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This paper describes the main stages of development of a numerical tool dedicated to the modeling of the magnetoelectric effect. The 
proposed approaches enable to take into account the nonlinearities of the material, a static and dynamic excitation and a transient state. 
The developed models are based on the finite element method in 2 or 3 D.  To reduce the computation time of frequency-dependent 
numerical models, the Proper Generalized Decomposition, which is a Model Order Reduction method, is introduced. Each proposed 
model is illustrated with an application example. The presented work is based on the contributions of three French laboratories: GeePs, 
L2E and L2EP.   
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I. INTRODUCTION 
HE COUPLING of magnetic and electric quantities is 

naturally present with Maxwell equations considering 
displacement currents in Ampère’s law and/or the derivative 

of the magnetic flux density in Faraday’s law. Electromagnetic 
metamaterials also deal about a “magnetoelectric” coupling, 
obtained by instance when considering the effective behavior of 
a complex arrangement of electrically conductive elements [1]. 
The magnetoelectric (ME) effect described in this paper is 
however related to a “material” magnetoelectric coupling. This 
ME effect commonly refers to the modification of electric 
polarization of a material resulting from an applied magnetic 
field. The corresponding reverse effect is associated to the 
change of magnetization due to an applied electric field. This 
effect has been observed in single phase materials, but with 
relatively small interactions comparing to the one obtained 
when considering composite material. Such composites are 
commonly made with combinations of piezoelectric and 
magnetostrictive phases, and the “extrinsic” effect is related to 
both the magneto-mechanical and electro-mechanical couplings, 
see Fig. 1. The advantage of such structure is related to the 
resulting high magnetic and electric susceptibilities, as the ME 
effect is related to the product of the two quantities [2]. Two 
families of ME composites have been studied: particles of phase 
1 placed in a matrix of phase 2, or laminate composites with the 
stacking of phase1/phase2 layers.  

    

 
FIG. 1 Magnetoelectric effect for composite materials 

 
Even if the ME effect still needs to be studied to consider its 

use in industrial applications, there is a wide range of potential 
ME devices, from magnetic sensors to storage devices [3]. As a 
consequence, the ME has been widely studied in the past 
decade, mainly in an experimental point of view [2]. Modeling 
approaches are more uncommon and often based on strong 
assumptions, especially when considering analytical studies [4]. 
The main modeling difficulty is related to the non-linearities 
associated to the magnetostrictive material, observed first in the 
magnetization curve and also for the strain dependence with the 
magnetic excitation. ME coupling has been studied in a 
“material” point of view, with homogenization techniques and 
the calculation of effective properties of a composite [5]. In 
order to study actual ME devices, the present paper summarizes 
the main steps of the development of a tool based on the finite 
element method and dedicated to the study of ME laminated 
devices. It has been developed with the contributions of three 
French laboratories: GeePs, L2E and L2EP. The paper focuses 
first on the development of the static and harmonic ME 
numerical models with the respective association of behavior 
laws/equilibrium equations. A second part deals with the 
consideration of the electric load associated to the ME device. 
Last part of the paper presents some recent results of model 
order reduction based on the Proper Generalized Decomposition 
in order to reduce the computation time of the ME modeling 
[17, 18, 19]. Devices based on the ME effect are detailed as we 
go along.  

II. MAGNETOELECTRIC EFFECT WITH STATIC EXCITATION 

A. Magnetoelectric coupling in laminate composites 
A decade ago, experimental studies have shown that the 

association of piezoelectric and magnetostrictive materials led to 
higher ME interactions than the ones observed in single-phase 
materials [6]. A classic configuration was the magnetic field 
sensor obtained with stacks of different PZT and 
magnetostrictive layers, such as the examples proposed in Fig. 
2. The working principle is as follows: the sensor is placed in a 
magnetic field, leading to the strain of the magnetostrictive 
layer. The resulting strain of the PZT layers gives the electric 
polarization. The corresponding electric potential obtained on 
the electrodes gives the information of the measured magnetic 
field.   

T 



 
FIG. 2 FeCo(Green)/PZT(Blue) multilayers for magnetic 

field sensors based on ME effect 
 
 
In order to propose an adequate numerical tool to evaluate 

such configuration, Galopin et al. [7] have first developed a 
finite element model that includes macroscopic constitutive laws 
of the materials, with the consideration of both magnetization 
and magnetostrictive non-linearities. The magnetostrictive non-
linearity is introduced with the consideration of a 
magnetostriction strain sµ that only depends on the magnetic 
flux density b. In such a case, the strain-stress relationship is 
expressed with Hooke’s law:  
 
𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 �𝑠𝑠𝑘𝑘𝑘𝑘 − 𝑠𝑠𝑘𝑘𝑘𝑘

𝜇𝜇 � (1) 
 
where s is the total strain and Cms the usual stiffness tensor. The 
model of sµ(b) is a polynomial function that approximates the 
experimental curves of the magnetostriction strain  obtained 
with a preliminary characterization step. The magnetic behavior 
law h(b,s) is deduced from integration of piezomagnetic 
coefficients over the strain, and is expressed with the magnetic 
field at free stress h(b,sµ) that also requests an experimental 
characterization: 

 

 (2) 

 
On the other side, the piezoelectric behavior only gives few 

difficulties: this material is considered with the standard linear 
equations, coupling the electric field e and the electric 
displacement field d to the mechanical quantities: 

 

 (3) 

 
Both constitutive laws are associated to magnetic and 

mechanical equilibrium equations considering static excitations:  
 

 (4) 

 
with J the (optional) applied current density and f  the body 
force.  
   

