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Latest trends in solving multiphysic problems

Abstract — New trends in solving multiphysics problems are pre-
sented and discussed. The principal attention is paid to modern
ways of their numerical solutions. The algorithms exhibiting var-
ious advanced features (fully adaptive higher-order finite element
method, hanging nodes of any level, multimesh techniques, curvi-
linear elements, time adaptive methods, etc.) are illustrated by sev-
eral typical examples.

I INTRODUCTION

Operation of complex physical systems is often affected by a
great number of accompanying phenomena of both internal and
external origins. For electromagnetic systems, for example, the
first group includes the thermal and force effects of electromag-
netic field generated by this system or ageing of materials lead-
ing to slow deterioration of physical properties of the structural
elements. External influences are caused by the properties of
environment such as temperature, pressure, humidity, chemical
composition, or by external physical fields. Many of these phe-
nomena can be considered deterministic, but some of them may
exhibit random features.

The development and design of such systems must be based
on deep knowledge of these phenomena in order to get
• the complete idea about their properties, performance and

behaviour in all admissible operation conditions,
• operation parameters and characteristics of their individual

parts,
• and every information necessary for their optimization, se-

lection of control strategies, etc.
Presently, the most powerful and cheapest tool for reaching

this goal is computer modelling. Although good hardware and
software for this purpose are not cheap, building of sophisticated
physical models or industrial prototypes and their experimental
testing in many variants is usually much more expensive.

Practically every complex system is characterized by an in-
teraction of several physical fields and circuits. We can men-
tion electromagnetic field, temperature field, field of mechanical
forces and torques, field of mechanical or thermal strains and
stresses, field of displacements or deformations, field of flow or
acoustic field. As for circuits, in many problems we can meet
with electric and magnetic circuits, mechanical (including hy-
draulic or pneumatic) circuits or thermal circuits.

The mathematical models of the listed physical fields are
mostly given by generally nonlinear and nonstationary second-
order partial differential equations (PDEs). Their coefficients
containing the physical properties of materials and media are,
moreover, nonlinear functions of various state variables, such as
temperature or pressure.

The mathematical models of particular circuits are usually
given by the first-order or second-order nonlinear and nonsta-
tionary ordinary differential equations (ODEs). For their coeffi-
cients there holds the same as above.

The computer modelling of any system starts from the nu-
merical solution of its mathematical model, usually consisting
of several PDEs and ODEs of the mentioned types. The tem-
poral and spatial distributions of particular physical fields and

time behaviour of the circuits represent the basis for finding the
required (both local and integral) quantities fully describing the
system and its properties.

II COMPUTER SOLUTION - STATE OF THE ART

Any complete evaluation of state of the art in solving coupled
problems is presently a practically infeasible business. Never-
theless, in the following paragraphs we will try to summarize
general ideas of what is already feasible and what will still re-
quire further research.

A Modelling of single physical fields

As for single physical fields, it is estimated that about 50–90 %
(pending on particular field) of typical tasks can successfully be
solved using the existing commercial or Academia codes, mostly
based on the finite element method (FEM).

In the domain of electrical engineering we can mention, for
example, well-known specialised high-level commercial codes
OPERA (Cobham), Flux (Cedrat), infolytica or CST Studio
Suite (all of them also being able to solve specific coupled prob-
lems) or more versatile codes COMSOL Multiphysics and AN-
SYS that allow solving a substantially wider spectrum of the
multi-physics tasks, but in a limited number of formulations. A
number of other codes are intended for solving problems in the
domains of structural mechanics, hydrodynamics, aerodynamics
and other technical disciplines.

Commercial codes (that are very expensive) usually offer user-
friendly pre-processors and post-processors, often very powerful
processors and various formulations of the model allowing the
most efficient solution of the given task. On the other hand, they
do not support advanced elements of adaptivity, hanging nodes,
multi-mesh technologies and exhibit only limited possibilities of
combinations of different types of elements.

Academia codes are mostly open sources. We can men-
tion, for example, deal.II [1], FEniCS Project [2], FEMM [3],
FreeFem++ [4], MOOSE [5] and also Agros2D [6], which is
an application developed for years by the authors of this paper.
These codes usually offer more advanced features (sophisticated
adaptive techniques, etc.), but their user-friendliness is usually
low. Moreover, most of the above codes are just libraries. An
exception are FEMM and Agros2D that implement a graphical
interface and allow solving complex technical problems. Conse-
quently, both these codes are usable in technical practice.

B Modelling of coupled problems

This is a much more demanding business. In many cases, when
particular fields are supposed to affect one another only slightly,
one still often uses a weakly coupled formulation, i.e., the fields
are solved independently of one another, as a system of single
fields.

But if mutual influence of the fields involved is strong and
nonlinear, the task should be solved in the hard-coupled (mono-
lithic) formulation. Unfortunately, such a way of solution often



takes extremely long time or, due to the claims on the capacity
of computers available, cannot be realized at all.

That is why in the last years much effort has been devoted to
the development of various tools contributing to the acceleration
of computations and reduction of the memory needed.

