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Abstract — When sing the standard FEM, it is still challenging to 
analyze the eddy currents in each strand of a Litz-wire and also 
each magnetic particle in soft magnetic composite. Because the 
radii of the strand and magnetic particle are much smaller than 
the device size, fine FE discretization necessary for the eddy 
current analysis results in quite a large equation system. This is a 
so-called multi-scale problem. In this article, it is shown that the 
homogenization method, which models material with fine 
structure as homogenous one with effective material constants, is 
fairly effective for the analysis of such multi-scale problems.  

Moreover, the standard FE analysis of electric apparatus such 
as motors and inductors need too long computational time to 
perform dynamic simulation coupled with power circuits. This 
article shows that the model order reduction can not only reduce 
the FE equations to accelerate the analysis but also allows us to 
synthesize the equivalent circuits directly from the FE equations 
which can easily be coupled with external circuits. 
 

I. INTRODUCTION 
 
The FE analysis of electric and electronic apparatus such as 
motors, transformers and inductors is now indispensable for 
their research and development. We can perform the design 
optimization and also three-dimensional field computations 
using FEM within acceptable duration of time. The standard 
FEM would need, however, unacceptably long computational 
time to analyze materials composed of multiple elements which 
are much smaller than the overall material size. For example, 
when we analyze the eddy currents in a Litz-wire which is 
composed of a number of stranded wires using the standard 
FEM, the resultant equation systems would be far too large to 
be solved in reasonable duration of time under usual 
computational environments. We encounter similar difficulty 
when computing the eddy current losses in the soft magnetic 
composite (SMC) which consists of many conductive magnetic 
particles coated by insulation layers. This article will show that 
the homogenization method is fairly effective for the eddy 
current analysis of these problems considering the skin and 
proximity effects. In this method, material such as multi-turn 
coil, Litz-wire and SMC is modeled as a homogenous material 
with macroscopic complex permeability. This method allows 
us, therefore, to perform the FE analysis with rather coarse FE 
meshes, and to reduce the computational time. 

The standard FE analysis is also too time consuming to 
perform dynamic simulations of electric apparatus such as 
motors and inductors coupled with power circuits. For this 
reason, they are often analyzed with behavior modeling or 
equivalent circuits to reduce the computational time. These 
models can be realized by hardware to perform HILS 
(hardware-in-the-loop-simulation). However, it would be 
difficult to evaluate eddy current and hysteresis losses using 
these approaches. Moreover, the computational accuracy is 
sometimes unsatisfactory. In this article, it will be shown that 
the model order reduction (MOR) can be the alternative to these 
conventional methods. The MOR approach converts the 
original FE equation to reduced one with small number of 
unknowns. Moreover, MOR enables to synthesize the 
equivalent circuit of electric apparatus directly from its FE 
model. 

In the next section, the homogenization method based on the 
macroscopic complex permeability will be formulated and the 
results of FE analysis of multi-turn coils and SMC will be 
reported. Moreover, the integral equation approach based on the 
complex permeability to perform three-dimensional analysis of 
Litz-wire will be described. In the third section, the MOR 
techniques will be surveyed and numerical results will be 
reported. Moreover, the synthesis of equivalent circuits based 
on MOR will be discussed. The last section provides the 
conclusions and outlooks. 
 

II. HOMOGENIZATION METHODS 
 
A. Analysis of multi-turn and Litz-wire coils [1] 
When analyzing electric apparatus which has rich higher 
harmonics in the coil windings, the eddy current effects not only 
in the magnetic cores but also in wires have to be considered. 
There are two effects relevant to eddy currents: skin and 
proximity effects.  The skin effect means that the eddy currents 
parallel to the wire axis are induced by the self-current so that 
the current concentrates near the wire surface. On the other hand, 
the proximity effect means that the anti-parallel eddy currents 
are induced by the magnetic fluxes generated by the ambient 
currents, and consequently the total current distribution 
becomes non-symmetric in the wire cross section. To reduce 
these effects, the Litz-wire composed of fine twisted strands is 
widely used. Figure 1 depicts the Litz-wire coil used for a 
wireless power transfer device. 

In the conventional FE analysis of eddy currents in the 
multi-turn coils and in Litz-wire coils, the wires have to be 
subdivided into so fine elements that they are smaller than the 
skin depth. This results in large number of unknowns in the FE 
equation. Especially in the three-dimensional analysis, it would 
be difficult to solve the resultant large equation system even 
using high-performance computers. To circumvent this 
problem, the homogenization method which will be described 
below is fairly effective. 

 
 

 

Fig. 1 Litz-wire coil 
To reduce the eddy current losses, the Litz-wire coil is formed from 
many stranded fine wires. 



 

 
Let us consider a bundle of wires composed of many parallel 
round conductors, as shown in Fig. 2, which carry alternating 
currents of angular frequency 𝜔𝜔. The effect of twisting will be 
considered later. Let us pay attention to one of the conductors 
shown in the right. The magnetic field 𝑩𝑩0  in which this 
conductor is immersed would approximately be uniform, at 
least locally. This assumption is justified from the well-known 
fact that the magnetic field in a cylindrical hole in a cylindrical 
conductor carrying a uniform current is uniform [2]. 

The quasi-static fields inside and outside the wire can be 
analytically determined by solving the Maxwell equation. The 
fields inside the conductor can be written as 

𝐸𝐸𝑧𝑧 = 𝑝𝑝0𝐽𝐽0(𝜁𝜁) + 𝑝𝑝1𝐽𝐽1(𝜁𝜁) cos𝜃𝜃 ,                   𝑟𝑟 ≤ 𝑎𝑎       (1a) 

𝐻𝐻𝜃𝜃 =
𝑗𝑗𝑗𝑗
𝜔𝜔𝜔𝜔

[𝑝𝑝0𝐽𝐽1(𝜁𝜁) − 𝑝𝑝1𝐽𝐽1′(𝜁𝜁) cos𝜃𝜃], 𝑟𝑟 ≤ 𝑎𝑎       (1b) 

where (𝑟𝑟,𝜃𝜃, 𝑧𝑧) is the cylindrical coordinate in which z-axis is 
located along the wire axis, 𝐽𝐽0 and 𝐽𝐽1  denote the zeroth and first 
order Bessel functions, prime denotes derivative and 𝑘𝑘 =

�−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝜁𝜁 = 𝑘𝑘𝑘𝑘. The first and second terms in (1) express the 
fields relevant to the skin and proximity effects. The proximity 
effect means that the alternating fields generated by the 
surrounding wires induce the anti-parallel eddy currents in the 
wire as shown in Fig. 3. These eddy currents, which can be 
represented by a magnetic dipole moment m, generate magnetic 
fields. Hence the eddy currents and magnetic dipole moment 
have to be determined self-consistently. Moreover, because the 
induced eddy currents are anti-parallel to each other, the 
distribution of the total current becomes non-symmetric as 
shown in Fig. 3 unlike the result of the skin effect. This non-
symmetry is represented by the second terms in (1). 