B. FE Approach 
Using the magnetic vector potential a, the mechanical 

displacement u and the electric potential v, the corresponding 
finite element formulation is based on the Galerkin method, 
associated with edge (if 3D) or nodal (if 2D) element 
discretization for magnetic degrees of freedom (DOF) and nodal 
discretization for mechanical and electrical DOF, and gives the 
following algebraic system: 

 

 (5) 

 
where ,  and  are respectively the magnetic, 

mechanical and electric stiffness matrix (‘s’ superscript is here 
for ‘static’),  the piezoelectric matrix. F, Fmag and Fm are 

respectively nodal external, magnetic and “equivalent” 
magnetostriction forces; Q is the vector of nodal electric 
charges. Jc(b,s) can be interpreted as a coercitive current density 
representing the effect of an applied stress. The resolution of 
this non-linear system is obtained with an iterative fixed-point 
method. 

C. Applications  
The numerical model has first been applied to the study of 

simple structures, such as the laminated ME devices presented 
in Fig. 2. Fig. 3 shows the resulting displacements for the 
cylindrical sensor. Due to the symmetries of the structure, only 
1/8 of the 3D geometry is meshed. Using this numerical model, 
a comparison of the parallelepiped and cylindrical geometries 
has been proposed, and it has been shown that the obtained 
electric potential is greater with the parallelepiped solution, as 
presented in Fig. 4 [8]. 

 
 
 

 
 

FIG. 3 Mechanical displacement for the cylindrical 
sensor (m) 
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FIG. 4 Electric potentials versus external magnetic 

Field for the 2 ME sensor geometries 
 
Thereafter, more complex devices have been considered, such 

as the displacement sensor proposed by Ueno, presented in Fig. 
5 [7]. Its principle is to get an electric voltage on the 
piezoelectric electrodes depending on the position of a plate (not 
represented here) placed below the magnet. In this structure, the 
magnetic flux due to the magnet is derived between the mobile 
ferromagnetic plate and the Terfenol-D layer. Thereafter, small 
variations of the air gap between the magnet and the plate 
change the magnetic flux inside the magnetostrictive layer, 
which is associated to magnetostriction strain variation. This 
strain is then responsible for an electric field in the 2 PZT 
layers.  

 
FIG. 5 Magnetoelectric displacements sensors 

 
Different configurations have been studied with the static ME 

numerical model, depending on the pre-stress applied on the 
Terfenol-D layer, see Fig. 6. The simulated sensitivity seems to 
be in accordance with experimental measurement, especially in 
the free-stress case.       

 

 
FIG. 6 Response of the magnetoelectric displacement sensor 

 
Other devices have also been studied with the similar 

approach, such as magnetoelectric composites with 

interdigitated electrodes [9]. 
Although this first numerical model has proved its efficiency 

to consider the study of ME devices with static excitations, the 
increasing publication number in the last decade dealing with 
harmonic ME effect has shown the necessity of an upgrade of 
the numerical ME model.     

III. MAGNETOELECTRIC EFFECT WITH DYNAMIC EXCITATION  

A. Why do one introduce a dynamic excitation?   
Even for the measurement of a static magnetic field, 

researchers have proposed to consider an additional harmonic 
component. The idea is to use the amplification of the structure 
displacements due to one of its mechanical resonance. Thus, 
even for a small harmonic excitation, the corresponding electric 
field will be largely greater than the one obtained with the static 
magnetic field only. If the system behavior was linear, a 
superimposition principle would apply, and only the electric 
response corresponding to the alternative component of the 
magnetic field would be amplified by the resonant effect. The 
response corresponding to the static magnetic field would only 
be amplified in an amount corresponding to the static 
magnetoelectric coefficient (see part II). As both magnetic and 
magnetostrictive show non-linear behavior, the static and 
resonant effects are coupled, and the magnetoelectric effect 
corresponding to the dynamic ME coefficient, enhanced through 
the resonance of the device, includes information on the static 
field. As a consequence, the model has to consider both the 
static and harmonic excitations, the second being considered 
small compared to the first one. A first numerical approach has 
been proposed in [9], showing the dependence between static 
and dynamic quantities. The following part details the method 
developed by [10] so as to include both static and dynamic 
simulations in the ME modeling. 

B. Impact on equilibrium equations and behavior laws 
The dynamic excitation is considered to be a sinusoidal 

signal, and the numerical model is then upgraded so as to 
include a harmonic part.  

First, the mechanical equilibrium equation used in the model 
is modified in order to consider vibration modes: 

 
 (6) 

 
with ρ the mass density and f the frequency of the dynamic 
excitation. Depending on the frequencies and geometry of the 
considered application, eddy currents can be included or not in 
the model. When the skin depth calculated from analytical 
equation is much higher than the usual depth of 
magnetostrictive layers, magnetic equilibrium equation is the 
same as in the static study. On the other hand, the conductivity 
of the magnetostrictive material can be included in the model 
with usual approaches. 

 The second improvement represents a more innovative 
challenge: the differentials of behavior laws (1) and (2) are 
calculated in order to describe a ‘harmonic’ constitutive laws 
around a polarization point of the magnetostrictive material 
(small signal problem, represented with the ~ sign) :  

 

( ) ufftdiv 2)2( πρ−=+

PZT 

 Terfenol-D 



 (7) 

 
The terms in square bracket of the 2nd equation represent an 
equivalent reluctivity 𝜈𝜈�ij that will be locally evaluated depending 
on the polarization imposed by the static excitation. Likewise, 
the magneto-mechanical coupling term is deduced from the 
considered polarization. Details on the calculation of these terms 
can be found in [11].  

C. Finite Element Approach 
Based on the equilibrium equations and “dynamic” behavior 

laws, the corresponding finite element model is obtained with 
the same approach than in the static case. The system solved in 
the dynamic case is the following: 

 

 (8) 

 
 includes here the ‘static’ mechanical stiffness matrix , 

but also the dynamic part with the mass matrix and a damping 
term. Piezoelectric, piezomagnetic and electric matrices are 
identical to the ones of the static model, unlike the magnetic 
one, because of the ‘small signal’ magnetostrictive behavior (7). 
Depending on the considered problem, the excitation at the 
frequency of a mechanical resonance can be a small dynamic 
current  or a small magnetic field hac imposed with 
Dirichlet conditions on the magnetic vector potential 𝑎𝑎�  in the 
boundaries of the problem domain.  