C Still incompletely solved problems

Despite all possible efforts, however, numerous single-field and
coupled problems can still be solved only partially using spe-
cific methods that cannot be generalized, their solution requires
an unacceptably long time or high computer memory, conver-
gence of results or stability of computations is poor, etc. We can
mention, for example:
• Strongly non-linear fields.
• Fields containing geometrically incommensurable domains

of different physical parameters and multi-scale problems.
• Extremely fast transient fields (shock-turbulence interac-

tion).
• Fields containing materials and media of complex physical

properties (anisotropic, hysteresis or intelligent materials).
• Turbulent flows, non-Newtonian flows.
• Problems with uneasily determinable boundary conditions

(temperature field, flow field, acoustic field).
• Problems with material parameters and their temperature

dependences that are often known only approximately.

III NEW TRENDS

Generally, new trends in solving complex multiphysics problems
can be divided into four categories described below.

Reduction of DOFs

Reduction of the degrees of freedom (DOFs) of the problem at
the same or even better accuracy of results.
• Finite elements of higher orders of accuracy [7] (powerful,

the convergence of results is exponential [8], but their im-
plementation is extremely complicated).
• Fully adaptive algorithms [9], [10] (very efficient but com-

plicated, their application often prolongs the time of com-
putation).
• Multi-mesh technologies [11], [12] (different fields are cal-

culated on different meshes best corresponding to their spe-
cific features).
• Dynamic meshes for transient problems [13], [14] (efficient

and low cost quadrature in each time step).
• Hanging nodes of any order [15], [16] (their appropriate ap-

plication leads to significant savings of DOFs without any
loss of accuracy).
• Combination of elements of several types (for example,

curvilinear elements that excellently fit curved interfaces
and boundaries).

Acceleration of the computational algorithms

Acceleration of the computational algorithms (mainly assem-
bling of the stiffness matrix and solving the corresponding sys-
tems of algebraic equations). The domains of interest are:
• Parallel computing (computation of the coefficients of the

stiffness matrix, selected parts of the solution of the sys-
tem).
• Efficient methods of the domain decomposition.

• Proposal of more efficient computational algorithms and
solvers, particularly for nonlinear problems (such as Krylov
Jacobian-free methods).

• Time adaptive methods for transient problems.
• Handling time as another dimension with all elements of

adaptivity.

Optimization and model reduction

Model reduction is a technology based on real-time computing
of simplified models with still acceptable accuracy of the results.
Optimization is one of the crucial tasks of the designer and its
purpose is to improve the performance of the system and reduce
its costs. The principal tasks are:
• Proposal of model reduction strategies [17], [18].
• Development of fast and reliable methods of optimization

(shape optimization, optimization of parameters, selection
of materials, etc.).

Dynamic behaviour of the system

Incorporation of the computer model of a particular device into
the whole dynamic system generally represented by a system of
PDEs, ODEs and algebraic equations. Of great importance is:
• Proposal of fast and robust methods for analysis of dynamic

behaviour of the system in the given conditions.
• Development of tools for control of the system and its sim-

ulation.

IV SELECTED TOPICS

We will illustrate some of these advanced features by typical
examples calculated using the application Agros2D [19] and li-
brary Hermes developed in our Department. The code is based
on a fully adaptive higher-order finite element method and its ap-
plication is intended for solving 2D multiphysics problems (3D
version being prepared for testing).

A Automatic space adaptivity

The automatic space adaptivity serves for reduction of errors
brought about by the numerical solution of the given problem.
Its algorithms are applied at the moment when the local error
of solution is higher than the acceptable tolerance. This error
defined as the difference between the current numerical solu-
tion and exact solution may be caused by locally rougher mesh,
presence of one or more singular points, curvilinear boundaries
or interfaces approximated by polygonal lines, etc. Such errors
must be identified in the course of computation and appropriate
measures have to be taken for their reduction.

Unfortunately, the exact solution f is only known in very sim-
ple analytically solvable cases. Moreover, even when for various
(mostly linear) classes of PDEs there exist methods of estima-
tion of the error of solution, we have no tools for estimating it
in case of a general nonlinear PDE. That is why we work with
the reference solution fref instead, that is obtained on a globally
refined mesh. By evaluation of the difference of both solutions
we get the candidates for adaptivity even without knowledge of
the exact solution f . Agros2D works with very sophisticated and
subtle tools based on the above considerations.

If the error of solutions f and fref expressed by an appropri-
ate norm is higher than a given threshold, the adaptation pro-
cess is started. The calculated local error in the candidate is first



weighted with respect to the way of adaptivity that should be
used. This weight w is selected in the following way:
• w = 2 for the h-adaptivity,
• w = 1 for the p-adaptivity,
• w =

√
2 for the hp-adaptivity.

The value w is determined from the score s of the candidate.
This core is given by the formula

s =
log10

(
ε
ε0

)
(d− d0)ξ

, (1)

where ε is the estimated error in the candidate, d denotes its
number of DOFs, ε0 and d0 are selected parameters and ξ stands
for the convergence exponent.

The adaptive technique should be used mainly when very ac-
curate results are required. On the other hand, it may substan-
tially prolong the time of calculations.

