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Electromagnetic Broad Band Modeling
Using a 3D Volume Integral Equation

Abstract — In this paper, we describe a volume integral equation
method for the numerical solution of the electromagnetic scattering
from electrically anisotropic inhomogeneous objects. The unknown
of the problem, defined as the sum of the conduction and polar-
ization current densities, is decomposed in terms of its loop, star
and facet components. The uniqueness of the corresponding dis-
crete representation is enforced by suitable strategies also based on
simple topological approaches. Furthermore, a convenient scaling
of the unknowns is introduced in order to avoid the low frequency
breakdown problem, showing its stability regardless of the operat-
ing frequency. This approach has been extensively validated by an-
alyzing the resonant frequencies of classic split-ring resonators and
the scattering from a uniaxial dielectric slab. A part of this paper
is reproduced from an article recently published on IEEE Transac-
tions on Antennas and Propagation [ c©2017 IEEE. Reprinted, with
permission, from [8] ].

I INTRODUCTION

In many fields of application, the basic element for building
complex models is the circuital component. It is well known,
that the ideal circuit elements are connected trough their termi-
nals and should respect the Kirchhoff laws, based on the topolog-
ical constraints imposed by their connections. In this frame, the
rigorous definition of the circuit parameters and the validity of
the Kirchhoff laws can take place only at zero frequency, when
the electric and magnetic fields in Maxwell equations decouple.
The possibility of dealing with circuital models is of paramount
importance and since a long time it has been a fundamental step
in the numerical modeling of complex electromagnetic struc-
tures. Usually, the basic step for obtaining the circuit model is
the subdivision of the device in several finite volume and sur-
face elements, where the current and the surface charges are
imposed to be distributed according to some elementary rules,
uniformly distributed the most part of the time, so that partial
resistances, self and mutual inductances and capacitance can be
defined and linked together and to the sources through the appli-
cation of the Kirchhoff laws. This "partial-element-equivalent-
circuit (PEEC) technique" was firstly introduced by Ruheli in [1]
and then widely used and improved in all these years by many
researchers, mainly involved in the design of high speed inter-
connects [2] . Another important area of application where the
electroquasistatic and magnetoquasistatic models cohesist lead-
ing to important resonant effects that can be efficiently taken into
account by suitable LC equivalent circuits is represented by the
design of metamaterials. In these materials it is possible to show
tat there are particular conditions where the real part of the di-
electric permittivity and/or the magnetic permeability becomes
negative in a specific range of frequencies. For example, several
studies have been devoted to a better understanding and the im-
provement of the µ−negative behaviour of split-ring inclusions.
Since, in this case, the dimensions of the constitutive cell are
smaller than the operating wavelength, a quasi static approach is
well suited for modeling their interaction with the electromag-

netic fields by means of suitable equivalent circuits made of in-
ductances and capacitances. However, these circuit parameters
are usually found by means of suitable ad hoc assumptions on
the behaviour of the current density patterns [3]. Other impor-
tant effects arising in the electromagnetic modeling of metama-
terials are related to their anisotropic properties. Specifically,
the homogenization of metamaterials frequently returns effec-
tive anisotropic media. For instance, hyperbolic metamaterials
are anisotropic, with one of the principal components of their
electric susceptibility tensor being opposite in sign to the other
two components [4]. Moreover, in 2006, Pendry et al. [5] and
Leonhardt [6] showed how to accurately control the electromag-
netic fields by properly design artificial materials. In particular,
the general rules they provided to design metamaterial cloaks re-
quire the use of anisotropic and inhomogeneous material. Plas-
mon resonances in anisotropic nanoparticles also display very
interesting features [7].

Various techniques are already available for efficiently han-
dling anisotropic materials. A brief presentation of the advan-
tages and limits of the more widespread approaches is done in
[8] and will be here shortly recalled.

In the frame of the analytical and semi-analytical approaches,
in 2002, Kiselev et al. [9] proposed the solution of the problem
of scattering by arbitrarily-shaped homogeneous objects with ra-
dial and uniaxial anisotropy in the framework of the so called
null field method (NFM). Unfortunately, the null field approach
notoriously breaks down for very elongated or flattened particles
[10].

With reference to a classic numerical method, we recall that
Taflove et al. [11, 12, 13] first applied the finite-difference time
domain method (FDTD) to anisotropic materials with diagonal
permittivity or permeability tensors while in 1993, Schneider et
al. [14] further extended the FDTD to also include nondiago-
nal tensors. Although differential formulations can surely bene-
fit from the occurrence of sparse matrices, they require the dis-
cretization not only of the spatial region occupied by the scatter-
ers but also of the embedding media. In addition, the numerical
dispersion of the algorithm, spurious reflections at the PML in-
terface, and staircase effects may deteriorate the accuracy of this
method [15].

