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Surface Impedance Boundary Conditions  
 
Abstract — The concept of surface impedance boundary 
condition (SIBC) is first reviewed and then followed by a 
discussion of a class of flexible SIBCs based on power series 
expansion. The order of the SIBC can be selected by the user to 
fit the application. The SIBCs are useful at high and low 
frequencies and are particularly adapted to incorporation in 
numerical calculations since they do not require modifications to 
the basic formulations. The emphasis in this work is on 
implementation in BEM and FEM formulations but there is no 
restriction regarding formulations and the SIBCs have been 
implemented in FDM and FIT formulations as well. Some results 
drawing from modeling of nondestructive evaluation geometries 
and p.u.l parameters in transmission lines are shown to 
demonstrate their use. The discussion concludes with a simple 
method that allows selection of the order of SIBCs for particular 
applications. 
 

I. INTRODUCTION 
 

A. The Concept of Surface Impedance 
 
In most electromagnetic problems the domain under 
consideration consists of several different media. The 
electromagnetic field governing equations written for each 
region are linked by the boundary conditions, involving values 
on both sides of the interface between them. Thus one has to 
solve the problem for all media simultaneously even if the 
main interest is focused only on one of them. However, under 
certain conditions, the number of regions involved in the 
solution procedure may be reduced. A classical example is 
elimination of a body of infinite conductivity - a perfect 
electrical conductor (PEC) - from the computational space by 
enforcing the tangential electric field or normal magnetic flux 
to be equal to zero at the boundary (the so-called PEC 
boundary condition):  
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In practice, any real material has finite conductivity so that the 
perfect electrical conductor is merely a model of a good 
conductor in which the skin depth is assumed to be zero. 
Although the PEC-condition is very attractive for 
implementation, the diffusion of electromagnetic fields into 
the conductor may be neglected only in a limited number of 
practical cases. This means that the application of the PEC-
limit in practical design is very limited. For example, the 
electromagnetic penetration depth δ in copper at 1 MHz is 
approximately 20 µm. Is this skin layer thin or thick? 
Obviously, the question is meaningful only in relation to the 
dimension of the medium so that they may be compared. The 
characteristic size D of the conductor may be used for this 
comparison. In our example, the penetration depth in the 
conductor is definitely not small if the conductor’s thickness is 
equal to 50 µm (typical thicknesses of traces in printed circuit 
boards) and the PEC-condition may not be applied in this case. 
One may expect the use of the PEC-condition to lead to errors 
proportional to δ D .  
      Since the PEC is the limiting case of a real conductor, it is 
only natural to expect that the PEC-condition should also be a 
particular case of a more general approximate boundary 

condition relating electromagnetic quantities at 
conductor/dielectric interfaces. Existence of approximate 
boundary conditions of this genre follows directly from Snell’s 
law of refraction; if the electromagnetic wave propagates from 
a low-conductivity to a high-conductivity medium, the 
refraction angle is about 90 degrees and, in practical terms, 
does not depend on the incidence angle. Suppose the 
conducting region is so large that the wave attenuates 
completely inside the region. Then, the electromagnetic field 
distribution in the conductor’s skin layer can be described as a 
damped plane wave propagating in the bulk of the conductor 
normal to its surface. In other words, the behavior of the 
electromagnetic field in the conducting region may be 
assumed to be known a priori as in the case of the PEC. The 
electromagnetic field is continuous across the conductor’s 
surface so that the intrinsic impedance of the wave remains the 
same at the interface. Therefore, the ratio Ex H y  at the xy-
plane of a dielectric/conductor interface is assumed to be equal 
to the intrinsic impedance of the plane wave propagating in the 
conductor, in the positive z-direction: 
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The relation in (2) does not depend on coordinates and 
therefore, the surface impedance is assumed to be constant 
over the conductor’s surface. The Surface relation in (2), 
taking into account parameters of the conductor’s material and 
the source, contains all necessary information about the field 
distribution in the conductor’s volume. Thus it may be used as 
a boundary condition to the governing equations for the 
dielectric space and by doing so exclude the conductor from 
the solution region. In contrast to (1), which is a Dirichlet 
boundary condition, (2) can be viewed as an additional 
equation relating different unknowns at the interface. This is 
the basic idea of the surface impedance concept.  