Finally, the global model includes both a static – to get the 
polarization quantities – and a dynamic – to evaluate the ME 
coefficient – calculations and the approach can be summarized 
with Fig. 7. 

The model has been first validated on some simple devices, 
such as the one presented in Fig. 8, by comparison with 
experimental studies. Fig. 9 shows the resulting ‘dynamic’ 
electric voltage obtained vs the applied ‘static’ magnetic field 
Hdc that has to be measured. The curve shows clearly a linear 
part, the electric voltage being proportional to the static 
magnetic field for small excitations. 

For higher magnetic fields, the electric voltage decreases: this 
effect is mainly related to the evolution of the coupling 
coefficient in the magnetostrictive behavior law (7). Indeed, the 
derivative of  decreases to zero for high magnetic fields, as 

shown with the curve represented at the right part of Fig. 9. This 
evolution is in good accordance with the experimental results 
observed in [12]. 

 
FIG. 7 Modeling procedure adapted to dynamic ME 

coefficient evaluation 
 

 
FIG. 8 Magnetic sensor configuration for dynamic ME effect 

 
 

 
FIG. 9 Evolution of the dynamic electric field vs the static 

magnetic field Hdc 
 

D. Applications 
Other interesting ME devices are based on this combination 

of static and dynamic contributions. One can by instance get a 
tunable inductor, whose geometry looks similar to the previous 
magnetic sensor (Fig. 10) but with only very thin 
magnetostrictive layers of Metglas (23 µm). The main 
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advantage of such solution comparing to classical tunable 
inductor is that it can easily be controlled with an applied static 
electric field Edc. This electric field applied between the 
electrodes of the PZT layers introduces a deformation of the 
PZT, and the associated stress in the Metglas layer leads to a 
modification of the equivalent reluctivity 𝜈𝜈�ij for this material, as 
presented in Eq. 7.  

 

 
FIG. 10 Tunable magnetoelectric inductor 

 
The proposed model is then adapted to first evaluate the stress 

in the magnetostrictive layer due to the static electric field Edc 
(polarization point). The second part dealing with the dynamic 
excitation –the sinusoidal current injected in the coil– is 
however exactly the same than the one presented previously. 
The inductance is then evaluated with an energy approach for 
different static electric fields and different current frequencies. 
Modeling results presented in Fig. 11 show the two observations 
made by experimental researchers [13]: first, the decrease of Edc 
gives increasing inductance values, and secondly the inductance 
is decreased for high current frequencies, as expected with the 
influence of the skin effect.  

For some other applications, such as energy transducers, one 
need to consider a load associated to the piezoelectric layer. The 
next part details the corresponding numerical model. 

 

 
FIG. 11 Inductance vs frequency for different static electric 

fields Edc 
 

IV. COUPLING WITH ELECTRICAL LOAD EQUATION  
Since the piezoelectric layer is dielectric, there is no free 

charge inside it. All the free charges are confined to the 
electrodes. The current 𝐼𝐼  flowing toward the electrical 
impedance load is the time derivative of the total electric charge 
𝑄𝑄, 𝐼𝐼 = 𝜕𝜕𝑡𝑡𝑄𝑄, or 𝐼𝐼 = 𝑗𝑗𝑗𝑗𝑗𝑗 in harmonic regime.   

In harmonic regime the terminal voltage of the load 𝑍𝑍 
(resistive, capacitive or inductive) is given by 𝑍𝑍𝑍𝑍 and is related 
to the voltage 𝑈𝑈  between the electrodes by 𝑈𝑈 = 𝑍𝑍𝑍𝑍 . We can 
introduce an incident matrix 𝐾𝐾𝑞𝑞𝑞𝑞  that links the electrical 
potentials of electrodes of the piezoelectric layer and the voltage 

𝑈𝑈. The unknown electric charge 𝑄𝑄 satisfies in harmonic regime 
the following condition: 
 
𝑉𝑉𝐾𝐾𝑞𝑞𝑞𝑞 − 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 0 (9) 

 
where the elements of 𝐾𝐾𝑞𝑞𝑞𝑞 are respectively equal to 1 or -1 if a 
node is associated with the top electrode or the bottom 
electrode, otherwise its elements are equal to 0.  

In 2D assumption, the width 𝐿𝐿𝑧𝑧 in the z-direction is not taking 
into account. Actually, this width is considered as normalized in 
according to [1m]. The current flowing toward the electrical 
impedance 𝐼𝐼 is thus proportional of the surface 𝒮𝒮 =  𝐿𝐿𝑥𝑥 × [1𝑚𝑚] 
of the electrodes since 𝑄𝑄 = 𝐶𝐶𝐶𝐶 , where 𝐶𝐶  is the capacitance 
between the electrodes of the piezoelectric given by:  
 

𝐶𝐶 = 𝜀𝜀𝑆𝑆𝒮𝒮
𝑡𝑡𝑝𝑝

 (10) 

 
For a considered distance 𝐿𝐿𝑥𝑥 , the capacitance 𝐶𝐶  is then 

normalized as:  
 

𝐶𝐶̅ = 𝐶𝐶
𝐿𝐿𝑥𝑥

= 𝜀𝜀𝑆𝑆𝒮𝒮
𝑡𝑡𝑝𝑝 𝐿𝐿𝑥𝑥

 (11) 

 
In this case, the current 𝐼𝐼  is also normalized by  𝐼𝐼 ̅ =

𝜕𝜕𝑡𝑡{𝐶𝐶̅𝑉𝑉} = 𝜕𝜕𝑡𝑡 �
𝐶𝐶
𝐿𝐿𝑥𝑥
𝑉𝑉� = 𝐼𝐼

𝐿𝐿𝑥𝑥
 . To conserve the physical quantity 

𝑉𝑉 = 𝑍𝑍𝑍𝑍 = 𝑍𝑍𝜕𝜕𝑡𝑡{𝐶𝐶𝐶𝐶} , it is necessary to normalize also the 
impedance 𝑍𝑍 by 𝑍̅𝑍 = 𝑍𝑍𝐿𝐿𝑥𝑥.   
 