Instead, integral formulations appear to be particularly at-
tractive since the spatial domain external to the scatterers
does not need to be discretized, whereas the radiation con-
ditions at infinity are naturally satisfied. In 2008, Mumcu
et al. [16] extended the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) Surface Integral Equation (SIE) formulation to
arbitrarily-shaped homogeneous uniaxial materials and solved it
using the method of moments (MoM). The advantage of the SIE
approach is that the unknowns are only localized on scatterers’
boundary.

However, SIE methods can only treat piecewise homogeneous
objects, while the Volume Integral Equation (VIE) approaches,
despite requiring the discretization of the entire volume occupied
by the scatterer, do not have this limitation. Different volume in-



tegral equation (VIE) approaches have been proposed so far to
address the scattering problem from anisotropic media. Graglia
and Uslenghi pioneered the use of VIE with a series of papers
on the scattering from anisotropic objects [17, 18, 19]. Varadan
et al. in 1989 [20] and Lakhtakia [21] in 1992 extended the Dis-
crete Dipole Approximation (DDA) method to materials exhibit-
ing uniaxial and biaxial anisotropy, respectively, approximating
the scatter by a Cartesian array of polarizable point dipoles, each
of them characterized by a polarizability tensor, [22]. Unfortu-
nately, the DDA suffers from a high computational burden when
large object are involved, and limited near-field accuracy. In
addition, Draine and Flatau empirically demonstrated that the
applicability of their approach is limited to materials whose re-
fractive index is not large compared to unity [22]. More recently,
Kobidze and Shanker derived a set of VIEs via the volume equiv-
alence theorem and solved them numerically using the method
of moments in combination with a fast multipole scheme [23].
Other approaches based on the implementation of a set of VIEs
include the formulation proposed by Markkanen et al. [24], by
Tong et al. [25] and by L. E. Sun [26], [27]. All these examples
motivate the need of new and flexible computational tools for
the efficient modeling of materials and devices in a broad band
of frequencies, with a specific attention to the range going from
static to quasi-static to full wave regimes. For the reasons out-
lined above, the integral formulations appear to be particularly
attractive. Moreover, coupling to the circuit equations does not
present particular difficulties ad the elements of the relevant ma-
trices after discretization often can be directly used as parameters
of equivalent RLC circuits.

The layout of the paper is as follows. The mathematical model
and the numerical formulation are discussed in Sec. II. Then,
Sec. III is devoted to introduce the numerical discretization of
the unknowns in terms of the star, loop, and facet shape func-
tions. Methods for ensuring the uniqueness of the representa-
tion will be also summarized, following [8]. In this section, we
provide the explicit expression of the matrix equations together
with the implemented strategies to overcome the low-frequency
breakdown problem.

In Sec. IV we validate our numerical approach against experi-
mental results and against the null field method for non-spherical
scatterers. In particular, we investigate the scattering by a clas-
sic split-ring resonator and by a uniaxial anisotropic slab with
two different aspect ratio. Finally, we prove the stability of our
method over a broad range of frequencies by considering the test
case of a slab with an assigned conductivity tensor, proving the
condition number to be almost independent of the frequency.

II MATHEMATICAL MODEL AND NUMERICAL
FORMULATION OF THE FIELD PROBLEM

Let us consider an anisotropic and inhomogeneous material oc-
cupying a volume Ω, which is bounded by a closed surface ∂Ω.
We also assume the material to be non-magnetic and spatially
non-dispersive. The material is characterized by a relative per-
mittivity tensor ε̄r, and a conductivity tensor σ̄, which may be
functions of the position. We assume that the material properties
may show abrupt discontinuities, appearing on the interfaces of
material regions Ω1, . . . ,ΩN , as shown in Fig. 1(a). We denote
with Σ the union of the surfaces where the material properties
have a jump, i.e. (Σ = ∂Ω1 ∪ ... ∪ ∂ΩN ). The object is ex-
cited by a monochromatic electromagnetic field incoming from
infinity.

We consider as unknown of the problem the generalized cur-
rent density in the material region, namely the sum of the con-

Figure 1: (a) Abrupt discontinuities of the material properties ap-
pear on the boundary of each subdomain, which is a closed sur-
face. (b) Abrupt discontinuity of the material properties appears
on S which is not a closed surface. c©2017 IEEE. Reprinted, with
permission, from [8].

duction current density and the polarization current density:

J (r) =

{
(σ̄ (r) + jωχ̄ (r) ε0) (E (r) + E0 (r)) in Ω\Σ
0 in R3\Ω

(1)
where E (r) is the scattered electric field, E0 (r) is the incident
electric field, χ̄ the dielectric susceptibility and ε0 is the free
space dielectric constant. [28, 29, 31].

