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TEAM Workshop Problem No. 10 revisited: extension to 
sinusoidal voltage excitation  
 
Abstract — A modification of TEAM Workshop Problem No. 10 
featuring a sinusoidal voltage excitation of the coil is treated by 
various finite element techniques with the aim of obtaining the 
steady-state periodic solution. The resulting nonlinear eddy 
current problem is formulated in terms of a current vector 
potential T and a magnetic scalar potential Φ. The time-stepping 
method practically reaching steady-state over many periods is 
used to yield a reference solution. This is compared to results 
obtained by a time-harmonic approximation as well as by a time 
domain method yielding the non-sinusoidal steady-state directly. 
The superiority of this latter technique is demonstrated. 
 

I. INTRODUCTION 
 
Applying the method of finite elements (FEM) to nonlinear 
electromagnetic field problems leads to a system of nonlinear 
ordinary differential equations in time. The most 
straightforward method to solve this system is time-stepping 
(TS) requiring the solution of a large nonlinear algebraic 
equation system at each time step. This can be very time 
consuming, especially in case of three-dimensional problems. 
If the excitations are non-periodic or if, in case of periodic 
excitations, the transient solution is required, one cannot 
avoid time-stepping. In many cases however, the excitations 
of the problem are periodic, and it is only the steady-state 
periodic solution which is needed. Then, it is wasteful to step 
through several periods to achieve this by the “brute force” 
method [1] of time stepping. 
 
If the excitation is sinusoidal, the simplest method is to make 
use of the crude approximation assuming that all quantities 
are sinusoidal as well, but to take account of the nonlinear 
relationship between the flux density and the magnetic field 
intensity, see e.g. [2] and [3]. This will be referred to as 
nonlinear time harmonic (NTH) method in the following. 
 
A method known from the literature to avoid stepping 
through several periods in such a case is the time-periodic 
finite element method introduced in [4]. To accelerate the 
originally slow convergence of the method, a singular-
decomposition technique has been introduced in [5] and it has 
even been parallelised in [6].   
 
A new time domain technique using the fixed-point method to 
decouple the time steps has been introduced in [7] and applied 
to two-dimensional eddy current problems described by a 
single component vector potential. The optimal choice of the 
fixed-point permeability for such problems has been 
presented in [8] both in the time domain and using harmonic 
balance principles. The application of the method to three-
dimensional problems in terms of a magnetic vector potential 
and an electric scalar potential as well as employing a current 
vector potential and a magnetic scalar potential has been 
described in detail in [9]. In contrast to the time-periodic 
finite element method, the periodicity condition is directly 
present in the formulation instead of being satisfied 
iteratively. This technique will be referred to as time-domain 
fixed-point (TDFP) method in what follows. 
 

The aim of this work is to illustrate the advantages of the 
TDFP method using a modified version of TEAM Problem 
No. 10 [10] with the exponential current excitation of the coil 
being replaced by a sinusoidal voltage excitation. 
 
The paper is structured as follows: In the following section II, 
TEAM Problem No. 10 is briefly reviewed and the 
modifications taken are explained. The methods used are 
described in section III with one sub-section devoted to the 
TS, the NTH and the TDFP methods each. In Section IV, the 
numerical results are presented and compared. The results of 
the paper are concluded in section V. 
 

II. TEAM PROBLEM NO. 10 
 
TEAM Problem No. 10 was put forward as early as 1988 at 
one of the first TEAM (Testing Electromagnetic Analysis 
Methods) Workshops at Argonne [11] by the group of T. 
Nakata of the Okayama University, Japan. The final 
definition along with numerical results by many groups from 
all over the world as well as measured values was then 
established in [10]. The present problem definition is taken 
from there.  

 
Fig. 1. Geometry of TEAM Problem No. 10 

 
The geometrical dimensions are shown in Fig. 1. The steel 
plates are made of ferromagnetic material with its 
conductivity given as σ = 7.505x106 S/m in Fig. 1 as well, and 



its nonlinear B-H curve shown in Table I for flux density 
values up to 1.8 T (B is flux density and H is magnetic field 
intensity).  
 

TABLE I. B-H CURVE OF THE STEEL PLATE 
No. B(T) H(A/m) No. B(T) H(A/m) 
1 0 0 15 0.90 313 
2 0.0025 16 16 1.00 342 
3 0.0050 30 17 1.10 377 
4 0.0125 54 18 1.20 433 
5 0.025 93 19 1.30 509 
6 0.05 143 20 1.40 648 
7 0.10 191 21 1.50 933 
8 0.20 210 22 1.55 1228 
9 0.30 222 23 1.60 1934 

10 0.40 233 24 1.65 2913 
11 0.50 247 25 1.70 4993 
12 0.60 258 26 1.75 7189 
13 0.70 272 27 1.80 9423 
14 0.80 289    

 
For higher flux densities it is approximated as 
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where a = -2.381x10-10, b = 2.327x10-5, c = 1.590, 
Ms =2.16 T. The number of turns in the coil is 162. 
 