𝑉𝑉 = 𝑍̅𝑍𝐼𝐼 ̅ = 𝑍𝑍𝐿𝐿𝑥𝑥

𝐼𝐼
𝐿𝐿𝑥𝑥

= 𝑍𝑍𝑍𝑍 (12) 
 

In considering a small signal harmonic ac field ℎ𝑎𝑎𝑎𝑎 around a 
magnetization point 𝐻𝐻𝑑𝑑𝑑𝑑 , the coupling system equation (13) 
including the load equation can be solved in harmonic regime:  
 

[𝕂𝕂]{𝒳𝒳} = {ℱ} (13) 
 
where [𝕂𝕂]  denotes the small signal linear matrix around a 
magnetization point. The terms in (13) have the form: 
 

[𝕂𝕂] =

⎣
⎢
⎢
⎡𝐾𝐾𝑢𝑢𝑢𝑢 − 𝜔𝜔2𝑀𝑀 + 𝑗𝑗𝑗𝑗𝐶𝐶𝑢𝑢𝑢𝑢 𝐾𝐾𝑢𝑢𝑢𝑢 0 𝐾𝐾𝑢𝑢𝑢𝑢

𝐾𝐾𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝𝑝𝑝 0
0
𝐾𝐾𝑎𝑎𝑎𝑎

𝐾𝐾𝑞𝑞𝑞𝑞
0

−𝑗𝑗𝑗𝑗𝑍̅𝑍
0

0
𝐾𝐾𝑎𝑎𝑎𝑎⎦

⎥
⎥
⎤
 , 𝒳𝒳 = �

𝒖𝒖�
𝑉𝑉�
𝑄𝑄�
𝑎𝑎�𝑧𝑧

� , ℱ = �
0
0
0
0

� (14) 

 
As mentioned previously, the magnetic excitation is 

implemented in considering the Dirichlet conditions on the 
magnetic vector potential 𝑎𝑎�𝑧𝑧  in the boundaries of the problem 
domain (Fig. 12).   

The piezomagnetic coefficients and the permeability in 𝐾𝐾𝑢𝑢𝑢𝑢 
and 𝐾𝐾𝑎𝑎𝑎𝑎  are incremental and determined by nonlinear solution 
on static regime under the magnetic bias 𝐻𝐻𝑑𝑑𝑑𝑑 , as developed in 
the previous part [10]. 

In transient regime, the electrical circuit equation depends on 
the natural of the electrical load. In the case of resistive load for 
example, we have 𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 − 𝑅𝑅𝑄̇𝑄 = 0. The system to be solved takes 
the following form [14]: 



 
[ℳ]�𝒳̈𝒳� + [𝒞𝒞]�𝒳̇𝒳� + [𝒦𝒦]{𝒳𝒳} = [ℱ]                       (15) 

  
with, 

[𝒦𝒦] =

⎣
⎢
⎢
⎡
𝐾𝐾𝑢𝑢𝑢𝑢 𝐾𝐾𝑢𝑢𝑢𝑢 0 𝐾𝐾𝑢𝑢𝑢𝑢
𝐾𝐾𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝𝑝𝑝 0

0
𝐾𝐾𝑎𝑎𝑎𝑎

𝐾𝐾𝑞𝑞𝑞𝑞
0

0
0

0
𝐾𝐾𝑎𝑎𝑎𝑎⎦

⎥
⎥
⎤
 , [𝒞𝒞] = �

𝐶𝐶𝑢𝑢𝑢𝑢 0 0 0
0 0 0 0
0
0

0
0

𝑅𝑅
0

0
0

�  

 
[ℳ] = 𝑀𝑀, 𝒳𝒳 = [𝒖𝒖 𝑉𝑉 𝑄𝑄 𝑎𝑎]𝑇𝑇, ℱ = [0 0 0 0]𝑇𝑇  

 
Again in the small signal assumption, the system equation is 
linear and has to be solved with a given time discretization 
scheme. 

V. EXAMPLE OF A ME ENERGY TRANSDUCER 
Although ME Composite structures can be considered for 

quasi-static energy harvesting [15], the model detailed in the 
previous part is here applied for a dynamic energy transducer. 
The studied example presented in Fig. 12 consists of an energy 
transducer composed of a trilayer Terfenol-D/PZT/Terfenol-D 
laminated composite. The device has the following dimensions: 
Lx=14mm, Ly=3mm (tm=tp=1mm). The excitation is an 
externally applied magnetic field Hext.  

 

 
FIG. 12  Magnetic, electric and elastic boundary 

conditions 
 
The solution domain includes an air domain around the 

composite and is illustrated in Fig. 12, where the magnetic, 
electric and elastic boundary conditions are, respectively, 
indicated. In particular, the constant magnetic vector potentials  
a = ±a0/2 with a0 = 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝜇𝜇0(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)  are applied on the 
top and the bottom limits of the domain to take into account the 
externally applied magnetic field. The fixed mechanical 
displacements are here imposed on the middle of the composite, 
and the Dirichlet condition for the electric scalar potential is 
applied on the external boundary. The plane stress condition has 
been applied for 2D elastic problem:  
 
