈
CNh·P×Nh·P , with P = 2N + 1 and Nh as the number of
spatial dof’s. Each submatrix of the overall system matrix
is a complex, symmetric matrix. The residual of the current
iteration l can be expressed as

rl = f −Ks(ul) · ul = Ks(ul) · dl, (38)

where dl is the current deflection vector. By introducing
a damping factor ζ ∈ [0, 1] ⊂ R, we can write the new
(improved) solution vector as

ul+1 = ul + ζdl = ul + ζKs
−1(ul)

(
f −Ks(ul) · ul

)
. (39)

The first iteration is carried out with u0 as the solution of
the linear eddy-current problem. Furthermore, the linear
system

rl = Ks(ul) · dl
for the deflection vector dl is solved by a preconditioned
Richardson iteration, with iterator i, damping parameter τ
and preconditioner matrix C [31]

di+1
l = dil + τC−1

(
rl −Ks(ul) · d

i
l

)
. (40)

Thereby, the off-diagonal elements (sub-system matrices)
are ”small” compared to the diagonal elements, which
allows for a block-Jacobi preconditioner. Now, every
diagonal sub-block (sub-matrix) Ks,ii for i = 1, ..., P must
be inverted

C−1
k = (K(ν̂0) + jωkM)

−1
, for k ∈ [−N,N ] ⊂ Z.

(41)
This can efficiently be done by using an algebraic multigrid
(AMG) as a preconditioner for a GMRES iteration [32],
[33], [34].

At this point it should be noted that the real part of
the sub-matrices Ck remains the same for all harmonics
(K(ν̂0)), only the k in the imaginary part changes. Another
fact to decrease the storage requirements is, that the
off-diagonal elements (sub-matrices) are

K(±̂νk) = A± jB, with A,B ∈ RNh×Nh . (42)

Another aspect, which improves performance massively is
the assumption of an excitation in only one harmonic. By
doing this, we can cancel out all even rows and columns in
the global system matrix and decrease the size of the system
toKs ∈ CNh·P×Nh·P , with P = N+1 instead of P = 2N+1
from above.

B. Electromagnetic thermal coupling

The Joule and eddy current losses, as defined in (30), are
the heat sources

Q = γ
∂A

∂t
· ∂A
∂t︸ ︷︷ ︸

Term 1

+Ji ·
∂A

∂t︸ ︷︷ ︸
Term 2

. (43)

For a better readability, we handle both terms independently.

Term1:. We transform the term from time to frequency
domain by applying the multi-harmonic ansatz

γ
∂A

∂t
· ∂A
∂t
→ γ

(
N∑

k=−N

jkωÂke
jkωt ·

N∑
l=−N

jlωÂle
jlωt

)
.

(44)
The aim is to integrate all periodic ”AC components”
(alternating) parts over one period, which then vanish and
only the total offset ”DC component” (mean value) remains.



Let us now integrate (44) over one period of the base
harmonic τi+1−τi = 2π/ω and concatenate the double sum

γ
1

τi+1 − τi

∫ τi+1

τi

∂A

∂t
· ∂A
∂t

dt =

γω2 −1

τi+1 − τi

∫ τi+1

τi

(
N∑

k=−N

N∑
l=−N

k l Âk · Âle
j(k+l)ωt

)
dt.

(45)

At this point we can use the fact that
∫ τi+1

τi
ejhωt = 0, ∀h ∈

N, which means that all combinations Âk · Âle
j(k+l)ωt

vanish iff k+ l 6= 0. Based on this property, we can evaluate
the remaining parts (for k = −l) as

γ
1

τi+1 − τi

∫ τi+1

τi

∂A

∂t
· ∂A
∂t

dt =
1

2
γω2

N∑
k=−N

k2Âk · Â−k =

1

2
γω2

N∑
k=−N

k2Âk · Â∗k =
1

2
γω2

N∑
k=−N

k2|Âk|2,

(46)

where ∗ denotes the conjugate complex and |·| the Euclidian
norm in Rd. The additional factor of 1/2 is valid, because in
comparison to (45), where the combination k = −l occurs
exactly N -times, it occurs 2N -times in (46).

