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Multiscale finite element methods for eddy current problems in
laminated iron MSFEM4ECP
Abstract — This article is about the ongoing research project "Mul-
tiscale Finite Element Methods for Eddy Current Problems" MS-
FEM4ECP in laminated iron.
The simulation of eddy currents in laminated iron cores by the finite
element method (FEM) is of great interest in the design of electrical
machines and transformers. In extrem cases the iron core is made
of grain oriented ferromagnetic laminates, the material properties
are anisotropic and exhibit a magnetic hysteresis. The scales vary
from the meter range for the iron core to the thickness of single lam-
inates (typically in the range of 0.2 − 0.3mm). Clearly, modeling
each laminate individually is not a feasible solution. Many finite el-
ements (FEs) have to be used in such a model leading to extremely
large nonlinear systems of equations. An accurate simulation of
eddy currents and the iron losses in laminated ferromagnetic cores
with reasonable computer resources is not solved satisfactorily. It is
still one of the major challenges in computational electromagnetics.
Laminated cores represent simple speaking a periodic microstruc-
ture and therefore are well suited for multiscale finite element meth-
ods (MSFEMs).
Simulations with MSFEM show a boundary layer quite similar to
that which occurs in corresponding brute force models of such cores
with anisotropic material properties. An accurate approximation
of the boundary layer is essential for an exact evaluation of the iron
losses. However, this requires many FE layers, which considerably
increases the total number of FEs in the model. The periodic nature
of the lamination is interrupted by step lap joints, ventilation ducts
or disturbed by skewing leading to complex geometries which are
costly in FE modeling on its own.
An accurate approximation by the FEM with standard polynomi-
als also in case of equations with rough coefficients, for instance
materials with a microstructure, and problems with a boundary
layer, requires extremely fine meshes. Therefore, new multiscale fi-
nite element methods (MSFEM) are developed to cope with the mi-
crostructure, where the standard polynomial basis is augmented by
special functions incorporating a priori information into the ansatz
space to avoid fine FE meshes. Then, the MSFEM is combined with
the harmonic balance method to reduce the computational costs
furthermore. To provide a comprehensive solution for the present
topic, approaches for the boundary layer and for the above geomet-
rical difficulties are designed and integrated into MSFEM. Hystere-
sis is considered by an appropriate hysteresis model. Fast adapted
numerical integration methods, a very important issue for an ef-
ficient MSFEM in this context, are developed which do not affect
the accuracy of the approximation. All approaches are developed
for the time and frequency domain and for both potential formu-
lations, the magnetic and the current vector potential. In order to
give a rigorous justification of the used techniques, sharp error es-
timators are developed which admit a multiscale structure as well
as allow a cheap computation. A benchmark to provide measure-
ment data and the supercomputer VSC to compute very expensive
reference solutions will ensure an optimal development of the new
MSFEM approaches.
The aim is to create highly accurate numerical solutions consuming
minimal computer resources to run on personal computers without
any difficulty. All new MSFEM approaches will be incorporated

into the open source hp-FEM code Netgen/NGSolve.

I INTRODUCTION

Computational electromagnetics in general and thus, computer
aided design of electric devices has undergone a great develop-
ment over the last decades and has become without any doubt an
indispensable standard tool for engineers. The remarkable scien-
tific progress in the simulation of eddy current problems by the
finite element method is, well documented in many outstanding
publications in corresponding journals like IEEE Transaction on
Magnetics, Compel, etc., and has ever been one of the main foci
of scientists participating relevant conferences like Compumag,
CEFC, CEM, IGTE Symposium, etc.
It is fair to say that the simulation of eddy currents in three-
dimensional arrangements with complex geometries can be
solved routinely even in ferromagnetic materials with pro-
nounced saturation effects. In this context, the finite element
method (FEM) has proved its versatility [1, 2]. The computation
of eddy currents in laminates is clearly of enormous practical im-
portance. Unfortunately, this is still far from being a routine task
in computational electromagnetics. This can be explained by the
fact that modeling each laminate leads to extremely high compu-
tational costs, i.e., computation times and memory requirements.
In order to overcome this unpleasant limitation, much effort has
been undertaken in the development of various different methods
in the last two decades. Nevertheless, the ability to accurately
simulate eddy currents and thus the associated losses in lami-
nated ferromagnetic cores with reasonable computer resources
is still one of the persistent striking problems which is by far not
solved satisfactorily yet, but is of great importance and poses an
exceptional challenge.
Accurate knowledge about the flux distribution in laminated
cores is important to reduce both iron losses (eddy current, hys-
teresis and anomalous losses [3, 4]) and sources for forces (mag-
netostriction, inter-laminar forces [5, 6]). Extremely large diffi-
culties arise from the ratio of the thickness of the steel sheets,
typically in the range of 0.2-0.3mm (or even essentially smaller:
the air gap between laminates), to the overall dimensions of
cores, which can be a few meters and the large number of the
laminates, i.e., up to more than one thousand. The flux varies
strongly in the vicinity of corners of air gaps. The permeability
of grain-oriented electrical steel sheets, which are anisotropic
and exhibit a magnetic hysteresis, has to be taken into account
and modeled correctly. An adequate modeling of each laminate
by the finite element method requires a very high number of fi-
nite elements and leads to an extremely large nonlinear system
of equations absolutely inappropriate for a fast routine analysis
[7, 8].
MSFEM for eddy currents in laminated ferromagnetic media
seems to be a very promising method to overcome all difficulties
[8, 9]. The aim is a radical reduction of the extremely high com-
putational costs, i.e., computation times and memory require-
ments, to run such eddy current simulations on personal com-
puters without any difficulty.
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II STATE OF THE ART

The attempt is made to give an overview about methods deal-
ing with eddy currents in conducting thin laminates so far. The
authors are aware of the fact that the overview is by no means
complete.

Several methods are based on the idea to decompose the mag-
netic flux into the main magnetic flux parallel to the lamination
and a magnetic stray flux, which impinges the core in the direc-
tion normal to the lamination. Due to the stray flux large laminar
eddy current loops are caused, whereas the main flux leads to
very narrow eddy current loops [10, 7].

Brute Force Methods:
So-called Brute Force Methods apply either an anisotropic
electric conductivity [11, 12] and eventually an anisotropic per-
meability [13, 14] or prescribe a current vector potential having
a single component normal to the lamination [15] in finite ele-
ment models. The discretization is similar to one that would be
used if the core is not laminated. These methods consider only
the laminar eddy currents caused by the stray flux. Therefore,
the associated eddy current losses are too small [12], because
the losses caused by the eddy currents due to the main flux are
neglected.