The fields outside the wire can be expressed as 

𝐸𝐸𝑧𝑧 = �
𝑞𝑞1
𝑟𝑟

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝐵𝐵0� cos𝜃𝜃 ,                         𝑟𝑟 ≥ 𝑎𝑎       (2a) 

𝐻𝐻𝜃𝜃 = −
𝑗𝑗

𝜔𝜔𝜇𝜇0
�−

𝑞𝑞1
𝑟𝑟2

+ 𝑗𝑗𝑗𝑗𝐵𝐵0� cos 𝜃𝜃 ,           𝑟𝑟 ≥ 𝑎𝑎      (2b) 

The first and second terms in (2) express the dipole field due to 
the proximity effect and the uniform external field, respectively. 
Note here that the components independent of 𝜃𝜃, which will not 
be involved in the following discussions, are omitted for 
simplicity. The coefficient 𝑝𝑝0  can be determined from the 
Ampere law for a given total current 𝐼𝐼 : 𝑝𝑝0 =
𝑘𝑘𝑘𝑘 (2𝜋𝜋𝜋𝜋𝜋𝜋𝐽𝐽1(𝛼𝛼))⁄ ,𝛼𝛼 = 𝑘𝑘𝑘𝑘 , while 𝑝𝑝1, 𝑞𝑞1  can be determined 
from continuity in the tangential component of E and H, that is 

� 𝐽𝐽1(𝛼𝛼) − 1 𝑎𝑎⁄
𝛼𝛼𝐽𝐽1′(𝛼𝛼) 𝜇𝜇𝑟𝑟  ⁄ 1 𝑎𝑎⁄ � �

𝑝𝑝1
𝑞𝑞1� = 𝑗𝑗𝑗𝑗𝑗𝑗𝐵𝐵0 �

1
1�            (3) 

The dipole fields, which represent the diamagnetic property 
due to the anti-parallel eddy currents along the wire, can also be 
expressed in terms of the magnetic dipole 𝒎𝒎 in the form 

𝐴𝐴𝑧𝑧 = −
𝜇𝜇0
2𝜋𝜋

𝑚𝑚
𝑟𝑟

cos 𝜃𝜃                                 (4) 

By comparing the first term of (2a) and (4) where 𝐸𝐸𝑧𝑧 = −𝑗𝑗𝑗𝑗𝐴𝐴𝑧𝑧, 
we have the magnetization 

𝑀𝑀 =
𝑚𝑚
𝜋𝜋𝑎𝑎2

= 2𝜋𝜋
𝐵𝐵0
𝜇𝜇0
𝑎𝑎2
𝜇𝜇𝑟𝑟𝐽𝐽1(𝛼𝛼) − 𝛼𝛼𝐽𝐽1′(𝛼𝛼)
𝜇𝜇𝑟𝑟𝐽𝐽1(𝛼𝛼) + 𝛼𝛼𝐽𝐽1′(𝛼𝛼)

                (5a) 

By taking the static limit in (5), we obtain the well-known result 
for the magnetostatic field as 

𝑀𝑀 = 2
𝐵𝐵0
𝜇𝜇0
𝜇𝜇𝑟𝑟 − 1
𝜇𝜇𝑟𝑟 + 1

                                 (5b) 

Here let us define the complex permeability  𝜇̇𝜇  so that (5b) 
holds at any frequency. To do so, we replace 𝜇𝜇𝑟𝑟 with 𝜇̇𝜇𝑟𝑟 in (5b) 
and compare (5a) with (5b) to obtain 

𝜇̇𝜇𝑟𝑟(𝜔𝜔) = 𝜇𝜇𝑟𝑟
𝐽𝐽1(𝛼𝛼)
𝛼𝛼𝐽𝐽1′(𝛼𝛼) =

𝜇𝜇𝑟𝑟

𝛼𝛼 𝐽𝐽0(𝛼𝛼)
𝐽𝐽1(𝛼𝛼) − 1

                 (6) 

Now the proximity effect in a wire can be computed using (6) 
without fine FE discretization. However, FE discretization of 
the stranded wires and air region among them would still give 
rise to long computational time. To circumvent this problem, 
we use the homogenization method which models material 
composed of multiple elements as homogenous one. 

Fig. 2 Stranded wire and isolated wire in time-harmonic uniform field 
A wire included in a bundle of stranded wires carrying alternating currents  
is modeled as an isolated wire immersed in a uniformed field generated by 
the surrounding wire currents. 

Fig. 3 Skin (left) and proximity (right) effects 
Left: the circular magnetic flux (red) generated by the self-current (blue) 
induces the eddy currents (orange). As a result, the total current (yellow) 
concentrates near the wire surface. Right: The magnetic flux generated by 
surrounding currents induce the anti-parallel eddy currents. As a result, the 
total current (yellow) has the crescent-shaped distribution. 

Fig. 4 Homogenization of stranded wires 
The stranded wire is modeled as a homogenous material with the complex 
macroscopic permeability given by (8) defined on the wire cross section. 
For the three-dimensional analysis, the permeability tensor [𝜇𝜇] =
diag[〈𝜇̇𝜇〉, 〈𝜇̇𝜇〉,𝜇𝜇] is introduced, where 𝜇𝜇 is the original wire permeability. 



It is known that the magnetostatic property of SMC can be 
evaluated at good accuracy [3] using the homogenized 
permeability given by 

〈𝜇𝜇𝑟𝑟〉 = 1 +
𝜂𝜂(𝜇𝜇𝑟𝑟 − 1)

1 + 𝑁𝑁(1 − 𝜂𝜂)(𝜇𝜇𝑟𝑟 − 1)
                  (7) 

where 𝜂𝜂 and 𝑁𝑁 denote the volume fraction (or filling rate) and 
diamagnetic constant which equals 1/2 for the round wire. 
Equation (7) is referred to as the Ollendorff formula [4] whose 
derivation is given in [1]. The Clausius-Mossotti formula based 
on the molecule field, often used for computation of 
homogenized permittivity of composite dielectric materials, 
and also the Maxwell-Garnett formula, used in microwave 
engineering, are shown equivalent to (7). The discussions on 
these equivalence are included in Ref. [1]. What we have to do 
to obtain the macroscopic complex permeability 〈𝜇̇𝜇〉 is just to 
substitute 𝜇̇𝜇𝑟𝑟 in (6) into 𝜇𝜇𝑟𝑟 in (7). The result is 

〈𝜇̇𝜇𝑟𝑟(𝜔𝜔)〉 = 1 +
2𝜂𝜂(𝜇̇𝜇𝑟𝑟(𝜔𝜔) − 1)

2 + (1 − 𝜂𝜂)(𝜇̇𝜇𝑟𝑟(𝜔𝜔) − 1)                   (8) 

 

 

 
Now the stranded wire composed of fine wires can be modeled 
as a homogenous material as shown in Fig. 4. Note there that 
〈𝜇̇𝜇(𝜔𝜔)〉  is defined on the wire cross-section, whereas the 
permeability in the wire-axis direction can be approximated by 
the original permeability 𝜇𝜇 because the external magnetic flux 
along the wire axis would have little effects. 

The frequency characteristics for different volume fractions 
are plotted in Fig.5, where the abscissa denotes the wire radius 
normalized by the skin depth  𝛿𝛿 = �2 𝜇𝜇𝜇𝜇𝜇𝜇⁄ . The real and 
imaginary parts represent the permeability possessing the 
diamagnetic property due to the induced eddy currents and the 
eddy current loss, respectively. The former monotonously 
decreases with frequency, while the latter has a peak. This 
property is also found in the Debye relaxation of dielectric 
material. The reader would wonder that the curves for rather 
high values of 𝜂𝜂, which cannot be realized when using the round 
wires, are included in Fig. 5. Such a high filling rate can be 
realized when using the wire with square-shaped cross section 
whose diamagnetic constant N is also approximately 1/2. 