 
B. The Historical Perspective 

 
The roots of the surface impedance concept can be traced to 
the end of the 19th century, a time when the main 
computational tool of electrical engineers was circuit theory. 
The lumped circuit representation is based on the 
approximation that it is acceptable to assign electromagnetic 
processes such as energy supply, dissipation and storage to 
individual components, concentrated virtually at a point 
(lumped) in space. A lumped circuit is considered to be a 
group of components (resistors, capacitors and inductors) 
interconnected in a certain topology occupying no physical 
space; a signal propagates from one point to another without 
time delay. To denote the ratio of amplitudes of an alternating 
current I and an electromotive force V that produces it in a 
circuit comprised of a resistance R and an inductance L, Oliver 
Lodge has introduced the term “impedance” in 1889 in the 
form [1]: 



 
circZ V I R j L= = + ω        (3) 

 
Here R and L are series resistance and inductance, 
respectively, and ω  is the angular frequency. 
      In real physical systems energy storage and dissipation are 
mixed together and distributed over relatively large areas. The 
lumped component representation is applicable if the physical 
size of the problem is much smaller than the wavelength 
(electrically small system) and the propagation time of 
disturbances is negligible compared to their period. However, 
it is also possible to use a “circuit” approach in devices that do 
not satisfy this condition, such as transmission lines. The 
characteristic impedance of the line is again the ratio of the 
voltage and the current, but involves the shunt conductance G 
and shunt capacitance C in addition to R and L:  
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The governing equations of transmission line theory are of the 
same form as the equations governing propagation of plane 
electromagnetic waves, and even the physical meanings of the 
electric (E) and magnetic (H) fields are closely related to those 
of V and I (E is voltage per unit length and H is current per 
unit length). Thus the term of impedance are naturally 
extended to the electromagnetic wave theory and applications. 
By analogy with (4), the quantity  
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has received the name intrinsic impedance of the medium. In 
the general case Z0  is complex, but in the particular case of a 
lossless medium it is real. The intrinsic impedance will 
frequently occur as a multiplier in expressions for the 
impedances of various types of waves. 
      Practical applications of impedance in power engineering, 
transmission lines, shielding, etc., have been analyzed by 
Schelkunoff who introduced the term “impedance concept” in 
1938 to generalize the idea of impedance [2]. Schelkunoff also 
recognized analogies between circuit impedance and similar 
ratios of major quantities in other engineering disciplines 
where the term impedance is also common (such as 
mechanics) or not so common (such as hydrodynamics and 
thermodynamics). 
      In the 1930s the newly evolving radio technology required 
development of the theory of propagation of electromagnetic 
waves of an antenna over the earth’s surface. An analytical 
solution for the particular case of a vertical dipole radiating 
over a conducting half-space has been obtained by 
Sommerfeld [3], but the more general problem involving 
layered media separated by curved interfaces has not been 
solved so far. Leontovich [4,5] and Schukin [6] (independently 
of one another) proposed a different approach, namely: to 
restrict the general problem by considering only the air region 
using the surface impedance boundary condition (SIBC) at the 
air/earth interface. Of course, the earth is not a good conductor 
in the common sense. On the other hand, the characteristic 
dimensions in this class of electromagnetic problems are 
sufficiently large for attenuation of the wave in the earth so 
that the surface impedance method may be applied. The 

considerations of both Leontovich and Schukin are based on 
the assumption that the variation of the field along the surface 
is small compared to the variation inside the earth. Thus the 
field derivatives in the directions tangential to the surface may 
be neglected compared to the normal derivative and the 
original two- or even three-dimensional equation of the field 
diffusion into the conductor is reduced to a one-dimensional 
problem that yields the relationship in (2). This is frequently 
referred to as the skin effect approximation [7]. Note that the 
same approximation is at the root of the theory of boundary 
layers in fluid mechanics. Schukin published this derivation in 
1940 [6]. Leontovich published his results without derivation 
later, in 1944 [4]. However, there is evidence that Leontovich 
has actually come to the idea of approximate boundary 
conditions at the end of the thirties, at the same time as 
Schukin. The first rigorous mathematical analysis was done by 
Rytov [8]. Rytov’s fundamental contribution is the 
development of the perturbation approach to the problem of 
the field inside and outside the conductor [9]. He sought a 
solution in the form of power series in a small parameter 
proportional to the ratio δ D . The first order terms of the 
expansions (actually, first non-zero terms) gave Leontovich’s 
condition. Thus, an improvement of the Leontovich condition 
can be obtained by inclusion of the next higher order terms of 
the expansion. Rytov also stated the problems of calculation of 
the surface impedance at curved interfaces and non-
homogeneous conductors. Unfortunately, even though [9] has 
been translated into French [10] Rytov’s contribution is not as 
well known as Leontovich’s work. 
      One may think that the time for approximate analytical 
approaches passed with the advent of robust numerical 
methods and fast computers. However, computational 
electromagnetics is called upon to solve and analyze problems 
in structures so vast and complex that the cliche “one basic 
truth to life is that demand will fill up all available resources!” 
[11] has never sounded truer. Because of this the surface 
impedance concept is gaining acceptance as a technique that 
allows significant savings in computer resources and improved 
solutions. The Leontovich SIBC is efficiently used in 
combination with such numerical methods as the finite 
element method [12-35], boundary integral equation method 
[36-52] and finite difference time domain method [53-69]. 
Among practical applications of the surface impedance 
concept are transformers [16, 19, 24, 34, 70-72], waveguides 
[25, 73-76], inductive heating devices [26-28, 77,78], 
microstrip and transmission lines [41, 79-84], electric 
machines [85-87], electromagnetic scattering [46, 61,  88-93], 
electromagnetic compatibility [29, 94-96], non-destructive 
testing analysis [30, 97-99], plasma and magnetic levitation 
devices [18, 100, 101], electromagnetic casting [102, 103] and 
many others, including applications outside the sphere of 
electromagnetics. 

