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Recent Advances of Isogeometric Analysis in Computational
Electromagnetics

Abstract — In this communication the advantages and drawbacks
of the isogeometric analysis (IGA) are reviewed in the context of
electromagnetic simulations. IGA extends the set of polynomial
basis functions, commonly employed by the classical Finite Ele-
ment Method (FEM). While identical to FEM with Nédélec’s ba-
sis functions in the lowest order case, it is based on B-spline and
Non-Uniform Rational B-spline basis functions. The main benefit
of this is the exact representation of the geometry in the language
of computer aided design (CAD) tools. This simplifies the mesh-
ing as the computational mesh is implicitly created by the engineer
using the CAD tool. The curl- and div-conforming spline function
spaces are recapitulated and the available software is discussed. Fi-
nally, several non-academic benchmark examples in two and three
dimensions are shown which are used in optimization and uncer-
tainty quantification workflows.

I. Iඇඍඋඈൽඎർඍංඈඇ

In electrical engineering numerical simulations have become an
inevitable tool for designing new components, such as electrical
machines or antennas, as well as for understanding their behav-
ior and their interaction with the environment, as e.g. commonly
analyzed in electromagnetic compatibility simulations. How-
ever, due to exponentially increasing computational resources
and increasing accuracy expectation of the simulation engineers,
the numerical models become correspondingly more and more
complex.
There are many trends leading to this increased complexity and
the following list is obviously not complete. For example, multi-
physical phenomena are considered to be increasingly important
and they lead tomany challenges in themodeling and the numer-
ical analysis, see e.g. [1]. On the other hand, the geometrical
design of components to be simulated has become very com-
plex. It is often directly imported from a Computer Aided De-
sign (CAD) software into the engineering tools that are the main
interest of the Compumag community. Geometrical simplifica-
tions of the design, e.g. removing screws, require a lot of manual
labor and sometimes even insights into the actual field distribu-
tion within the component, which should have been gained by
the simulation in the first place. According to [2], approximately
80% of the overall analysis time nowadays can be accounted to
mesh generation in the automotive, aerospace, and ship building
industries. At the same time, the higher accuracy demands re-
quire even finer meshes or higher order ansatz functions, which
in turn necessitate the creation of meshes with curved elements.
Now, if the initial mesh generation for realistic computational
models is already troublesome, how can one robustly carry out
shape optimization or uncertainty quantification of geometrical
manufacturing imperfections?
In this communication, we advertise Isogeometric Analysis
(IGA) as proposed by TomHughes in [2], see e.g. [3]. Its distinct
feature is to mitigate the meshing step and immediately work on
the CAD geometry description. The idea of more sophisticated
parametric, i.e. non-polynomial, mappings is not new but gained
further interest also by CAD software vendors due to the recent
works on IGA. Eventually, the mesh shall be automatically cre-
ated by the engineer using the CAD software. Currently, this is
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Fig. 1. A NURBS curve in R2 is the projection of a B-spline curve in R3, this
allows for the definition of circles and other conic sections.

not entirely true as boundary representations (BRep) of volumet-
ric objects are used in most CAD tools. The trivariate mappings
of the interior have still to be created manually. However, this
is an active and ongoing field of research [4].
Eventually, the Finite Element Method (FEM) is the work horse
in low-frequency and many high-frequency electromagnetic
simulations [5, 6]. In the last decades, many variants and im-
provements of the Finite Element Method have been proposed.
IGA proposes to generalize the set of polynomial basis func-
tions, employed by FEM, with the introduction of more general
B-spline basis functions and Non-Uniform Rational B-splines
(NURBS). These functions are well known in the design com-
munity and are the basic ingredient of nowadays CAD software.
They allow for the exact parametrization of common curves and
surfaces such as conic sections, and are extremely flexible and
intuitive when dealing with more complex shape creation and
deformation. By using them for the discretization process of
general Partial Differential Equations (PDEs), it is possible to
inherit these properties and directly use the CAD design as the
computational domain, without the need of a meshing step.
It is also worth pointing out that, since IGA operates in the same
Galerkin framework as FEM, in most instances pre-existent fi-
nite element codes can be easily modified in order to work in an
isogeometric setting by changing the basis function construction
routines only.
The possibility to straightforwardly deal with geometrical
changes makes of IGA a powerful tool when used in the con-
text of shape optimization problems or shape sensitivity analy-
sis [3, 7, 8]. Moreover, given the higher global regularity of the
basis function space, the isogeometric approach has been shown
to present several advantages over FEM in addition to the better
handling of geometries, like a faster convergence with respect
to the number of degrees of freedom [9] and the possibility to
treat high order differential operators [10, 11].
These properties have made IGA appealing for a wide variety of
applications. For the application to computational electromag-
netics, in particular, IGA shows the ability of consistently dis-
cretizing complexes of differential forms [12] which is a prop-
erty of great importance for achieving spectrally correct dis-
cretization of the Maxwell PDEs [13, 14].
In this communication we present a general introduction to the
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Fig. 2. B-spline basis functions of degree 1 and 2 on open, uniform knot vec-
tors (Ξ = [0, 0, 1/3, 2/3, 1, 1] on top and Ξ = [0, 0, 0, 1/3, 2/3, 1, 1, 1] at the
bottom).

isogeometric framework highlighting some differences, advan-
tages and drawbacks with respect to FEM. We also introduce
the curl- and div-conforming spaces necessary for the correct
discretization of Maxwell’s equations as given in [13]. We then
proceed to present several applications of IGA to different kind
of problems both in 2D and in 3D. Some final remarks on an
isogeometric boundary element method are also given.