Two Step Methods:
To improve the results, i.e., taking into account the small eddy
current loops caused by the main flux parallel to the laminations,
two step methods have been developed. The first step is the anal-
ysis described in the previous paragraph with an anisotropic ma-
terial or with a single component current vector potential. This
solution is corrected in the second step exploiting different ap-
proaches. The simplest methods carry out a one dimensional
correction, see for example [12]. One dimensional methods are
only true when edge effects (or fringing effects [16]) can be ne-
glected. Therefore, several three-dimensional corrections were
developed based on different assumptions to take into account
the main magnetic flux and small eddy current loops in the sec-
ond step.
Some of them assume that the average values of field compo-
nents parallel to the lamination across the thickness of the lam-
inates in the first step equal to the averages of the correspond-
ing field components in the reference solution of finite element
models considering the laminates. Several methods have been
developed for problems with linear material properties. Some
of them are summarized subsequently. A comparison of the co-
efficients after averaging the fundamental solution of the elec-
tric and magnetic field of the diffusion equation with the aver-
age values of the field components in the first step expanded
in Fourier series were carried out in [17]. Three different cor-
rection methods have been proposed in [18]. The first one is
quite similar to the previous one but without Fourier expansion,
the second method exploits the finite integration technique (FIT,
[19]) or "cell method" [20] which offers an easy possibility to
prescribe edge-voltages and edge-excitations, facet-fluxes and
facet-currents, respectively. The third method utilizes the cur-
rent vector potential formulation, which facilitates the setting of
a normal component of the current density to zero on the surface
of the laminates.
Another kind of assumptions are that either the tangential com-
ponent of the magnetic field intensity or the normal component
of the magnetic flux density together with that of the electric cur-
rent density [21] coincides in the anisotropic model with those in
the reference model. To facilitate the prescription of the bound-
ary values the first option uses a current vector potential and the
second one uses a mixed formulation, i.e., a magnetic and a cur-

rent vector potential. In the second step boundary value prob-
lems of single laminates with boundary conditions according to
one of these assumptions are solved. A model with anisotropic
conductivity and nonlinear magnetic properties is simulated in
the first step for nonlinear problems. The agreement of the tan-
gential components of the magnetic field intensity is employed to
reconstruct the true solution in [22]. In the second step, the cell
method and piece-wise constant permeability according to the
saturation of the solution in the first step are used. A relatively
modest accuracy in the total losses (eddy current and hysteresis
losses) compared to measurements was obtained. Both meth-
ods described in [21] where extended to nonlinear materials in
[7]. The reconstructed eddy current losses are in good agreement
with that of the reference solution.
All two step methods have in common that the field is recon-
structed in single laminates one after another. Thus, only a few
arithmetic operations are required in the second step. This is fast
and the additional memory requirement is negligible small. The
computation of the losses is also computationally cheap.
Methods which provide the solution in one step:
Homogenization methods have been proposed where the total
magnetic flux is considered in one step in the finite element for-
mulation to solve static magnetic field problems. The magnetic
scalar potential has been employed in [23] and the cell problem
was solved to get the periodic micro-shape function. The sin-
gle component magnetic vector potential was used in [24] and
an asymptotic expansion of the solution was carried out to deter-
mine the periodic micro-shape function.
Several homogenization methods for eddy current problems
have also been developed up to now. To model the eddy cur-
rents due to the main magnetic flux the well known 1D approach
was selected for instance in [25] and [26], respectively, where
the main magnetic flux density is assumed to be constant across
the thickness of a laminate and thus the current density varies
linearly. A comprehensive analysis of eddy current losses oc-
curring in one laminate can be found in [25]. [26] shows how
to incorporate all kinds of iron losses [3, 4] into a 2D FE model
and its importance by means of the wave form of the total current
feeding an Epstein frame. The previous 1D eddy current model-
ing was generalized to 3D in [27]. The complex representation
of the current density and the magnetic field strength of the 1D
analytic solution is used to consider the main flux in a laminate
for arbitrary frequencies and linear materials. The effect of the
stray field is considered by an anisotropic conductivity. Currents
perpendicular to the plane of the laminates along the edges, so-
called edge effects, are neglected. No air gaps are considered.
A symmetric solution within one laminate is enforced. The last
restriction has been eliminated by the approach in [28] and an
anisotropic permeability has been introduced too. A time do-
main homogenization technique for laminated media using 3D-
FEM is presented in [29]. The magnetic flux density and the
magnetic field strength of the main flux are expanded in different
even polynomial basis functions. This means an extension of the
methods assuming a constant main magnetic flux density in the
1D model. The solution is enforced to be symmetric within the
thickness of one laminate. The constitutive law (material rela-
tion) is imposed in a weak sense. The homogenization technique
takes account of an air gap between the laminates and of the stray
field in terms of anisotropic material properies. The method dis-
regards net currents and neglects edge effects. The magnetic
flux density parallel to the lamination is expanded into orthogo-
nal even polynomials, so-called skin effect sub-basis functions,
in [30]. Coefficients appearing in the integrals of the weak form
due to the skin effect sub-basis functions valid for a single lami-
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nate are homogenized by averaging them across the lamination.
Homogenized coefficients are approximated by finite elements
of a coarse mesh. The dual h-conforming formulation to [30],
where the so-called b-conforming formulation was presented, is
shown in [16]. The homogenization technique presented in [29]
has been extended to nonlinear materials in [31]. The arising
nonlinear algebraic equation system is solved by the method of
Newton-Raphson.
The nonlinear problem is solved in two nested loops called main-
and sub-analysis in [32]. The 1D model with nonlinear mate-
rial properties and Dirichlet boundary conditions for the mag-
netic vector potential prescribing the total main magnetic flux
from the main-analysis within one laminate is solved in the sub-
analysis. An anisotropic electric conductivity and a reluctivity
according to the solution of the sub-analysis are considered in
the main-analysis to solve the 3D problem. A 3D sub-analysis
with linear material properties is carried out in [33] for a prob-
lem with a rotational magnetic flux.
Recently, a coupled formulation using the magnetic vector po-
tential and a single current vector potential has been proposed
by [34]. The effect of the main magnetic flux is modeled by the
1D model assuming a constant magnetic flux density approxi-
mated by the magnetic vector potential. The large current loops
due to the magnetic stray flux are taken into account by the sin-
gle component current vector potential. Different FE meshes are
used for the potentials and the associated different boundary lay-
ers. Control volume, i.e., additional FEs, are defined to impose
a matching magnetic flux density in a weak sense.
An other approach is shown in [35]. It is assumed that the vari-
ation of the highly oscillating electromagnetic field due to the
lamination is piecewise linear. The 3D finite element model in-
cludes also edge effects.
A 2D FE method considering the main magnetic flux with a 1D
diffusion equation across the lamination and using a multihar-
monic ansatz of the magnetic vector potential including hystere-
sis is shown in [36] for the frequency domain. The arising non-
linear algebraic equation system is solved by the fixed-point iter-
ation. The coupling between the 1D-model and 2D- FE model
has been solved by a nested scheme first, then the 1D diffusion
model has been introduced directly into the 2D FE model in
[37].
A 2D FE model using the 1D-model for eddy currents and a
complex reluctivity to consider hysteresis in the frequency do-
main for a rotating machine is presented in [38]. Various fre-
quencies occur because the machine is fed by a pulse width mod-
ulation (PWM) based frequency converter. The complex reluc-
tivity represents the hysteresis and includes also the eddy current
effects. Losses are interdependent, see [39]. Penetration depth
varies with the frequency and the shape of the hysteresis loops
vary with the penetration depth. All kind of losses in a FE analy-
sis of electrical machines are considered in [40]. The paper [41]
studies amongst others the interdependency of static magneti-
zation properties and the static magnetostriction, dynamic hys-
teretic dependency of the magnetostriction on the supply flux
density and the increase of iron losses due to applied mechanical
stress.
A pragmatic two-step homogenisation technique for ferromag-
netic laminated cores is presented in [42]. First, a 1D hysteresis
model is determined for a specific material and then homoge-
nized by averaging across the laminate. An algebraic approx-
imation is carried out to use the model efficiently in 2D FE-
formulations in the second step. To confront very specific litera-
ture with the present project it is cited in the subsequent sections.