Bidirectional comb drive microactuator

The device is intended for precise position control that is re-
quired in numerous scientific disciplines (optics, microscope
techniques or microsurgery). This control may be realized on
the basis of several physical principles (mechanical, hydraulic,
pneumatic, thermoelastic, piezoelectric, electrostatic, etc.). In
very small applications working with low energies and forces,
the microactuators based on the electrostatic principles may rep-
resent an efficient and reliable solution. They are generally very
fast and their operation requires only a relatively low voltage.
Comb drives are, in fact, capacitive actuators working on the
basis of electrostatic forces acting between two electrically con-
ductive combs.

Electric field in the domain of such a microactuator (see Fig.
1) is described by the equation for the electric potential ϕ in the
form

div (ε grad ϕ) = 0, (2)

where symbol ε stands for the dielectric permittivity. The bound-
ary conditions are given by the known values of the electric po-
tential on the electrodes and the Neumann condition along the
artificial boundary placed at a sufficiently distance from the de-
vice.
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Figure 1: Scheme of the comb actuator

Figure 2 shows the discretization mesh after the adaptive pro-
cess and Fig. 3 depicts the distribution of electric scalar poten-
tial. The evolution of the error of the potential distribution in the
dependence on the number of DOFs is depicted in Fig. 4.

Figure 2: Mesh after adaptive process (numbers in rectangles
showing orders of particular elements)

Figure 3: Distribution of scalar potential obtained on adapted
mesh
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Figure 4: Convergence of results for h-, p- and hp-adaptivity
(the adaptive process starting in all cases with p = 1)

Figure 5 shows the structure of the stiffness matrix for the
computation without adaptivity and Fig. 6 depicts this structure
after the third step of the adaptive process.
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Figure 5: Structure of stiffness
matrix without adaptivity

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

Figure 6: Structure of stiffness
matrix after 3 adaptivity steps



B Dynamic meshes and multimesh

Dynamic meshes represent a very useful advanced tool for map-
ping time-dependent processes. The mesh (or meshes in case of
several fields) change in each time step in the dependence on the
actual solution in order to obtain the most accurate results in the
next step.

Traditionally, many coupled problems have been solved using
non-adaptive low-order numerical methods that approximated
all fields on the same mesh. More recently, operator split-
ting (OS) schemes have been proposed to solve particular fields
more efficiently using various meshes for individual field quanti-
ties. Unfortunately, OS schemes typically are non-adaptive, and,
moreover, they are known to suffer from the loss of accuracy
and/or stability caused by the transfer of data between meshes
and/or by incomplete fixed point iteration. About five years ago,
a novel technique was proposed that makes it possible to solve
coupled problems monolithically (without operator splitting and
all associated problems), using an adaptive higher-order finite el-
ement discretization based on individual meshes for the meshes
involved.

The technology can also be modified for the time-dependent
problems. In these cases we combine the classic Rothe method
with the novel multimesh hp-FEM. From the viewpoint of apply-
ing spatially adaptive numerical schemes, the Rothe method is
substantially better than the method of lines (MOL). The solved
time-dependent PDE is in every time step approximated by one
or several PDEs only with space variables. Now, these equations
can be solved numerically using suitable adaptive techniques for
suppressing eventual discretization errors. Moreover, no prob-
lem is even with selection of appropriate time steps that can be
determined using common techniques for ordinary differential
equations (ODEs). Agros2D performs the adaptive time inte-
gration by a couple of first-order backward-difference formulas
whose combination provides a second-order scheme. The differ-
ence between both results then serves as a basis for estimation of
the local error that is then used for adaptation of the correspond-
ing time step.

Laminar flame in the channel

Consider a very simple flame propagation model (laminar flame,
no fluid mechanics involved). The basic arrangement is shown
in Fig. 7. The computational domain contains in the middle a
narrow portion (cooling rods) whose purpose is to slow down the
chemical reaction.
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Figure 7: Scheme of the system for flame propagation

The equations for the temperature T and species concentration
Y can be written in the form

∂T

∂t
−∆T = ω(T, Y ), (3)

and
∂Y

∂t
− 1

Le
∆Y = −ω(T, Y ). (4)

The boundary conditions are of the Dirichlet type on the inlet,
Newton type ∂T/∂n = − κT on the cooling rods, and Neu-
mann type ∂T/∂n = 0, ∂Y /∂n = 0 elsewhere. The objective
of the computation is to obtain the reaction rate defined by the
Arrhenius law in the form

ω(T, Y ) =
β2

2Le
Y e

β(T−1)
1+α(T−1) . (5)

Here, α is the gas expansion coefficient in a flow with noncon-
stant density, β denotes the activation energy, and Le stands for
the Lewis number (ratio of diffusivity of heat and diffusivity of
mass).

At the very beginning of the process, a very coarse master
mesh τm is generated to cover the definition area of the problem.
Solution of the (n + 1)st time step starts from the input data
represented by the values Tn(x) and Y n(x) obtained from the
solution of the previous step. These data were calculated on a re-
fined mesh τn created automatically from τ in the nth time step.
The unknowns Tn+1(x) and Y n+1(x) to be found are solved
adaptively starting from the same coarser mesh, but the resultant
mesh τn+1 generally differs from τn. Therefore, the meshes ob-
tained at each time level are generally different, i.e., the mesh
changes dynamically in time.