II. Iඌඈൾඈආൾඍඋංർ Dංඌർඋൾඍංඓൺඍංඈඇ ඈൿ Mൺඑඐൾඅඅ’ඌ Eඊඎൺඍංඈඇඌ

The differential form of Maxwell’s equations is given by

∇×E+
∂B

∂t
= 0 (1a)

∇ ·D = ρ (1b)

∇×H− ∂D

∂t
= J (1c)

∇ ·B = 0, (1d)

withE andD the electric field strength and electric flux density,
H andB themagnetic field strength andmagnetic flux density, ρ
the electric charge density and J the current density. The system
is completed by the material relations

D = ϵE+P (2a)
B = µ (H+M) (2b)

where the electric permittivity ϵ and the magnetic permeability
µ are, in general, non-linear tensor valued functions of position
expressing the material properties, and the quantities P and M
are the electric polarization and the magnetization respectively.
Depending on the problem at hand, different assumptions and
simplifications can be made. We focus here on high-frequency
problems in frequency domain and low-frequency problems that
can be considered quasi-static or even static. We postpone
the detailed discussion of the specific formulations and mod-
els to section IV. In general, however, the numerical solution
of such problems is nowadays typically performed with the
FEM. The spaces arising from the weak formulation are non-
standard spaces of square integrable functions (i.e. in L2) with
weakly defined curl in L2; this space is commonly denoted by
H (curl; ·). In order to properly approximate the solution field,
the discrete spaces need to mimic several important properties
that hold on the continuous level (see sub-section B). For clas-
sical polynomial FEM it is well known that a sequence of dis-
crete spaces with conforming discretization can be obtained us-
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Fig. 3. Continuity can be controlled in single points (see the black circle) by
knot repetition (here: Ξ = [0, 0, 0, .2, .4, .4, .6, .8, 1, 1, 1]).

ing (high-order) Nédélec-type elements, which allocate the de-
grees of freedom on the edges or the faces of the mesh in order
to ensure consistency [5, 6].

A. IGA Bൺඌංඌ Fඎඇർඍංඈඇඌ

In order to represent complex shapes, the use of polynomials
or rational segments may often be inadequate or imprecise. On
the other hand, B-spline and NURBS functions enjoy some ma-
jor advantages that make them extremely convenient for sur-
face representation and are therefore the most common choice
for solid geometry modeling on which nowadays CAD tools are
based. Of the main advantages we care to mention, e.g., that
they can exactly represent all conic sections (i.e. circles, ellipses,
etc.), see e.g. Fig. 1, that they can be generated bymany efficient
and numerically stable algorithms, and that they can easily han-
dle specified continuity in single points [15].
The main idea behind the isogeometric approach [2] is to dis-
cretize the problem unknowns with the same set of basis func-
tions that CAD employs for the construction of geometries.
Let p be the prescribed degree and

Ξ =
[
ξ1 . . . ξn+p+1

]
(3)

be a vector that partitions [0, 1] into elements (ξi ∈ Ω̂ =
[0, 1]). Then, the Cox-de Boor’s formula [16] defines n one-
dimensional B-spline basis functions {Bp

i (ξ)} with ξ ∈ Ω̂ as

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(4)

Bp
i (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bp−1

i+1 (ξ) ,

with i = 1, . . . , n. An example of B-spline basis of degree
p = 1, 2 are shown in Fig. 2. One can notice that the support
of a B-spline of degree p is always p + 1 knot spans and, as a
consequence, each p-th degree function has p − 1 continuous
derivatives across the element boundaries (i.e. across the knots)
if they are not repeated. Repetition of knots can be exploited to
prescribe the regularity.
NURBS of degree p are defined as rational B-splines

Np
i (ξ) =

wiB
p
i (ξ)∑

j wjB
p
j (ξ)

, (5)



F

Ω̂

Ω1

Ω2

Ω3

Ω4

Ωk = Fk(Ω̂)

Fig. 4. The mesh in the physical space is given by the transformation through the
NURBSmappingF of the knot lines in the reference domain (on the left). On the
rigth an example of a multipatch mapping to represent complicated structures.

with wi a weighting parameter associated with the i-th basis
function. It is clear that B-splines are NURBS with all weights
equal to one, due to the partition of unity property.
Multi-dimensional B-splines and NURBS are constructed using
a tensor product approach. For example, let Ξd be the knot vec-
tors, pd the degrees and nd the number of basis functions (with
d = 1, 2, 3), a trivariate B-spline is given by

Bp
i (ξ) = Bp1

i1
(ξ1)B

p2

i2
(ξ2)B

p3

i3
(ξ3) , (6)

where p = (p1, p2, p3) and i = (i1, i2, i3) is a multi-index in
the set

I = {(i1, i2, i3) : 1 ≤ id ≤ nd} . (7)

We will denote by Sp(Ξ) the multivariate B-spline space
spanned by the basis functions Bp

i .
To build a B-spline or NURBS curve, we start by defining a set
of control points. These act as weights for the linear combina-
tion of the basis functions, giving the mapping to the physical
space. In particular, given n one-dimensional basis functions
Np

i and n control points P ∈ Rd, i = 1, . . . , n, a curve parame-
terization is given by:

C (ξ) =

n∑
i=1

PiN
p
i (ξ) . (8)

The control points define the so called control mesh but this does
not, in general, conform to the actual geometry. On the contrary,
the physical mesh is a decomposition of it: the mesh element
edges are the image of the knot lines through the mapping (8)
(see Fig. 4 on the left).
It is straightforward to notice that the continuity of a CAD curve
is controlled by the basis functions (by knot repetitions in partic-
ular), while the control points define the shape without altering
the curve continuity. Moreover, as a consequence of the locality
of the basis functions, moving a single control point can affect
the geometry of no more than p+ 1 elements of the curve.
The main advantage of using NURBS over B-spline curves is
the possibility to exploit both the control points and the weights
in (5) to control the local shape: as wi increases, the curve is
pulled closer to the control point Pi, and vice versa. While non-
rational splines (or Bézier curves) can approximate a circle, they
are unable to represent it exactly. Rational splines, however,
overcome this issue.