 
II. SURFACE IMPEDANCE AS ASYMPTOTIC EXPANSION IN THE 

SKIN DEPTH 
 
Rytov’s approach to the idea of surface impedance boundary 
condition was much more radical and general than his 
contemporaries while also preceding most of them. It all 
started in an attempt to verify and quantify the Leontovich 
SIBC at the request of Leontovich [8, 104]. In the process, 
Rytov developed a general approach to low and high order 
surface impedance boundary conditions based on the 
perturbation method [8,104]. This approach also allowed 
systematic analysis of the accuracy and applicability of the 



method and pointed to the relative value of higher order 
SIBCs. 
      Rytov started with the source free Maxwell’s equations 
and proceeded to calculate the electromagnetic fields inside 
and outside the conductor. The electric and magnetic fields 
were assumed to vary exponentially inside the conductor and 
were written as a power series expansion in the skin depth δ. 
The expansion coefficients were evaluated for a system of 
equations obtained by equating terms with equal powers of δ. 
Equating the external and internal approximations leads to the 
Rytov boundary conditions. The number of terms retained in 
the expansion defines the order of the SIBC obtained. Thus, 
higher order SIBCs are as easily obtained as lower order 
SIBCs. Further, since a higher order SIBC is obtained by 
adding terms to the lower order SIBC, the method is ideally 
suited for numerical computation since the form of the 
expansion allows a modular approach whereby addition of 
terms does not require re-writing software. 
     We consider the skin effect problems in a local system of 
coordinates related to the conductor’s surface. Let the 
tangential coordinates  ξ1  and  ξ2  be directed along the 
surface. Their radii of curvature are   d1  and   d2  respectively. 
The third coordinate η  is directed into the conductor normal 
to its surface. In these coordinates, Rytov’s boundary 
condition can be represented in the form: 
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      The condition in (6) has clear physical meaning namely: 
(1) The right hand side of (6) does not contain terms of the 

zero-order degree of δ . For a perfectly conducting body (
σ →∞ ) δ → 0 , Z0 = 0  and condition (6) reduces to  

 

   
!Eξ3−k

= 0             (7) 
 

The condition in (7) gives the solution of the problem in 
the perfect electrical conductor limit (PEC), in which the 
electromagnetic field diffusion into the body is neglected 
(the tangential component of the electric field vanishes at 
the interface) 

(2) If one keeps only the first-order term on the right hand 
side and neglects all others, equation (6) reduces to (5), 
that is well-known as the Leontovich approximation, in 
which the body’s surface is considered as a plane and the 
field is assumed to be penetrating into the body only in 
the direction normal to the body’s surface. 

(3) The second-order term in (6) yields a correction by taking 
into account the curvature of the body’s surface, but the 
diffusion is assumed to be only in the direction normal to 
the surface as in the Leontovich approximation. This is 
Mitzner’s approximation. 

(4) The third-order terms (and higher) allow for the 
electromagnetic field diffusion in directions tangential to 
the body’s surface. This approximation is referred to as 
Rytov’s approximation. 