As the quantities T and Y exhibit various features, the solu-
tion pairs Tn(x), Y n(x) and Tn+1(x), Y n+1(x) must be calcu-
lated on different meshes. This is realized using an appropriate
hp-technology. Here, the stiffness matrix is assembled on a vir-
tual union mesh τu which is represented by a geometrical union
of the meshes τn and τn+1. This is indicated in Fig. 8. Due to
this fact, any transfer of information between the meshes is not
necessary, which results in no additional error of calculation.

master mesh τm mesh τn mesh τn+1 union mesh τu

Figure 8: Example of master mesh τm, meshes τn, τn+1 and
union mesh τu

Agros2D uses another tool for speeding up the computations
consisting in implementation of specific time step adaptation
based on a PID controller.This tool is not able to control the time
discretization error, but it accelerates the adaptation of the time
step ∆t so that a suitable indicator, for example

εn =
‖ω(Tn+1, Y n+1)− ω(Tn, Y n)‖H1

‖ω(Tn+1, Y n+1)‖H1

(6)

is kept within prescribed bounds. If εn is too large (εn > tol.),
the solution Tn+1; Yn+1 is discarded and recomputed using the
relation

∆t∗ =
tol.

εn
∆tn. (7)

Otherwise the time step is determined smoothly using the PID
formula

∆tn+1 =

(
εn−1
εn

)kP ( tol.

εn

)kI ( ε2n−1
εnεn−2

)kD
∆tn . (8)

Here, the recommended values of the exponents are kP = 0.075,
kI = 0.175 and kD = 0.01. The algorithm is very fast because
the solutions are discarded only rarely. Moreover, no extra so-
lutions are required for each time step as in other approaches.



As was proved by careful testing, the PID controller acceler-
ated the total CPU time by about 40 %, due to the increased
time step sizes when the solution only changes slowly (about
10 s < t < 45 s).

The upper part of Fig. 9 shows the position of the flame af-
ter t = 15.6 s; its bottom part depicts the corresponding mesh.
Figure 10 contains similar results for t = 46.8 s.

Figure 9: Flame propagation at time 15.6 s

Figure 10: Flame propagation at time 46.8 s

Figure 11 shows the dependence of DOFs necessary for reach-
ing the prescribed accuracy on time.
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Figure 11: Time evolution of number of DOFs

Thermoelastic acturator

Thermoelastic deformations of metal bodies produced by induc-
tion heating are exploited in numerous industrial technologies
(hot pressing, production of high forces etc.). But thermoelastic-
ity may also be advantageous for producing small, but well con-
trollable shifts. A schematic arrangement of the corresponding
device is depicted in Fig. 12. A dilatation element made of ap-
propriate metal is inserted into a current-carrying coil in a fixing
ferromagnetic frame. The whole system is placed in the insu-
lating shell. The device is clamped by its bottom part (insulat-
ing front) in the basement (ideally stiff wall). The time-variable
magnetic field generated by the field coil induces in the dilatation
element eddy currents that produce its heating and consequent
geometrical changes of the thermoelastic origin.

Distribution of electromagnetic field in the system in the pe-
riod of heating is described by the equation for magnetic vector
potential A

curl
1

µ
curl A + γ · ∂A

∂t
= Jext , (9)

dilatation element

insulation coil ferromagnetic shielding

r

z

Figure 12: Basic arrangement of the device

where µ denotes the magnetic permeability, γ is the electric con-
ductivity and Jext stands for the vector of external harmonic
current density in the inductor.

The temperature field in the system is described by the heat
transfer equation

div λ(T ) grad T − ρ(T ) c(T ) · ∂T
∂t

= −pJ , (10)

where λ(T ) is the thermal conductivity, ρ(T ) denotes the mass
density and symbol c(T ) stands for the specific heat (all of these
parameters are generally temperature-dependent functions). Fi-
nally, pJ denotes the time average volume Joule losses due to
eddy currents in electrically conductive parts.

The solution of the thermoelastic problem starts from the vec-
tor Lamé equation that reads

(λ+µ) grad div u+µ4u−(3λ+2µ) αT grad T = −f , (11)

where λ and µ are coefficients associated with material parame-
ters by relations

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Here E denotes the modulus of elasticity and ν the Poisson co-
efficient of the transverse contraction, αT is the coefficient of the
linear thermal dilatability of material and f the vector of the in-
ternal volume forces. Finally u represents the vector of resultant
displacements.

Figure 13 shows the three independent meshes (at the initial
stage) for computation of magnetic field, temperature field and
field of thermoelastic displacements.

Figure 13: Used meshes (from left to right) for computation
of magnetic field, heat transfer and thermoelasticity (multimesh
technology)

Figure 14 shows (from left to right) the distribution of mag-
netic field, temperature field and field of thermoelastic displace-
ments after 30 s of heating.