𝑡𝑡𝑥𝑥𝑥𝑥 = 𝑡𝑡𝑥𝑥𝑥𝑥 = 𝑡𝑡𝑦𝑦𝑦𝑦 = 0 (16) 
𝑠𝑠𝑥𝑥𝑥𝑥 = 𝑠𝑠𝑦𝑦𝑦𝑦 = 0 (17) 
𝑠𝑠𝑥𝑥𝑥𝑥 = −𝜗𝜗�𝑡𝑡𝑥𝑥𝑥𝑥 + 𝑡𝑡𝑦𝑦𝑦𝑦�/𝔈𝔈 (18) 

 
where 𝔈𝔈  and 𝜗𝜗  are respectively the Young’s module and the 
Poisson coefficient that are related to the compliance constants 
by 𝔈𝔈 = 1

𝑠𝑠11
 and 𝜗𝜗 = − 𝑠𝑠12

𝑠𝑠11
  

 

VI. HARMONIC REGIME RESULTS 
Fig. 13 shows the frequency dependence of the voltage 

coefficient 𝛼𝛼�𝑉𝑉 = 𝑉𝑉/ℎ𝑎𝑎𝑎𝑎  under the various electrical loads R. 
The ME composite resonates under the open-circuit condition 
with 𝛼𝛼�𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  close to 10 V/Oe. This value is obtained with the 
viscous damping coefficients 𝛼𝛼 = 0, 𝛽𝛽=1.5x10-8.  

     

 
FIG. 13 𝛼𝛼�𝑉𝑉 in function of frequency under different resistive 

loads 
 
Fig. 14 shows the output deliverable power as function of the 

load resistance under different dc bias field. Finally under a dc 
bias field Hdc of 200Oe and an ac field hac=1Oe, a deliverable 
maximal power of 0.45 mW is obtained under a electrical load 
of 35 kOhm.   

 

 
FIG. 14 Output deliverable power as function of the load 

resistance under different dc bias field 
 

VII. TRANSIENT ANALYSIS 
The harmonic regime works with the assumption of small 

signal and linear material. However in the case of nonlinear 
materials or nonlinear signals the transient analysis becomes 
necessary to predict the energy transfer. This is by instance the 
case when the synchronized switch damping technique (SSD) is 
employed [15][16]. The use of a magneto-elastic-electric 
equivalent circuit model presented is possible but in contrast to 
the FEM, the model does not take into account rigorously the 
mechanical and electrical impacts when the structure is loaded 
by electrical impedance.  

 



In our work, the Newmark method is employed to calculate 
the transient dynamic response [17]:  

[𝐾𝐾�]{𝒳𝒳𝑡𝑡+∆𝑡𝑡} = {𝑅𝑅𝑡𝑡+∆𝑡𝑡}  with  [𝐾𝐾�] = [ℳ] + ∆𝑡𝑡𝑡𝑡[𝒞𝒞] + ∆𝑡𝑡2𝑏𝑏
2

[𝒦𝒦] (19) 

where 
{𝑅𝑅𝑡𝑡+∆𝑡𝑡} = ∆𝑡𝑡2

2
𝑏𝑏{ℱ𝑡𝑡+∆𝑡𝑡} + [ℳ] �{𝒳𝒳𝑡𝑡} + ∆𝑡𝑡�𝒳𝒳𝑡𝑡̇ � + ∆𝑡𝑡2

2
(1− 𝑏𝑏)�𝒳𝒳𝑡𝑡̈ �� +

[𝒞𝒞] �∆𝑡𝑡𝑡𝑡{𝒳𝒳𝑡𝑡} + ∆𝑡𝑡2

2
(2𝑎𝑎 − 𝑏𝑏)�𝒳𝒳𝑡𝑡̇ �+ ∆𝑡𝑡3

2
(𝑎𝑎 − 𝑏𝑏)�𝒳𝒳𝚤𝚤̈ ��  

with  �𝒳̈𝒳𝑡𝑡+∆𝑡𝑡� = 2
𝑏𝑏∆𝑡𝑡2

({𝒳𝒳𝑡𝑡+∆𝑡𝑡}− {𝒳𝒳∆𝑡𝑡}) − 2
𝑏𝑏∆𝑡𝑡

�𝒳𝒳∆𝑡𝑡̇ � − �1
𝑏𝑏
− 1� �𝒳̈𝒳∆𝑡𝑡�  

�𝒳̇𝒳𝑡𝑡+∆𝑡𝑡� = �𝒳𝒳∆𝑡𝑡̇ � + ∆𝑡𝑡 �(1 − 𝑎𝑎)�𝒳̈𝒳∆𝑡𝑡� + 𝑎𝑎�𝒳̈𝒳𝑡𝑡+∆𝑡𝑡�� , 𝑎𝑎 = 1, 𝑏𝑏 = 1
2
�𝑎𝑎 + 1

2
�
2
 

 
The principle of SSD technique is considered with the energy 

equilibrium of the system. Indeed, in considering the system 
(15) in open electric condition we can write the system: 
 

�
𝑀𝑀𝑢𝑢�̈ + 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢�̇ + 𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢� + 𝐾𝐾𝑢𝑢𝑢𝑢𝑉𝑉� + 𝐾𝐾𝑢𝑢𝑢𝑢𝑎𝑎�𝑧𝑧 = 0

𝐾𝐾𝑝𝑝𝑝𝑝𝑢𝑢� + 𝐾𝐾𝑝𝑝𝑝𝑝𝑉𝑉 = 0
𝐾𝐾𝑎𝑎𝑎𝑎𝑢𝑢� + 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎�𝑧𝑧 = 0

 (20) 

 
Thus, in combining the expression of 𝑎𝑎�𝑧𝑧 = −𝐾𝐾𝑎𝑎𝑎𝑎−1𝐾𝐾𝑎𝑎𝑎𝑎𝑢𝑢 with 

𝑢𝑢� = −𝐾𝐾𝑝𝑝𝑝𝑝−1𝐾𝐾𝑝𝑝𝑝𝑝𝑉𝑉  in the first equation we obtain the equivalent 
system:   

 
𝑀𝑀𝑢𝑢�̈ + 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢�̇ + 𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢� + �𝐾𝐾𝑢𝑢𝑢𝑢 + 𝐾𝐾𝑢𝑢𝑢𝑢�𝑉𝑉� = 0 (21) 

 
with  𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐾𝐾𝑢𝑢𝑢𝑢𝐾𝐾𝑎𝑎𝑎𝑎−1𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝑝𝑝𝑝𝑝−1𝐾𝐾𝑝𝑝𝑝𝑝.  