 
The condition in (6) can be generalized to the time domain, if 
the duration τ  of the current pulse is so short that the 
electromagnetic penetration depth δ  remains much smaller 
than the characteristic size D of the conductor’s surface: 
 

 
δ = τ σµ( ) << D         (8) 

 
In transient case the SIBC can be written in the form: 
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Here “*” denotes the convolution product and T1 , T2  and T3  
are time domain functions defined as follows: 
 

  
T1 = πt( )−1 2

,    T2 =U (t) ,    T3 = 2t1 2π−1 2  
 
where U(t) is the step function. 
Application of the Duhamel theorem yields: 
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Here the functions T̂m  are written in the form:  
 

  
T̂1 = dT1 dt = − 4πt3( )

−1 2
,    T̂2 = dT2 dt =U '  

  
T̂3 = dT3 dt = πt( )−1 2

 
 
Thus (9) can be represented in the form: 
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The normal component of the magnetic field on the surface of 
the conductor can also be expressed in terms of tangential 
components as follows: 
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Here “FD” and “TD” denote frequency and time domains, 
respectively 
      In modern computational electromagnetics, formulations 
in terms of potential-based functions are more popular than 
field-based formulations. To respond to this need, SIBCs in 
terms of magnetic scalar and vector potentials have also been 
derived. 
      The magnetic scalar potential φ can be introduced as 
follows: 
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where   

!
H s  is the “source” magnetic field. The SIBC, relating 

the scalar potential and its normal derivative at the interface, 
can be written in the form: 
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where the operator-function F takes the following forms 
depending on the approximation order and excitation applied: 
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The product F f[ ]  has the dimension of  fD  where f  is the 
scale factor of the function f . 

      The magnetic vector potential  
!
A  is defined as follows: 
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Substituting (16) into the Maxwell equations and neglecting 
displacement current, the following equations describing the 
distribution of the vector potential in the conductor can be 
written: 
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From (17) one obtains: 
 

  

!
E = −

∂
!
A
∂t

+∇V                   (19) 

 
Here V is the electric scalar potential. Substitution of (19) into 
(18) yields: 
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    Following the approach developed by Emson and Simkin 
[105], we split the vector potential into “source” and “eddy” 
components: 
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where the “source” component  

!
As  can be represented in the 

form: 
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Substitution of (22) into (19) yields a relation between the 
electric field and the eddy component of the magnetic vector 
potential is obtained: 
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Substituting (6) and (9) into (23) yields the SIBCs relating the 
tangential components of the magnetic vector potential and 
magnetic fields at the surface of the conductor: 
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III. COMMON REPRESENTATION OF VARIOUS SIBCS USING 

SURFACE IMPEDANCE FUNCTIONS 
 
Above we have considered approximate boundary conditions 
expressing tangential electric field, normal magnetic 
field/normal derivative of the magnetic scalar potential and 
tangential magnetic vector potential in terms of the tangential 
magnetic field. Since derivations of all mentioned conditions 
are based on the same concept of surface impedance, it is 
intuitively clear that the expressions in (6), (9), (12), (14) and 
(24)-(25) can be represented in a “common” form using the 
“common” operator-function F defined in (15). With the use 
of (15), we represent (9) in the form: 
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The frequency domain form of (27) is the following: 
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The SIBC in (24)-(25) can also be represented using the 
operator-function F as follows: 
 

   
(
!
Ae )ξk

= (−1)k F Hξ3−k
#
$

%
&  k=1,2         (28) 

 
Finally, substituting (15) into (12), we obtain: 
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      The operator-function F can be called a surface impedance 
function since it describes the perturbation of the external field 
surrounding the body due to the field diffusion into the body 
and dissipation of its energy by the body. The first term on the 
right-hand side of (15) gives the contribution from the field 
diffusion in the direction normal to the planar surface. The 
second and third terms describe the field diffusion in the 
direction normal to the curvilinear surface. The fourth term 
takes into account the field diffusion in the directions 
tangential to the planar surface. The functions Tm  or   T̂m  
demonstrate the evolution of these processes in time.  
 

IV. APPLICATIONS: FIRST ORDER SIBCS 
 
As indicated above, SIBCs have been used extensively in 
many applications, virtually in all domains of computational 
electromagnetics as well as other areas. In the following we 
bring forth a few applications of the methods described above, 
emphasizing low and high order SIBCs in connection with the 
finite element method. Many other applications and 

formulations can be found in the references listed here and in 
particular in [106]. We start with an application in NDT where 
a simple, first order SIBC is used to reduce the size of the 
solution domain to a size that can be solved in practice with 
excellent accuracy. Following that we focus on the issues of 
high order formulations using the example of calculation of 
p.u.l parameters in transmission lines and finally discuss the 
issue of accuracy and selection of the order of SIBCs for 
practical applications. 
 