Figure 14: Solution at time t = 30 s (magnetic field, heat transfer
and thermoelasticity)

C Hanging nodes

Hanging nodes are specific nodes lying on the abscissas of se-
lected mesh elements that are characteristic by missing connec-
tions to one or more neighbouring vertices of the mesh. They
are produced, for example, during the refinement of its selected
part in the frame of an adaptation process. Usually, the hanging
nodes bring about a considerable increase of the number of the
degrees of freedom (DOFs). The code Agros2D, however, con-
tains higher-order algorithms for respecting these nodes without
any need of an additional refinement of the external parts neigh-
bouring with the refined subdomain.

We can illustrate the generation of hanging nodes in the course
of an adaptive process. For example, one of the most efficient
algorithms for h-adaptivity on regular meshes is the red-green
refinement strategy. In the course of this process, the corre-
sponding elements are first divided into several subelements with
hanging nodes. These hanging nodes are then removed by a
forced refinement of relevant neighbour elements, see Fig. 15.

marked element refinement refinements forced
1-irregularity rule by the previous step

Figure 15: Red-green refinement

In this way, the regularity of the mesh is preserved, but new
smaller elements produced during the process often have sharp
angles which are not desirable in finite element analysis. The
situation becomes worse and worse when repeated refinement is
necessary, such as in the vicinity of singular points or a boundary
layer.

Thus, the second step of the process — forced refinement —
may bring about difficulties. These can be avoided by introduc-
ing hanging nodes, i.e., nodes lying in the interior of edges of
other elements. But as the computer implementation of the rele-
vant procedures is far from being easy, most finite element codes
working with hanging nodes limit the maximum difference of re-
finement levels of adjacent elements to one (1-irregularity rule)
– see, e.g., [20] and [21].

In the following, by k-irregularity rule (or k-level hanging
nodes) we mean this type of restriction where the maximum dif-

ference of refinement levels of adjacent elements is k. In this
context, k = 0 corresponds to adaptivity with regular meshes
and k = inf to adaptivity with arbitrary-level hanging nodes. It
is illustrated in Fig. 16 that even the 1-irregularity rule does not
avoid all forced refinements.

marked element k-irregularity rule 1-irregularity rule

arbitrary level of hanging nodes forced refinements

Figure 16: Refinement with k-irregularity rule

The amount of forced refinements in the mesh depends on the
level of hanging nodes.

Deflection of a bracket

The use of hanging nodes is illustrated by the solution of a planar
elastic problem—deflection of a bracket. The arrangement is de-
picted in Fig. 17 and the distribution of the elastic displacements
obeys the vector equation

(λ+ µ) grad div u + µ4u = −f , (12)

where λ and µ are coefficients connected with the material pa-
rameters by relations

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (13)

Here E denotes the modulus of elasticity, ν is the Poisson co-
efficient of the transverse contraction, and f is the vector of the
internal volume forces. Finally, u represents the vector of the
displacements.

bracket

y

x

F L

Figure 17: Arrangement of investigated beam

Figure 18 shows the discretization meshes for the computation
of the x and y components of the displacements after the adap-
tive process. Both meshes contain the hanging nodes. Figure 19
shows the final distribution of the modules of displacement in
the whole beam.

The numbers of elements necessary for reaching the error of
both components of displacement (in directions x and y) η =
0.0025 % are listed in Tab. 1.

D Curvilinear elements

Curvilinear elements are important when discretizing regions
with curvilinear boundaries and interfaces. Use of such elements



Figure 18: Meshes for x (left) and y (right) components of dis-
placement

Figure 19: Distribution of module of displacement

x component y component
initial mesh 49 49
h-adaptivity 385 400
hp-adaptivity 10501 9802

Table 1: Number of elements after adaptivity process (expected
error η = 0.0025 %)

can significantly save the number of DOFs, accelerate the com-
putation of fields in the vicinity of curved edges and make the
maps smoother.

As the technique is not widely known, it will be described
in more detail. Agros2D discretises 2D domains on the base of
SW Triangle that provides a high-quality triangular mesh. The
corresponding input data for modelling curvilinear boundaries
or interfaces in Triangle are given by a series of points lying on
them (together with the markers carrying information that these
points belong to such a line) while the output is represented by
a set of triangular elements. In the second step Agros2D repeats
analysing the curved lines and when any of the newly generated
nodes approximating the curve does not lie on it, it is automati-
cally projected on the original arc (circular, elliptic or more so-
phisticated, described, for example, by a NURBS curve). At the
same time a special procedure determines the corresponding an-
gles.

In the course of numerical processing of the task the curvi-
linear elements are mapped back on normal triangles where all
remaining operations (such as Gaussian numerical integration)
are carried out and only in the final step — post-processing —
they are mapped again to the curvilinear elements.