It is important for what follows to recall that Surface charges
ρS may arise on abrupt discontinuities of the material properties.
On the other hand, volumetric charges ρV may arise when the
material properties are graded or anisotropic. These charges are
governed by the equations:

∇ ·E =
1

ε0
ρV in Ω\Σ, (2)

[E · n̂] =
1

ε0
ρS on Σ, (3)

where [A · n̂] denotes the jump of the normal component of A,
that is [A · n̂] = Ai · n̂i + Ak · n̂k on points at the interface
between regions Ωi and Ωk and n̂i (n̂k) points outward from
region Ωi (Ωk).

A Loop-Star-Facet (LSF) decomposition

At zero frequency the electric and magnetic fields in Maxwell
equations decouple. In particular, the solenoidal component JS

of the current density produces a magnetic field while the non-
solenoidal component produces an electric field. Notice that, in
order to have a physically finite charge ρV = −∇ · J/jω as
ω → 0, the non-solenoidal current density should vanish with
ω linearly as ω → 0 . Therefore, the main numerical problem
at low frequencies is to correctly reproduce the different scal-
ing with the frequency of the field. The so called low frequency
breakdown [30] [31] is due to this different scaling with ω of
the solenoidal and non-solenoidal component of the current den-
sity as tends to zero. This behavior should be carefully numer-
ically modeled, by representing the unknown as the sum of its
solenoidal and non-solenoidal components. The separation in
two distinct components allows to avoid the ill-conditioning of
the relevant stiffness matrix at low frequencies by properly scal-
ing, at a given frequency, the solenoidal component with respect
to the non-solenoidal component. As a consequence it is pos-
sible to model accurately and consistently the interactions be-
tween the magneto-quasistatic (MQS) part of the solution, lead-
ing to the inductance and resistance contributions to the input
impedance, and the electro-quasistatic (EQS) model accounting
for the capacitance and conductance contribution.



Following [31], we define the following functional spaces:

JL = {w ∈H (div,Ω) |∇ ·w = 0 in Ω, w · n̂ = 0 on ∂Ω}
JS = {w ∈H (div,Ω\Σ) |∇ ·w = 0 in Ω\Σ}
JF = {w ∈H (div,Ω) | w · n̂ = 0 on ∂Ω} .

They are the natural functional spaces for splitting the current
density J into the sum of its loop, star, and facet components,
denoted by JL, JS , and JF , respectively, namely:

J = JL+JS+JF , (4)

where JL ∈ JL, JS ∈ JS and JF ∈ JF .
In this way, the surface and volume charge density are directly

derived from the components JS and JF , respectively:

ρV = − 1

jω
∇ · JF in Ω

ρS =
1

jω
[JS · n̂] on Σ.

It is worth noting that spaces JL, JS and JF have non triv-
ial intersection. For instance, JL ⊂ JS and JL ⊂ JF . This
means that decomposition (4) is not unique. Uniqueness of such
decomposition will be enforced at discrete level in the following
sections.

B The integral equation

We express the scattered electric field E in terms of the vec-
tor and scalar potentials A and ϕ, namely E = −jωA − ∇ϕ
assuming the Lorenz gauge, i.e. ∇ · A+jωε0µ0ϕ=0. The
vector and scalar potentials can be directly obtained from the
current density J and from the surface and volume charge den-
sities ρV and ρS through the scalar free space Green function
g (r, ω) , e−jkr/ (4πr):

A (r, ω) = µ0

∫
Ω

J (r′) g (r− r′, ω) dV ′, (5)

ϕ (r, ω) =
1

jωε0

∫
Σ

[JS · n̂] (r′) g (r− r′, ω) dS′

− 1

jωε0

∫
Ω

∇ · JF (r′) g (r− r′, ω) dV ′. (6)

By combining E = −jωA −∇ϕ together with (1), (5) and (6)
we obtain the integral equation in terms of the unknown J:

(σ̄ + jωχ̄ε0)
−1

J (r) + jωµ0

∫
Ω

J (r′) g (r− r′, ω) dV ′+

1

jωε0
∇
∫

Σ

[JS · n̂] (r′) g (r− r′, ω) dS′

− 1

jωε0
∇
∫

Ω

∇·JF (r′) g (r− r′, ω) dS′ = E0 (r) ∀r ∈ Ω.