For the test of this homogenization method, the impedance 
of 50-turned coil, shown in Fig. 6, has been experimentally 
measured and analyzed using the proposed method varying 
frequency for comparison. In the analysis, we solve the 
magnetostatic equation for the vector potential given by 

∇ ⋅ (𝜈𝜈∇𝐴𝐴z) = −𝐽𝐽z                                     (9) 

on the plane containing the cross section of the coil. We use 
FEM where the permeability in the coil region is set to 𝜈𝜈 =
1 〈𝜇̇𝜇(𝜔𝜔)〉⁄  whereas 𝜈𝜈 = 1 𝜇𝜇0⁄  in the other regions. From the 
computed complex power,  

𝑃̇𝑃 =
𝑗𝑗𝑗𝑗
2
� 𝜇𝜇|𝑯𝑯|2

Ω

𝑑𝑑𝑑𝑑 +
𝑅𝑅0 𝛼𝛼𝛼𝛼0(𝛼𝛼)

4 𝐽𝐽1(𝛼𝛼)
|𝐼𝐼|2                  (10) 

we compute the impedance 𝑍̇𝑍 = 2Re�𝑃̇𝑃� 𝐼𝐼2⁄ , where 𝑅𝑅0  is the 
dc-resistance of the wire. The real parts of the first and second 
terms in (10) represent the eddy current losses due to the 
proximity and skin effects, respectively. Note here that the eddy 
current losses and also its diamagnetic effects can be evaluated 
from magnetostatic analysis where the permeability in the coil 
region is simply replaced with (8). Of course, if there are other 
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Fig. 5 Profiles of 〈𝜇̇𝜇𝑟𝑟〉 with different filling rates 
The abscissa is the ratio of the wire radius a to the skin depth δ. The 
original wire permeability 𝜇𝜇𝑟𝑟 is set to 1. The red, blue, orange, purple 
curves are plotted for 𝜂𝜂 = 1, 0.75, 0.5, 0.25. 

Re〈𝜇̇𝜇𝑟𝑟〉 

Im〈𝜇̇𝜇𝑟𝑟〉 

𝑎𝑎 𝛿𝛿⁄  

𝑎𝑎 𝛿𝛿⁄  

Fig. 6 Frequency dependence of 50-turned coil impedance 
An enameled copper wire, radius 0.15 mm, cover thickness 0.03 mm is 
wound around a bobbin, radius 30 mm, manufactured by a 3D printer. 



conductors in which eddy currents flow, we have to solve the 
quasi-static electromagnetic equation instead of (9). However, 
also in this case, the coil region still can be modeled by (9). 
From the results plotted in Fig. 6, we conclude that the proposed 
method is sufficiently accurate. 

Until now, we have considered parallel conductors. If the 
twisting pitch of stranded wires is sufficiently longer than the 
wire radius a, the above-mentioned method is valid. Unless this 
is the case, we have to consider the twisting effect. One of the 
possible ways to do so is to introduce the tensorial macroscopic 
complex permeability whose entities are determined from the 
wire direction. Namely, assuming that the stranded wires are 
locally parallel to each other, the permeability tensor is written 
as [𝜇𝜇] = diag[〈𝜇̇𝜇(𝜔𝜔)〉, 〈𝜇̇𝜇(𝜔𝜔)〉, 𝜇𝜇]  in the local coordinates 
where the third axis is parallel to the wire. In the FE equation, 
this locally defined tensor is rewritten in the global coordinates. 
There is another way to treat the twisted wires; a conducting 
curved wire is modeled as a curved line on which one-
dimensional integral equation is formulated. The latter method 
will be mentioned below.  
 
B. One-dimensional Integral Equation [5] 
As we have seen above, the proximity effect in a wire is 
modeled by the complex permeability (6), by which the FE 
discretization of the wire cross section is no more necessary. 
This means that the each wire can be modeled as a curved line 
on the plane perpendicular to which 𝜇̇𝜇  and magnetization M 
generated by the anti-parallel eddy currents due to the proximity 
effect are defined (see Fig. 7). The proximity effect can be 
analyzed by determining M distributed along the curved line 
self-consistently. If we formulate the integral equation for M 
along the curved line, we do not need to consider the air region 
among the twisted wires. We know the magnetostatic integral 
equation for M in the magnetic material which is described in 
Ref. [6]. By extending this integral equation, we obtain the one-
dimensional integral equation given by 

𝑴𝑴(𝒙𝒙)
𝜇̇𝜇𝑟𝑟(𝜔𝜔) − 1

= 𝝉𝝉 × ��� ℊ𝑴𝑴(𝒙𝒙′)
Ω𝑤𝑤

𝑑𝑑𝑣𝑣′ + 𝑯𝑯(𝒙𝒙′)� × 𝝉𝝉�       (11a) 

ℊ𝑴𝑴(𝒙𝒙) = −
1

4𝜋𝜋
�
𝑴𝑴(𝒙𝒙)
𝑅𝑅3

− 3
(𝑴𝑴(𝒙𝒙) ⋅ 𝑹𝑹)𝑹𝑹

𝑅𝑅5
�              (11b) 

which describes the proximity effect in the stranded wires, 
where 𝛕𝛕,Ω𝑤𝑤 ,𝑯𝑯 denote the unit vector parallel to the wire, wire 
domain and external magnetic field, respectively, and 𝑹𝑹 = 𝒙𝒙 −
𝒙𝒙′. Because M exists on the plane perpendicular to 𝛕𝛕,  we take 
the vector triple product in (11a). To numerically solve (11), we 
discretize the curved line into line segments to each of which M 
is assigned. The discretization of (11) leads to a system of 
equations containing a full matrix. This equation is can be 
effectively solved by iterative methods such as Jacobi and 
Gauss-Seidel methods.  

After solving (11), we can evaluate the complex power from 

𝑃̇𝑃 =
𝑗𝑗𝑗𝑗
2

� 𝑱𝑱∗ ⋅ 𝑨𝑨
Ω𝑤𝑤

𝑑𝑑𝑑𝑑 +
𝑅𝑅0 𝛼𝛼𝛼𝛼0(𝛼𝛼)

4 𝐽𝐽1(𝛼𝛼)
|𝐼𝐼|2                  (12) 

where 𝐼𝐼, 𝑱𝑱 denote the total current and corresponding current 
density, and A is computed from 

𝑨𝑨(𝒙𝒙) =
𝜇𝜇0
4𝜋𝜋

� �
𝑴𝑴(𝒙𝒙′) × 𝑹𝑹

𝑅𝑅3
+
𝑱𝑱(𝒙𝒙′)
𝑅𝑅

�
𝛺𝛺𝑤𝑤

𝑑𝑑𝑣𝑣′               (13) 

Figure 8 shows the eddy current distribution in a multiple strand, 
shown in Fig. 7 (b), computed from  𝑴𝑴 obtained by solving (11). 
Moreover, it is shown that the eddy current losses due to the 
proximity effect computed by this method and homogenization-
based FEM mentioned in II.A are in good agreement [5]. It is 
stressed here that the method based on the one-dimensional 
integral equation can analyze Litz-wire three-dimensional 
structure. Moreover, this method is also valid even when there 
exit magnetic and conducting materials (see [5] for details). If 
there exit a number of twisted wires, say, more than one 
hundred, the simple discretization of (11) would impose large 
computational burden with respect to time and memory. We 
would introduce the fast multipole expansion or H-matrix 
method to solve this system. 

 

 
C. Time-domain Analysis [7] 
We consider here how we apply the above-mentioned 
homogenization method to time-domain problems. This is 
required when we analyze, for example, the windings used in 
wireless power transfer devices which include nonlinear power 
circuits. Moreover, the present homogenization method can 
also be applied to SMC, as will be mentioned later. When we 
consider the magnetic nonlinearity in the magnetic particles in 
SMC, we also have to perform time-domain analysis. 