In many real-world applications, the computational domain may
be too complicated to be represented by a single NURBS map-
ping from the reference domain to the physical space. This could
be due, for example, to topological reasons or to the presence of
different materials. In these cases it is common practice to re-
sort to the so called multipatch approach [3]. Here the physical
domain is split into simpler subdomains Ωk such that each one
of them is the image of the reference space through a map Fk of
the type given in (9). An example of such a situation is depicted
in Fig. 4 on the right.
Finally, we care to mention that the possibility to use the same
space for the parameterization of geometry and solution (the so
called isoparametric approach), is particularly interesting when
dealing with shape deformations, either coming from the solu-
tion of mechanical problems or from optimization or sensitivity
analysis procedures. The deformation degrees of freedom can
simply be added to the geometry control points to obtain the de-
formed domain, and the internal parameterization automatically
follows with no need of cumbersome remeshing procedures.
However, we will see that in the case of Maxwell the isopara-
metric concept must be relaxed as the derivative of a NURBS
is not a NURBS function. Therefore, one uses NURBS for the
mapping and B-splines as weighting and ansatz functions.

B. IGA Cඈඇൿඈඋආංඇ Sඉൺർൾඌ

Analogously to classical FEM, IGA is (typically) based on a
Galerkin approach: the equations are written in their variational
formulation, and the solution is sought in a finite dimensional
space with the correct approximation properties. In IGA, how-
ever, the basis function space is inherited from the one used to
parametrize the geometry.
Let us now consider a domain Ω ∈ Rd that can be exactly
parametrized with a mapping F of the type in (8), i.e.

F : Ω̂ → Ω, (9)

with Ω̂ the reference domain [0, 1]d. We will denote by DJ the
Jacobian of the transformation.
We define the following pull-back functions

ι0(v) := v ◦ F v ∈ H1 (Ω) (10a)

ι1(v) := (DF)⊤(v ◦ F) v ∈ H (curl; Ω) (10b)

ι2(v) := det (DF) (DF)−1
(v ◦ F) v ∈ H (div; Ω) (10c)

ι3(v) := det (DF) (v ◦ F) v ∈ L2 (Ω) . (10d)

It can be shown that (10b) and (10c) preserve the curl and the
divergence, respectively, from the reference domain to the phys-
ical one [5, 6]. Due to this property, the following commuting
de Rham diagram holds:

H1
(
Ω̂
)

H
(
curl; Ω̂

)
H
(
div; Ω̂

)
L2

(
Ω̂
)

H1 (Ω) H (curl; Ω) H (div; Ω) L2 (Ω)

∇̂ ∇̂× ∇̂·

∇

ι0

∇×

ι1

∇·

ι2 ι3
(11)

Here we have also introduced the usual Sobolev space H1

of L2 functions with square integrable gradient and the space
H (div; ·) of functions with weak divergence in L2.
To obtain a conforming discretization of H(curl,Ω), we search
an analogous diagram in the discrete setting. By exploiting the
fact that the derivative of a B-spline function is still a B-spline
function [16], we start defining the sequence of B-spline spaces



on the reference domain Ω̂

S0(Ω̂) = Sp(Ξ) (12)

S1(Ω̂) = Sp1−1,p2,p3
(Ξ)× Sp1,p2−1,p3

(Ξ) (13)
× Sp1,p2,p3−1(Ξ)

S2(Ω̂) = Sp1,p2−1,p3−1(Ξ)× Sp1−1,p2,p3−1(Ξ) (14)
× Sp1−1,p2−1,p3

(Ξ)

S3(Ω̂) = Sp−1(Ξ). (15)

It has been proven [13] that, using these spaces, a discrete coun-
terpart to (11) can be constructed

S0(Ω̂) S1(Ω̂) S2(Ω̂) S3(Ω̂).∇̂ ∇̂× ∇̂· (16)

To define the spaces in the physical domain, we use the pull-
backs (10), i.e. a conforming discretization of H (curl; Ω) is
given by

S1(Ω) =
{
v = ι−1

1 (v̂), v̂ ∈ S1(Ω̂)
}
. (17)

In case of a multipatch domain, e.g. Fig. 4, a global discretiza-
tion space is constructed. Neighbouring patches are required to
share either a full edge or a full face, i.e. no T-junctions are al-
lowed. On each patch the matrix assembly is then performed
independently and the common degrees of freedom are matched
one-to-one through static condensation. It is clear that the mul-
tipatch approach reduces the global regularity to C0, although
inside each patch the discretization remains highly smooth.

III. Aඏൺංඅൺൻඅൾ Sඈൿඍඐൺඋൾ

For those researchers interested in IGA and wanting to test how
it works in practice, a perfect way to start is GeoPDEs [19, 20],
an open source and freely distributed package written in MAT-
LAB/Octave language [21, 22]. The GeoPDEs package was de-
veloped with a double aim. First, to serve as a didactic tool to
introduce IGA to other researchers and students. For this reason
the package contains a long list of examples, and all the func-
tions include a detailed documentation accessible from MAT-
LAB with the help command. Secondly, to serve as a research
tool for fast prototyping and for testing new ideas and methods
in IGA, and that is the main reason why the code is developed
in MATLAB, which is a de facto standard for prototyping of
numerical algorithms.
GeoPDEs contains all what is required for the implementation
of IGA: evaluation of B-splines and NURBS functions, matrix
assembly, imposition of boundary conditions, etc. It also con-
tains functions to export the numerical results to ParaView [23]
for post-processing. Solving a new problem can often be easily
accomplished by calling existing functions, which only require
minor modifications with respect to the already existing exam-
ples. For example, most applications we present in section IV
have been implemented with GeoPDEs.
One of the most interesting features is that, as far as we know,
GeoPDEs is the onlyMATLAB software that contains the spline
complex of Section II, which is crucial for the application of IGA
in computational electromagnetism. Moreover, GeoPDEs is un-
der constant development, and new features appear from time to
time. For instance, a very recent addition is the introduction of
IGA adaptive methods based on hierarchical B-splines (see [24]
for the details).
In Listing 1, we report a simple example of how to solve
Maxwell’s eigenvalue problem on a geometry given in the file

geo_file.mat. First we extract the knot vectors defining
the geometry, we create a refinement and modify them like
in (13). Then we construct the mesh and the curl-conforming
space (17) (line 23). The functions op_curlu_curlv_tp
and op_u_v_tp are responsible for the assembly of the curl-
curl matrix K and the mass matrix M respectively, exploiting
the tensor product structure. In lines 33-38 we exclude from the
computation the PEC degrees of freedom at the boundary and
finally we call eig to compute the eigenmodes.
GeoPDEs provides a compromise between clarity and effi-
ciency. It can be applied to the solution of relatively large
three-dimensional problems such as those in Section IV. For re-
searchers interested in even larger problems, or more efficient
implementations, there are several libraries written in C or C++.
Here, we care to mention, igatools [25], G+Smo [26] and
PetIGA [27] (which recently added curl- and div-conforming
spline discretizations [28]). A more detailed list of available
IGA software can be found in [29].