(7)

III NUMERICAL MODEL

A Discretization of the unknowns

In order to obtain the numerical discretization of Eq. 7, we intro-
duce a finite-dimensional approximation of the currents JL, JS
and JF in terms of linear combinations of suitable shape func-
tions, denoted as wL

k ’s, wS
k ’s and wF

k ’s, respectively.
The wL

k ’s are the shape functions used to discretize the loop
component JL. Each function wL

k is associated to the k-th edge

Figure 2: (a) Typical current density distribution for a loop shape
function (L-type) and a facet shape function (F-type). (b) Differ-
ent types of star-shape functions. The dots represent the trace
of the edges to which the shape functions are associated to. Re-
gions with different hatch represent different shape functions.
For instance, there are two shape functions for Case (iii) and
three shape functions for case (iv). (c) The process for deriving
a star-type shape function from the curl of an edge element shape
function. The support of each shape function is represented with
a checkerboard. c©2017 IEEE. Reprinted, with permission, from
[8].

of the finite element discretization of the volume Ω and it is de-
fined as the curl of the k-th edge-element shape functions Nk:

wL
k (r) = ∇×Nk (r)

In Fig. 2 (a) we sketch the typical current density distribution of
a loop shape function.

The wS
k ’s are the shape functions employed to discretize

the star component JS and are therefore devoted to model the
surface charge density ρS appearing on abrupt discontinuities.
Thus, we associate the wS

k ’s to the edges belonging to the surface
Σ where the material discontinuity takes place. The definition of
the wS

k ’s changes depending on whenever the associated edge
belongs to the interface between (i) a material region and the
free-space, (ii) two different material regions, (iii) two or more
material regions and the free-space, and (iv) three or more ma-
terial regions. These scenarios are exemplified in Figure 2 (b),
where the k- edge to which the star shape function is associated
is represented with a dot, being orthogonal to the page’s plane.
In particular, in the case (ii), the wS

k is defined as the curl of k-th
edge-element shape function provided that its sign is changed in
one and only one of the two material regions, as showed in Fig-
ure 2 (c). In the remaining three scenarios the wS

k ’s are defined
as the restriction of the curl of k-the edge element shape function
to specific material region under consideration.

The wF
k ’s are the shape functions used to discretize the facet

component JF and are devoted to model the volumetric charge
density ρV appearing in Ω. The wF

k ’s are the usual facet shape
functions, the corresponding DoF are related to the facets of the
mesh [32], [33]. The typical current density distribution featured
by wF

k is sketched in Figure 2 (a).
In conclusion, the unknown current density distribution is rep-

resented, at the discrete level, as

J =

NL∑
k=1

ILk w
L
k +

NS∑
k=1

ISkw
S
k +

NF∑
k=1

IFk w
F
k (8)



where the coefficients ILk ’s, ISk ’s, and IFk ’s are the degrees of
freedom (DoFs) for the loop, star and facet components, while
NL, NS and NF are the number of loop, star and facet involved
in the discretization.

A1. Uniqueness of the representation

Let WL, WS and WF be the finite-dimensional linear spaces
of the current density distributions generated by the loop, star
and facet shape functions. In particular, WL is spanned by the
shape functions associated to the edges of the mesh of Ω, WS

is spanned by the shape functions associated to the edges lying
on Σ, and WF is spanned the functions associated to the in-
ternal facets of the mesh of Ω. This (preliminary) choice does
not guarantee the uniqueness of the representation for each in-
dividual component JL, JS and JF . Here we first focus on the
uniqueness of the representation for each individual components
and, then, on their sum J = JL+JS+JF .

Uniqueness for the loop component has been treated long ago
in [28], [29].

Uniqueness for the star component was enforced in [31] and
successively in [34] by means of topological algorithms. Here,
we propose an alternative method which leads to a simpler im-
plementation. First, we note that if two different sets of DoFs,
e.g. ak’s and bk’s, represent the same JS , then

∑
k (ak − bk)wS

k

is vanishing and it is therefore associated to a solenoidal current
density distribution (the trivial one). Thus, the uniqueness can
be enforced by preventing the DoFs to generate solenoidal dis-
tributions. Then, we consider the matrix mapping the DoFs into
the net charge on each individual facet of Σ. Specifically, from
[31] we have that

qS=
1

jω
PSIS ,

where qS is the column vector of the net charge on each individ-
ual facet Σi of Σ, IS is the column vector associated to the DoFs
of the star component and

PSij =

∫
Σi

wS
j · n̂dS, ∀i = 1, ..., NΣ ∀j = 1, ..., NS

Solenoidal current density distributions correspond to vanishing
qS . Thus, to remove these component we need to discard the
DoFs belonging to the null space of the matrix PS , which can be
done by Gaussian elimination. In particular, the DoFs associated
to nonsolenoidal current density distributions are associated the
nonvanishing columns of PS after Gaussian elimination. Since
the matrix PS consists of integer entries, the Gaussian elimina-
tion can be made immune to roundoff errors which, otherwise,
could affect the final results.