III MULTISCALE FINITE ELEMENT METHOD MSFEM

The problem we are confronted with exhibits two different
scales. A large scale characterized by large scale dimensions,
for instance the length L, the height H , the width W and the di-
mensions of the windows, E and F , of a transformer core shown
in Fig. 1. At the small scale or microscale the dimensions are
the thickness d of the laminates, the width d0 of the air gap in
between the laminates (see Fig. 2) and the penetration depth δ.
The ratio between the scales is extremely large, about 105 up to
106.
Mapped polynomial shape functions are used by the FEM to ap-
proximate the unknown solution. The standard FEM performs
well as long as the solution or the coefficients in the equations
are smooth. However, to obtain an accurate approximation also
in case of equations with rough coefficients, for instance materi-
als with a micro-structure (laminated iron core), problems with
singularities or with boundary layers, extremely fine meshes are
required. This is the reason for the prohibitively large equation
systems which require exorbitant amounts of computer resources
to obtain an accurate solution.
To avoid large equation systems the generalized finite element
method (GFEM) as a general framework for equations with
rough coefficients or for problems with singularities seems to be
a very promising option [43, 44]. The standard polynomial basis
is augmented by special functions including a priori information
into the ansatz space

uh(x) =

n∑
i=1

m∑
j=1

uijϕi(x)φj(x) =

n∑
i=1

m∑
j=1

uijψij(x), (1)

where n is the number of standard polynomialsϕi,m is the num-
ber of special functions φj , see Fig. 2, and uij are the coeffi-
cients of the approximated solution uh. The special functions,
which are custom tailored ansatz functions, may stem from an
analytic solution or, for example, from a FE solution of a basic
problem, i. e. these functions are known. The local basis of the
special functions approximates well the solution locally. Multi-
plication of standard polynomials ϕi with special functions φj
yields the new basis functions ψij .

Figure 1: Large scale dimensions.

IV SCIENTIFIC ACTIVITIES

The performance of GFEM depends strongly on the subspaces.
Special subspaces are designed which incorporate the mi-
crostructure of the solution. The number of the degrees of free-
dom should be independent of the size of the microstructure to
keep the required computer resources as small as possible. The
aim is to create highly accurate numerical solutions consuming
minimal computer resources.
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Figure 2: Small scale dimensions and micro-shape functions φi.

- Optimal design of special functions for the local basis tak-
ing into account the microstructure or of singularities.

- The numerical integration is a very important issue in the
implementation of the homogenization method as observed,
for instance, in [9]. Fast adapted numerical quadrature
methods are developed which ensure that the errors in the
integration do not affect the accuracy of the approximation.

- Implementations are made which facilitate essential bound-
ary conditions (periodic or symmetric boundary condi-
tions).

Backward Euler method is used for the time discretization of the
ordinary differential equations and Newton−Raphson method to
solve the arising nonlinear algebraic system of equations. The
magnetic hysteresis is considered by an appropriate hysteresis
model [45, 46, 47, 48].
The new MSFEM approaches are and will be incorporated into
the open source hp-FEM code Netgen/NGSolve [49]. Since the
solutions of potential functions A0, A1, A2, w1 etc. (the mean-
ing of these quantities can be seen in section V Some Results
(see (5)) are very smooth, p-refinement fits particularly well to
this kind of problems.
The activities of the project are presented in the following sub-
sections.

A Harmonic Balance Method

Most of the sources of eddy current problems alternate harmon-
ically in time, and only the solution of the steady state has to be
calculated. However, in case of nonlinear materials the solution
is not harmonic any more, but still periodic. Thus, the solution
can be represented as a Fourier series. This can be exploited
advantageously by the so-called multi-harmonic ansatz or har-
monic balance method, i.e., a truncated Fourier series expansion
at a finite number [50, 51, 52, 53]. Only a few harmonics are
required for a sufficiently accurate approximation. That’s why
the harmonic balance method is superior to the time stepping
method particularly in case of a transient that takes a long time.
Applying Fourier block diagonalization to the equation system
obtained by time stepping of one period yields N decoupled
equations of the system, where N is the number of time steps
of one period and the number of unknowns in each linear system
is just the number of degrees of freedom at a time instant. Thus,
the steady-state of the solution can be calculated at the cost of
time stepping through one period only with the additional mi-
nor expense of complex arithmetics. Exploiting the fixed-point
method for nonlinear materials a nonlinear term appears on the
right-hand side only and Fourier block diagonalization can be
applied again [54]. Thus, the periodic nonlinear problem can
be solved very efficiently. Harmonic balance and the fixed-point

method yield also in the nonlinear case decoupled equation sys-
tems for the individual harmonics [55]. An optimal choice of the
fixed-point permeability µFB has been presented in [56] to en-
sure a minimal contraction number for the fixed-point method.
The aim in this project part is to combine the multiscale approach
described in section V Some Results (see (5)) with the harmonic
balance method to reduce the computational costs drastically
compared with the common time stepping method.

B Boundary Layer

Numerical investigations with FEM and homogenization (V
Some Results) revealed also a pronounced boundary layer quite
similar to that which occurs in corresponding brute force models
of laminated iron cores with anisotropic material properties. The
boundary layer covers several thicknesses of laminates at the pe-
riphery of the core in the model. An accurate approximation of
the boundary layer is essential for the exact computation of the
iron losses in this layer. The classical FEM performs poorly un-
less h is sufficiently small, i.e., a very strong refined FE mesh
has to be used, which is prohibitively expensive.
To capture the special behavior of the boundary layer tailored
functions will be included in the FE ansatz space. The goal is
to achieve the same accuracy as with standard FEM and usual
polynomials but with significantly fewer degrees of freedom.
The new approach for the boundary layer will be integrated into
MSFEM. An optimal MSFEM approach taking into account the
boundary layer will be realized in the following steps. Appropri-
ate special functions will be selected to augment the standard FE
basis. Approaches will be successively extended up to 3D and
nonlinear material.