Based on the above derivation, we obtain the following
expression for the first term, where the tilde represents the
period averaged quantity

Q̃Term 1 =
1

2
γω2

N∑
k=−N

k2Âk · Â∗k =
1

2
γω2

N∑
k=−N

k2|Âk|2

(47)

Term2:. For this term, we need to apply the
multi-harmonic ansatz for the magnetic vector potential
A(t,x) =

∑N
k=−N Âk(x)ejkωt as well as for the impressed

current density Ji(t,x) =
∑N
l=−N Ĵi,l(x)ejlωt. The

challange of this term is the product of two sums with
different quantities, contrary to (45). In the most general
form, we may write

Ji ·
∂A

∂t
→

N∑
l=−N

Ĵi,l(x)ejlωt · jω
N∑

k=−N

Âk(x)ejkωt (48)

To simplify (48), we assume the excitation only in the base

harmonic J1(t) = Ĵ1e
j1ωt

J1 ·
∂A

∂t
→ Ĵi(x) · jω

N∑
k=−N

Âk(x)ej(k+1)ωt . (49)

To split the term into a ”DC” and an ”AC” component, we
use the relation for the harmonic current Ĵ1 = 1

2 (Ĵ1e
j1ωt +

Ĵ∗1 e
−j1ωt) and obtain

Ĵ1(x) · jω
N∑

k=−N

Âk(x)ej(k+1)ωt =

1

4
jω

N∑
k=−N

(
Ĵ1Âke

j(1+k)ωt − Ĵ1 · Â∗kej(1−k)ωt+

Ĵ∗1 · Âke
j(k−1)ωt − Â∗k · Ĵiej(−1−k)ωt

)
. (50)

Now, we can integrate over one period and compute the
average, where we have to consider that in the integration,
only the terms with exponent 0 remain. In our case, let us
split up the summation over k = −1, 0, 1:

• Case k = −1:

1

∆T

∫ τ

0

· · · dt =
1

4
jω
(
Ĵ1 · Âk − Ĵ∗1 · Â∗k

)
· (−1)

• Case k = 0: all terms vanish

• Case k = 1:

1

∆T

∫ τ

0

· · · dt =
1

4
jω
(
−Ĵ1 · Â∗k + Ĵ∗1 · Âk

)
· (1)

Summing up these three contributions, we obtain the
period-averaged Joule losses for the second term

Q̃Term 2 =
1

4
jω
((
Ĵ1 · Â−1 + Ĵ∗1 · Â∗−1

)
+

(
−Ĵ1 · Â∗1 + Ĵ∗1 · Â1

))
(51)

C. Numerical simulation

We consider an induction heating process as displayed
in Fig. 18, where the two ends of the horseshoe shaped
inductor represent the connection to the supply. By driving
the coil with an alternating current, eddy currents are
induced in the sheet and generate eddy current losses,
which are heating up the material. The steel sheet has
the dimensions 200mm x 200mm x 1mm, with a constant
conductivity of γ = 5.08 ·106 S/m. The considered material
nonlinearity is taken into account by its commutation curve,
depicted in Fig. 19, which is a smooth spline approximated
curve from measurements. It is important to notice the need
for a correct approximation, in order to obtain a strictly
monotone magnetization curve, as described in [40].
For the excitation, an impressed current in the coil, with
a frequency of 5 kHz and a current of 5 kA is chosen. The
material parameters of steel, together with the excitation
frequency result in an approximate skin penetration depth
of

δ =
1√
πfγµ

= 0.702mm. (52)

To resolve the eddy currents properly, we discretize the skin
depth with around five hexahedral elements, leading to an
element size of h = 0.14 mm in the sheet. The discretization
of air can be performed with large, unstructred tetrahedra,
due to the non-conforming discretization approach. The
volumes to be meshed are displayed in Fig. 20 and a crinkle
clip of the mesh is shown in Fig. 21.