Likewise, the uniqueness for the facet shape functions repre-
sentation can be imposed by considering that

qV = − 1

jω
PV IV ,

where qV is the column vector of the net charge in each element
of the mesh discretizing Ω, IV is the column vector associated
to the facet DoFs, and

PVij =

∫
∂Vi

wF
j · n̂dS, ∀i = 1, ..., N ∀j = 1, ..., NF

where ∂Vi is the boundary of the i−th element of the finite el-
ement mesh, n̂ its outward normal vector and N the number of
elements of the mesh. As for the star shape functions, the DoFs
representing solenoidal current densities belong to the null space

of the integer matrix PV , therefore their occurrence can be pre-
vented by Gaussian elimination.

Uniqueness of the representation for the facet shape functions
can be also imposed by a simple topological approach [8] similar
to that proposed in [34] for the star shape functions.

Once the uniqueness of the representation of each single J
component (loop, star and facet) has been enforced, we obtain
as a byproduct also the uniqueness of their mutual combination,
described by Eq. 8. We prove this argument by reductio ad ab-
surdum. If the shape functions are not linearly independent, the
loop component, i.e. the first term in Eq. 8, can be represented
as linear combination of the star and facet components. But this
is impossible because star and facet components cannot generate
a solenoidal current density. Similar argument for the other two
case: a star component cannot be represented as sum of loop and
facets components, a facet component cannot be represented as
the sum of a loop and star component.

B Discrete model

The discrete model, that we numerically solve in the next sec-
tion, is obtained by substituting the representation (8) into the
integral equation (7) and applying the Galerkin method project-
ing along the loop, star, and facet shape functions. Following the
outlined steps, we obtain the linear problem:

ZI = V, (9)

being

Z = R + jωL +
1

jω
D, (10)

where we have defined the block matrices

R (ω)=

 RLL RLS RLF

RSL RSS RSF

RFL RFS RFF

 , (11)

L (ω)=

 LLL LLS LLF
LSL LSS LSF
LFL LFS LFF

 , (12)

D (ω)=

 0 0 0
0 DSS DSF

0 DFS DFF

 , (13)

and the block vectors:

V (ω) =

 VL

VS

VF

 , I =

 IL

IS

IF

 .
First, let us explicitly derive the elements of the matrix D,
which are the Galerkin discretization of the last two terms on
the l.h.s. of Eq. 7 representing the reaction scalar potential, i.e.
ϕR (r, ω) = ϕSR (r, ω) + ϕFR (r, ω) where

ϕSR (r, ω) =
1

jωε0

∫
Σ

[JS · n̂] (r′) g (r− r′, ω) dS′

ϕFR (r, ω) = − 1

jωε0

∫
Ω

∇ · JF (r′) g (r− r′, ω) dV ′.

We notice that ϕSR (r, ω) can be also written as follows:

ϕSR (r, ω) =
1

jωε0

N∑
k=1

∫
∂Ωk

(JS · n̂k) (r′) g (r− r′, ω) dS′,



being JS evaluated on the internal page of ∂Ωk. In conclusion,
the elements of the matrix D are:

(DSS)p,q =
1

ε0

N∑
j,k=1∫

∂Ωk

∫
∂Ωj

(
wS
q · n̂j

)
(r′)

(
wS
p · n̂k

)
(r) g (r− r′, ω) dS′dS

(DFS)p,q = − 1

ε0

N∑
k=1∫

Ω

∫
∂Ωk

(
wS
p · n̂k

)
(r′)

(
∇ ·wF

q

)
(r) g (r− r′, ω) dS′dV

(DFF )p,q =

1

ε0

∫
Ω

∫
Ω

(
∇ ·wF

p

)
(r)
(
∇ ·wF

q

)
(r′) g (r− r′, ω) dV ′dV

DSF = DT
FS .