C Geometric problems

Corner and T-joint regions of transformer cores are major
sources for losses and noise. A step-lap-technique is applied to
reduce losses and noise. Several parameters (overall size, num-
ber of laminates, overlap length, lamination factor, sheet width,
number of overlap steps, air-gap length, etc. [5]) have an im-
pact on the losses and noise. Therefore, the optimal design of
the joint regions is very important and requires a detailed simu-
lation.
An early study of step lap joints with FEM were carried out by
[57]. To obtain an optimal configuration of the core joints a ho-
mogenization technique for the static magnetic field has been
developed in [24]. An equivalent reluctivity has been derived in
[58] and [59] assuming that the energy stored in the static mag-
netic field problem, which tends to a minimum, is the same in
the homogenized and in the original problem. The air gap length
of joints for different magnetic flux densities have been consid-
ered in [60] to calculate an equivalent magnetization curve (and
Preisach model) and conductivity for efficient two-dimensional
simulations of overlap joints in transformer cores. An accurate
and efficient simulation of the static magnetic field of step lap
joints using anisotropic higher order FEM, where the laminates
are modeled by FEs, can be found in [6]. Recently, a method
which starts with a 2D static magnetic calculation and considers
successively lamination, eddy currents, joint configuration and
nonlinearity in some steps was proposed by [61].
Step lap joints interrupt the periodic structure of lamination. The
scale of joints varies extremely, from almost the overall size of
the transformer core over the overlap length of laminates to the
thickness of the laminates. An efficient and accurate FE ap-
proach is very challenging. This explains why there is no sat-
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isfactory FE approach available which comprises all relevant as-
pects, a three-dimensional FE model with a homogenization ap-
proach of the laminates considering eddy currents and nonlinear
material, and which provides a solution in one step, up to now.
In the frame of the present project point we turn our attention
to the calculation of the quasi-static magnetic field and neglect
acoustics, mechanics etc. The aim is to design an accurate and
efficient FE approach which enables a fully 3D simulation, con-
siders nonlinear and anisotropic material properties, incorpo-
rates corner and T-joint regions and works for a possible wide
range of design parameters. The idea for an appropriate FE ap-
proach of the step lap joints is to observe the joint regions also
as a periodic structure at a intermediate scale between the small
scale (laminates) and the large scale (macroscopic dimensions of
the core) to benefit from a homogenization approach. In case no
homogenization approach works satisfactorily, because the pe-
riodicity of the structure can not be exploited advantageously,
substructuring will be the second choice.

D Movement and Maxwell

The stator and even the rotor of large electric machines are lam-
inated. Three-dimensional simulations, where the laminates are
resolved in FE models are rather seldom and clearly far away
from a routine task although symmetries are exploited. Simu-
lations are typically carried out for single laminates of electric
machines which are assumed to be infinitely long or of a couple
of slices of electric machines which vary significantly along the
rotation axis due to skewing.
Early contributions to problems with movement and the cou-
pling of independently generated finite element meshes by La-
grange multiplier or by overlapping elements can be found in
[62] and [63], respectively. We presented a domain decomposi-
tion technique based on Nitsche’s method to discretize transmis-
sion conditions on non-matching meshes [64]. This technique
is a very interesting alternative to approaches as moving band,
locked-step or interpolated sliding surface and a semi-analytical
air-gap macro technique as a special application of finite and
boundary element coupling [65, 66, 67]. This project part will
greatly benefit from the domain decomposition technique based
on Nitsche’s method among other things.
Skewing is applied to induction machines to reduce undesirable
effects (torque ripple, acoustic noise and harmonic currents).
Multislice technique is common practice to consider skewing.
To avoid problems in the interpolation in the axial direction and
to take into account end effects, a full FE model is clearly pre-
ferred. The periodic nature of the lamination is interrupted by
ventilation ducts and disturbed by skewing. Ventilation ducts
and skewing are different kind of geometric difficulties from
how to consider them in the multiscale homogenization approach
point of view. These difficulties bring additional challenges into
the topic MSFEM.
The goals in this project part are the integration of the moving
term into the MSFEM, the implementation of essential periodic
boundary conditions for MSFEM taking into account the domain
decomposition technique based on Nitsche’s method to be able
to exploit possible symmetries [64].

E Necessity of Boundary Layer Correctors

To visualize the influence of interface effects in MSFEM, a sim-
plified scalar elliptic problem is solved using a first order MSA
(for details see [68]). Figure 3 shows the total error of the mul-
tiscale solution compared to a reference solution, measured in

the energy norm for different mesh sizes h and laminate widths
d. For every h a decrease in the error with an order of O(

√
d)

Figure 3: Energy error of the multiscale solution.

can be observed, which eventually flattens out when the mod-
eling error of the multiscale ansatz is dominated by the FEM
discretization error. Considering the local errors shown in Fig. 4
it becomes clear that a significant proportion of the error arises
in a close proximity of the interface between Ω0 and Ωm (com-
pare with Fig. 11). Figure 5 shows that these interface errors are

Figure 4: Energy error distribution.

the reason for the lower order of convergence. Calculating the
total error only for areas with a fixed minimum distance from
the interface yields an energy error ofO(d). In order to preserve
the rate of convergence for the whole domain, specific boundary
layer correctors will have to be developed to neutralize the error
peaks along the interface of the layered material.

F Error Estimation

While the various used ansatz techniques show good experimen-
tal results with a stable rate of convergence, finding reliable and
efficient error estimates is a complex task and still the subject of
ongoing studies. A promising method which has worked well in
several settings is a modification of error estimation by recon-
struction of the discrete flux [69, 70].
An energy equality similar to the Prager-Synge equation is the
starting point of the equilibration method. When considering the
Poisson problem, the unmodified equation of Prager and Synge
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Figure 5: Energy error away from the interface.

gives the following relation for the exact solution u and the dis-
crete solution v:

‖λ1/2(∇u−∇v)‖ ≤ ‖λ1/2(∇v − λ−1σ)‖ (2)

This inequality holds for every flux σ ∈ H(div) satisfying
divσ + f = 0 with λ being a coefficient in the elliptic problem.
Similar inequalities can be proven for problems with a mass term
or equations of Maxwell type using H(curl) FEs.
The equilibration technique shifts the problem of finding a good
upper bound for the energy error to the construction of a σ ∈
H(div) which needs to be close to the discrete flux λ∇v while
at the same time being cheap to calculate.
Applying these ideas to the multiscale setting, the aim of cheap
construction enforces σ to admit a structure similar to the mul-
tiscale solution, i.e. being composed of functions defined on the
coarse grid multiplied by predefined oscillating functions. Good
results have been achieved by first multiplying ∇u0 with appro-
priate means of λ, found by asymptotic calculations as done in
[71], followed by classical reconstruction techniques in order to
make it a H(div) function satisfying the conditions of the theo-
rem of Prager and Synge. This smooth function is then enriched
by additional correctors which incorporate the oscillating nature
of the discrete flux while being of curl type in order to preserve
the reconstructed divergence.
The next problem is the actual calculation of the error estima-
tion according to (2). This requires the integration of products of
highly oscillating functions with functions defined on the coarse
grid. While this problem has been studied extensively for exam-
ple in [72], classical techniques require the oscillating functions
to be a smooth, while in the multiscale setting the oscillating
ansatz functions are in general only continuous and might even
lose continuity by multiplication with the equation-specific co-
efficient functions, which calls for modified methods.
A possible solution for the 1D case is to choose the asymptotic
expansion (3) where ϕ is an arbitrary, not necessarily continuous
periodic function and f is assumed to be smooth.∫ b

a

ϕ(x)f(x) dx ≈
N∑

n=0

∫ b

a

ϕnf
(n)(x) dx. (3)