Listing 1: A simple example of how to solve Maxwell’s eigen-
value problem in GeoPDEs
1 % Load Geometry
2 geo = geo_load ('geo_file.mat');

3
4 % Def i n e Hcur l con fo rming kno t v e c t o r s
5 [knots, zeta] = kntrefine (geo.nurbs.knots,

nsub, degree, regularity);

6 [knots_hcurl, degree_hcurl] = knt_derham (

knots, degree, 'Hcurl');

7
8 % Con s t r u c t t h e Mesh
9 rule = msh_gauss_nodes (nquad);

10 [qn, qw] = msh_set_quad_nodes (zeta, rule);

11 msh = msh_cartesian (zeta, qn, qw, geo);

12
13 % Con s t r u c t t h e Space
14 scalar_spaces = cell (msh.ndim, 1);

15 f o r idim = 1:msh.ndim

16 scalar_spaces{idim} = sp_bspline (

knots_hcurl{idim}, degree_hcurl{idim},

msh);

17 end
18 space = sp_vector (scalar_spaces, msh, 'curl

-preserving');

19
20 % Assemble t h e ma t r i c e s
21 K = op_curlu_curlv_tp (space, space, msh);

22 M = op_u_v_tp (space, space, msh, @(x,y) mu0

*eps0*ones ( s i z e(x)));
23
24 % Apply PEC Boundary Cond i t i o n s
25 drchlt_dofs = [];

26 f o r iside = 1:numel (space.boundary)

27 drchlt_dofs = union (drchlt_dofs, space.

boundary(iside).dofs);

28 end
29 int_dofs = setdiff (1:space.ndof,

drchlt_dofs);

30
31 % So l v e t h e E i g enva l u e Problem
32 eigv = e i g ( f u l l (K(int_dofs, int_dofs)),

f u l l (M(int_dofs, int_dofs)));

IV. Aඉඉඅංർൺඍංඈඇඌ

While IGA is already wide spread in the mechanical engineer-
ing community, real-world applications in the context of electri-
cal engineering are still rare. This is particularly true for three-



Fig. 5. Lorentz detuning in a TESLA cavity cell: In green the design geometry,
in color the displaced walls. The magnitude of the displacement u is enhanced
by a factor 5 · 105 for visibility.

dimensional problems that require the more complicated curl-
and div-conforming spline spaces from equations (13) and (14).
In [30] the two-dimensional shape optimization of a magnetic
density separator was proposed, and in [31] the optimization of
ferromagnetic materials in a magnetic actuator was shown. Re-
cently, researchers have also started to investigate Isogeometric
Analysis of integral equations in the context of electrical engi-
neering, e.g. [32, 33, 34, 35].
In the following subsections the application of IGA is demon-
strated for several real-world examples in two and three dimen-
sions and an outlook on isogeometric Boundary Element Meth-
ods (BEMs) is given. The aim is not to give a precise descrip-
tion but rather to illustrate that IGA is indeed a useful tool for
the Compumag community.

A. Rൺൽංඈ Fඋൾඊඎൾඇർඒ Cൺඏංඍංൾඌ

To achieve acceleration of the particle bunches in particle accel-
erator Radio Frequency (RF) cavities, the electromagnetic field
has to oscillate at a very specific frequency, synchronously to the
movement of the charges. The eigenfrequency is determined by
the shape of the cavity walls, which is therefore critical for the
design of any cavity. However, the high-energy field exerts a
radiation pressure on the walls, which impresses a mechanical
deformation of the domain. Albeit small, this deformation may
lead to a significant shift of the resonance frequency. This ef-
fect is known as Lorentz detuning [36, 37, 38] and needs to be
predicted with high precision in order to achieve a robust cavity
design.
Applying standard FEMs present two main problems: the do-
main boundary is approximated by polynomials and the defor-
mation of the cavity walls may require an interpolation and
remeshing step or an ad-hoc mesh movement procedure. In [39]
theMpCCIMultiphysics Interface [40] was used for exchanging
geometry and solution between the CSTMicrowave predecessor
MAFIA based on the Finite Integration Technique and the soft-
ware package ParaFep based on Finite Elements [41, 42]. IGA
is able to overcome these issues allowing an exact representation
of the geometry, leading to higher accuracy, and a direct appli-
cation of the computed deformation to the design shape, with-
out any further approximation. Finally it offers the possibility
to obtain highly smooth solutions, which can prove extremely
valuable for particle tracking applications [43].

Fig. 6. Spyplots of mass matrices for different degrees. On the left the FEM
lowest order case (in this case IGA and FEM coincide). The ratio between non-
zero elements and total number of elements in the matrix is 0.0045. On the right
C2 B-spline basis functions of degree p = 3. In this case the ratio is 0.0199.

Maxwell’s Eigenvalue Problem. As a first example we con-
sider the academic case of the computation of the eigenmodes
in a cylindrical resonating cavity (pill-box), where the eigen-
modes can be computed analytically. The fields are assumed to
be time-harmonic and oscillating in vacuum (ϵ = ϵ0, µ = µ0),
with no charges or currents. The first order system (1) can then
be rewritten as a second order equation for the electric field E
only

∇×∇×E = µ0ϵ0ω
2E. (18)

The solution of problem (18) is a sequence of eigenmodes
(ω2

m,Em) which represents the excitable modes in the cavity.
The quantities ωm are the resonance frequencies fm = ωm/2π.
Equation (18) can be discretized using B-splines belonging to
the space (17) in order to obtain a generalized eigenvalue prob-
lem

Ke = ω2Me, (19)

with K andM the curl-curl and mass matrix respectively, and e
the vector containing the electric field degrees of freedom. For
the software implementation one can follow the lines of List-
ing 1. The matrices obtained with the IGA discretization typi-
cally present a larger bandwidth compared to their FEM coun-
terparts (see Fig. 6), but, as previously mentioned, they are also
smaller for a given accuracy. We present a comparison between
the two approaches in terms of efficiency of the solution of the
eigenvalue problem. A set of matrices, obtained from meshes
with increasing refinement, was generated for order 2 and 3
polynomial FEM basis functions using the proprietary software
CST [41], and exported to MATLAB. The same Arnoldi/Lanc-
zos solver is used for the IGAmatrices and for the FEM ones. In
Fig. 7 we report the computational time necessary for attaining
a prescribed level of accuracy. Given the higher accuracy-per-
degree-of-freedom of IGA, it is possible to achieve a consider-
able speed-up [44].