The matrices R and L are associated to the first and second el-
ements on the l.h.s. of Eq. 7, respectively. The generic occur-
rences of these matrices are:

(Rαβ)pq =

∫
Ω

wα
p · (σ̄+jωε0χ̄)

−1
wβ
q dV

(Lαβ)pq = µ0

∫
Ω

∫
Ω

wα
p (r) ·wβ

q (r′) g (r− r′, ω) dV dV ′

∀α, β ∈ {L, S, F}. The element of the vector associated to the
Galerkin discretization of the r.h.s. of Eq. 7 is:

(Vα)p =

∫
Ω

wα
p ·E0dV, ∀α ∈ {L, S, F} . (14)

C Scaling

The discrete model outlined in the previous paragraphs, thanks
to the loop-star-facet decomposition, provides an easy under-
standing of the low-frequency breakdown problem ([31], [30]).
Specifically, if the conductivity tensor σ̄ approaches a non-
vanishing value for ω → 0 then, in the same low frequency limit,
the matrix Z approaches the matrix

Z0 = R +
1

jω

 0 0 0
0 D0

SS D0
SF

0 D0
FS D0

FF

 , (15)

being D0
αβ a matrix whose elements are defined analogously to

those of Dαβ , provided that each occurrence of the dynamic
Green function is replaced with the static one. The second term
in (15) dominates the first term and makes Z0 singular. On the
other hand, if σ̄ approaches a vanishing value in the low fre-
quency limit, the matrix Z approaches the non singular matrix1:

Z0 =
1

jω

 QLL QLS QLF

QSL QSS + D0
SS QSF + D0

SF

QFL QFS + D0
FS QFF + D0

FF

 ,
where2

(Qαβ)pq =
1

ε0

∫
Ω

wα
p · (χ̄)

−1
wβ
q dV.

To overcome the low-frequency breakdown problem a possi-
ble strategy is the scaling of the unknowns. This is an extremely

1We need σ = O (ω) for ω → 0.
2We assume σ/ω → 0 for ω → 0. Minor modifications are required if σ/ω

approaches a non vanishing values.

simple but effective remedy which has been successfully used
in past works ([30],[31]). Specifically, the idea is to introduce a
scaled version of the unknowns:

IL = ĨL, IS = αS Ĩ
S , IF = αF Ĩ

F

so that the block matrices on the main diagonal, after scaling,
have similar norms. Therefore, Eq. (9) is replaced by

Z̃Ĩ = Ṽ (16)

where

Z̃=

 1 0 0
0 αS 0
0 0 αF

Z

 1 0 0
0 αS 0
0 0 αF

 , (17)

Ṽ =

 VL

αSV
S

αFV
F

 , Ĩ =

 ĨL

ĨS

ĨF

 .
Coefficient αS and αF are chosen so that
‖RLL + jωLLL‖ = α2

S

∥∥∥RSS + jωLSS + 1
jωDSS

∥∥∥ =

α2
F

∥∥∥RFF + jωLFF + 1
jωDFF

∥∥∥, where ‖·‖ is a suitable
matrix norm. It is worth noting that, if σ approaches a non-
vanishing value, we have αS = O (

√
ω) and αF = O (

√
ω) for

ω → 0, otherwise αS = O (1) and αF = O (1).
We conclude this section by stressing out that the scaling has a

tremendous effect on the condition number [31]. Numerical ex-
amples in the next sections will demonstrate the effectiveness of
our scaling approach in transforming an almost singular discrete
model into a well conditioned one.

Figure 3: 3D view of the split ring here analyzed.

IV NUMERICAL RESULTS

In this section, we analyze several numerical examples for illus-
trating the main features of the computational method discussed
in this paper. In particular, our three-dimensional volume inte-
gral formulation (VIE) is validated against experimental data and
against the null field method in the presence of uniaxial dielec-
tric objects [9], [10]. Finally, we provide numerical evidence of
the stability of the presented VIE method over a broad range of
frequencies.



(a) Mode no. 1, xy view

(b) Mode no. 1, 3D view

(c) Mode no. 2, xy view

(d) Mode no. 2, 3D view

Figure 4: Mode 1-2. They have 2640 elements leading to NL =
3600 loop shape functions and NS = 3362 star shape functions.

A Split-ring resonators

The first example deals with the analysis of a resonant split-ring,
shown in Fig. 3. This element was firstly proposed by Pendry et
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Figure 5: Squared magnitude of the electric field scattered from
the slit-ring with l = 5mm, re1 = 11mm, ri1 = 10mm, re2 =
7.5mm, ri2 = 6.7mm, and g = 1mm, evaluated in the far zone
along the z axis as a function of the frequency.

Figure 6: Mesh of the slab with height H = 1.2m (a) and with
H = 0.6m (b) c©2017 IEEE. Reprinted, with permission, from
[8].

al. [35] that proposed a way to synthetize µ−negative features
through these resonant loop inclusions.