The constants ϕn in (3) have to be calculated a priori in order
to ensure an equality for f chosen as a monomial of degree up
to N . Finding such ϕn is straightforward in the MSFEM setting
with ϕ taken as a piecewise polynomial in each period.
This technique can be easily applied to the two dimensional case,

since the oscillating function only depends on one coordinate:∫
Ω

ϕ(x)f(x, y) dΩ =

∫ b

a

ϕ(x)

∫ d(x)

c(x)

f(x, y) dy dx︸ ︷︷ ︸
=:f̃(x)

(4)

In (4) c(x) and d(x) are a parametrization of the boundaries of
the integration domain. Figure 6 shows the result of a numer-
ical example compared to known exact integral values with ϕ
being a discontinuous, piecewise quadratic polynomial over one
period. For each additional term in the expansion (3) an addi-

Figure 6: Absolute error for decreasing laminate width d.

tional order of convergence can be observed. The problem of an
increased number of function evaluations in order to calculate
the needed derivatives can be mitigated to an extend by making
use of the properties of the function f̃ and the shape of the inte-
gration domain, which is a triangle in the classical FEM setting.
Still there are further improvements possible and the search for
efficient integration remains another important aspect of efficient
error estimation.

G Benchmark

Simulation results of the new methods will be evaluated by a
relevant benchmark (BM). To this end a transformer is designed,
manufactured and measurements will be carried out at the input
terminals and of the magnetic field distribution (see, for instance
[7]). It is intended to publish the setup and the measurement
data. The preliminary design, numerical data and planned mea-
surements are presented below.

Figure 7: Benchmark with core (blue) and coils (green).
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Figure 8: Hexahedral mesh of the laminated core, one eighth of
the core, laminates resolved.
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Figure 9: Magnetization curve, non-oriented steel M400-50A.

Preliminary design:
The BM with a simple structure is shown in Fig. 7. It consists
of a laminated iron core and two cylindrical coils. The following
features are or will be considered in the design:

- A wide range of saturation of the iron core.

- A design with and without a large magnetic stray flux.

- Grain and non-grain oriented laminates will be used for the
setup.

- The BM shall also be furnished with step-lap-joints.

Initially, the BM is made of non-grain oriented iron laminates
(see Fig. 9) and without step-lap joints to keep the BM as simple
as possible. A small size of the BM is selected that can easily be
operated in a laboratory on one hand and is large enough to make
sense for homogenization or multiscale methods. The BM ex-
hibts three planes of symmetry, which enables counterchecks of
measurements and a simulation of only one eighth of the prob-
lem, see Fig. 8. Four small air gaps of d = 0.5mm between
limbs and yokes are provided to ensure a well defined distance
between them and to allow for measurements of the magnetic
fluxes by means of thin wire coils (loops). The yokes can be ro-
tated so that the orientation of the lamination of yokes and limbs
coincides or includes an angle of 90 degrees to study the entering
of the magnetic flux from the limbs via the air gaps to the yokes.
Positive and negative mutual magnetic coupling of the coils can
be realized simply by changing the interconnection of the input
terminals. Later, the BM will be extended by grain oriented iron
laminates and step-lap joints.

Numerical data:
Hexahedral finite elements are well suited to model single lami-
nates. To avoid the necessity to model the cylindrical coils also
with hexahedral elements the Biot-Savart field of the coils has
been exploited. The hand made mesh with hexahedral edge finite
elements of 2nd order leads to about 15 millions of unknowns
for the full model and to about 1.1 millions of unknowns for a

model with an anisotropic conductivity [21]. The saturation of
the iron core is very sensitive with respect to the input voltage
of the coils. Series resistors are used to control the saturation.
Therefore, the finite element model is coupled with a network.
Backward Euler method is used for the time stepping scheme
and Newton’s method to solve the nonlinear problem. Simula-
tion results of the input values are shown in Fig. 10
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Figure 10: Input values.

Measurements:
Measurements to be considered are electrical quantities at the
input terminals of the coils as well as magnetic fluxes. A Hall-
sensor and wire loops will be used to measure the magnetic stray
field close to the cylindrical coils and the core and the main mag-
netic flux in single laminates, respectively. Electrical quantities
are the instantaneous values of the voltage u(t), current i(t) and
of the power loss p(t).

V SOME RESULTS

An eddy current problem as shown in Fig. 11 consisting of a
laminated medium Ωm surrounded by air Ω0, i.e., Ω = Ωm∪Ω0

with the magnetic vector potential A is considered.

Figure 11: Sketch of the eddy current problem.

A Higher Order Multiscale Approach with A in 2D

To get also an accurate solution for problems, where the pene-
dration depth δ is essentially smaller than d, the approach in [9]
has been extended by higher order terms for the laminar part as
well as for the edge effect of eddy currents leading to the multi-
scale approach (MSA), see also [73]:

Ã = A0 + φ1

(
0
A1

)
+ φ3

(
0
A3

)
+ φ5

(
0
A5

)
+ ∇(φ1w1) + ∇(φ3w3) + ∇(φ5w5) (5)
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Figure 12: Odd micro-shape functions.

Figure 13: Relative error for different order of MSAs in the L2-
Norm.

Since the magnetic flux density B is an even function across the
laminates, only odd higher order terms for the MSA with A are
considered. The higher order multiscale functions (MSFs) φ3

and φ5, see Fig. 12, are living in Ωc, i.e. on iron subintervalls.
The MSFs φ3 and φ5 are bubble functions and, thus, they do
not disturb the required continuity of A. The choice of the FE
subspaces A0h ∈ Uh ⊂ H(curl,Ω), A1h, A3h and A5h ∈
Vh ⊂ L2(Ωm), w1h, w3h, w5h ∈ Wh ⊂ H1(Ωm) and
φ1, φ3 and φ5 ∈ Hper(Ωm) is quite natural. The polyno-
mial order of the basis has been chosen according to the de-
Rham complex [49]. Natural boundary conditions hold for Ai

and wi at the interface between Ωm and Ωo. The solutions of
A0h, A1h, A3h, A5h, w1h, w3h and w5h are very smooth, a
rather coarse FE-mesh suffices to approximate them accurately.
The reduction of the required computer resources can be seen in
Tab. I below and Tab. II in the following section.
A small 2D problem with 10 laminates has been studied. The
reference solution (RS) is obtained by a FE-model where the
single laminates are resolved by FEs. Fig. 13 shows results for
different dimensions of the local space. Adding of 3rd order
terms improves the accuracy essentially. The 5th order approach
performs clearly better than the 3rd order one for small δ. The
computational costs are compared in Table I. A fairly good im-
provment has been achieved for this small problem.