 
The energy equilibrium can be obtained in multiplying both 

sides of Eq. (21) by the displacement velocity 𝒖̇𝒖 and integrating 
over the time variable: 
 
∫ 𝑀𝑀𝑢𝑢�̈𝑢𝑢�̇𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 + ∫ 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢�̇2

𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 + ∫ 𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢�𝑢𝑢�̇

𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 + ∫ �𝐾𝐾𝑢𝑢𝑢𝑢 + 𝐾𝐾𝑢𝑢𝑢𝑢�𝑉𝑉�𝑢𝑢�̇

𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 = 0  (22) 

 
The provided energy (22)  is distributed into the kinetic 

energy  1
2
𝑀𝑀𝑢𝑢�̇2(𝑡𝑡) , potential elastic energy 1

2
𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢�2(𝑡𝑡) , the 

mechanical damping ∫ 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢�̇2
𝑡𝑡
𝑜𝑜 dt  and the transmitted energy 

∫ �𝐾𝐾𝑢𝑢𝑢𝑢 + 𝐾𝐾𝑢𝑢𝑢𝑢�𝑉𝑉�𝑢𝑢�̇
𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 quantity. This latter corresponds to the 

mechanical energy, which is converted into electrical energy.  
 
∫ �𝐾𝐾𝑢𝑢𝑢𝑢 + 𝐾𝐾𝑢𝑢𝑢𝑢�𝑉𝑉�𝑢𝑢�̇
𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 = 1

2
𝐶𝐶𝑜𝑜𝑉𝑉�2 + ∫ 𝑉𝑉�𝐼𝐼𝑡𝑡

𝑜𝑜 𝑑𝑑𝑑𝑑 (23) 
 

Thus, the maximization of this energy leads to minimization 
of the mechanical energy in the structure. The usefulness of a 
SSD control approaches is to maximize this energy in putting 
the voltage and displacement velocity in phase.  

Several techniques exist, including one that imposes an 
inductance as the Synchronized Switch Damping on Inductor 
(SSDI) technique presented in Fig. 15. The switch is open, 
except when zero displacement velocities 𝒖̇𝒖𝑡𝑡+∆𝑡𝑡  occur. At this 
instant, the switch is closed in a very short period that puts in 
phase the output voltage and displacement velocity. In this short 
period 𝑡𝑡𝑖𝑖 = 𝜋𝜋�𝐿𝐿𝐶𝐶𝑜𝑜  the clamped capacitor 𝐶𝐶𝑜𝑜  and the added 
inductance L (1nH here) represents an oscillator [15].  

 
(a) 

 

 
(b) 

FIG. 15 SSDI nonlinear device and voltage and displacement 
velocity waveforms 

 
 

To model the SSDI technique in the FEM multiphysic model, 
the current equation 𝑖𝑖(𝑡𝑡) = 𝑖𝑖𝑅𝑅(𝑡𝑡) + 𝑖𝑖𝐿𝐿(𝑡𝑡) has to be introduced in 
the transient system (15):  
 
𝜕𝜕𝑡𝑡𝑖𝑖 = 𝜕𝜕𝑡𝑡𝑈𝑈

𝑅𝑅
+ 𝑈𝑈

𝐿𝐿
   (24) 

 𝐿𝐿𝑄𝑄�̈ − 𝐿𝐿
𝑅𝑅
𝑉𝑉�̇𝐾𝐾𝑝𝑝𝑝𝑝 − 𝑉𝑉�𝐾𝐾𝑝𝑝𝑝𝑝 = 0 (25) 

 
Accordingly, as shown in Fig. 16, when the SSDI harvesting 

technique is activated (i.e. time > 0.13ms) the output voltage 
reaches a maximal value and decreases until a steady state and 
the deliverable energy stored in the load ∫𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  is strongly 
gradually increased.  
 

 
FIG. 16 Output voltage and deliverable energy transient 

response 
 



VIII. MODEL ORDER REDUCTION BASED ON PROPER 
GENERALIZED DECOMPOSITION 

To reduce the computation time of frequency-dependent 
numerical models, Model Order Reduction (MOR) methods 
have been developed and presented in the literature. These 
methods consist in searching a solution in a subspace of the 
approximation space of the full numerical model. They have 
been mainly used to solve problems in mechanics. In this field, 
the Proper Generalized Decomposition method has been 
developed since the early 2000’s and knows an increasing 
interest in the scientific community [18, 19, 20]. In 
computational electromagnetics, the PGD approach has been 
developed to study a fuel cell polymeric membrane model [21]. 
In static electromagnetism, the nonlinear behavior of a Soft 
Magnetic Composite Material and of a three phase transformer 
has been modeled [22][23]. In the case of magneto-quasistatics, 
the skin effect in a rectangular slot or in a conducting plate has 
been addressed [24][25]. A squirrel cage induction machine at 
standstill and a magneto-thermal devices have been also studied 
[26][27]. In [28], a piezoelectric energy harvester is modeled. 
Then, we propose in the following part to apply the PGD 
approach with the magnetoelectric problem. 