A. First order SIBC for modeling of clogging in steam 
generators 

 
An important problem in NDT in nuclear power plants is the 
clogging of the gap between steam generator tubing the their 
support plate due to corrosion (primarily magnetite), a process 
that can lead to damage to the tubes and leakage of the 
primary radioactive fluid into secondary fluid (steam) and into 
the environment. To prevent that, the corrosion products are 
flushed chemically and the flushing process is stopped when 
the gaps are clean. To guide the cleaning process, the signals 
expected may be reproduced using a model of the steam 
generator provided an accurate enough signal may be 
obtained. Eddy current inspection is one of the primary 
methods of detection of corrosion products and hence of the 
clean gaps [107, 108].  
      The geometry considered is shown in Fig. 1 [109]. It 
consists of an Inconel 600 tube (22.22mm outer diameter, 
1.27mm wall thickness) passing through a carbon steel support 
plate with a gap in a four-leaved shape and a minimum gap of 
0.2 mm. A differential eddy current probe operating at 100 
kHz and made of two identical coils, each 2mm wide and 

separated 0.5 mm. 

 
Fig. 1 Geometry of the NDT model [109].  

 
From a computational point of view, the difficulty lies in three 
issues; the first is the support plate in which, because of its 
high conductivity and permeability, the skin depth is of the 
order of 5 µm. The second is the high accuracy required, 
especially if flaws are to be detected and the third, is the fact 
that to obtain a signal one requires the solution of at least 100 
probe positions. This means that the mesh required is simply 
not practical for solution.  
      The problem was handled using Code_Carmel3D [110]. 
The code uses either the A-φ or the T-Ω FEM formulations 
with first order tetrahedral Whitney elements. Because in first 
order elements, the first derivatives are constant, the only 
SIBC that can be implemented is a first order SIBC. The tube, 
magnetite and air are modeled in the normal fashion whereas 
the support plate is replaced with a surface impedance 
boundary condition. The details of the surface discretization 
on the support plate is shown in Fig. 2a whereas that of the 
tube, coils and gaps is volumetric and shown in Fig. 2b. 
 



 
Fig. 2 a. Details of the surface discretization on which the SIBC is applied. b. 

Volume discretization of the tube, coils and gap [109]. 
 
      The whole model consists of 1,367,512 tetrahedra. The 
computed results were compared with carefully generated 
experimental signals, shown in Fig. 3 for the case in which the 
four lobes of the gap are filled with corrosion products. 
Although the experimental and simulated signals are not the 
same, they are in fact quite close. In practice, the ratio 

  
ΔYmax −ΔYmin( ) / ΔYmax is used to correlate with the degree of 

clogging. In Fig. 3, this ratio is 0.58 for the measured signal 
and 0.59 for the simulation. 
 

 
 
Fig. 3 Experimental (blue) and simulated signals for a fully clogged gap [109]. 
 

V. APPLICATIONS: HIGH ORDER SIBCS 
 
High order SIBCs require the computation of the curvature of 
the conductors as well as the computation of successive 
tangential derivatives. Both these features make the 
discretization of the equations arising from high order SIBCs 
delicate and challenging, and clearly, the use of standard 
piecewise constant discretization is not well suited for this 
purpose. On the one hand, for complicated geometries the 
information about the curvature cannot be encoded in a 
piecewise linear representation of the geometry. On the other 
hand, it is not feasible to obtain reliable approximations of the 
second or successive derivatives with piecewise constant 
functions. If these two features make the standard piecewise 
constant discretization not suited in the 2D case, they make the 
implementation of high order SIBCs totally unfeasible in 3D. 
      Our approach makes use of a recent paradigm, called 
Isogeometric Analysis, introduced in [111, 112] with the aim 
of improving the communication between Computer Aided 
Design (CAD) software and numerical solvers. The method 
can be understood as a generalization of finite elements, where 
the standard polynomial shape functions are replaced by the 
functions used in CAD to describe the geometry. 
 

A. NURBS-based BEM implementation 
 
      The most widespread functions in CAD are probably non-
uniform rational B-splines (NURBS), due to their flexibility 
and their ability to design smooth geometries. The method 
proposed recently to solve a problem already discretized with 
BEM constant elements in [113] is based on NURBS to 

represent the contour of the cross section of the conductors, 
whereas the discrete solution is sought as a B-spline. The use 
of NURBS not only gives a good representation of complex 
geometries, but it also allows an exact computation of their 
curvature, as required by high order SIBCs. Moreover, a 
discretization based on high order B-splines makes the 
computation of tangential derivatives appearing in SIBCs easy 
and robust, which cannot be obtained with low order BEM. 
 