Table I: No. of degrees of freedom.

Total No. H(curl,Ω) L2(Ωm) H1(Ωm)
RS 24,745 a) 24,745 - -

MSFEM 1,675 b) 676 152 181

a) For 6th order H(curl) - elements for the smallest δ.
b) For the 5th order MSA.

Figure 14: FE model for RS (left) and for MSFEM (right).

Figure 15: Eddy current losses.

B Large Nonlinear Problem in 2D

To show the capacity of MSFEM to cope with large and non-
linear problems compared with standard FEM the problem with
FE models in Fig. 14 has been studied. The nonlinear problem
with a magnetization curve like in Fig. 9 consists of 1000 lami-
nates. Here, the 1st order MSA of (5) has been used. Backward
Euler method was used for the time discretization and Newton’s
method to solve the nonlinear problem. The agreement of the
losses is very satisfactory as can be seen in Fig. 15. The re-
duction of computational costs of MSFEM compared with RS
is impressive as shown in Table II. The computational require-
ments of MSFEM for this large problem are almost the same as
those for the small problem in the previous subsection A with
only 10 laminates.

Table II: No. of degrees of freedom.

Total No. H(curl,Ω) L2(Ωm) H1(Ωm)
RS 164, 430 164, 430 - -

MSFEM 1, 289 840 208 241

C Higher Order MSFEM Approach with A for 3D

The feasible three-dimensional higher order multiscale approach

Ã = A0 + φ1

 0
A12

A13

+ φ3

 0
A32

A33


+ w1

φ1x

0
0

+ w3

φ3x

0
0

 (6)

with respect to Cartesian coordinates, where the normal vector
of the lamination points in x-direction has been assumed.
A stack of 100 iron laminates and with the dimensions (25 ×
25 × 75) in mm is immersed in a homogeneous time harmonic
magnetic field and serves as a numerical example. A thickness of
both, iron layer and air gap, of d+d0 = 0.25mm, an unfavorable
fill factor of 0.9, a conductivity of σ = 2 · 106S/m and a relative
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permeability of µr = 50, 000 were selected. The error in the
eddy current losses compared with RS are shown in Fig. 16,
AM stands for the model with an ansiotropic conductivity.

Figure 16: Comparison of the eddy current losses in the fre-
quency domain.

A comparison of the required computer resources is summarized
in Table III. The number of unknowns required by the higher
order MSFEM is only about 10% that of the reference solution.

Table III: No. of degrees of freedom in thousands of unknowns.

Total No. H(curl,Ω) L2(Ωm) H1(Ωm)
RS 4 443 a) 4 443 - -

MSFEM1b) 389 323 27 d) 12 d)
MSFEM3c) 455 323 27 d) 12 d)

a) 2nd order finite elements, b) 1st order MSA, c) 3rd order
MSA, d) holds for one quantity in approach (6).

D Numerical Integration for MSFEM

Fast and accurate numerical integration to assemble the FE-
matrices is an essential component for a powerful MSFEM. To
this end the periodic and possible nonlinear nature of the lami-
nated medium has to be exploited (see also section F).
Averaging : Averaged coefficients across a laminate are used in-
stead of the exact ones in the assembly of FEs in case of linear
material parameters of laminated cores [10].
Interpolation: First, appropriate polynomial interpolations of
the coefficients (for example the conductivity) are calculated
with a very high integration order. Then the usual assembly is
carried out with these interpolations. This technique avoids the
computationally expensive evalution of all basis functions and
partly of their derivatives for the high integration order [9].
Nonlinear material : Above techniques are not possible for
nonlinear materials. Although the solution varies within a lam-
inate sometimes strongly the variation of the solution from one
laminate to the neighboring one is moderate. A nested integra-
tion is carried out where the Gaussian points of the standard in-
tegration rule represent the outer loop. For each of these points
a 1D integration is made across the corresponding iron and air
layer in the inner loop [9].

ACKNOWLEDGEMENT

The authors are grateful for the financial suppurt by the Austrian
Science Fund (FWF) under Project P 27028-N15.

AUTHORS NAME AND AFFILIATION

Haik Davtjan, Joachim Schöberl, Markus Schöbinger and Karl
Hollaus
Institute for Analysis and Scientific Computing,
Technische Universität Wien,
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria.
karl.hollaus@tuwien.ac.at
http://www.asc.tuwien.ac.at/∼schoeberl/wiki/index.php/Karl_Hollaus

Manfred Kaltenbacher
Institute of Mechanics and Mechatronics
Measurement and Actuator Division,
Technische Universität Wien,
Getreidemarkt 9, A-1060 Vienna, Austria.

VI REFERENCES

[1] O. Bíró and K. Preis, “Finite element calculation of time-
periodic 3d eddy currents in nonlinear media,” in Advanced
Computational Electromagnetics, T. Homna, Ed. Bu-
dapest, Hungary: Elsevier, 1995, pp. 62–74.

[2] O. Bíró, “Edge element formulations of eddy current prob-
lems,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 169, no. 3-4, pp. 391–405, 1999.

[3] G. Bertotti, “General properties of power losses in soft fer-
romagnetic materials,” IEEE Trans. Magn., vol. 24, no. 1,
pp. 621–630, 1988.

[4] G. Bertotti et al., “An improved estimation of iron losses in
rotating electrical machines,” IEEE Trans. Magn., vol. 27,
no. 6, pp. 5007–5009, 1991.

[5] B. Weiser, H. Pfützner, and J. Anger, “Relevance of mag-
netostriction and forces for the generation of audible noise
of transformer cores,” IEEE Trans. Magn., vol. 36, no. 5,
pp. 3759–3777, 2000.

[6] A. Hauck, M. Ertl, J. Schöberl, and M. Kaltenbacher, “Ac-
curate magnetostatic simulation of step-lap joints in trans-
former cores using anisotropic higher order FEM,” COM-
PEL, vol. 32, no. 5, pp. 1581–1595, 2013.

[7] K. Preis, O. Bíró, and I. Ticar, “FEM analysis of eddy cur-
rent losses in nonlinear laminated iron cores,” IEEE Trans.
Magn., vol. 41, no. 5, pp. 1412–1415, May 2005.

[8] K. Hollaus, M. Huber, J. Schöberl, and P. Hamberger, “A
Linear FEM Benchmark for the Homogenization of the
Eddy Currents in Laminated Media in 3D,” International
Federation of Automatic Control, vol. 7, no. 1, pp. 1190–
1194, 2012.

[9] K. Hollaus, A. Hannukainen, and J. Schöberl, “Two-scale
homogenization of the nonlinear eddy current problem
with FEM,” IEEE Trans. Magn., vol. 50, no. 2, pp. 413–
416, Feb 2014.

[10] K. Hollaus and O. Bíró, “A FEM simulation of the eddy
current losses in thin ferromagnetic sheets,” ser. 9th Int.
IGTE Symp., Graz, Austria, 152-157, Sep. 2000, pp. 152–
157, iSBN: 978-3-85125-133-3.

