
Technical Article 
 
The Use of Cylinder Functions in the Solution of 
Electromagnetic Problems  
 
Abstract — This article presents and gives examples of the use of 
toroidal harmonics for the expansion of the inverse distance in 
cylindrical coordinates.  The article then shows its use in 
problems for structures that are generally finite cylinders.  
However the method is not limited to cylindrical or symmetric 
geometries.  The method is well adapted to problems in which the 
far field is required and for problems where very smooth fields 
are needed.  
 

I. INTRODUCTION 
 
It is well known that a Laplacian field can be expressed in 
terms of spherical or spheroidal harmonics [2, 20]. Expansions 
are also available in cylindrical coordinates for problems of 
infinite length.  There has not been a convenient formulation 
for finite cylinders.  This formulation has been very useful for 
the author in analysis of geometries such as electric machines, 
solenoids and other cylindrical devices.  The formulation to be 
presented here also has the property that it provides, as in the 
case of the spherical harmonic expansion, a set of discrete 
sources similar and related to the familiar monopole, dipole, 
quadrupole series of spherical harmonics. 
 
 

 
 
Figure 1: Domain of a problem showing a spherical and cylindrical bounding 
surface 
 
 
The original problem that led to this development was a 
problem of electromagnetic compatibility.  The leakage fields 
produced by an electromagnetic device (a permanent magnet 
motor in this case) were having an adverse effect on near-by 
electronics and sensors.  In fact it was necessary to model the 
exterior fields to a distance of 10’s of meters from the 
machine, even up to 100 diameters.  The exterior fields were 
extremely small of course.  We have shown [9, 10] that in 
almost all cases, the exterior field is dominated by 
asymmetries in the machine. Some of these asymmetries are 
part of the design, such as lead boxes and frames, and some 
are due to manufacturing tolerances and unbalanced magnets.  

Due the very small magnitude of the fields and the difficulty 
in making accurate measurements in what are usually noisy 
environments, the measurements are made as close as possible 
to the machine, which in this case has a roughly cylindrical 
shape.   
 
To solve this problem we first performed a spherical multipole 
decomposition from a finite element solution.  We found the 
potential or field on a sphere surrounding the source region. 
The multipole solution is only valid in the region exterior to 
the observation sphere and there is a large “dead zone” 
between the cylinder and the sphere for which we have no 
valid expansion. This is illustrated in Figure (1).  The 
measurements, due to the low magnitude of the leakage field 
and the fact that the high order terms fall off very quickly, 
were made using a cylindrical array of magnetometers very 
close to the source.  We therefore needed an expansion for a 
finite cylinder which would include the measurement points.     
 
In a search of the literature, we could not find a formulation 
that had been applied to potential or field problems although 
the mathematics had been developed over a century before [4, 
5, 6].  We have now applied this method to the problem 
described above and also to a number of other problems in 
potential theory [14, 15, 21]. We have also found that 
expansion in terms of zonal harmonics or cylinder functions 
has a number of very attractive numerical properties such as 
very fast convergence. It also was discovered by Selvaggi [14] 
that one can associate the different terms in the cylinder 
expansion with equivalent infinitesimal charge or pole 
distributions and that there is a relation between the terms in 
the cylindrical expansion and the familiar spherical harmonics.  
 
 

II. FORMULATION 
 
The expansion is found referring to Figure 2 which defines the 
coordinate system.    
 
 
 
 

 
Figure 2: Cylindrical Coordinate System with Source and Observation Points 



where the source coordinates are ( )', ', 'zρ φ  and the 

observation coordinates are ( ), , zρ φ . 
We now find an expression for the inverse distance in these 
coordinates. This is given in equation 1. 
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It is common to express the right hand side of (1) in terms of 
Bessel function so that [1,2] 
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And for 'ρ ρ>   we have  
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We can write this in a more compact for by defining 
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We now have for the two cases 
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mε  is [18] the Neumann factor which can be expressed in 

terms of the Kronecker Delta. This is represented by 
02m mε δ= −  where 0 1mδ =  if 0m =  and 0 2mδ =   for 

1.m ≥   
 
The numerical solution of equation (4) or equation (5) requires 
the accurate evaluation of the infinite integral over a product 
of modified Bessel functions for all m . This has proven to be 
a rather difficult problem and it is one reason why equation (4) 
or equation (5) has not been extensively utilized. However, 
one can simplify these equations and eliminate the need for 
numerical integration.   
 