B. Magnetic vector potential formulation 
 
Consider a set of N infinitely long parallel conductors, with 
cross sections Ωi, i=1,…,N. Each conductor is assumed to have 
electrical conductivity σi, permittivity εi, and magnetic 
permeability equal to the permeability of free space, i.e., µi = 
µ0. We work under the hypothesis of a time-harmonic regime 
with angular frequency ω, for which vector fields are 
represented using phasors, and all field quantities are assumed 
to be complex. A time-domain formulation of the same 
problem can be found in [114, 115]. We also assume that for 
each conductor the condition σi >>ωεi is satisfied, and that the 
size of the computational domain is much smaller than the 
wavelength, thus the displacement currents are neglected in 
Ampére's law. 
      We assume that the conductors are infinitely long in the z-
direction, and choose a 2D formulation in terms of the 
magnetic vector potential with the unknown in the z-
component of the potential. We split into ``source'' and ``eddy'' 
components as in (21) with As constant in each conductor. 
 

 
 

Fig. 4. Geometry of the problem for BEM modeling. 
 

The eddy component Ae satisfies the following equation in 
each conductor 
 

  ∇
2 Aint

e = jωµ0σ i Aint
e      in  Ωi  ,              (29) 

 
and in the non-conducting domains it satisfies 
 

  ∇
2 Aext

e = 0     in  Ω0.                               (30) 
 
with a radiation condition at infinity. 
      Denoting by Γi the boundary of (the cross section of) each 
conductor, and by n the unit exterior normal vector, the 
equations for Ae are completed with interface conditions on Γi: 
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#
$Γi
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where the brackets denote the jump on the interface, [Ae] = 
Ae

int - Ae
ext.  

 
C. Integral formulation 

 
Let us, for simplicity, denote the normal derivative at each 
interface by  
 

  
K i =

∂Aext
e

∂n
Γi

  ,  i =1,…, N                     (32) 

 
We know that Ae and As satisfy the equation 
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where I is the identity operator, and Si and Di are the operators 
for the single and double layer potential on the interface ΓI 
[116]. Since the source component As is unknown, the 
equations are completed with a condition on the intensity 
flowing in each conductor  
 

   Γi

∮1
µ0

K i x( )dγ x( ) = Ii   ,  i =1,…, N                 (34) 

 
The general idea of applying SIBCs is to replace the solution 
of the problem inside the conductor given by (29), with an 
approximate boundary condition that replaces the field Ae

int in 
(33).  
       Applying the SIBCs to (33), we obtain the equations of 
our problem 
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where 
 

  
ψ1 u"# $%=

−1
α

u,                                (39) 

  
ψ2 u"# $%=

c
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3c2
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and 𝛼 = 2𝑗.  
The equations are completed with the condition (34), that 
using the asymptotic expansion gives a condition for each 
coefficient Ki:  

 

   Γi

∮1
µ0

K0
i x( )dγ x( ) = Ii  ,    i =1,…, N                (42) 

   Γi

∮1
µ0

Kl
i x( )dγ x( ) = 0 ,    i =1,…, N   , l =1,2,3.        (43) 

 
The equations for K0, i.e., equations (36) and (43), give an 
approximation of the fields in the PEC regime, where the 
current is assumed to flow on the conductor surface only. 
Solving for K1, K2 and K3, and reconstructing the field with the 
expansion  
 

  
K i =

∂Aext
e

∂n
Γi

= K0
i +δK1

i +δ2K2
i +δ3K3

i +…           (44) 

 
gives the approximation of the field using the Leontovich, 
Mitzner and Rytov SIBCs, respectively. In [117] it is proven 
that the approximation errors under these conditions are 

  
O δ2( ) , 

  
O δ2( )  and 

  
O δ3( )  respectively. A rigorous 

mathematical proof for the range of frequencies at which each 
condition can be applied is not available, but the numerical 
results suggest that high order SIBCs can be used at lower 
frequencies than Leontovich SIBC. 
      We note that to solve the problem for each Kl, with 
l=1,2,3, it is required to compute first the solution for the 
previous Kl-1, hence the four problems must be solved 
sequentially. However, the matrix is the same in all four cases, 
and the computation of the matrix and its factorization need to 
be done only once. Moreover, the solution of the system is 
independent of the angular frequency ω, that only appears in 
the parameter δ of the asymptotic expansion and it is taken 
into account during post-processing. 
 