The dimensions of these split-rings are smaller compared to
the operating wavelength; consequently, the resonances can be
easily obtained in the quasistatic limit, by taking into account
the inductance as well as the capacitance effects. These represent
unique features of the problem that can be conveniently analysed
by means of a PEEC approach [2], or by introducing suitable
surface approximation of the source distribution as done in [36].
However, in both cases, several simplifying assumptions have
to be introduced limiting, at least in principle, the generality of
these numerical models. In particular, 3D skin effects as well
as anisotropic dielectric and conducting media could represent
difficult problems when tackled with those approaches.

In the quasi-static limit with ideal conductors, the resonant
frequencies can be obtained as the solution of the following gen-
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Figure 7: Squared magnitude of the electric field scattered from an anisotropic slab with equal length L and width W , i.e L = W =
2m, and height H = 1.2m and with ε̄r = diag [2, 2, 5], evaluated in the far zone as a function of the inclination angle θ in zx plane
(a),(c) and in the yz plane (b),(d). The solution has been evaluated with our VIE formulation (red continuous line) and with the
null field method (red circles); the corresponding isotropic scenarios have also been solved with the VIE formulation (dashed black
line). The slab has been excited by an x-polarized plane wave, propagating along the z- axis with wavelengths λ = 5m (a),(b), and
λ = 1m (c),(d). c©2017 IEEE. Reprinted, with permission, from [8].

eralized eigenvalue problem, resulting from (9) and (10), with
R = 0:

D (ω0) I = λL (ω0) I, (18)

where ω0 is th particular value of ω used for the computation
of the matrices. Notice that, in this simple case, the facet shape
functions are not needed and that the i − th resonant frequency
is given as:

fi =
1

2π
√
λi

(19)

The split ring here analysed is described in [3]. In [3], the
authors report experimental, analytic and numerical results, so
that this case can be chosen as a convenient benchmark for
our numerical approach. The values of their geometrical pa-
rameters are l = 5mm, re1 = 11mm, ri1 = 10mm, re2 =
7.5mm, ri2 = 6.7mm, and g = 1mm, where l is the height
of both cylinders, re and ri are the external and internal radii
and g is the width of the gaps. The current density distribution
associated to the first two resonant modes computed by solv-
ing 18 are shown in 4, where also the mesh used in the com-
putation is shown. The frequency of the first resonant mode
(f = 1.446GHz) is in a very good agreement with the exper-
imental value (fexp = 1.45GHz reported in [3]. Notice that
there is a light dependence of the resonance frequency upon the
frequency used for computing the L and D matrices. This be-
haviour is shown in Table 1. Finally, in Fig. 5, the squared mag-
nitude of the electric field scattered from the slit-ring is shown.
The field has been evaluated in the far zone along the z axis as
a function of the frequency. In Fig. 5a, the slit-ring is excited

f [GHz]
1st resonant fre-
quency [GHz]

2nd resonant fre-
quency [GHz]

1.450 1.446 3.193
1.446 1.446 3.1926
3.275 1.399 3.280
3.280 1.399 3.280

Table 1: Resonant frequencies as a function of the frequency f
where L and D matrices are computed

by an x−polarized plane wave propagating along the y− axis.,
while in 5b the excitation is given by a y−polarized plane wave,
propagating along the x− axis.

B Anisotropic dielectric slab

Next, we consider a uniaxial dielectric slab with equal length L
and width W , i.e. L = W = 2m, and height H = 1.2m, fea-
turing a relative permittivity tensor ε̄r = diag [2, 2, 5] in Carte-
sian coordinates. We used the hexahedral mesh shown in Fig.
6 (a), featuring 18432 elements, NL = 34689 loop shape func-
tions, NF = 18431 facet shape functions and NS = 4351 star
shape functions, leading to 57471 complex unknowns. The slab
is excited by an x-polarized plane wave propagating along the z
axis, with wavelength λ = 5m (size parameter k0L = 2.5) and
λ = 1m (size parameter k0L = 12.6), respectively.

Regarding the null field method computations, for the case of
λ = 5m we have assumed for the expansion of both the internal
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Figure 8: Squared magnitude of the electric field scattered from
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evaluated in the far zone as a function of the inclination angle
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the SIE formulation (black squares) and with the VIE formula-
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x-polarized plane wave, propagating along the z axis with wave-
length λ = 1m. c©2017 IEEE. Reprinted, with permission, from
[8]

and the incident field Nmax = 11, while for the case of λ = 1m
we have assumed Nmax = 17.