9



[11] P. Hahne, R. Dietz, B. Rieth, and T. Weiland, “Determi-
nation of anisotropic equivalent conductivity of laminated
cores for numerical computation,” IEEE Trans. Magn.,
vol. 32, no. 3, pp. 1184–1187, May 1996.

[12] K. Hollaus and O. Bíró, “Estimation of 3-d eddy currents
in conducting laminations by an anisotropic conductivity
and a 1-d analytical solution,” COMPEL, vol. 18, no. 3, pp.
494–503, 1999.

[13] V. C. Silva, G. Meunier, and A. Foggia, “A 3d finite-
element computation of eddy currents and losses in lam-
inated iron cores allowing for electric and magnetic
anisotropy,” IEEE Trans. Magn., vol. 31, no. 3, pp. 2139–
2141, May 1995.

[14] H. Kaimori, A. Kameari, and K. Fujiwara, “FEM com-
putation of magnetic field and iron loss in laminated iron
core using homogenization method,” IEEE Trans. Magn.,
vol. 43, no. 4, pp. 1405–1408, Apr. 2007.

[15] A. Jack and B. Mecrow, “Calculation of three-dimensional
electromagnetic fields involving laminar eddy currents,”
IEE Proc., Pt. A, vol. 134, no. 8, pp. 663 –671, septem-
ber 1987.

[16] P. Dular, “A time-domain homogenization technique for
lamination stacks in dual finite element formulations,” J.
Comput. Appl. Math., vol. 215, no. 2, pp. 390–399, 2008.

[17] K. Hollaus and O. Bíró, “A FEM formulation to treat 3d
eddy currents in laminations,” IEEE Trans. Magn., vol. 36,
no. 4, pp. 1289–1292, 2000.

[18] J. Pávó, I. Sebestyén, S. Gyimóthy, and O. Bíró, “Approxi-
mate prediction of losses in transformer plates,” COMPEL,
vol. 22, no. 3, pp. 689–702, 2003.

[19] M. Clemens and T. Weiland, “Discrete electromagnetism
with the finite integration technique,” Progr. Electromagn.
Res. (PIER), vol. 32, pp. 65–87, 2001.

[20] E. Tonti, “A direct discrete formulation of field laws,” Com-
puter Modeling in Engineering & Sciences (CMES), vol. 2,
no. 2, pp. 237–258, 2001.

[21] O. Bíró, K. Preis, and I. Ticar, “A FEM method for eddy
current analysis in laminated media,” COMPEL, vol. 24,
no. 1, pp. 241–248, 2005.

[22] I. Sebestyén, S. Gyimóthy, J. Pávó, and O. Bíró, “Calcula-
tion of losses in laminated ferromagnetic materials,” IEEE
Trans. Magn., vol. 40, no. 2, pp. 924–927, Mar. 2004.

[23] A. De Rochebrune, J. Dedulle, and J. Sabonnadiere, “A
technique of homogenization applied to the modelling of
transformers,” IEEE Trans. Magn., vol. 26, no. 2, pp. 520
–523, mar 1990.

[24] P.-S. Shin and J. Lee, “Magnetic field analysis of amor-
phous core transformer using homogenization technique,”
IEEE Trans. Magn., vol. 33, no. 2, pp. 1808 –1811, mar
1997.

[25] J. Gyselinck et al., “Calculation of eddy currents and asso-
ciated losses in electrical steel laminations,” IEEE Trans.
Magn., vol. 35, no. 3, pp. 1191–1194, 1999.

[26] L. A. Righi et al., “A new approach for iron losses calcu-
lation in voltage fed time stepping finite elements,” IEEE
Trans. Magn., vol. 37, no. 5, pp. 3353–3356, 2001.

[27] P. Dular, J. Gyselinck, C. Geuzaine, N. Sadowski, and
J. P. A. Bastos, “A 3-d magnetic vector potential formu-
lation taking eddy currents in lamination stacks into ac-
count,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1424–1427,
2003.

[28] L. Krähenbühl et al., “Homogenization of lamination
stacks in linear magnetodynamics,” IEEE Trans. Magn.,
vol. 40, no. 2, pp. 912–915, Mar. 2004.

[29] J. Gyselinck and P. Dular, “A time-domain homogenization
technique for laminated iron cores in 3-d finite-element
models,” IEEE Trans. Magn., vol. 40, no. 2, pp. 856–859,
2004.

[30] P. Dular, J. Gyselinck, and L. Krähenbühl, “A time-domain
finite element homogenization technique for lamination
stacks using skin effect sub-basis functions,” COMPEL,
vol. 25, no. 1, pp. 6–16, 2006.

[31] J. Gyselinck, R. Sabariego, and P. Dular, “A nonlinear time-
domain homogenization technique for laminated iron cores
in three-dimensional finite-element models,” IEEE Trans.
Magn., vol. 42, no. 4, pp. 763–766, 2006.

[32] K. Muramatsu, T. Okitsu, H. Fujitsu, and F. Shimanoe,
“Method of nonlinear magnetic field analysis taking into
account eddy current in laminated core,” IEEE Trans.
Magn., vol. 40, no. 2, pp. 896–899, 2004.

[33] L. Cheng, S. Sudo, Y. Gao, H. Dozono, and K. Muramatsu,
“Homogenization technique of laminated core taking ac-
count of eddy currents under rotational flux without edge
effect,” IEEE Trans. Magn., vol. 49, no. 5, pp. 1969–1972,
2013.

[34] H. De Gersem, S. Vanaverbeke, and G. Samaey, “Three-
dimensional - two-dimensional coupled model for eddy
currents in laminated iron cores,” IEEE Trans. Magn.,
vol. 48, no. 2, pp. 815–818, 2012.

[35] H. Igarashi, K. Watanabe, and A. Kost, “A reduced model
for finite element analysis of steel laminations,” IEEE
Trans. Magn., vol. 42, no. 4, pp. 739–742, 2006.

[36] O. Bottauscio, M. Chiampi, and D. Chiarabaglio, “Ad-
vanced model of laminated magnetic cores for two-
dimensional field analysis,” IEEE Trans. Magn., vol. 36,
no. 3, pp. 561–573, 2000.

[37] O. Bottauscio and M. Chiampi, “Analysis of laminated
cores through a directly coupled 2-d/1-d electromagnetic
field formulation,” IEEE Trans. Magn., vol. 38, no. 5, pp.
2358–2360, 2002.

[38] J. Pippuri and A. Arkkio, “Time-harmonic induction-
machine model including hysteresis and eddy currents in
steel laminations,” IEEE Trans. Magn., vol. 45, no. 7, pp.
2981–2989, 2009.

[39] E. Dlala, A. Belahcen, J. Pippuri, and A. Arkkio, “Inter-
dependence of hysteresis and eddy-current losses in lami-
nated magnetic cores of electrical machines,” IEEE Trans.
Magn., vol. 46, no. 2, pp. 306–309, 2010.