D. BEM numerical results 
 
We have implemented the NURBS discretization presented 
above in a Matlab code, which is mainly based on the 
GeoPDEs isogeometric software, described in [118]. The code 
has been used to solve the equations (8)-(16) in several cable 
configurations, and with the numerical solution we have 
computed their per unit length (p.u.l.) resistance and 
inductance, following the procedure described in [113].  
      The implementation has been first validated by solving the 
canonical case of two parallel circular copper conductors, with 
conductivity σ=  5.8 ⋅107  S/m. The diameter of each conductor 
is 2 mm, and the distance between their centers is 4 mm. The 
results confirm that high order SIBCs work better at high 
frequency, and they also increase the frequency range for 
which the model is valid (Figs. 5-6). 
      In order to deal with a more realistic geometry, we applied 
the method to the simulation of a three sector-shaped cable 
with a shield (that we consider infinitely thick). Each sector is 
made of copper and the same electrical conductivity is also 
considered for the shield. The dimensions of the cross section 
of the cable are given in Fig 7. We note that the corners of 
each sector have been rounded, because the SIBCs discussed 
here can only be applied in smooth geometries. 
 



 
 

Fig. 5. Relative errors in the p.u.l. resistance for the two circular cables. 
Distance between the centers of the two conductors: 4mm. 

 

 
Fig. 6. Relative errors in the p.u.l. inductance for the two circular cables. 

Distance between the centers of the two conductors: 4mm. 
 
      The results are compared with the ones given by a 
commercial FEM software with adaptive mesh refinement and 
are in good agreement. At low frequency the condition of 
applicability of SIBCs is no longer satisfied, and the 
approximation given by SIBCs is not valid. 
 

 
Fig. 7. Dimensions of the sector shaped cable. 

 

 
Fig. 8. P.u.l. self-resistance and self-inductance for one sector of the three 

sector cable. 
 

E. Isogeometric FEM implementation 
 
      To avoid dealing with the infinite domain Ω0, we follow a 
standard approach in finite elements: we truncate the domain 
far away from the conductors, and impose an absorbing 
boundary condition on the external boundary. Let us denote by 
Ω0

R the intersection of Ω0 with the circle of radius R, and by 
ΓR its external boundary (see Fig. 9), where we apply the 
following second order absorbing boundary condition: 
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Defining 𝛼 = 2𝑗, the first order (Leontovich), second order 
(Mitzner) and third order (Rytov) SIBCs on Γi are, 
respectively [117, 119]: 
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where 𝜅 = 𝜅 𝜉   is the (signed) curvature of the contour of the 
cross section.  
 

 

 
Fig. 9. Geometry of the problem for FEM modeling. 

 



      The application of the third order SIBC can be obtained 
with a mixed formulation, as is done in [117]. We first 
introduce the new unknown   ϕ = ∂Aint

e / ∂n . Multiplying the 
latter equation by a test function ψ and integrating over Γi, 
then integrating by parts the term with the second partial 
derivative, and finally applying the first continuity condition 
in (31), we obtain 
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The system must be completed with the intensity condition 
(6), which in this case is written in terms of the new unknown 
ϕ in the form 
 

  Γi

∫ 1
µ i
ϕdξ = Ii ,  i =1,…, N .        (50) 

 
The FEM formulation has been discretized with the 
isogeometric finite elements [119] and implemented in Matlab 
using the GeoPDEs toolbox [118]. The same test cases solved 
with the BEM formulation have been studied and the obtained 
numerical results are in good agreement. 
 

VI. SELECTION OF SIBCS FOR A GIVEN PROBLEM 
 
The correct choice of the SIBC for a given problem is very 
important and not always clear a priori, especially in the 
transient case. If the order of approximation of the SIBCs used 
in the computation is inadequate, the computational results 
may not be sufficiently accurate. On the other hand, 
application of high order SIBCs for the calculation of very thin 
skin layers does not provide any gain in accuracy of the results 
and leads to waste computational resources. In this section we 
describe a simple methodology for selection of the SIBCs, that 
are best suited for a given problem, using the characteristic 
values of this problem. In other words, the methodology 
should help to define how many terms in the SIBCs, 
represented as power series in the skin depth, should be 
retained.  
      Any non-static electromagnetic problem involves the 
following scales: the characteristic dimension   D*  of the 
body’s surface and characteristic time  τ* . We use these values 
as “input data” in our methodology. Characteristic time is 
defined as the ratio  2 ω  for time-harmonic incident field and 
the incident pulse duration  τ p  for the pulsed source. The 

characteristic dimension   D*  is defined as  
 

  
D* =min Rξ , Rs( )  
 
where  Rξ  is the minimum radius of the curvature of the 

surface coordinate lines in the case of smooth body and  Rs  is 
the minimum distance between the field source and the body.  
      Using   D*  and  τ* , we define the characteristic skin depth 
δ and characteristic dimension λ of the field variation along 
the surface of the body surface as follows: 

 