Electric field near a high-voltage insulator for outdoor use

The insulator (see Fig. 20) is made of a ceramic material whose
relative permittivity εr = 6. Knowledge of the electric field
distribution along its surface is crucial for its design. Generally
used threshold value for its electric field is 450 kV/m. The ar-

rangement is considered axi-symmetric (in fact, it is 3D due to
the source electrode, which is a long conductor) and the environ-
ment of the insulator is air.

source electrode (36 kV)

insulator

ground electrode
z

r

Figure 20: Arrangement of the insulator

Electric field in the domain is described by the equation for
the electric potential ϕ in the form

div (ε grad ϕ) = 0, (14)

where symbol ε stands for the dielectric permittivity. The bound-
ary conditions are given by the known values of the electric po-
tential on the electrodes and the Neumann condition along the
artificial boundary placed at a sufficiently distance from the in-
sulator.

To obtain sufficiently accurate results, several adaptive steps
had to be realized for getting an appropriate final mesh.

The accuracy of the results was tested on the value of the total
electric field energy We in the definition area and also relative
error ε. Figure 21 shows the convergence curves obtained using
several codes and ways of adaptation.

Fig. 22 depicts the dependence of the relative error on the
number of DOFs for different adaptive techniques and Fig. 23
shows an analogous dependence for the normal and curvilinear
elements.

Induction heating in rotation

Rotational heating of nonmagnetic (mostly aluminium) billets in
uniform magnetic field is often used for their softening before
subsequent hot forming. Its efficiency is substantially higher
than in the case of the classical heating by a static inductor. A
cylindrical billet rotates in a uniform magnetic field produced by
static, direct currents carrying field coils. The basic arrangement
of the system is depicted in Fig. 24.
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Figure 21: Convergence curves of total electrostatic energy We
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The continuous mathematical model of heating consists of
two nonlinear partial differential equations whose solution pro-
vides the distribution of static magnetic field and evolutionary
temperature field in the system. The distribution of magnetic
field is described in terms of magnetic vector potential A by the
equation

curl

(
1

µ
curl A

)
− γ (v × curl A) = Jext , (15)

where µ stands for the magnetic permeability, γ is the electrical
conductivity, v is the local velocity of movement at a point and
Jext is external current density. A sufficiently distant artificial
boundary is characterized by the Dirichlet condition A = 0. In
this example we do not need the temperature equation.

Distribution of the module of magnetic flux density in the sys-
tem is shown in Figures 25 and 26. Its upper part depicts the dis-
tribution for classic triangular elements (3305 DOFs), white the
bottom part shows the analogous distribution obtained using a
combination of classic triangular and curvilinear elements (2849
DOFs). It is obvious that the latter distribution is smoother, even
when the number of DOFs is here substantially smaller (by about
15 %).
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Figure 24: Induction heating of billet rotating in static magnetic
field

Figure 25: Magnetic flux density for classic triangular mesh (up,
3305 DOFs)

Figure 26: Magnetic flux density for a combination of classic
and curvilinear triangular elements (bottom, 2849 DOFs)

E Time-adaptive methods for transient problems

These efficient and accurate methods are highly useful in solu-
tion of evolutionary partial differential equation. A lot of interest
is usually paid to the spatial discretization and to minimizing its
error at still reasonable computational cost. It is equally impor-
tant to minimize the number of time steps, since the total com-
putational time is proportional to it. Using the basic implicit or
explicit Euler method is here simply insufficient.

The usual strategy of solving transient problems is to dis-
cretize the equation in space, solve it and, hence, obtain a system
of ordinary differential equations in time, which can then be han-
dled separately using standard tools for their solution.

If the mesh is different in each time step due to possible space
adaptivity (dynamic meshes), time discretization must be per-
formed first. In this case, the Rothe method can be used. One
way how to discretize the time derivative is to use the backward
differential formula (BDF). For ordinary differential equations

∂y

∂t
= F (y, t), y(t0) = y0 , (16)

the n-step BDF is given by the expression

n∑
l=0

αn,lyk−l = τkF (yk) , (17)

where tk is the kth time level, yk = y(tk) denotes the corre-
sponding solutions, τk = tk − tk−1 is the length of the kth time
step length and coefficients αn,l depend on the lengths of pre-
vious steps and, thus, allow the time step to be changed. After
the time discretization is done using this formula, the space dis-
cretization can be performed in the same way as it would be done
for a steady state problem. The only difference is the necessity
of providing the values of solutions from n previous time steps
projected to the current mesh.

Using higher-order time discretization itself can bring a sig-
nificant acceleration of computations, but it can further be used
for developing an adaptive time-step method. Solving the prob-
lem using two different orders can bring an estimate of the error.
It can then be used for determining the length of the next time



step (that can be enlarged or shortened) in order to keep the error
as close to the prescribed tolerance as possible and thus obtain
solution with desired accuracy using as few time steps as possi-
ble. Obviously, the question of choosing the right value of the
tolerance and finding the relation for the errors caused by spatial
and time discretizations is very complicated and is far beyond
the scope of this article.

Tin melting

The time-adaptive method was also used for modelling of induc-
tion melting of tin. Tin in a ceramic crucible is heated by a flat
inductor below it (see Fig. 27).
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Figure 27: Basic arrangement of tin melting

The use of a time-adaptive method will be illustrated by the
heat-transfer equation

div (λ grad T )− ρcp
∂T

∂t
= −Q , (18)

in case of melting of tin by induction heating. Here, λ denotes
the thermal conductivity, ρcp is the specific heat capacity and
Q stands for the volumetric Joule losses. All material parame-
ters exhibit strong nonlinearities near the temperature of melting
(505 K). For the subsequent analysis, it is crucially important to
reach a sufficiently high accuracy of results in the period of melt-
ing the material. With respect to a relatively long time of melt-
ing, the use of standard procedures requires a very short time
step. But this does not hold for the adaptive methods.