Lorentz Detuning. The procedure we propose is straightfor-
ward. First, we compute the fields in the cavity by solving (18).
As a second step we solve the mechanical problem for the cavity
walls. Given the small deformations involved we use the linear
elasticity model

∇ ·
(
2η∇(S)u+ λI∇ · u

)
= pn (20)

for the deformation u, with η, λ the Lamé constants of nio-
bium and pn the pressure applied. The symbol ∇(S) denotes
the symmetric gradient operator. The electromagnetic problem
(18) couples into the mechanical problem by the radiation pres-
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Fig. 7. Computational time required to solve the eigenvalue problem with
ARPACK for finding the first accelerating mode in the pill-box cavity, with
a prescribed accuracy. The IGA implementation was performed in GeoPDEs
while for the FEM simulation CST EM STUDIO [41] was used.

sure

prad =− 1

4
ϵ0

(
Epk · nc

) (
E∗

pk · nc

)
(21)

+
1

4
µ0

(
Hpk × nc

)
·
(
H∗

pk × nc

)
where Epk and Hpk are the field peak values, nc is the outside
normal to the cavity and ∗ denotes the complex conjugate oper-
ator.
As mentioned above the computed deformation u can be di-
rectly applied to the control polygon of the cavity geometry to
obtain the deformed cavity. The solution of Maxwell’s eigen-
value problem on this domain gives the frequency shift.
For the computation of the frequency shift in the case of a pill-
box cavity and a comparison with a sensitivity analysis proce-
dure we refer the interested reader to [44].
In Fig. 5 we depict the deformation for the more realistic case of
a 1.3GHz TESLA cavity [45]. This deformation is typically of
the order of tenths of nm, nevertheless, this leads to a measur-
able frequency shift in the order of hundredths of Hz that needs
to be addressed during operation. The computed shift is approx-
imately 1 kHz [46] which is in good agreement with the litera-
ture.

Field Flatness Tuning. When dealing with multi-cell cavities
such as the TESLA design, small variations between the cells’
shape are sufficient to substantially alter the field profile. Of
particular interest for the correct operation of RF structures is to
achieve a uniform energy distribution in each cell. This presents
two advantages: it maximizes the accelerating voltage of the
cavity (i.e. the net energy gained by the particles) and it mini-
mizes the peak surface fields, which are responsible for electric
field emission or quench in the superconducting walls [47].
We set z as the longitudinal axis of the cavity and we denote by
Epk,j the peak value of Ez(r = 0, z) in the j-th cell. The field
flatness is typically measured by two quantities:

η1 =
1− (maxj |Epk,j | −minj |Epk,j |)

E (|Epk,j |)
(22a)

η2 = 1−
std (Epk,j)

E (|Epk,j |)
, (22b)

where E and std denote the expected value and the standard de-
viation operators. Both η1 and η2 are typically required to be
≥ 0.95 for a well tuned cavity.
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Fig. 8. Absolute value of the longitudinal electric field Ez in the untuned (top)
and tuned (bottom) TESLA cavity. The computed value for the field flatness
improve from η1 = 76.81% and η2 = 92.39% to η1 = 97.76% and η2 =
99.15%.

In practice, the tuning is performed through mechanical defor-
mation. The field flatness is measured and, using a circuit model
for the cells as capacitively coupled LC oscillators, the required
frequency shift for each cell is computed [47]. To lower (resp.
increase) the frequency, each cell is shortened (elongated) along
the z axis by a tuning machine which clamps the cavity between
cells and applies forces to obtain a permanent deformation [48].
Numerically, the tuning is performed through a multi-objective
shape optimization procedure that aims at maximizing the field
flatness parameters (22) and achieving a resonance frequency of
1.3GHz. The geometry parameters that are typically chosen for
the optimization are the length of the two end-cups half-cells
and the equatorial radius of the cavity. The first two param-
eters strongly influence the field flatness, while the equatorial
radius is mainly responsible for fixing the frequency of the cav-
ity. The three parameters are used for a non-linear constrained
optimization procedure using the SQP method. The bounds for
the parameters are set to ±1.5mm.
In Fig. 8 the longitudinal electric field along the cavity axis be-
fore and after the tuning is depicted.
The advantage of IGA when dealing with shape optimization is
the possibility to affect both the geometry and the mesh at the
same time by simplymoving the control points. For each config-
uration there is no need of a remeshing step that might introduce
undesired noise in the computation. Furthermore, NURBS ge-
ometries are well suited for the computation of shape derivatives
in order to obtain gradient information.