Fig. 7 Modeling of stranded wires as curved lines. 
The magnetization M distributed along the curved lines can be 
determined by solving (11). 

(a) parallel wires 

(b) multiple strand 

Fig. 8 Eddy current distribution in multiple strand composed of 49 wires 
After solving (11), the magnetic field 𝑩𝑩0 outside the wire is determined 
from 𝑩𝑩0 = 𝜇𝜇0 (𝜇̇𝜇𝑟𝑟 + 1)𝑴𝑴 2(𝜇̇𝜇𝑟𝑟 − 1)⁄ . Then, the unknown coefficient 𝑝𝑝1 
in (1a) can be determined from (3). The eddy currents in this figure are 
finally computed from 𝑱𝑱 = σ𝑬𝑬. 



The simplest way to do so would be to employ the 
convolution integral including the inverse Laplace transform of 
the reciprocal of 〈𝜇̇𝜇〉. The direct inverse Laplace transformation 
seems, however, uneasy. To circumvent this problem, let us 
consider the expansion of α 𝐽𝐽0(𝛼𝛼) 𝐽𝐽1(𝛼𝛼)⁄  into contined fractions. 
The result is 

𝜇̇𝜇𝑟𝑟(𝜔𝜔) = 𝜇𝜇𝑟𝑟
1

2 − 𝛼𝛼2

4 − 𝛼𝛼2

6 − 𝛼𝛼2
8 −⋯

                       (14) 

When we truncate the continued fraction in (14), we obtain the 
rational fraction which is referred to as the Padé approximation 
as follows: 

𝜇̇𝜇𝑟𝑟 = 𝜇𝜇𝑟𝑟
𝑐𝑐0 + 𝑐𝑐1𝑠𝑠 + 𝑐𝑐2𝑠𝑠2 + ⋯+ 𝑐𝑐𝑞𝑞−1𝑠𝑠𝑞𝑞−1

𝑑𝑑0 + 𝑑𝑑1𝑠𝑠 + 𝑑𝑑2𝑠𝑠2 + ⋯+ 𝑑𝑑𝑞𝑞𝑠𝑠𝑞𝑞
               (15) 

where we replaced 𝑗𝑗𝑗𝑗  with 𝑠𝑠 . Substitution of (15) into the 
Offendorff formula (7) results in the partial fraction expansion 
of the form 

〈𝜈̇𝜈𝑟𝑟〉 =
1
〈𝜇̇𝜇𝑟𝑟〉

= 𝜈𝜈∞ + �
𝑘𝑘𝑖𝑖

𝑠𝑠 + 𝑝𝑝𝑖𝑖

𝑞𝑞

𝑖𝑖=1

                         (16) 

Now we can easily perform the inverse Laplace transform of 
(16) to obtain 

ℒ−1〈𝜈̇𝜈𝑟𝑟〉 = 𝜈𝜈∞𝛿𝛿(𝑡𝑡) + �𝑘𝑘𝑖𝑖𝑒𝑒−𝑝𝑝𝑖𝑖𝑡𝑡
𝑞𝑞

𝑖𝑖=1

             (17) 

Applying (17) to the convolution integral, we can perform the 
time-domain analysis. In particular, we employ the RC method 
[8] by which the convolution integral can recursively be 
evaluated with reference to the field at just one previous time 
step. The authors have found that this approach gives numerical 
results which are in good agreement with those computed by 
the conventional FE analysis which requires very fine 
discretization. 

 

D. Eddy Current Analysis of Soft Magnetic Composites [9, 10] 
The soft magnetic composite, SMC, is composed of small 

iron particles embedded in insulation medium. Due to this 
structure, global eddy current cannot flow in SMC, and thus the 
eddy current loss can be suppressed. Moreover, SMC has 
another merit over the conventional silicon steel plates that 
three-dimensional shapes can easily be formed. For this reason, 
SMC has widely been used for inductors and reactors. However, 
as the driving frequency increases, the local eddy currents 
flowing in the iron particles come to give rise to non-negligible 
losses, which is also the case for the silicon steel sheets. Figure 
9 shows the magnetic field distributions in an isolated iron 
particle for different frequencies. 

The homogenization method mentioned above can also be 
applied to analysis of SMC considering the skin and proximity 
effects. Let us consider an isolated iron particle of radius a 
immersed in the uniform time-harmonic field 𝑩𝑩0𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 . 
Introducing the polar-coordinates (𝑟𝑟,𝜃𝜃,𝜙𝜙) around the center of 
the particle, we can obtain the fields by analytically solving the 
quasi-static Maxwell equations as follows: 

𝐴𝐴𝜙𝜙 = 𝑝𝑝𝐵𝐵0𝑖𝑖1(𝜁𝜁)sin𝜃𝜃,    𝑟𝑟 ≤ 𝑎𝑎                           (18a) 

𝐴𝐴𝜙𝜙 = 𝐵𝐵0 �
𝑞𝑞
𝑟𝑟2

+
𝑟𝑟
2
� sin𝜃𝜃,    𝑟𝑟 ≥ 𝑎𝑎                     (18b) 

where 𝑝𝑝, 𝑞𝑞  are coefficients, 𝑘𝑘 = �−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝜁𝜁 = 𝑘𝑘𝑘𝑘 , and 𝑖𝑖1 
denotes the first-order modified Bessel function defined by 

𝑖𝑖1(𝜁𝜁) =
1
𝜁𝜁2

(sin 𝜁𝜁 − 𝜁𝜁 cos 𝜁𝜁)                            (19) 

As in the same way for the stranded wires, the coefficients can 
be determined from the continuity condition in the electric and 
magnetic field on the particle surface, that is 

� 𝑖𝑖1(𝛼𝛼) −𝑎𝑎−2

−𝑖𝑖1(𝛼𝛼) + sin(𝛼𝛼) 𝑎𝑎−2
� �
𝑝𝑝
𝑞𝑞� =

𝑎𝑎
2
�12�        (20) 

where 𝛼𝛼 = 𝑘𝑘𝑘𝑘.  
The magnetic field generated by a magnetic moment m in 

three-dimensional space can be written as 

𝐴𝐴𝜙𝜙 =
𝜇𝜇0
4𝜋𝜋

𝑚𝑚
𝑟𝑟2

sin 𝜃𝜃                                 (21) 

The first term in (18b) also expresses the dipole field, generated 
by the eddy currents in the particle. Hence, by comparing (18a) 
and (21), we find 𝑚𝑚 = 4𝜋𝜋𝐵𝐵0𝑞𝑞 𝜇𝜇0⁄ . The magnetization is then 
given by 

𝑀𝑀 =
3𝑚𝑚

4𝜋𝜋𝑎𝑎3
=

3𝐵𝐵0
2𝜇𝜇0

(2𝜇𝜇 + 𝜇𝜇0)𝑖𝑖1(𝛼𝛼) − 𝜇𝜇0 sin𝛼𝛼
(𝜇𝜇 − 𝜇𝜇0)𝑖𝑖1(𝛼𝛼) + 𝜇𝜇0sin 𝛼𝛼

     (22) 

When taking the static limit 𝜔𝜔 → 0 in (22), we obtain the well-
known result 

𝑀𝑀 =
3
𝜇𝜇0

𝜇𝜇 − 𝜇𝜇0
𝜇𝜇 + 2𝜇𝜇0

                                  (23) 

We again define the complex permeability 𝜇̇𝜇(𝜔𝜔) so that (23) 
holds at any frequencies. From (22), (23), we finally obtain Fig. 9 Magnetic flux lines around a magnetic conductive particle 

immersed in uniform time-harmonic magnetic field, where 𝑎𝑎, 𝛿𝛿 
denote the particle radius and skin depth [11]. 