Figure 29 shows the time evolution of the average tempera-
ture of molten material. It is obvious that the use of an adaptive
solution of the transient leads to an automatic decrease of the
time step just in the period of the phase change. But except for
this period (and several starting steps) the computations are real-
ized with substantially longer time steps, which reduces the total
computing time. Figure 28 depicts the lengths of particular time
steps in the course of computation.

F Computation of forces in strongly non-linear magnetic
fields

The evaluation of forces and torques acting on ferromagnetic el-
ements in non-linear magnetic fields is still a challenge. The
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Figure 28: Time evolution of time step length
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Figure 29: Average temperature of heated tin

algorithms based on the virtual work and Maxwell stress tensor
are often slow, the convergence of computations is rather poor
and accuracy of the results is far from being high. Lower-order
Eggshell methods [22] are generally better, but sometimes they
suffer from the same reasons. Agros2D contain a higher-order
modification of this method that seems to be more efficient.

The Maxwell stress tensor whose knowledge is crucial for us-
ing the above method, requires mapping the field vectors B and
H along the surface of the investigated body. But computation
of magnetic field in highly nonlinear systems using the classic
Newton method is often slow and accelerating algorithms have
to be developed for this purpose.

Static characteristic of an actuator

The basic structural arrangement of the solved actuator is de-
picted in Fig. 30. The actuator consists of a DC field coil
(consisting of two parts connected in series, the total number
of turns being 520) placed in magnetic circuit. The hollow pipe-
like plunger moves along a sliding cylindrical plastic rod in its
longitudinal axis.

movable plunger

magnetic circuit DC coils non-magnetic
sliding contact

r

z

Figure 30: Basic arrangement of actuator (position of plunger is
given by distance δ from front of the actuator)

For the analysis of behaviour of the actuator it is important to
accurately know its static characteristic. The classic procedure
used for its computation is based on the Newton method repre-
senting an iterative process when every following step follows
from a correction of the previous step according to the formula

Y n+1 = Y n + Dn+1 , (19)

where Y n+1 denotes the result in the n + 1th step and Y n is
the same value in nth step. Symbol Dn+1 is the correction that
is obtained from the solution of a system of nonlinear algebraic
equations with the Jacobi matrix. In this way, after satisfying the
convergence condition given by the relative difference ε between
two following steps we obtain an acceptable approximation of
the quantity Y .

Application of this method requires high computational de-
mands that can be crucial in case of solving practical problems
incorporating parametric analyses, sensitivity analyses or opti-
mizations, and even may make their solutions infeasible. For this
reason, it is more advantageous to use various modifications of
this method that allow performing the computations more safely
with respect to the convergence of the solution, and also substan-
tially faster. Out of these modifications we can mention utiliza-



tion of an automatic selection of the damping factor and reuse of
the Jacobian.

Mainly the automatic selection of the damping factor repre-
sents the modification securing a high level of the convergence
of solution and its acceleration. This modification is realized by
an artificial reduction of the correction term Dn+1 in every step
of the process.

This method is demonstrated in Fig. 31, containing the con-
vergence curves of solution for the case of field current Iext =
8 A and full insertion of the plunger into the magnetic circuit.
The curves represent the evolutions of relative changes ε of the
solution in the dependence on the step of the Newton method
for the selected damping factor F . The graph only contains the
curves leading to the solution of the task for the relative change
of solution ε < 10−2 and it is obvious that (in the given im-
plementation) the problem can be solved only with the damping
factor F < 0.6. Finally, Fig. 32 shows the corresponding damp-
ing factor in the particular steps of the solver.
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Figure 31: Convergence of the nonlinear solver
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Figure 32: Value of damping factor in particular steps of solver

The automatic selection of the damping factor is of a very high
importance for the computation of the static characteristic of the
actuator requiring to repeat a series of nonlinear calculations.
In the presented case, the total time of computations with the
automatic selection of the damping factor is 203 s, while with its
constant value it reaches 492 s.

An appropriate algorithm must be selected even for the com-
putation of the force acting on the plunger. Calculation of the
force acting on the body using the Eggshell method starts from
the formula

FTe =

∫
V

σM · grad γ dV , (20)

where V is the volume of a thin shell around the body and γ
is a function satisfying the conditions γ = 0 along the external
boundary of the shell and γ = 1 along its internal boundary.

Comparison of the third-order Eggshell method and method
based on virtual work is, together with the measured values, de-
picted in Fig. 33. Calculation based on the method of virtual
work exhibits considerable inaccuracies. To present a complete
information, Fig. 34 depicts the dynamic characteristics of the
actuator calculated from the equation of motion of the plunger.
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Figure 33: Comparison of calculated and measured distribution
of force
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Figure 34: Time dependence of the position (left) and velocity
(right) of the plunger

G Multicriteria shape optimization

For basic design of the actuator we performed the sensitivity
analysis of selected geometrical dimensions. It showed that a
very important parameter is the air gap between the plunger and
central ring of the magnetic circuit. This knowledge was used
for subsequent optimization of the actuator dimensions.