B. Eඅൾർඍඋංർ Mൺർඁංඇൾ Sංආඎඅൺඍංඈඇ

For the modeling of electric machines, a common approach is
the magnetostatic formulation where the eddy currents and the
displacement currents are neglected, see e.g. [18]. Under these



Fig. 9. Computational domain Ω of a PMSM model as discussed in [49, 51].

assumptions, by introducing the magnetic vector potential A,
with B = ∇×A, one obtains

∇× (ν∇×A) = J (23)

on the domain Ω with appropriate boundary and gauging con-
ditions. Furthermore, given the motor structure, it is often suf-
ficient to solve the problem only on a 2D cross section. One
obtains a Poisson problem for the longitudinal componentA =
[0, 0, u]⊤

−∇ · (ν∇u) = Jz, (24)
where ν is the space-dependent reluctivity, and Jz represents the
current excitations due to the presence of coils and/or permanent
magnets.
In Fig. 9 the geometry of a Permanent Magnet SynchronousMa-
chine (PMSM) is depicted. Although only two dimensional,
the topology and the presence of different materials requires the
construction of a high number of patches (12 for the rotor, 78
for the stator), which is still low compared to the number of el-
ements in a FEM discretization. In [49] we propose a harmonic
stator-rotor coupling method to overcome this issue and to allow
for easy handling of the machine rotation.
The application of IGA to machine simulation is particularly in-
teresting for the possibility to exactly represent its circular shape
and, even more so, for the smoothness of the computed fields.
The evaluation of torques and electromotive force (EMF) are of-
ten calculated from the fields in the air gap using the Maxwell’s
stress tensor. Since the results obtained through this approach
are very sensitive to the representation and to the discretization
of the air gap [50], the higher continuity of the isogeometric so-
lutions has been proved beneficial.
In Fig. 10 the spectrum of the first 32 harmonics of the EMF for
the PMSM is depicted. The results show good agreement with
the ones obtained with a classical FEM simulation, but the IGA
system is considerably smaller [49, 51].
One further interesting possibility for electric machine simula-
tion taking into account the machine rotation would be a cou-
pling strategy using classical IGA on the stator and the rotor
and an IGA-BEM discretization in the air gap region (see e.g.
[52]). In sub-section D we briefly introduce the BEM setting
and show that it can be readily applied in conjunction with the
IGA concept.

C. Aർർൾඅൾඋൺඍඈඋ Mൺඇൾඍඌ

In particle accelerators normal and superconductingmagnets are
used for focusing and bending the particle beams. The sim-
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Fig. 10. Spectrum of the first 32 modes of the EMF of the PMSM, cf. [49, 51].
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Fig. 11. Quadrupole as given in Figure 7.1 of [54] on the left. The red pole tips
are modeled as interfaces subject to uncertainty. On the right, discretization in
terms of multipatch NURBS. All units in meter. Image based on [57].

ulation of these devices is an important task during the com-
puter aided design process as these devices are operated at their
physical limits but also as to deliver highly accurate field maps
for beam dynamics simulations and, finally, the simulation of
quench protection [58, 59].

Uncertainty Quantification. The first magnet example is de-
voted to illustrate the treatment of shape uncertainties, see e.g.
[53], in the context of magnet design. On the left side of Fig. 11
the two-dimensional geometry of a model quadrupole magnet
adopted from Fig. 7.1 of [54] is depicted, where the pole tips
are assumed to be affected by uncertainty, e.g. due to manu-
facturing imperfections. The initial pole shape is described by
hyperbolas, i.e., through the relation x/a2 − y/b2 = 1 in local
coordinates, where for the initial shape we have set a = 0.05 and
b = 0.056, respectively. In a stochastic setting, uncertain inter-
faces can be modeled by choosing a or b as random variables, or
equivalently by using any other CAD standard shape represen-
tation with random parameters. Then, a truncated Karhunen-
Loève expansion can be used to obtain a reduced number of
uncorrelated random inputs [55]. A multi-patch configuration,
consisting of 36 patches is chosen to represent the geometry as
depicted in Fig. 11 on the right side. Each patch is described
by a mapping of the type (9) using second degree NURBS ba-
sis functions with C1-continuity. In particular, this allows for an
exact representation of hyperbolic shapes. Focusing on shape
variations, we model the material to be linear with a constant
permeability µ = 4π10−2 Hm−1. A total piecewise constant
current of 15MA is supplied for each of the four conductor parts
of Fig. 11. Homogeneous Dirichlet boundary conditions are ap-
plied on the whole boundary Γ. Following the iso-parametric



Tൺൻඅൾ I. Qඎൺൽඋඎඉඈඅൾ ർඈඇඏൾඋൾඇർൾ ൺඍ ൽංൿൿൾඋൾඇඍ ආൾඌඁ අൾඏൾඅඌ. Eඋඋඈඋ
ൾඌඍංආൺඍൾ ඈൿ ඍඁൾ ඌඁൺඉൾ උൺൽංൾඇඍ ൺඇൽ ൿංඇංඍൾ ൽංൿൿൾඋൾඇർൾ ൺඉඉඋඈඑංආൺඍංඈඇ ൿඈඋ
ൽංൿൿൾඋൾඇඍ ඇඎආൻൾඋ ඈൿ ඉൾඋඍඎඋൻൾൽ ർඈඇඍඋඈඅ ඉඈංඇඍඌ. Tඁൾ උൾൿൾඋൾඇർൾ ൿඈඋ g ංඌ

ർඈආඉඎඍൾൽ ඐංඍඁ 367 641 DOF.

Parameter level 1 level 2 level 3 level 4
∆hg /g0 0.56% 0.05% < 0.01% < 0.01%

∆FDδg 5.85 × 10−5 3.96 × 10−5 7.29 × 10−5 1.38 × 10−4

Tൺൻඅൾ II. Qඎൺൽඋඎඉඈඅൾ ൾඋඋඈඋ ൻඒ අංඇൾൺඋංඓൺඍංඈඇ ൺඇൽ ൾඋඋඈඋ ൾඌඍංආൺඍൾൽ ൻඒ
ආൾൺඇඌ ඈൿ MATLAB’ඌ fmincon. wcsL(g) ංඇൽංർൺඍൾඌ ඍඁൾ ඐඈඋඌඍ-ർൺඌൾ

ඌർൾඇൺඋංඈ ർඈආඉඎඍൾൽ ൻඒ Tൺඒඅඈඋ ൾඑඉൺඇඌංඈඇ, wcs∗(g) ඍඁൾ ඈඇൾ ඈൻඍൺංඇൾൽ ൻඒ
ඌඈඅඏංඇ ඍඁൾ ඈඉඍංආංඓൺඍංඈඇ ඉඋඈൻඅൾආ. Pൾඋඍඎඋൻൺඍංඈඇ ආൺඇංඍඎൽൾ ඈൿ s = 0.1.