10



[40] P. Rasilo et al., “Model of laminated ferromagnetic cores
for loss prediction in electrical machines,” IET Electr.
Power Appl., vol. 5, no. 7, pp. 580–588, 2011.

[41] ——, “Iron losses, magnetoelasticity and magnetostriction
in ferromagnetic steel laminations,” IEEE Trans. Magn.,
vol. 49, no. 5, pp. 2041–2044, 2013.

[42] C. Geuzaine, S. Steentjes, K. Hameyer, and F. Henrotte,
“Pragmatic two-step homogenisation technique for ferro-
magnetic laminated cores,” IET science, measurement and
technology, vol. 9, no. 2, pp. 152–159, 2015.

[43] T. Strouboulis, K. Copps, and I. Babuska, “The generalized
finite element method: an example of its implementation
and illustration of its performance,” Int. J. Numer. Meth.
Engng., vol. 47, pp. 1401–1417, 2000.

[44] I. Babuska and J. M. Melenk, “The partition of unity
method,” Int. J. Numer. Meth. Engng., vol. 40, pp. 727–
758, 1997.

[45] I. D. Mayergoyz, Mathematical Models of Hysteresis.
Springer-Verlag, 1991.

[46] G. Bertotti, Hysteresis in Magnetism: For Physicists, Mate-
rials Scientists, and Engineers (Electromagnetism). Aca-
demic Press, 1998.

[47] E. Della Torre, Magnetic Hysteresis. John Wiley & Sons,
2005.

[48] K. Hollaus and O. Bíró, “Derivation of a complex per-
meability from the preisach model,” IEEE Trans. Magn.,
vol. 38, no. 2, pp. 905–908, 2002.

[49] J. Schöberl and S. Zaglmayr, “High order Nédélec ele-
ments with local complete sequence properties,” COM-
PEL, vol. 24, no. 2, pp. 374–384, 2005.

[50] S. Yamada and K. Bessho, “Harmonic field calculation by
the combination of finite element analysis and harmonic
balance method,” IEEE Trans. Magn., vol. 24, no. 6, pp.
2588–2590, 1988.

[51] H. De Gersem, H. V. Sande, and K. Hameyer, “Strong
coupled multiharmonic finite element simulation package,”
COMPEL, vol. 20, no. 2, pp. 535–546, 2001.

[52] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros,
“Harmonic-balance finite-element modeling of electro-
magnetic devices: a novel approach,” IEEE Trans. Magn.,
vol. 38, no. 2, pp. 521–524, 2002.

[53] F. Bachinger, U. Langer, and J. Schöberl, “Numerical anal-
ysis of nonlinear multiharmonic eddy current problems,”
Numer. Math., vol. 100, no. 4, pp. 593–616, 2005.

[54] O. Bíró and K. Preis, “An efficient time domain method
for nonlinear periodic eddy current problems,” IEEE Trans.
Magn., vol. 42, no. 4, pp. 695–698, 2006.

[55] S. Ausserhofer, O. Bíró, and K. Preis, “An efficient har-
monic balance method for nonlinear eddy-current prob-
lems,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1229–1232,
2007.

[56] G. Koczka, S. Ausserhofer, O. Bíró, and K. Preis, “Optimal
convergence of the fixed-point method for nonlinear eddy
current problems,” IEEE Trans. Magn., vol. 45, no. 3, pp.
948–951, 2009.

[57] T. Nakata, N. Takahashi, and Y. Kawase, “Magnetic perfor-
mance of step-lap joints in distribution transf. cores,” IEEE
Trans. Magn., vol. 18, no. 6, pp. 1055–1057, 1982.

[58] M. Pietruszka and E. Napieralska-Juszczak, “Lamination
of t-joints in the transf. core,” IEEE Trans. Magn., vol. 32,
no. 3, pp. 1180–1183, 1996.

[59] N. Hihat et al., “Equivalent permeability of step-lap joints
of transformer cores: Computational and experimental
considerations,” IEEE Trans. Magn., vol. 47, no. 1, pp.
244–251, 2011.

[60] J. Gyselinck and J. Melkebeek, “Two-dimensional finite el-
ement modelling of overlap joints in transformer cores,”
COMPEL, vol. 20, no. 1, pp. 253–268, 2001.

[61] M. V. Ferreira da Luz, P. Dular, J. Vianei Leite, and P. Kuo-
Peng, “Modeling of transformer core joints via a subprob-
lem FEM and a homogenization technique,” ser. Proc. 19th
Compumag, 2013, Budapest, Hungary, 2013.

[62] D. Rodger, H. Lai, and P. Leonard, “Coupled elements
for problems involving movement,” IEEE Trans. Magn.,
vol. 26, no. 2, pp. 548–550, 1990.

[63] I. Tsukerman, “Overlapping finite elements for problems
with movement,” IEEE Trans. Magn., vol. 28, no. 5, pp.
2247–2249, 1992.

[64] K. Hollaus et al., “Nitsche-type mortaring for maxwell’s
equations,” ser. PIERS, July 5-8, Cambridge, USA 2010,
2010, pp. 397–402.

[65] K. Hameyer and R. Belmans, Numerical Modelling and
Design of Electrical Machines and Device. Southamp-
ton: WIT Press, 1999.

[66] G. Meunier, The Finite Element Method for Electromag-
netic Modeling. New York: Wiley, 2008.

[67] E. Schmidt, “Finite element analysis of electrical machines
and transformers state of the art and future trends,” COM-
PEL, vol. 30, no. 6, pp. 1899–1913, 2011.

[68] K. Hollaus and J. Schöberl, “Homogenization of the eddy
current problem in 2d,” ser. 14th Int. IGTE Symp., Graz,
Austria, Sep. 2010, pp. 154–159.

[69] D. Braess and J. Schöberl, “Equilibrated residual error es-
timator for edge elements,” Math. Comp., vol. 77, no. 262,
pp. 651–672, 2008.

[70] D. Braess, V. Pillwein, and J. Schöberl, “Equilibrated resid-
ual error estimates are p-robust,” Comput. Methods Appl.
Mech. Engrg., vol. 198, no. 13-14, pp. 1189–1197, 2009.

[71] A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic
Analysis for Periodic Structures. North-Holland, 2011.

[72] A. Iserles and S. Nørsett, “Quadrature methods for mul-
tivariate highly oscillatory integrals using derivatives,”
Math. Comp., vol. 75, no. 255, pp. 1233–1258, 2006.

[73] K. Hollaus and J. Schöberl, “A higher order multi-scale
FEM with a for 2d eddy current problems in laminated
iron,” IEEE Trans. Magn., vol. 51, no. 3, 2015.

11


	Introduction
	State of the Art
	Multiscale Finite Element Method MSFEM
	Scientific activities
	Harmonic Balance Method
	Boundary Layer
	Geometric problems
	Movement and Maxwell
	Necessity of Boundary Layer Correctors
	Error Estimation
	Benchmark

	Some Results
	Higher Order Multiscale Approach with A in 2D
	Large Nonlinear Problem in 2D
	Higher Order MSFEM Approach with A for 3D
	Numerical Integration for MSFEM

	References