In the original definition of the problem, the current of the 
coil was defined as starting from zero at t = 0 and 
exponentially approaching a constant value as indicated in 
Fig. 1. Obviously, such a current form can be achieved by 
switching a constant voltage to the unenergised coil at t = 0. 
However, this non-periodical excitation does not well serve 
the purposes of the paper. 
 
Therefore, a time-harmonic voltage u(t) is assumed to be 
switched to the unenergised coil at t = 0 with the voltage 
starting from zero, i.e. it is described by a sine function: 
 
 ( )ˆ( ) sinu t U tω= . (2) 
 
Selecting the frequency f = ω/2π to be 50 Hz, leads to a 
penetration depth of less than one millimetre with the 
maximal permeability µ corresponding to the B-H curve of 
Table I. Hence, appreciable skin effect can be anticipated in 
the plates. 
 
The transients to be expected are governed by the resistance 
of the coil. If this were chosen very low, the TS method 
would be totally unfeasible for solving the problem, since it 
would require too many periods to step through before 
reaching steady-state.  Targeting a time constant around the 
value of 50 ms (as in the original definition of the problem, 
see Fig. 1), means that twenty periods of time stepping (400 
ms) should lead to near steady-state. In order to achieve this, a 
linear, static version of the problem has been solved using the 
relative permeability of µr = 2327 corresponding to the point 
at B = 1 T of the B-H curve. To get the inductance of the coil, 
its flux linkage λ is computed from the well-known formula 
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where Ω is the problem domain, i the coil current, A is a 
magnetic vector potential fulfilling B = curlA and J0 is the 
given current density of the coil. Introducing the current 
vector potential t0 corresponding to a unit coil current, i.e. 
satisfying 
 
 0 0icurl=J t ,  (4) 
 
(3) can be rewritten as 
 
 ( )0 0 0curl d curl d dl
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where Ω¶  is the boundary of Ω. The integrand of the surface 
integral vanishes on symmetry planes and also on far 
boundaries where the tangential component of t0 can be 
assumed to be zero, therefore, the surface integral in (5) can 
be disregarded leading to 
 
 0dλ

Ω

Ω= ×ò B t . (6) 

 
Note that (6) is valid for any potential formulation and also in 
the nonlinear case. 
 
Dividing the flux linkage by the current yields the inductance 
arriving at a value of about L = 18 mH. To get a time constant 
of 50 ms, the resistance is chosen as R = 0.36 Ω. The 
amplitude Û  of the voltage in (2) is selected so that, in the 
linear case, the amplitude of the current should be about the 
same as in the steady-state value of the original problem 
definition ( Î  = 5.64 A, see Fig. 1). Since L Rω  , this 
results in ˆ ˆ 32 U LI Vω» » . In order to increase the 
saturation of the plates and hence to make nonlinearity more 
pronounced, computations with a voltage amplitude of 64 V 
have also been carried out. In summary, the data of the 
modified problem are summarized in Table II. 
 

TABLE II. DATA OF THE MODIFIED PROBLEM 

Voltage amplitude 1Û  32 V 

2Û  64 V 

Frequency 
2

f ω
π

=  50 Hz 

Coil resistance R 0.36 Ω 
 

III. METHODS 
 
The potential formulation used is in terms of a current vector 
potential T and a magnetic scalar potential Φ. The current 
density of the coil is described by the current vector potential 
t0 introduced in (4). The function t0 is constructed to have a z-
component only with a constant value in the hole of the coil, 
being zero outside the coil everywhere else and varying 
linearly within the coil [12]. The magnetic field intensity H is 
expressed by the potentials as 
 
 0i gradΦ= -H t             in Ωn, (7)  
 
 0i gradΦ= + -H t T      in Ωc (8) 
 



where i is the coil current, Ωn is the eddy current free region 
made up by the air and the coil and Ωc is the eddy current 
region constituted by the steel plates. The eddy current 
density in Ωc is written as 
 
 curl=J T     in Ωc,  (9) 
 
since the curl of t0 vanishes in Ωc. 
 
Maxwell's equations to be solved are 
 
 0div =B     in Ωn and Ωc (10) 
 
and 
 

 curl
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where E is the electric field intensity.  
 