num. free CP wcsL(g) / g0 wcs∗(g) / g0 rel. diff.
4 7.82 8.48 7.78%
8 16.77 19.77 15.17%
12 18.57 21.77 14.70%

concept, a basis for the discrete subspace of H1 is constructed
in the same space as the mapping F. The multipole coefficients
are evaluated at a reference radius of r0 = 20mm.
We focus on the uncertainty in the quadrupole gradient, defined
as g := 2B2/r

2
0 where Bn is the n-th normal multipole coef-

ficient. As we are concerned with several parameters and only
one cost function, adjoint techniques are well suited to this end
[56, 57]. Here, no assumptions, despite the C1-smoothness, are
made for the shape uncertainty and, therefore, we resort to a
worst-case analysis. The maximum deviation of g from its de-
sign value g0 = 19.73Tm−2 is investigated for different levels
of shape parametrization, characterized by the number of free
control points. On the coarsest level the hyperbola is described
by three control points, however, the end points are kept fixed
to avoid variability in the singular points, as this would require
a more general shape calculus as presented here. Hence, only
one control point per pole is subject to uncertainty. Through
mesh refinement this number is increased by one on each level,
up to level four. After refining the geometry, in each direction
every mesh cell is divided by twenty. For an evaluation of the
accuracy of the numerical approximation of the quadrupole gra-
dient g, see Table I. There, the error on each level is estimated
with respect to a fine discretization consisting of 367 641 total
DOF, denoted as ∆hg. Additionally, the numerical computa-
tion of the shape gradient is verified. To this end in Table I the
maximum deviation with respect to a finite difference gradient
computation, denoted ∆FD, is given. Both estimated errors are
found to be sufficiently small. We emphasize that no correlation
is imposed here. If knowledge of the shape perturbations were
available, e.g., in terms of measurements, the correlation struc-
ture could be incorporated by means of convex constraints in a
worst-case scenario context as outlined in [60, p.10]. In Table
II numerical results for the different parametrization levels are
presented. Not surprisingly, a significantly smaller worst-case
estimate is obtained for the coarse parametrization. In this case,
large perturbations in the control point are necessary to obtain a
comparable shape perturbation to the finer parametrization lev-
els. We compute the worst-case scenario by a Taylor expansion
wcsL(g) and by directly solving the optimization problem, de-
noted wcs∗(g). Here, for the latter case MATLAB’s fmincon
routine is used to carry out sequential quadratic programming.
We observe a difference of about 15%, and infer that the problem
is rather sensitive to shape perturbations and first order approx-
imations should be used to obtain rough estimates of the output
uncertainties, solely.

Fig. 12. 3D model of one half of the Stern-Gerlach magnet with Rabi-type pole
tips (modeled with CST EM STUDIO [41]), see [61].

Shape Optimization. Another application in which IGA has
proven advantageous is the optimization of a Stern-Gerlach
magnet [61]. A Stern-Gerlach magnet (see Fig. 12) is used to
magnetically separate a beam of atoms or atom clusters in or-
der to experimentally determine their angular momentum and
its spatial quantization. For this purpose, the atoms are accel-
erated and shot through the aperture of the magnet. To deflect
the particles, the magnet should provide both, a high magnetic
field strength to cause a precession of the magnetic dipoles, and
a high magnetic field gradient to deflect the atoms. To obtain an
acceptable resolution, an additional requirement is a high homo-
geneity of the magnetic field gradient in the beam area. These
quantities are strongly influenced by the geometry of the pole
tips. In this example, Rabi-type pole tips are considered. The
optimization process consists of finding an optimal geometry for
these pole tips to satisfy the before-mentioned requirements.
The Stern-Gerlachmagnet is operated with a DC current. Thus a
3D non-linearmagnetostatic formulation of theMaxwell’s equa-
tions is suited to calculate the magnetic field

∇× (ν(B)∇×A) = J, (25)

where ν(B) is the non-linear reluctivity and J the exciting cur-
rent density. Due to symmetry only one half of the magnet is
considered in the optimization process, as depicted in Fig. 12.
To obtain an efficient simulation, the magnet is modeled by us-
ing a combination of a magnetic equivalent circuit and a field
model discretized by IGA: the outer yoke and coils are modeled
by the magnetic equivalent circuit which is extracted from a full
3D simulation.
Finally, the area of the pole tips is discretized by a 2D IGA
model, i.e. equation (24) on the domain Ωp as shown in Fig. 13.
This enables a smooth representation of the pole shapes by using
NURBS and simplifies the optimization process, as the defor-
mation of the poles is easily achieved by shifting control points
and adjusting weights. The control points used for the NURBS
representation of the poles are depicted in Fig. 14. The partial
model is divided into 3 patches, namely the left pole region,
gap and right pole region. Both the magnetic equivalent cir-
cuit and the partial model are connected by a field-circuit cou-
pling. To avoid a non-linear evaluation of this coupled model
and thus save computational effort, a further simplification is
employed: the permeability in the IGA partial model is frozen.
This is possible as the variations in the permeability distribution
due to changes in the geometry are small.
For the optimization, the quantities of interest in the beam area
Ωbeam of the magnet are the average magnetic field gradient and
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Fig. 13. 2D schematic of one half of the Stern-Gerlach magnet with Rabi-type
pole tips, see [61].

the inhomogeneity which are given by

τav =
1

|Ωbeam|

∫
Ωbeam

τ(x, y) dΩ (26)

and

ϵ =

√√√√ 1

|Ωbeam|

∫
Ωbeam

(
τ(x, y)

τav
− 1

)2

dΩ , (27)

where τ(x, y) = d|B|
dx is the magnetic field gradient. The goal

function used for the optimization process is

f(x, y,w) = τw
|τav|

+ ϵ− τw
|τav|

ϵ, (28)

where τw is a free parameter, and τav, ϵ are the quantities of in-
terest defined above. As the requirements of high average mag-
netic field gradient and homogeneity are, to a certain degree,
antithetic, the free parameter τw controls the preference of one
over the other quantity. The overall optimization problem can
be written as

min
x,y,w

f(x, y,w), (29)

where x, y,w are the coordinates and weights of the control
points defining the poles. These quantities are subject to cer-
tain geometrical limits to ensure the validity of the geometry.
For the simulation, the model is implemented using GeoPDEs.
B-splines of order 5 are used to represent the magnetic vector
potential A. This way, the magnetic flux density B and even
the average magnetic field gradient τav are smooth functions op-
posed to conventional FE simulations.
The original and optimized geometry of the pole shoes is de-
picted in Fig. 14. The improvements of the average magnetic
field gradient and homogeneity after the optimization are shown
in Table III. For validation, the optimized geometry is imported
into a 3D model of the magnet in the commercial software
CST EM STUDIO [41]. Note that the presented optimiza-
tion approach using IGA and field-circuit coupling is consider-
ably faster than the commercial software, while offering results
which are in very good agreement [61].