In Fig. 7 we show the squared magnitude of the scattered elec-
tric field computed in the far zone as a function of the inclination
angle θ in the zx plane (a),(c) and in the yz plane (b),(d) assum-
ing an incident wavelength of λ = 5m (a),(b) and of λ = 1m
(c),(d), respectively. In particular, we plot with a continuous red
line the results obtained with the presented VIE method, with
red open circles the corresponding quantities obtained with the
null field method, and with a black dashed line the solution for
the corresponding isotropic case with ε̄r = diag [2, 2, 2]. Re-
garding the null-field calculations, we used the code developed
by A. Doicu, T. Wriedt, and Y. Eremin [10], which, for the case
of anisotropic particles, is based on the approach of Kiselev [9].
We found excellent agreement in all the investigated cases.

Finally, we have also carried out the same analysis for a slab
with a higher aspect ratio. In this case, the height of the slab has
been chosen as H = 0.6m, while we kept the length and width
the same of the previous example, i.e. L = W = 2. The cor-
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Figure 9: Condition number of the problem of a slab of dimen-
sions L = 50mm;W = 16mm;H = 3mm with conductivity
tensor σ = diag

[
104, 102, 102

]
excited by a magnetic dipole

at frequency f , parallel to the z axis, and located at a vertical
distance of 30mm from the upper face of the slab in correspon-
dence of its center. c©2017 IEEE. Reprinted, with permission,
from [8]

responding mesh is shown in 6 (b), featuring 18432 elements,
NL = 34689 loop shape functions, NF = 18431 facet shape
functions and NS = 4351 star shape functions, leading to 57471
complex unknowns. In this case, due to the high aspect ratio
of the object, the null field method breaks down since the ma-
trix Q becomes ill-conditioned. Qualitatively, this is due to the
fact that the vector quasi spherical wave functions are not suited
to describe the morphology of the electromagnetic field in ge-
ometries that strongly deviate from a spherical one. Therefore,
in Fig. 8, we only show the results obtained with our VIE for-
mulation. For the sake of completeness, we show in the same
figure also the solution of the isotropic case obtained with the
VIE formulation and with the PMCHWT (Poggio-Miller-Chu-
Harrington-Wu-Tsai) surface integral formulation implemented
in Ref. [37].

C Frequency stability

We now provide numerical evidence of the stability of our
method over a broad frequency range by considering a slab of
dimensions L = 50mm, W = 16mm, H = 3mm exhibiting
a conductivity tensor σ = diag

[
104, 102, 102

]
. The slab is ex-

cited by a magnetic dipole oscillating at frequency f , which is
oriented parallel to the z axis, and located at a vertical distance
of 30mm from the upper face of the slab, in correspondence
of its center. We used a hexahedral mesh with 21087 elements,
NL = 32785 loop shape functions, NF = 17919 facet shape
functions and NS = 6111 star shape functions, leading to 56815
complex unknowns. In Fig. 9 we show with a red line the con-
dition number of the matrix Z̃ of Eq. 16, scaled according to the
prescriptions of Eq. 17, and with a black line the condition num-
ber of the unscaled problem. It is apparent that the performed
scaling makes the condition number almost constant as we vary
the frequency over ten orders of magnitude. We conclude that
our VIE formulation, equipped with a suitable scaling of the
loop, star and facet components, is stable over a wide range of
frequencies. On the other hand, without the scaling, the condi-
tion number increases exponentially as we decrease the exciting
frequency.



V CONCLUSIONS

In this work, we introduced a volume integral equation method
for the solution of the electromagnetic scattering from an elec-
trical anisotropic inhomogeneous object.

Excellent accuracy of the developed method has been found
by comparing its outcomes against the experimental results in
the case of a classic split-ring resonator of interest for the anal-
ysis of complex metamaterial design. Excellent agreement has
been also found by comparing the results of the analysis against
the null-field and SIE methods, for selected cases [8]. Tests on
the electric field scattered in the near and far zone from a uniaxial
electric sphere have been also already published in [8].

Our method, being intrinsically free from the low-frequency
breakdown problem, shows numerical stability regardless of the
frequency of the excitation, in contrast to other existing VIE ap-
proaches. Moreover, compared to the null field method, our ap-
proach does not suffer from ill-conditioned matrices that plague
the latter method when the shape of the scatterer strongly devi-
ates form a sphere. Finally, compared to surface integral equa-
tion approaches, our VIE formulation is not limited to piecewise
homogeneous materials, but can also handle inhomogeneous
anisotropic objects. We also point out that, similarly to any other
volume integral approach, the application of the present imple-
mentation is limited to objects of size comparable to the wave-
length due to its memory requirements and computational bur-
den, unless suitable parallel sparsification techniques are used.
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