(c) real (𝛿𝛿 𝑎𝑎⁄ = 0.35)         (d) imaginary (𝛿𝛿 𝑎𝑎⁄ = 0.35) 

(c) real (𝛿𝛿 𝑎𝑎⁄ = 5)           (d) imaginary (𝛿𝛿 𝑎𝑎⁄ = 5) 



𝜇̇𝜇𝑟𝑟(𝜔𝜔) =
2𝜇𝜇𝑟𝑟(𝛼𝛼 − tan𝛼𝛼)

(1 − 𝛼𝛼2 )tan𝛼𝛼 − 𝛼𝛼
                          (24) 

This result has already been reported in Ref. [12]. By 
substituting (24) into the Ollendorff formula (7) where we set 
𝑁𝑁 = 1 3⁄ , we obtain the macroscopic complex permeability 
〈𝜇̇𝜇(𝜔𝜔)〉. 

When we consider the magnetic saturation in the iron 
particles in SMC, we have to perform time-domain analysis. In 
this case, the inverse Laplace transform based on the Padé 
approximation given by (17) would be invalid because of the 
magnetic nonlinearity in 𝜇𝜇 . Instead, we compute the time-
response of SMC using the Cauer-type ladder circuit, shown in 
Fig.10, which is directly synthesized from 〈𝜇̇𝜇(𝜔𝜔)〉 . In this 
synthesis, we expand (24) into a continued fraction using 

tan 𝑧𝑧
𝑧𝑧

=
1

1 − 𝑧𝑧2

3 − 𝑧𝑧2
5 −⋯

                          (25) 

By substituting the resultant continued fraction into the 
Ollendorff formula, we have the rational polynomial of the form 
(15) for 〈𝜇̇𝜇(𝜔𝜔)〉. Using the Euclidian algorithm, the rational 
polynomial can be expressed in the form of continued fraction 

〈𝜇̇𝜇〉 =
1

𝐿𝐿1 −
1

𝑅𝑅1
𝑠𝑠 − 1

𝐿𝐿2 + ⋯

                          (26) 

This continued fraction corresponds to the Cauer circuit shown 
in Fig. 10. It is known [13, 14] that 𝐿𝐿1 in the Cauer circuit is 
relevant to the primal magnetic field generated by an external 
current which usually overwhelms the fields generated by eddy 
currents. For this reason, by introducing proper nonlinear 
relationship between the flux and current in 𝐿𝐿1, we can take the 
magnetic saturation in SCM particles into consideration. The 
circuit equation for the Cauer circuit in Fig.10, which is 
assigned in each finite element in the SMC region, is coupled 
with the FE equation. In Ref. [10], the time response of SMC 
computed by this approach has been shown to agree well with 
that computed by the unit-cell method. Figure 11 shows the 
magnetic distribution in the SMC core with and without 
considering the eddy currents in the iron particles. We can see 
the clear difference between these distributions. 
 
E. Laminated Steel Sheets 
We can also obtain the analytical expression of the macroscopic 
complex permeability 〈𝜇̇𝜇〉  for an infinitely wide iron sheet, 
shown in Fig.12, as follows: 

𝜇̇𝜇𝑟𝑟(𝜔𝜔) = 𝜇𝜇𝑟𝑟
tan𝛼𝛼
𝛼𝛼

                                      (27) 

where 𝛼𝛼 = 𝑘𝑘𝑘𝑘, 𝑘𝑘 = �−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, which is obtained by solving the 
one-dimensional quasi-static Maxwell equation 

𝑑𝑑2𝐻𝐻𝑧𝑧
𝑑𝑑𝑥𝑥2

+ 𝑘𝑘2𝐻𝐻𝑧𝑧 = 0                                 (28) 

Because the diamagnetic constant 𝑁𝑁 nearly equals zero for the 
iron sheet, the Ollendorff formula (7) reduces to 〈𝜇̇𝜇𝑟𝑟〉 ≈ 𝜂𝜂𝜇̇𝜇𝑟𝑟 . 
The Cauer circuit shown in Fig. 11 can also be synthesized from 
(27) [13]. It has been shown that the same Cauer circuit is  

 

 

 
 

Fig. 10 Cauer circuit. 
 

In the frequency domain, this circuit is equivalent to the macroscopic 
complex permeability of SMC given by (26). This circuit can be used 
for time domain analysis of SMC cores as well as laminated steel plates. 
Moreover, electric apparatus such as inductors and induction heating 
device can be modeled by the Cauer circuit as mentioned in III. D. In 
this case, the dc-resistance of the winding is inserted as R0 in left of L1. 
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Fig.11 Magnetic fields in SMC core [see also 10]. 
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(b) without considering eddy current in SMC core 

Fig. 12 A steel plate included in laminated steel sheets 
The eddy current field can be determined by solving (23). 
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(a) with considering eddy current in SMC core 



derived by expanding the magnetic field in (28) using the 
Legendre polynomials 𝑃𝑃𝑘𝑘 as [15] 

𝐵𝐵𝑧𝑧(𝑡𝑡,𝑦𝑦) = � 𝑏𝑏𝑘𝑘(𝑡𝑡)𝑃𝑃𝑘𝑘(𝑦𝑦 𝑑𝑑⁄ )
𝑘𝑘=0,2,4…

                 (29) 

Moreover, the time-domain analysis [16] of the laminated steel 
sheets based on the expansion (29) has been shown equivalent 
to the circuit analysis using the Cauer circuit [15]. It is 
conjectured from this fact that in general the Cauer circuits 
synthesized from the complex permeability are always 
equivalent to those obtained from the field expansion using 
appropriate orthogonal polynomials. Furthermore, the synthesis 
of the Cauer circuits from quasi-static electromagnetic fields in 
arbitrary shaped domain is discussed in [17]. The Cauer circuit 
for the arbitrary quasi-static fields can also be synthesized using 
MOR, which will be described in III.  D. 
 
F. Unit-cell Approach 
There is yet another homogenization method to analyze 
materials composed of multiple elements such as multi-turn coil 
and SMC, which is the unit-cell approach [18-21]. In this 
approach, material composed of multiple elements is assumed 
to consist of the same-sized unit cells, as shown in Fig. 13. The 
field in the unit cell is analyzed using, e.g., FEM under the 
boundary conditions considering the spatial periodicity. This 
method is advantageous over the method based on the complex 
permeability when the conductor included in the unit cell, such 
as a wire and particle, has arbitrary shapes. The drawback in the 
unit-cell method is that we have to perform FE analyses for 
different filling rates, frequencies and material constants unlike 
the method based on the complex permeability. In the 
frequency-domain analysis, the latter is, thus, advantageous 
when we consider simple shapes, such as circle and sphere, and 
also square and cuboid which can be approximated by the 
former two shapes. We can also obtain the macroscopic 
complex permeability 〈𝜇̇𝜇(𝜔𝜔)〉  for arbitrary shaped materials 
based on the unit-cell approach with aid of MOR, which will be 
mentioned in III. E.  