A. PGD formulation 
To apply the PGD approach, we consider a weak formulation 

on D×[ωmin:ωmax] of the problem defined on the section III. 
Then, we have: 

 

 (26) 

   (27) 

                  (28) 

 
The PGD method consists in approximating the solutions by 

sums of separable functions in frequency and space, so-called 
modes. Then, the electric potential, the magnetic potential and 
the mechanical displacement are approximated by separated 
representations of space and frequency functions,  
 

   (29) 

   (30) 

   (31) 

with x∈D, ω∈ [ωmin:ωmax] and M the number of modes of the 
expansions. To compute the set of functions  and 

for j∈[1:M] and l={v, a, u}, an iterative enrichment approach is 

used. At the nth iteration, the functions  and are 

computed with respect to the previous functions  and 

with i∈[1:n-1]. To calculate  and , two sets 
of equation are solved iteratively.  

In a first step, we assume that the functions with l={v, 
a, u} are known. Then, the test functions in equations (26), (27) 
and (28) are , and 

 with ,  and test 

functions defined on the same spaces of  ,  and 

 respectively. In term of 2D discretisation, these 
functions are supported by the nodal shape functions. Then, we 
denote by ,  and  the values on the Degrees of 

Fredoom of the functions ,  and  
respectively. Finally, the system to be solved is:  

  

�

β1,𝑛𝑛𝐾𝐾𝑢𝑢𝑢𝑢 − β2,𝑛𝑛𝑀𝑀 + β3,𝑛𝑛𝐶𝐶𝑢𝑢𝑢𝑢 β4,𝑛𝑛𝐾𝐾𝑢𝑢𝑢𝑢 β5,𝑛𝑛𝐾𝐾𝑢𝑢𝑢𝑢
β6,𝑛𝑛𝐾𝐾𝑝𝑝𝑝𝑝 β7,𝑛𝑛𝐾𝐾𝑝𝑝𝑝𝑝 0
β8,𝑛𝑛𝐾𝐾𝑎𝑎𝑎𝑎 0 β9,𝑛𝑛𝐾𝐾𝑎𝑎𝑎𝑎

� �
𝑹𝑹𝑛𝑛
𝑢𝑢

𝑹𝑹𝑛𝑛
𝑣𝑣

𝑹𝑹𝑛𝑛
𝑎𝑎
� = �

0
0

β𝑠𝑠𝑭𝑭𝑎𝑎
�+

∑ �
β1,𝑖𝑖𝐾𝐾𝑢𝑢𝑢𝑢 − β2,𝑖𝑖𝑀𝑀 + β3,𝑖𝑖𝐶𝐶𝑢𝑢𝑢𝑢 β4,𝑖𝑖𝐾𝐾𝑢𝑢𝑢𝑢 β5,𝑖𝑖𝐾𝐾𝑢𝑢𝑢𝑢

β6,𝑖𝑖𝐾𝐾𝑝𝑝𝑝𝑝 β7,𝑖𝑖𝐾𝐾𝑝𝑝𝑝𝑝 0
β8,𝑖𝑖𝐾𝐾𝑎𝑎𝑎𝑎 0 β9,𝑖𝑖𝐾𝐾𝑎𝑎𝑎𝑎

� �
𝑹𝑹𝑖𝑖
𝑢𝑢
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𝑎𝑎
�𝑛𝑛−1

𝑖𝑖=1                    (32)  

with 

 

where X*(ω) denotes the conjugated of X(ω) and Fa the vector 
source introduced by the imposed boundary condition on the 
magnetic potential (Fig. 12). We can note that the structure of 
the previous system is similar to this one presented by (8). The 
difference is the introduction of coefficients associated with 
each submatrices.  

In a second step, we assume that the functions , 

and  are known. Then, the test functions in 
equations (26), (27) and (28)  are , 

and  with ,  

and test functions defined on the same spaces 

of with l={v, a, u} respectively. To compute the 

functions , it is possible to use strong formulations of 
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(26), (27) and (28). Then, are solutions of the following 
equation system: 

 

�
𝛾𝛾1,𝑛𝑛 − 𝜔𝜔2𝛾𝛾2,𝑛𝑛 + 𝑗𝑗𝑗𝑗𝛾𝛾3,𝑛𝑛 𝛾𝛾4,𝑛𝑛 𝛾𝛾5,𝑛𝑛

𝛾𝛾6,𝑛𝑛 𝛾𝛾7,𝑛𝑛 0
𝛾𝛾8,𝑛𝑛 0 𝛾𝛾9,𝑛𝑛

� �
𝑆𝑆𝑛𝑛𝑢𝑢(𝜔𝜔)
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𝛾𝛾6,𝑖𝑖 𝛾𝛾7,𝑖𝑖 0
𝛾𝛾8,𝑖𝑖 0 𝛾𝛾9,𝑖𝑖
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𝑆𝑆𝑖𝑖𝑢𝑢(𝜔𝜔)
𝑆𝑆𝑖𝑖𝑣𝑣(𝜔𝜔)
𝑆𝑆𝑖𝑖𝑎𝑎(𝜔𝜔)

�𝑛𝑛−1
𝑖𝑖=1                    (33) 

with 

 

 
The equation system (33) is solved for different values of ω 
such that ω={ω1, …, ωN} with N the number of discrete values. 

The two steps are repeated until convergence of all functions 
 and with l={v, a, u}. The number of modes 

used to approximate the solutions (29), (30) and (31) is not 
known a-priori by the user. Then, a criterion can be introduced 
to stop the enrichment process [17]. For example, this criterion 
can be based on the norm of the nth mode with respect to the 
norm of the first mode,  

 

  (34) 

 
with ε a given value by the user. Other error estimators based on 
quantities of interest can be developed. For a magnetoelectric 
problem, the voltage between two electrodes or the maximal 
deformation evaluated for two successive iterations of the 
enrichement process could be used as error estimator. 

The convergence of the enrichment process can be improved 
by introducing an update step of the frequency functions after 
each calculation of the new mode [19]. Then, after the 
computation of the nth mode, the update stage consists in 
recomputing the functions for j∈[1:n] with l={v, a, u} 

with respect to the functions  j∈[1:n]. 