It has been shown that [14] 
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where Q is called a Legendre function of the second kind and 
half-integral degree, or a toroidal function of zeroth order and 
of half-integral degree. They are also referred to as Q 
functions. Equation (8) represents a Fourier series expansion 
of the inverse distance function in cylindrical coordinates 
whose weighting coefficients are the toroidal functions.  We 
can now express equations (4) and (5) as 
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We note also that mΘ  and mΛ  are the same so we have only 
one expansion instead of the two for the Bessel functions 
which is a distinct advantage. 
 
We can express the magnetic potential at a point, due to an 
array of magnetic charges, kΩ  as 
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In terms of the toroidal harmonics we have 
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A. DERIVATIVES  

 
Very often it is necessary to take derivatives of the potential or 
the field.  The derivatives of the toroidal functions (and 
integrals as well) are easily found in analytical form [14].  The 
field then is found as the gradient of the potential as described 
in equation (14).  High order derivatives are also easily found 
analytically.   
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III. EXAMPLES 
 
To see some of the interesting properties of these functions let 
us consider the problem of a thin circular loop of current. This 
of course has a well-known solution [2, 16].   
 

 
 
Figure 3: Current Loop in Cylindrical Coordinates 
 
 
In terms of the Q functions the solution for the vector potential 
is [14] 
 

 

 
The evaluation of equation (15) requires no numerical 
integration, only a quickly converging summation for the . 

A very interesting property of the toroidal harmonics is their 
relation to terms of a spherical harmonic expansion. The 
definition of the coordinates is illustrated in Figure 4. 
 

 
 
Figure 4: Definition of Spherical and Cylindrical Coordinates. 
 
The expansion of the inverse distance in spherical coordinates 
yields the well-known multi-pole decomposition.  The 

coefficients of the  terms are Legendre or Associated 

Legendre polynomials.  In terms of potential, we have the first 

term or monopole which falls off as   , then the dipole 

which falls off as  and so forth. 

 Consider now the expansion for the first three  functions. 
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We see from equations (16), (17) and (18) that as R gets large, 

we obtain a series of discrete terms which have different  

terms.  For example, considering the  term, for large R 

we can find terms, corresponding to the fall-off 

rate of the monopole, quadrupole, and higher terms.  Referring 
to Table 1 below, we see that it is only the term that can 

contain a spherical monopole term.  Similarly the term is 

the only one which can have a spherical dipole or  

potential.  Looking back now at equation (15) we see that as 
expected, the   solution for the loop of current contains the 

dipole term.  The far field of the current loop thus looks like a 
spherical dipole. It is not the case that the second term 
corresponds directly to a dipole field.  The term is richer in 

terms and reflects the cylindrical nature of the problem.  



Note also that there are two different terms that contain the 
spherical quadrupole and octupole.  Table 1 is quite useful in 
assigning different physical characteristics of the problem to 
the near and far field results.  
 
 

 
 
Table 1: Relation of Toroidal Functions and Spherical 
Harmonics 
 
 
Another   example of the use of these functions is illustrated in 
Figure 5.  In this case we have a cylindrical magnet which is 
magnetized in a direction perpendicular to its axis.  This was 
chosen since this example does not have cylindrical symmetry. 
Also there exists another analytical solution [8] requiring 
numerical integration which facilitated verifying the results.  
 
In terms of toroidal functions we can write the solution for the 
magnetic scalar potential as [14] 
 

 

 
The integrations can be done analytically and the solution is 
given in [14].  The solution is now in terms on an infinite 
summation of the  functions.   
 

  
Figure 5:  Cylindrical Magnet with Perpendicular Magnetization.  
 
 

Figure (6) shows the radial flux density on the cylinder just 
from the first term of the expansion.  

 
Figure 6: Radial Flux Density from One Term in the Expansion 
 
 
Figure (7) shows the radial component of the flux density with 
the first 10 terms of the  expansion.  We see that the shapes 
or Figures (6) and (7) are quite similar and in fact the solution 
converges very quickly. 
  

 
 

Figure 7: Radial Flux Density using 10 terms in the expansion 
 
 

Figure (8) shows the axial component of the flux density for 
10 terms in the series. 

 
 

Figure 8: Axial Flux Density for the Cylindrical Magnet 



 
We now return to the problem which led to the use of these 
special functions.  Let us consider a six pole permanent 
magnet motor. This is a commercial motor for which we have 
the geometrical and materials data.  The motor has 6 surface 
mounted radial magnets. The orientation of the magnets is 
shown in Figure (9).  

 

 
 
Figure 9:  Magnet Arrangement for Six Pole Permanent Magnet Motor 
 
A finite element solution was obtained for the machine in 3 
dimensions.  The outer layer of the machine showing the mesh 
is illustrated in Figure (10).  A large region exterior to the 
motor was also modeled and the solution space was then 
terminated with an infinite box to simulate an open boundary.   
 