In the time-domain analysis using the unit-cell approach, we 
have to solve the one or two-dimensional quasi-static Maxwell 
equation in each finite element at all the time steps. This seems 
time consuming. If the system is linear, the RC method with 
Padé approximation is fairly effective because no field analysis 
is required. If the system is nonlinear, the Cauer-circuit 
approach, which is equivalent to the expansion with the 
Legendre polynomials, would be effective. 
 

 
 

 
III. MODEL ORDER REDUCTION 

 
A. Overview 
In the design of electric apparatus, we often encounter the 
situations in which we have to the FE equation for many times 
changing material constants, shapes, configurations, 
frequencies and so on. In the design optimization based on FEM, 
the FE equation has to be solved for different parameters. When 
we solve the time-domain problems, we also repeatedly solve 
the FE equation at different time steps. MOR is quite useful to 
reduce the computational time in these situations. 

One of the aims of MOR is to reduce the degree of freedoms 
(DoFs) in a given system [22]. For example, let us consider a 
humanoid which includes a lot of actuators. It would be uneasy 
to adequately control all the DoFs included in the humanoid in 
a coordinated manner. However, all the DoFs in various joints 
in a human body seem not to be linearly independent. This 
means that DoFs can be reduced without losing abilities to 
represent natural motion patterns. In the proper orthogonal 
decomposition (POD), which will be described in the following 
subsection, important DoFs are systematically extracted to 
reduce the system equation. 

Another aim of MOR is to construct a simple expression for 
the input-output relation for a given system. When the relation 
is written in a rational polynomial in the s-domain, this 
corresponds to the Padé approximation. The rational 
polynomials can be obtained from POD and also via tri-
diagonalization of the system matrix using, e.g., the Padé via 
Lanczos (PVL) method whose details will be described in III. C. 
The rational polynomials can also be obtained directly from the 
measured data or results of frequency sweep using, e.g., the 
vector fitting [23], and also by curve fitting based on 
optimization algorithms such as genetic algorithm (GA) and 
simulated annealing [24]. These MOR approaches, referred to 
as macro-modeling in microwave engineering [25], are 
schematically shown in Fig. 14. 
 

 
 

 

Fig. 13 Unit-cell approach. 
It is assumed that the material composed of multiple elements 
consists of the same-sized unit cells. The field in each unit cell is 
numerically analyzed under adequate boundary conditions. 

material composed of
multiple elements unit cells
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Eigenvalue 
problem 

POD Field analysis 
Snapshots 

Vector fitting 
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Fig. 14 Methods in model order reduction. 
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Fig. 15 Reduction of DoFs by POD. 



 

 

B. Proper Orthogonal Decomposition (POD) 
Let us consider the linearly independent data 𝒙𝒙𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑖𝑖 =
1,2 … ,𝑚𝑚 which are represented by dots in Fig. 15. Assuming 
that they are obtained from 𝒙𝒙𝑖𝑖 = 𝒙𝒙𝑖𝑖′ − 𝝁𝝁, where 𝒙𝒙𝑖𝑖′ ,𝝁𝝁 are the 
original data and their mean, the mean of 𝒙𝒙𝑖𝑖  is set to zero. 
Moreover, we assume that 𝑛𝑛 ≫ 𝑚𝑚 , which would hold, for 
example, when FE solutions with 𝑛𝑛 DoFs are snapshotted at 𝑚𝑚 
points. If 𝒙𝒙𝑖𝑖 distribute along an axis, they can be identified by 
referring their one-dimensional coordinate along the axis shown 
in Fig.15. The direction vector w of this coordinate axis can be 
found in such a way that the variation 𝜎𝜎2 of 𝒙𝒙𝑖𝑖 projected on w 
becomes maximum. This can be mathematically expressed as 

𝜎𝜎2 = 𝒘𝒘tS𝒘𝒘 → max., sub. to ‖𝒘𝒘‖2 = 1                (30) 

where S denotes the variance-covariance matrix defined by 

S =
1
𝑚𝑚

XXt, X = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑚𝑚] ∈ ℝ𝑛𝑛×𝑚𝑚       (31) 

The matrix X is called the data matrix, which is included in 
Fig.14. The eigenvalue and corresponding eigenvectors of S are 
here denoted by λ1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑚𝑚,𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑚𝑚 . Note that 
because the rank of S  is 𝑚𝑚 , it has 𝑛𝑛 −𝑚𝑚  zero eigenvalues, 
which are omitted. The problem (30) is equivalent to 

𝑅𝑅 =
𝒘𝒘𝑡𝑡S𝒘𝒘
𝒘𝒘𝑡𝑡𝒘𝒘

→ max.                               (32) 

It can be shown that 𝑅𝑅 ≤ λ1, and, 𝑅𝑅 = 𝜆𝜆1 when 𝒘𝒘 = 𝒘𝒘1. It is, 
therefore, concluded that 𝒘𝒘 which satisfies (30) is just 𝒘𝒘1. 

If 𝒙𝒙𝑖𝑖  distribute within a three-dimensional ellipsoid, they 
can be identified by the coordinates along the elliptic axes. The 
direction vectors, orthogonal to each other, which span the 
three-dimensional space, are given by 𝒘𝒘1,𝒘𝒘2,𝒘𝒘3 . Moreover, 
the elliptic radii along the axes are given by �𝜆𝜆𝑖𝑖. If λ1 ≥ 𝜆𝜆2 ≫
𝜆𝜆3, then it can be said that 𝒙𝒙𝑖𝑖  almost distribute within a two-
dimensional ellipsoid (ellipse). In this case, 𝒙𝒙𝑖𝑖   can be 
expressed by the linear combination of the two major direction 
vectors. In general, if there are dominant k eigenvalues, we have 
the approximation 

𝒙𝒙 ≈ W𝒚𝒚, W ∈ ℝ𝑛𝑛×𝑘𝑘                    (33) 

where W = [𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑘𝑘]. The eigenvalues and eigenvectors 
can be obtained by the spectral decomposition of XtX  or 
performing the singular value decomposition of X. Since the 
vector 𝒙𝒙  is expressed by the linear combination of the 
orthogonal bases, this method is called POD. The basis vectors 
are constructed from the snapshotted data in POD, while they 
are constructed by tri-diagonalization of the system matrix in 
PVL as will be shown in the next sub-section. 

In POD applied to FE analysis, we perform frequency or 
time-domain analysis to obtain the snapshots 𝒙𝒙𝑖𝑖   of the 
electromagnetic field [26, 27]. Then we compute W from X to 
reduce the FE equation, K𝒙𝒙 = 𝒃𝒃, K ∈ ℂ𝑛𝑛×𝑛𝑛, to 

WtKW𝒚𝒚 = Wt𝒃𝒃                                 (34) 

Now the number of unknowns is reduced from n to k. If 𝑘𝑘 ≪ 𝑛𝑛, 
the computational time for solution of the FE equation could 
drastically be reduced. Figures 16 and 17 show the magnetic 
field distributions computed by solving the original quasi-static 
FE equation and its reduced counterpart. They are in good 
agreement when the magnetic induction is weak. There exist, 

Fig. 16 Magnetic fields in iron core for weak current. 

(a) conventional FEM 

(b) POD 

B [T] 

Fig. 17 Magnetic fields in iron core for strong current. 

(a) conventional FEM 

(b) POD 

B [T] 



however, small deteriorations between them when the magnetic 
induction is saturated. 

When there are strong magnetic saturations in the magnetic 
core, it would be difficult to express the field as the linear 
combination of the form (33). Several remedies have been 
proposed for this problem. In Ref. [28, 29], POD is applied only 
to the linear domain which does not include saturating magnetic 
cores. In Ref. [30], the strongly saturated portions are extracted 
so that the field is interpolated by them in the discrete empirical 
interpolation method. 