Fig. 18: Induction coil for heating a thin metal sheet (all
dimensions in mm).
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Fig. 19: Smooth spline approximated commutation curve
from measurement.

This practical application demonstrates the enormous
potential, because meshing in a conforming way draws high
attention to element distortions when changing from fine to
coarser grids, which is a tedious task. Furthermore, for the
discretization of the sheet-air interface in a non-conforming
way, shown in Fig. 22, one would need pyramid elements
for the transition from hexahedra to tetrahedra.
With the non-conforming approach, the whole model
consits just of 73550 elements, which results in approximately
79000 unknowns, when performing a transient analysis.
For the multi-harmonic analysis, this number increases
according to the coupling between the harmonics (see (36)).

For comparison of the nonlinear transient and the
multi-harmonic results, we use a monitoring point on the
surface of the sheet, right beneath the bending of the
inductor. The nonlinear transient simulation was carried
out for six periods, until a quasi steady state was reached

Fig. 20: Sheet with inductor and surrounding air volume.

Fig. 21: Crinkle clip through the volume elements with the
thin sheet in the middle part (green) and coil (red).

and the magnetic flux density result for one period is
depicted in Fig. 23. In addition, the multi-harmonic results
for different number of considered harmonics N are shown.

For induction heating processes, the more important
quantity are the Joule and eddy current losses (51) and
(47). In order to compare the nonlinear transient result for
Joule losses, depicted in Fig. 24, with the multi-harmonic
version, we numerically integrate the time-result over one
period and divide by its period length. This procedure
results in an averaged Joule loss density for the nonlinear

transient simulation of ˙̃Q = 3.6831 · 107 W/m3. For the
multi-harmonic simulations, the results and deviations from
the nonlinear transient one are given in Tab. III.
We can clearly see the converging behavior, when
considering more harmonics, on the relative error. At this
point it should also be mentioned that the relative error
strongly depends on the magnetization curve and therefore
the material. When considering less steep BH-curves
(smaller permeability) the errors decrease and therefore less
harmonics need to be considered, which also decreases the
numerical effort.
In Fig. 25 the global steady state temperature distribution
is exemplarily given for the multi-harmonic analysis result
with N = 5 and heat transport boundary conditions from
sheet to air with a transport coefficient of α = 15 W/(m2K)
and ambient temperature of 10◦C.



Fig. 22: Cut through the volume elements, to see the
nonconforming interface.
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Fig. 23: Comparison of magnetic flux density from
nonlinear transient and multi harmonic analysis for different
number of harmonics N .

V. Conclusion

Non-conforming interfaces, both classical mortaring
and Nitsche-type mortaring, drastically increase the
performance of multiphysics simulations. Not only from
the computational point of view, where we are striving
for as few number of degrees of freedom as possible but
also from a much more practical one, because having the
flexibilty to mesh different regions completely independent
of each other, is a huge benefit. To illustrate all these
benefits, an induction heating process of a thin steel sheet
was simulated. The region of interest, which is the steel
sheet, is meshed with hexahedral elements including the

TABLE III: Comparison of multi-harmonic Joule losses with
nonlinear transient ones.

N Multi-harmonic ˙̃Q Relative Error
1 3.24515 · 107 11.89%
3 3.82366 · 107 3.82%
5 3.79529 · 107 3.04%
7 3.77344 · 107 2.45%
9 3.75324 · 107 1.90%
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Fig. 24: Joule loss density of nonlinear transient simulation
over one period of the base harmonic.

boundary layer for eddy currents, whereas the air volume
is meshed by applying an unstructured tetrahedra-meshing
algorithm. Another massive performance improvement, as
long as we are only interested in the steady state solution of
a certain physical field, is the presented harmonic balancing
method using a multi-harmonic ansatz for all time periodic
quantities. In our application, we could outperform the
nonlinear transient simulation by a factor of 5 to 7, in terms
of computational time.
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