 

 
 
Figure 10: Finite element model of 6 pole permanent magnet motor 
 
 
 
 
 

 
Several cases were considered.  The first assumes that the 
motor is perfectly balanced with no asymmetries. We then 
added defects to the machine. In this case we added 
unbalanced magnets and an axial displacement between rotor 
and stator.  
 
We first used a spherical multipole decomposition. One 
method of finding sources to get the coefficients of the 
spherical expansion is the well-known charge simulation 
method.  From the finite element solution we get a set of 
potentials (or flux density) on a sphere surrounding (but not 
intersection) the motor. This is illustrated in Figure (11) in 
which we see the sphere with known potential and, internal to 
that sphere, a sphere with unknown magnetic equivalent 
charges.  If we use the same number of unknown charges and 
observation points we obtain a square matrix as shown in 
equation (20). Once the unknown charges are found we use 
these to find the multipole decomposition which is valid only 
outside the potential sphere.  

 
 

 
 

Figure 11:  Sphere of Observation Points and Equivalent Magnetic Charges 
 
 

(20) 
 
 
 



 
 

Figure 12:  Scalar Potential on a Sphere Outside the Motor for Balaned 
Conditions 

 
The plot in Figure (12) is of the scalar potential and shows the 
expected six pole distribution. In terms of spherical harmonics, 
the machine’s dominant signature is the octupole.  There are 
other multipole terms, but their contributions are very small 
outside the motor.   
 
In Figure (13) we see only the octupole contribution to the 
total field. It is essentially the same as Figure (12).  
 
 

 
Figure 13: The Octupole Contribution to the Scalar Potential for the Balanced 
Condition 
 
We now look at an unbalanced case.  In Figure (14) we see the 
scalar potential on our observation sphere for the same motor 
but with one magnet slightly demagnetized. This small 
unbalance leads to the production of a dipole. The dipole 
strength is small but it persists longer in the far-field due to its 
slower decay rate.  Even near the motor, the dipole 
overwhelms the main field (octupole) which is essentially 
unchanged from the balanced case. This can be seen by 
comparing Figure (15), which is the octupole component of 
the potential for the unbalanced magnet case, with Figure (13) 
for the balanced case.  
 
 

 
 
Figure 14: Scalar Potential for Unbalamced Case 
 
 

 
Figure 15:  Octupole Component  for the Unbalanced Case. 
 
 
The spherical harmonic distribution works well and provides 
useful information.  However, it does not provide a solution 
close the magnetic source. This is especially important in 
analyzing sources with large aspect ratios.  
 
To overcome this limitation, we analyzed the same problem 
using the cylindrical functions. The same finite element 
solution is used. In this case we compute a magnetic scalar 
potential solution on a cylinder surrounding the object of 
interest.  The solution is found on a finite set of observation 
points as shown in Figure (16).  We then find a set of magnetic 
charges on another cylinder just inside the observation 
cylinder. These charges produce the same exterior field as the 
original problem just as in the case of the spherical harmonics.  
The advantage of having a finite number of charges is that it is 
relatively simple to find the multi-pole distribution (spherical) 
or the cylindrical distribution.  
 
   



  
 

Figure 16: Potential Cylinder and Equivalent Magnetic Charges 
 
. 

 
 

Figure (17) shows the magnetic scalar potential on the 
observation cylinder for the case of the balanced magnets.  We 
note again that for the balanced magnetic problem, the 
dominant component of the field is the six radial pole 
distribution which is clearly evident in Figure (17). 
 
 

 
 
Figure 17: Scalar potential on cylinder outside the balanced 6 pole motor  
 
 
In Figure (18), below, we show the m = 2 contribution of the 
cylindrical decomposition of the potential on the observation 
cylinder. This is the term which would contain the spherical 
dipole (see Table 1) and since this is the case of the balanced 
motor, we expect this contribution to be very small. As can be 
seen from the Figure, the magnitude is several orders of 
magnitude down from the main field. We expect the main 
field to be dominated by the m = 3 term as noted in the table.  
The m = 3 term, shown in Figure (19), contains the spherical 
octupole or 6 radial pole distribution. It closely resembles the 
plot of Figure (17) which is the total potential. 

 
 

 
 
 
Figure 18: The m = 2 term of the Cylindrical Harmonic Distribution for the 
Case of a Balanced Motor. 
 