When analyzing electromagnetic fields around moving 
objects, we have to perform a lot of FE computations for 
different positions. Although the computational time could be 
reduced by employing POD, we would need many basis vectors 
to obtain accurate results because the fields have significant 
variations for different configurations. The block-MOR based 
on POD has been proposed to circumvent this difficulty [31]. In 
this method, all the possible configurations are classified into 
several gropes, and the different set of basis vectors is 
constructed for the configurations belonging to each grope. 
That is, the snapshots are subdivided into several blocks: X =
[X1 , X2, … ]. The basis matrix W𝑖𝑖 is then constructed for X𝑖𝑖 . The 
reduced FE equation W𝑖𝑖

tKW𝑖𝑖𝒚𝒚 = W𝑖𝑖
t𝒃𝒃 is solved depending on 

the configuration. This method has extended to apply it to the 
analysis of rotating machines [32], which is shown in Fig. 18. 

In the design optimization based on population-based 
methods such as GA and immune algorism, the field equation 
has to be solved for many times for fitness evaluations. To 
reduce the computational cost, POD has been applied to those 
optimizations [34]. In this method, the snapshots are taken by 
randomly changing the value of design parameters to construct 
the basis matrix W. The design optimization is carried out in 
which the reduced FE equation is solved. It has been shown that 
the computational time is reduced to about 10% when applying 
this method to antenna-shape optimization. Moreover, POD can 
also be used to synthesize the equivalent circuit from an FE 
model of electric apparatus. This will be mentioned in III. D. 
 
C. Padé via Lanczos 
In PVL [35], the Padé approximation of the transfer function is 
obtained on the basis of the Lanczos process which is widely 
used for eigenvalue computations. This method can avoid ill 
conditioning in the asymptotic waveform evaluation which 

directly determines the expansion coefficients of the transfer 
function.  This section is devoted to formulation of PVL which 
is applied to the analysis of quasi-static electromagnetic fields. 

Let us consider the quasi-static electromagnetic field 
coupled with electric circuits which are governed by 

𝜅𝜅
𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

+ rot(𝜈𝜈rot 𝑨𝑨) = 𝐼𝐼𝒋𝒋                                 (35a) 

𝑅𝑅𝑅𝑅 + 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

 = 𝑉𝑉                               (35b) 

where 𝑨𝑨, 𝜈𝜈, 𝜅𝜅,𝑅𝑅, 𝐿𝐿, 𝐼𝐼,𝑉𝑉  are the vector potential, magnetic 
reluctivity, electric conductivity, resistance, inductance, current, 
voltage and Φ = ∫ 𝑨𝑨 ⋅ 𝒋𝒋𝑑𝑑𝑑𝑑  is the magnetic flux. Moreover, 𝒋𝒋 
denotes the current direction vector defined by 𝒋𝒋 = J I⁄ , where  
𝑱𝑱 is the current density. Equation (35a) is discretized by FEM. 
The resultant FE equation as well as circuit equation (35b) can 
be written as a state and output equations as follows: 

K𝒙𝒙 + N
𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒍𝒍𝑉𝑉                                 (36a) 

𝐼𝐼 = 𝒍𝒍𝑡𝑡𝒙𝒙                                (36b) 

where K, N  denote the FE matrices, 𝒙𝒙 ∈ ℝ𝑛𝑛  is the unknown 
vector composed of the magneto-motive forces (integration of 
𝑨𝑨 along element edges) and I, and 𝒍𝒍 = [0,0, . . ,0,1]𝑡𝑡 . 

The Laplace transform of (36a) leads to the transfer function 
given by 

𝐻𝐻(𝑠𝑠) = 𝒍𝒍𝑡𝑡(K + 𝑠𝑠N)−𝟏𝟏𝒍𝒍                                (37) 

which corresponds to the admittance function. We expand (37) 
around an expansion point 𝑠𝑠0 to obtain 

𝐻𝐻(𝑠𝑠0 + 𝜎𝜎) = 𝒍𝒍𝑡𝑡(I − 𝜎𝜎A)−𝟏𝟏𝒓𝒓                         (38) 
where 

A = −(K + 𝑠𝑠0N)−𝟏𝟏N                              (39a) 

𝒓𝒓 = (K + 𝑠𝑠0N)−𝟏𝟏𝒍𝒍                              (39b) 
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Fig.18 POD approaches for motor analysis [33]. 



 

It can be shown that A has real eigenvalues λ1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛 
and diagonalizable with its orthonormal eigenvectors U =
[𝒖𝒖1,𝒖𝒖2, … ,𝒖𝒖𝑛𝑛] : A = UΛUt , where Λ = diag[ 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛] . By 
diagonalization of A, (38) becomes 

𝐻𝐻(𝑠𝑠0 + 𝜎𝜎) = 𝒇𝒇𝑡𝑡(I − 𝜎𝜎Λ)−𝟏𝟏𝒈𝒈                                   

= �
𝑓𝑓𝑖𝑖𝑔𝑔𝑖𝑖

1 − 𝜎𝜎𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                               (40) 

where 𝑓𝑓𝑖𝑖 = Ut𝒍𝒍,𝑔𝑔𝑖𝑖 = Ut𝒓𝒓. Now it is possible to easily compute 
the admittance from the rational function (40) at any frequency 
around  𝑠𝑠0. It needs, however, large computational cost of order 
𝑂𝑂(𝑛𝑛3)  to perform the diagonalization when the number of 
unknowns n is large as usual in FE analysis. 

For this reason, we employ the Lanczos process which 
constructs the tri-diagonal matrix of order 𝑞𝑞 , 𝑞𝑞 ≪ 𝑛𝑛 , which 
approximates A . Since A  is unsymmetric, we use the bi-
Lanczos process, which generates the tri-diagonal matrices 

T𝑞𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡𝛼𝛼1 𝛽𝛽2 0
𝜌𝜌2 𝛼𝛼2 𝛽𝛽2
0 𝜌𝜌3 𝛼𝛼3

⋱
𝛼𝛼𝑞𝑞⎦
⎥
⎥
⎥
⎥
⎤

                            (41a) 

T�𝑞𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡𝛼𝛼1 𝛾𝛾2 0
𝜂𝜂2 𝛼𝛼2 𝛾𝛾2
0 𝜂𝜂3 𝛼𝛼3

⋱
𝛼𝛼𝑞𝑞⎦
⎥
⎥
⎥
⎥
⎤

                            (41a) 

and the basis vectors which satisfy 

AV𝑞𝑞 = V𝑞𝑞T𝑞𝑞 + �0,0, … ,𝒗𝒗𝑞𝑞+1�𝜌𝜌𝑞𝑞+1            (42a) 

AtW𝑞𝑞 = W𝑞𝑞T�𝑞𝑞 + �0,0, … ,𝒘𝒘𝑞𝑞+1�𝜂𝜂𝑞𝑞+1            (42b) 

where Vq = �𝒗𝒗1,𝒗𝒗2, … ,𝒗𝒗𝑞𝑞� , Wq = �𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑞𝑞� . The 
generated vectors are bi-orthogonal, that is, 𝒗𝒗𝑖𝑖 ⋅ 𝒘𝒘𝑖𝑖 = 𝑑𝑑𝑗𝑗 , 𝒗𝒗𝑖𝑖 ⋅
𝒘𝒘𝑗𝑗 = 0, 𝑖𝑖 ≠ 𝑗𝑗. From (42), it can be proved that D𝑞𝑞T𝑞𝑞 = T�𝑞𝑞𝑡𝑡D𝑞𝑞 , 
D𝑞𝑞 = diag[𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑞𝑞]. 