B. Application 
In term of application, we consider the device presented in 

section V without resistive load. The 2D mesh is composed of 
3283 nodes and 6525 triangles. The frequency interval of 
simulation is fixed at [104;105]Hz with 401 equidistributed 
discrete values. The PGD method presented in the previous 
section is applied to obtain approximated solutions. In order to 
evaluate the efficiency of the PGD method, the same problem is 
solved with a “classic” FE model. The results obtained from this 
numerical model will be considered as the reference results. We 
denote by the subscript PGD and up_PGD the results obtained 
from the PGD without and with the update step. In order to 
evaluate the convergence of the enrichment loop, we consider 
error estimators based on the interest quantities such as the 
voltage between the two electrodes and the maximal 

deformations according to the axis x and y. Two criteria can be 
defined, the first one εi evaluates the relative gap on the interest  
values between two successive iterations of the enrichment loop 
and the second one εr, the relative error between the PGD 
approximation versus the reference. Then, we have  

 
    (35) 

 
    (36) 

 
with X the interest quantity (i.e. the magnitude V of the voltage, 
defx and defy the maximal deformations along x and y) and i the 
ith mode.  
 
 

 
FIG. 17 Relative error of the voltage magnitude as a function 

of the number of modes 
 
 
 

 
FIG. 18 Error of the maximal deformation along x as a 

function of the number of modes 
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FIG. 19 Error of the maximal deformation along y as a 

function of the number of modes 
 
 
Figs. 17, 18 and 19 show the evolutions of the error εr for the 

magnitude of the voltage and for the maximal deformations 
along x and y as functions of the number of modes. For all cases, 
the convergences of the PGD with the update step are faster than 
without this additional step. In the following, we consider only 
the results obtained from the PGD with the update step. We can 
observe that the error of the voltage decreases faster than those 
of the maximal deformations. With a low number of modes, the 
waveform of the voltage magnitude versus the frequency is 
close to the reference (Fig. 20), with M=2, the relative error εrV 
is close to 0.1%. To obtain a good approximation of the 
evolutions of the maximal deformations versus the frequency, 
the number of modes must be enough important. For our case, 
with M=13, we obtain a good approximation of the  maximal 
deformations along the axis x and y versus the frequency. Fig. 
21 and 22 present the evolution of the maximal deformations 
obtained from the PGD for different number of modes. We can 
observe that the maximal deformations on the high frequencies 
are captured with a low number of modes. The more the number 
of modes increases and the more the low frequency maximal 
deformations are captured by the PGD approximation. Fig. 23 
presents the evolutions of the relative gap εi on the interest 
quantities between two successive iterations of the enrichment 
loop (i.e. the magnitude V of the voltage, defx and defy the 
maximal deformations along x and y) as functions of the number 
of modes. For all interest quantities, the convergence is not 
strictly decreasing. For the maximal deformations, a sudden 
fluctuation corresponds to a new variation of the maximal 
deformation captured by the last computed mode. 

 
 

 
FIG. 20 Magnitude of the voltage versus the frequency 

 
 

 
FIG. 21 Maximal deformation along x versus the frequency 

 
 

 
FIG. 22 Maximal deformation along y versus the frequency 

 

 
FIG. 23 Relative gaps on the interest values between two 

successive iterations of the enrichment loop 
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Fig. 24 illustrates the deformation of the structure at the 
resonance frequency obtained from the PGD with M=15. From 
(31), it  is  possible  to  present  the  mechanical deformation 
associated  with  each  mode. Fig. 25, 26 and 27 present the 
deformation associated with the first, second and fourth mode. 
The first and second mode of the mechanical deformation could 
be illustrated as physical deformations of the structure. For the 
rest of modes, it is difficult to give a physical sens of the 
deformations. Fig. 28 present the gap of the deformation at the 
resonance frequency obtained from the reference and the PGD 
approximation. The values of the gap distribution are lower 
compared to the mechanical deformation presented in Fig. 24. 

If the interest quantity is the voltage between the two 
electrodes, the PGD gives a good approximation with M = 2, in 
this case, the speed up is 34. To obtain mechanical deformations 
close to the references, the modes number of the  PGD solutions 
must be to 15 modes, the speed up is then 4.3.  

 
 

 
FIG. 24 Deformation of the structure at the resonance 

frequency obtained from the PGD (M=15) 
 
 

 
FIG. 25 Deformation of the structure at the resonance 

frequency for the first mode 

  
FIG. 26 Deformation of the structure at the resonance 

frequency for the second mode 

 
FIG. 27 Deformation of the structure at the resonance 

frequency for the fourth mode 

 
FIG. 28 Gap of the deformation at the resonance frequency 
obtained from the reference and the PGD approximation 

IX. CONCLUSION 
This paper has described the different steps of the 

establishment of a numerical model applied to the study of 
magnetoelectric devices. Details on included behavior laws have 
been presented to introduce the first static and harmonic FE 
models without consideration of the load. Next, a finite element 
multiphysics modeling of an energy transducer based on 
magnetoelectric laminate composites in considering electrical 
load has been presented. The model has been developed for both 
harmonic and transient cases and successfully applied to an 
energy transducer composed of Terfernol-D/PZT/Terfernol-D 
materials. The harmonic model allows to determine the 
resonance frequencies and the optimal loads to maximize the 
deliverable power. The transient model using the Newmark 
method provides a useful tool to study the energy transfer when 



a conditioning circuit such as a SSDI harvesting technique is 
employed. Finally, the PGD method has been developed with 
the potential formulation used to solve the ME problem. In 
terms of accuracy, the global quantities such that the voltage can 
be approximated with a low number of modes and the 
computation time significantly reduced. If  we  are  interested  in  
local  values  for  the  mechanical deformation,  a  good 
approximation  is  obtained  with  a  greater  number  of  modes. 
Nevertheless, with the studied example, the computation time 
still remains lower than that obtained from a full model. 
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