D. IGA ൺඇൽ ඍඁൾ Bඈඎඇൽൺඋඒ Eඅൾආൾඇඍ Mൾඍඁඈൽ

The framework of Isogeometric Analysis is not limited to
FEM. In recent years, Isogeometric Boundary Element Methods
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Fig. 14. Optimized and original geometry of the pole tips including beam area
(gray) and labeled control points of original geometry, see also [61].

(BEM) gained a lot of attraction in research. The idea of BEM
is the representation of the solution u of a PDE through a rep-
resentation formula, which expresses the solution via functions
on the boundary of the problem domain only.
There exist different such representations, each with their spe-
cific strengths and drawbacks. As a simple example, the so
called indirect representation formula for the Laplace Dirichlet
problem

−∆u = 0 in Ω or ΩC

u|Γ = g on Γ,
(30)

is given by

u(x) = Ṽ(µ)(x) :=
∫
Γ

1

4π|x− y|
µ(y) dΓy, (31)

onR3\Γ,whereµ denotes some unknown density on the bound-
ary. This density can be found by solving the arising variational
problem: find µ in X(Γ) such that

⟨V(µ), ν⟩Γ = ⟨g, ν⟩Γ , ∀ν ∈ X(Γ), (32)

where X(Γ) denotes an appropriate function space on the
boundary and V is the restriction of Ṽ to the boundary. Choos-
ing a suitable 2D spline space S(Γ),which can be defined patch-
wise as the 2D analogue of (15) mapped in the physical domain
as in (17). This leads to the discrete formulation of finding a
µh ∈ S(Γ) such that

⟨V(µh), νh⟩Γ = ⟨g, νh⟩Γ , ∀νh ∈ S(Γ). (33)

After inserting the canonical basis of spline space S(Γ) we re-
ceive the linear system

Vw = g (34)

where g encodes the discretization of the Dirichlet data given in
(30), and w encodes the desired density function. Plugging the
discrete density back into (31), one can evaluate the solution u
of (30) in any given point x /∈ Γ, c.f. Fig. 15.
This representation of the solution counteracts one of the great-
est weaknesses of IGA FEM: where in many cases trivariate
spline mappings need to be constructed by hand, a boundary ele-
ment method can operate with a boundary representation (BRep)
only. Moreover, it decreases the dimension of the problem:
where FEM requires volumetric elements, BEM operates on the
surface only, thus the elements are 2D elements in the sense of
the reference domain.



Tൺൻඅൾ III. Aඏൾඋൺൾ ආൺඇൾඍංർ ൿංൾඅൽ උൺൽංൾඇඍ ൺඇൽ ංඇඁඈආඈൾඇൾංඍඒ ൿൺർඍඈඋ
ൻൾൿඈඋൾ ൺඇൽ ൺൿඍൾඋ ඍඁൾ ඈඉඍංආංඓൺඍංඈඇ.

τav ϵ
CST (3D, original geometry) −237T/m 0.0503
CST (3D, optimized geometry) −266T/m 0.0201
Improvement 12.2% 60.0%
GeoPDEs (2D, original geometry) −240T/m 0.0477
GeoPDEs (2D, optimized geometry) −282T/m 0.0122
Improvement 17.5% 74.4%

It should be noted that the indirect representations are entirely
insensitive to the choice of interior and exterior domain. Since
the BEM operates on the boundary of the chosen domain only,
this makes a boundary element approach an excellent choice to
solve exterior problems, since neither bounding boxes nor DOF
intensive exterior discretizations are required.
However, a BEM approach poses different challenges. Due to
the global nature of the integral term the matrices arising from
(33) are densely populated. This turns out to be not as bad as
it sounds: due to the decreased dimensionality fewer degrees
of freedom are required, thus the linear systems become much
smaller than in the case of FEM. Due to the approach via B-
splines, this effect becomes even more notable. Even for real-
world problems the arising linear systems are almost of sizes
such that they can be solved in a dense representation by a desk-
top computer. Moreover, efficient compression techniques to
deal with the discrete linear systems are available. Such tech-
niques are well understood and ready for industrial applications.
An introduction to and comparison of compression methods can
be found in [62].
An introduction into the realm of isogeometric BEM in the con-
text of the Helmholtz equation which elaborates on everything
mentioned above and explains the strength and drawbacks of the
combination of IGA and BEM is given by [63]; a first compu-
tational approach for the Maxwell case was also recently pro-
posed [64].

V. Cඈඇർඅඎඌංඈඇඌ

Isogeometric Analysis can be interpreted as a Finite Element
Method that generalizes the set of basis functions from polyno-
mials to B-splines and rational B-splines. This choice guaran-
tees several advantages, from the exact parametrization of ge-
ometries defined via CAD to a higher accuracy per-degrees-of-
freedom. It also allows for solution fields with higher smooth-
ness. These reasons have made IGA a successful topic in recent
years, particularly in the setting of mechanics and fluid simula-
tion.
In this review article we show the benefits of IGA in the con-
text of computational electromagnetics by presenting several 2-
and 3-dimensional simulation examples. Its application in the
context of shape optimization and uncertainty quantification is
of particular interest given the possibility of deforming the do-
main and the mesh at the same time by means of a few control
points. Finally, IGA shows great potential when combined with
the boundary element approach since it eliminates the necessity
of constructing trivariate parameterizations.
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