The generated tri-diagonal matrix is an approximation of in 
the following sense: we consider the eigenvalue problem A𝒙𝒙 =
𝜆𝜆𝒙𝒙 . We assume that 𝒙𝒙  can be approximated by the linear 
combination of 𝒗𝒗𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑞𝑞 , that is, 𝒙𝒙 = V𝑞𝑞𝒚𝒚. Moreover,  
we apply the Galerkin method to the eigenvalue problem to 
obtain 

W𝑞𝑞
𝑡𝑡�AV𝑞𝑞𝒚𝒚 − 𝜆𝜆V𝑞𝑞𝒚𝒚� = D𝑞𝑞�T𝑞𝑞𝒚𝒚 − 𝜆𝜆𝒚𝒚� = 0      (43) 

Hence by solving the small eigenvalue problem T𝑞𝑞𝒚𝒚 = 𝜆𝜆𝒚𝒚, we 
obtain q approximated eigenvalues of A. Moreover, it can be 
shown that the transfer function (38) is expressed in terms of 
T𝑞𝑞   as follows: 

𝐻𝐻(𝑠𝑠0 + 𝜎𝜎) = 𝒍𝒍𝑡𝑡𝒓𝒓𝒆𝒆1𝑡𝑡�I − 𝜎𝜎T𝑞𝑞  �−𝟏𝟏𝒆𝒆1            (44) 

Diagonalization of T𝑞𝑞  in (44) leads to the partial fraction 
expansion, which is equivalent to the Padé approximation. This 
is the result of PVL. 

 
 
D. Synthesis of equivalent circuits using MOR 
It is shown in II. D that the Cauer circuit equivalent to the 
macroscopic complex permeability of SMC can be derived to 
realize time-domain analysis. The Cauer circuit equivalent to 
the FE model of electric apparatus can also be derived on the 
basis of MOR. Such an equivalent circuit can be analyzed much 
faster the FE equation. Moreover, it is possible to couple the 
equivalent circuits with the power and control circuits, and to 
analyze the overall performance using circuit simulators. In 
Ref. [36], the Cauer equivalent circuits for an air core coil and 
also an inductor are synthesized using PVL taking the eddy 
currents in the coil windings into account. Moreover, in 
Ref. [37], the Cauer equivalent circuit for an induction heating 
(IH) device is synthesized using POD. 

Here let us consider the synthesis of the Cauer circuit from 
the FE model of an IH device [38], shown in Fig. 19, using PVL. 
In this IH device, the alternating current, 300 Hz, carried by the 
coil generates the magnetic flux which penetrates into the 
conducting plate. The eddy current induced by this magnetic 
flux generates Joule losses which increase the temperature of 
the conducting plate. By applying PVL to the FE equation (36a) 
which governs the IH device, we obtain the admittance function 
expressed in the rational polynomial of the form (44). As we do 
for 〈𝜇̇𝜇(𝜔𝜔)〉 in II. C, we apply the Euclidean algorithm to rewrite 
the rational polynomial as a continued fraction. From this result, 
we can directly synthesize the Cauer circuit shown in Fig. 10, 
where 𝑅𝑅0 is inserted in left of 𝐿𝐿1, which is equivalent to the FE 
model of the IH device shown in Fig.19. Because the iron core 
has magnetic saturation, we introduce the nonlinear relationship 
between current and flux in 𝐿𝐿1  of the Cauer circuit. In this 
circuit, 𝑅𝑅0  represents the dc-resistance of the winding coil, 
while 𝑅𝑅𝑘𝑘, 𝐿𝐿𝑘𝑘 , 𝑘𝑘 ≥ 2  represent the resistance and inductance 
relevant to the eddy current loss and fluxes generated by the 
eddy currents in the conducting plate. Figure 20 shows the time 
responses of the coil current in the IH device obtained from the 
synthetized Cauer circuit and corresponding FE equation. The 
amplitude of the alternating input voltage is set to 1V and 2V 
for Fig. 20 (a) and (b), respectively. When the amplitude is 1V, 
the current is almost sinusoidal, while it includes higher 
harmonics when the amplitude is increased to 2V due to the 
magnetic saturation in the iron core. In spite of existence in the 
waveform distortion in Fig. 20 (b), the Cauer circuit in which 
the magnetic nonlinearity is introduced in 𝐿𝐿1, agrees well with 
that computed by FEM. Once the Cauer equivalent circuit is 
synthesized, simulation and design of the IH device coupled 
with the external control and power circuits can effectively be 
performed. 
 

 
 

Fig. 19 Simple model of induction heating device. 

conducting plate 



 

 
 
E. Homogenization using MOR 
It is shown in II.A and II.D that the macroscopic complex 
permeability 〈𝜇̇𝜇(𝜔𝜔)〉  of stranded wires and SMC can be 
obtained by substituting the complex permeability 𝜇̇𝜇(𝜔𝜔) , 
expressed in a closed form, into the Ollendorff formula (7). This 
method is valid when the inclusion shape is simple. It is, 
however, still possible to obtain 〈𝜇̇𝜇(𝜔𝜔)〉 for arbitrary shaped 
inclusions such as ellipsoidal magnetic particles and wire with 
rectangular-shaped cross section using MOR. There are two 
possibilities to do so. In the first method, the magnetization 𝑀𝑀 
induced by eddy currents in an isolated inclusion immersed in 
time-harmonic magnetic field is analyzed using, e.g., FEM. The 
magnetization 𝑀𝑀 , which can be formulated as a transfer 
function, is expressed as a rational function of s using either 
POD or PVL, which then is substituted into the Ollendorff 
formula (7) to obtain 〈𝜇̇𝜇(𝜔𝜔)〉 . In this computation, the 
demagnetization constant 𝑁𝑁  of the inclusion has to be 
numerically determined. This method has been proposed and 
discussed in [39]. In the second method, the magnetization of 
the inclusion confined in a unit cell is analyzed using FEM and 
is then expressed as the rational function of s using either POD 
or PVL. In this case, 〈𝜇̇𝜇(𝜔𝜔)〉 is obtained without introducing 𝑁𝑁 
although field computations have to be carried out to know its 
dependence on the filling factor 𝜂𝜂 . This will be discussed 
elsewhere. 
 
 

VI. CONCLUSIONS AND OUTLOOK 
In this article, the homogenization method and MOR have been 
shown effective for reduction of computational cost in FE 
analysis of electromagnetic fields. The following problems 
remain for future studies. 
(1) There is no experimental verification for the numerical 

method for modeling of Litz-wires mentioned in II.B. In 
particular, the dependence of eddy current loss and coil 
impedance on the twisting has to be studied by experiment 
and numerical computations. 

(2) It is known that there exist electric and magnetic contacts 
among the magnetic particles used in SMC. It is necessary 
to take this effect into account for homogenization of SMC. 

(3) It has been shown that the Cauer equivalent circuit can be 
constructed for laminated steel sheets, SMC cores well as 
stationary electric apparatus such as inductors and IH 
devices. It remains unclear if this method can be extended 
to modeling of rotating machines. 

(4) The homogenization-based analysis of multi-turn coils and 
SMC cores can be performed based on the Padé 
approximation and Cauer equivalent circuit. The resulted 
algorithm is, however, rather complicated. Simplification of 
these methods would be required. 
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