 δ = τ* (µσ)          (51) 

  λ = cτ*     (52) 
 
where c is the velocity of light.  
      The conditions of applicability of the surface impedance 
concept can be easily written in terms of   D* , δ and λ:  
 

  δ << D*        or         !p = δ D* <<1   (53) 

  λ >> D*       or         !q = D* cτ* <<1     (54) 
 
where   !p  and   !q  are basic parameters of the problem. Here and 
below, the sign ”~” denotes non-dimensional quantities. The 
conditions in (53)-(54) hold for all SIBCs. 
      Let us transfer to non-dimensional variables in the SIBCs 
(6) and (11) by introducing the following scale factors [106]: 
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Here the square brackets denote a scale factor for the 
corresponding value. With these, (6) and (11) can be 
represented in the form: 
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      From (55) it follows that the approximation errors of the 
PEC-limit, the Leontovich SIBCs, the Mitzner SIBCs and the 
Rytov SIBCs are   !p ,    !p

2 ,    !p
3  and    !p

4 , respectively. Based on 
these we can define approximate range of the parameter   !p , 
for which the SIBCs of these classes can be best applied: 
1. For the PEC boundary conditions 

 
     !p < 0.06        (56a) 

 
2. For the SIBCs in the Leontovich approximation 
 

   
!p ≈ 0.06÷0.25    !p2 ≈ 0.003÷0.06( )   (56b) 

 
3. For the SIBCs in the Mitzner approximation 

 

   
!p ≈ 0.25÷0.4    !p3 ≈ 0.02÷0.06( )               (56c) 



 
4. For the SIBCs in the Rytov approximation 

 

   
!p ≈ 0.4÷0.5    !p4 ≈ 0.03÷0.06( )             (56d) 

 
The range of the parameter   !q  can be defined as 
 

   !q < 0.06        (57) 
 

Under the definition (56)-(57) the approximation error due to 
using the SIBCs will not exceed 6%. 
      As an example we considered a pair of identical copper 
parallel conductors with circular cross section where equal and 
opposite directed pulses of current 1 A are flowing from an 
external source as shown in Fig. 10. The radius of each 
conductor and the distance between the conductors were taken 
equal to 0.1 m (characteristic value   D* ). Under these 
conditions the current density has only one component 
directed along the conductors.  
      To illustrate the theory, the distributions of the surface 
current density over one half of the cross section of one 
conductor were calculated for the following current pulses: 

  τ
* =10−3 s  (   !p = 3.7 ⋅10−2  and    !q = 3.3⋅10−7 ). From (56)-(57) 

it follows that the PEC-conditions are suitable for this 
problem. Figure 10 shows that the use of the SIBC of the next 
order (Leontovich’s SIBC) will not provide significant 
increase in the accuracy of the results (the difference between 
the curves does not exceed 4%). 

  τ
* =10−2 s  (   !p =1.2 ⋅10−1  and    !q = 3.3⋅10−8 ). In this case the 

Leontovich SIBC seems to be optimal. From Fig. 11 it follows 
that the difference between the curves obtained using the PEC- 
and Leontovich conditions is about 15% whereas application 
of the Mitzner SIBC increases the accuracy by only 2%. 
3.   τ

* =10−1 s  (   !p = 3.7 ⋅10−1  and    !q = 3.3⋅10−9 ). Figure 12 
shows that the use of the Leontovich SIBC leads to an 
unacceptable computational error (about 18%). On the other 
hand, the difference between the curves obtained in the 
Mitzner and Rytov approximations does not exceed 3%. 
Therefore, in this problem it is necessary to use the Mitzner 
SIBC as the methodology predicts. 
      Note that the methodology employs only two parameters 
of the problem, and neglects such factors as the shape of the 
incident pulse. For estimation of the required order of SIBC in 
more complex, ”grey areas”, application of a more detailed 
methodology is recommended [106] 

 
Fig. 10. Distribution of the surface current density over the conductor surface 

 
Fig. 11. Distribution of the surface current density over the conductor surface 

 
Fig. 12. Distribution of the surface current density over the conductor surface 
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VIII. CONCLUSIONS 
 

The surface impedance boundary conditions described above 
and the examples given show the extent of applicability of 
SIBCs. The main characteristics of the SIBCs are their 
modular nature with respect to order and the fact that they can 
be implemented in existing software with little if any 
additional complexity. In addition, one can estimate the 
required order a-priory from properties of the geometry and 
frequency. Although SIBCs for anisotropic media and for 
coated conductors have been reported, the issue of SIBCs for 
nonlinear media remains open and is the subject of current 
work. 
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