The goal of the optimization was to obtain as flat static charac-
teristic of the device as possible and also the maximum average
value of the force. This should be reached by changing the thick-
ness of the air gap. The requirement of the flat characteristic can
be described by the maximization of the value F and the mini-
mization of the functional R by the expressions

F =
1

n

n∑
i

Fi ; R =

√√√√ n∑
i

(Fi − F )2 . (21)

First, the external edge of the hollow movable plunger was di-
vided by a number of control points, whose shift with respect to
the position representing the initial shape of the plunger repre-
sents the vector of the optimized parameters. Such a task leads
to a multicriteria optimization.

The optimization itself was realized using a specific imple-
mentation of the genetic algorithms. The process of optimization
is depicted in Fig. 35.

The results of the optimization are shown in Fig. 36, con-
taining the static characteristics for all variants located along the
Pareto front of the final population. The curves are grouped into
three categories with respect to the values of the functional R.
In the first graph we can see the variants satisfying the condi-
tion R < 8, while in the following graphs 8 < R < 12 and
R > 12. From the graphs also and from their comparison with
the original static characteristic in Fig. 33 it is obvious that the
optimization led to a considerable reduction of ripple of force
acting on the plunger.
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Figure 35: Process of optimization depicted by all results in the
selected populations
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Figure 36: Static characteristics for resultant variants lying on
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H Combination of PDE and ODEs

Nowadays, the distribution of numerous physical fields cannot
be solved independently. Very often the corresponding PDEs
must be solved together with ODEs describing the behaviour of
various circuits.

The last example shows the cooperation between electrostatic
field and moving charged particles in a triboelectric separator.

Electrostatic separator

This separator is intended for highly efficient separation of par-
ticular kinds of plastics. Its function is based on the triboelectric
effect: when electrically non-conductive plastic particles of two
different levels come into contact with electric charge, one of
them becomes more positive (or negative) with respect to the
other. Consequently, their trajectories in electric field (affected
by the charge they carry) may be quite different. This is clear
from Fig. 37 showing a scheme of the analysed device.
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Figure 37: Basic arrangement of triboelectric separator

Figure 38: Mesh after adaptive process (left) and distribution of
potential in the chamber (right)

Each of two aluminium electrodes (one of them being
grounded) is divided to several segments in order to have a pos-
sibility of optimizing the distribution of electric field. The volt-
age between the electrodes is also variable, within the range of
10–50 kV. The charger consists of a high-speed induction motor
equipped with a frequency converter and a polypropylene pipe.
The induction motor drives the pipe by means of a plastic belt.
At the bottom of the device there are several recycle bins used
for collecting particular kinds of plastics.

The goal was to map the trajectories of particular plastic parti-
cles and evaluate the efficiency of the process of separation. The
operation of the separator was modelled as a coupled evolution-
ary PDE-ODE problem using numerous advanced techniques
described above. The distribution of electric field between the
electrodes was determined using a fully adaptive higher-order fi-
nite element method while the movement of the particles was
modelled by an adaptive Runge-Kutta-Fehlberg method with the
adaptive time step.

The distribution of electric field E within the separator (due
to the voltage applied to the electrodes) obeys the equation

div (ε grad ϕ) = 0 , (22)

where ε denotes the relative permittivity and ϕ is the electric po-
tential. The trajectory of a particle with index i is then described
by the equations

mi
dvi
dt

= F ei + F tij + F gi + F ai , vi =
dsi
dt

, (23)

where

F ei = QE = −Q · ∇ϕ , F tij = Σj=nj=1,j 6=iF ij ,

F g = mg , F a = −v 1

2
ρcSv . (24)

Here, m stands for the mass of the particle, Q is its charge,
v denotes its velocity, s is the trajectory, ρ represents the mass
density of air, c is the coefficient of friction, S denotes the cross
section of the particle, n is the number of the particles and, fi-
nally, F ei is the force exerted on the particle by the external
electric field, F tij denotes the forces exerted on the ith particle
by other moving particles, F gi stands for the gravitational force
and F ai denotes the drag aerodynamic force.

The adapted mesh and distribution of electric field between
the electrodes is in Fig. 38. Figure 39 shows trajectories of
selected particles.



Figure 39: Trajectories of selected charged particles

The computation process is illustrated by several following
figures. First, we mapped the particles of particular trajectories
for non-adaptive and fully adaptive solutions. The trajectories of
particles for the non-adaptive solution and hp-adaptive solution
are depicted in Fig. 40. These trajectories were calculated for
different charges Q of particles. Generally, the more negative is
the charge, the more distinct is the deflection of the trajectory.
Further decrease of charge Q would result in the impact of the
particle with the electrode.
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Figure 40: Trajectories of particles for different charges for non-
adaptive (dashed line) and adaptive (full line) solutions
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