 
 
 
 
 
 
 

 
 
Figure 19:  The m = 3 Term of the Cylindrical Expansion for the Balanced 
Case Showing the 6 Pole Distribution 
 
 
The problem was then solved again and in this case one of the 
magnets was weakened as before.  The plot of Figure (20) 
shows that instead of seeing the normal 6 pole distribution, the 
potential field is dominated by a dipole which appears as a 
result of the unbalance.  The higher order terms fall off 
quickly so that even close to the source we see relatively few 
terms.  The closer we can get to the machine frame, the more 
information we have.   
 
 
 



 
 

 
 
Figure 20: The Total Potential on an Exterior Cylinder for the Unbalanced 
Case. 
 
 
 

 
 
Figure 21: The m = 1 Term for the Case of Unbalanced Magnets 
 
 
In Figure (21) we see the m = 1 term contribution in the 
cylindrical decompostion. Recall that this is the only possible 
term that could include a dipole and indeed the spherical 
dipole is apparent.  This plot also resembles the total potential 
solution of Figure (20).   
 

 
    
Figure 21: The m = 3 Term of the Cylindrical Expansion for the Unbalanced 
Magnet Case 
 
In Figure (21) we see the m = 3 term of the expansion for the 
case of unbalanced magnets. This again is the term which 
contains the radial octupole.  Comparing this to Figure (29) 
which is the m = 3 term for the balanced case,  we see that 
they are essentially the same. It is apparent that the cylindrical 
expansion yields as much physical insight as the spherical 
harmonics.   
 
 
This analysis yields a simple illustration of how a 
demagnetized magnet can interrupt the symmetry that is 
associated with the balanced motor considered previously. 
 
Other defects can also be treated in the same way.  Consider 
the case where a fairly large axial off-set exists between the 
rotor and the stator, Figure (22) is a plot of the total magnetic 
scalar potential for the 6 pole motor with a 10 % axial off-set. 
In this case the magnets are balanced. 
 
 

 
 
Figure 22: Total Magnetic Potential for the 6 Pole Motor with an Axial Offset. 
 
The m = 1 term for the axial offset case is shown in Figure 
(23).  Comparing Figures (22) and (23), it is apparent that the 
distribution on the end of the cylinder due the offset is 
contained mostly in the m = 1 term. Comparing the result of 
Figure (22) with the balanced or unbalanced magnet cases 



which had no axial offset, we see that in those cases the 
potential on the top surface is fairly constant implying a low 
leakage field at the end of the machine. In Figure (24), which 
shows the m = 3 contribution, we see a relatives weak 
distribution on the top surface but note that on the cylindrical 
side the 6 pole distribution is clearly present. 
 
 

 
 
Figure 23: The m = 1 Term of the Scalar Potential for the Axially Offset 
Motor 
 

 
 
Figure 24: The m = 3 term for the axially offset motor 

 
One may notice that for the two unbalanced cases considered, 
a nontrivial dipole contribution appeared. This was not the 
case for the balanced motor. In fact, any motor imbalance such 
as magnet demagnetization, axial or radial offsets, etc., will 
interrupt the symmetry of the balanced motor. This loss of 
symmetry will ultimately be reflected in the low order 
multipole components.  
 
Using this observation, the external leakage fields of an 
electric machine (or possibly other devices) can be used as a 
diagnostic tool.  Reference [9] shows that defects in machines 
can be found by analysis of the magnetic signature. This is 
very attractive as it is completely non-invasive and can be 
done with the machines on-line.  Different defects produce 
different harmonics in the far-field. For example, an 
unbalanced magnet will produce a dipole field as illustrated 

above. A shorted rotor turn in a 2 pole synchronous machine 
will produce a quadrupole. Depending on the number of poles 
in the machine, a static eccentricity will produce a stationary 
quadrupole, and so forth. These defects include misalignment, 
short circuits and eccentricities [41].  
 
 
 

V. CONCLUSIONS 
 
The toroidal expansion lends itself to a large class of 
problems.  It is especially useful in geometries with large 
aspect ratios (length/diameter) as they enable accurate 
solutions close to the source. Since many solutions involve 
potential, these functions also have the advantage that 
derivatives can be found analytically, insuring smooth fields. 
These functions are very well behaved numerically and are 
evaluated as a summation which converges very quickly.  
Some example of recently solved problems using the  
functions are the gravitational potential of galaxies [21], 
charged finite disks [14], finite cylindrical current 
distributions, nonlinear pendulums, mutual inductance of 
coils, Helmholtz coils, to name a few.  
 
This article has shown the viable application of these functions 
to a number of relevant problems.  The  functions are well-
behaved and can be used in their own right or, as shown 
above, to post-process results found from numerical methods 
(see also Hameyer et. al [25]). 
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