Taking account of the constitutive relationships 
 
 ( )µ=B H H  (12) 
 
and 
 
 σ=J E , (13) 
 
the differential equations to be solved are hence 
 
 ( )0 0div i gradµ Φ- =t    in Ωn (14) 
 
and 
 

 ( )0
1 0curl curl i grad

t
µ

σ
Φ

æ ö ¶÷ç + + - =÷ç ÷çè ø ¶
T t T in Ωc, (15) 

 
 ( )0 0div i gradµ Φ+ - =t T    in Ωc. (16) 
 
The given voltage of the coil is the sum of the voltages of the 
coil resistance and inductance. The former one is Ri and the 
latter one is the time derivative of the flux linkage λ. Using 
(6), this yields the additional equation 
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The numerical solution of the problem is carried out by the 
method of finite elements using different techniques to solve 
the system of ordinary differential equations arising. 
 

A. Time stepping method 
 
Introducing the edge based vector basis functions Ni(r) (i = 1, 
2, ..., ne) and the node based scalar basis functions Ni(r) (i = 1, 
2, ..., nn) in the finite elements (ne is the number of edges, nn 
the number of nodes in the finite element mesh, r denotes the 
space coordinates),  the potentials are approximated as 
 

 ( ) ( ) ( ) ( )
1

, ,
en

h k k
k

t t t t
=

≈ = ∑T r T r N r , (18) 

 

 ( ) ( ) ( ) ( )
1

, ,
nn

h k k
k

t t t Nφ
=

Φ ≈ Φ =∑r r r . (19) 

 
The vector t0 is represented by edge basis functions similarly 
to T in (18). The coefficients for t0 are easily computed as its 
line integrals along the edges of the finite element mesh. T is 
zero in Ωn, i.e. all its degrees of freedom are set to zero in this 
region and also on its boundary. Hence, the tangential 
component of T is zero on the interface between Ωn and Ωc. 
 
Galerkin's method with the weighting functions Ni(r) is 
applied to (15) and with the weighting functions Ni(r) to the 
time derivative of (14), (16) assuming boundary conditions 
either specifying the normal component of B or the tangential 
component of H to vanish on the boundary (B.n = 0 or 
H x n = 0). The resulting ordinary differential equations are 
appended by (17) with B expressed using (12), (7) and (8) and 
employing the approximations (18), (19) for the potentials. 
The resulting equations have a symmetric form: 
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Gathering the unknown time functions tk(t) (k = 1, 2, ..., ne) 
and φk(t) (k = 1, 2, ..., nn) in (18) and (19) as well as the 
unknown current i(t) in a vector x(t), the matrix form of (20), 
(21), (22) is the system of ordinary differential equations 
 

 ( ) ( )( )( ) ( ) ( )dt t t t
dt

µ + = Sx M x x f  (23) 

 
where the stiffness matrix S is independent of x and hence of 
time, but the mass matrix M depends on the permeability 
which is itself field- and time-dependent. The right hand side 
vector is denoted by f. In our case, f satisfies the periodicity 
condition f(t) = f(t+T) where T is the period 1/f. The product 
of the mass matrix and the unknown vector is differentiated 
with respect to time.  
 
The vectors x and f as well as the matrices S and M are 
partitioned as 
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where xT, xΦ are ne- and nn-vectors, respectively, STT and MTT 
are nexne matrices, and the dimensions of MTΦ, mTi, MΦT, 
MΦΦ, mΦi, miT and miΦ are nexnn, nex1, nnxne, nnxnn, nnx1, 
1xne and 1xnn, respectively. The elements of the sub-matrices 
are: 
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 ( ) ( ){ }: , 1, 2,...,i i nx t t i nφΦ Φ = =x , (29) 
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The matrices S and M are symmetric, since, obviously, STT, 
MTT and MΦΦ are symmetric and MΦT=(MTΦ)T, miT=(mTi)T, 
miΦ=(mΦi)T (the superscript T stands for transpose). 
 
The unknown time function is now represented by a sequence 
of discrete time values at the time instants tk = tk-1 + ∆tk, 
k = 1, 2, .... Discretising (23) using the backward Euler 
difference scheme, one arrives at the nonlinear algebraic 
equation systems 
 

 ( )( ) ( )( )1 1
1

m m m m m m
mt

mm  − − + − = ∆
Sx M x x M x x f , 

 m = 1, 2, ... (40) 
 
where the subscripts indicate time values, i.e. xm = x(tm) and 
fm = f(tm). Starting from x0 = 0, (40) is solved for m = 1, 2, ... 
until the condition x(tm) = x(tm+T) is satisfied with sufficient 
accuracy. 
 
The equation systems (40) can be solved iteratively by re-
computing the permeability at each Gaussian integration point 
in each iteration step from the previous approximation for xm. 
The iteration process is terminated once the variation of the 
permeability between two steps becomes small enough. Both 
the mean and the maximal value of the relative change over 
all integration points are monitored. In the i-th step, the 
modulus Hi of the magnetic field intensity is calculated from 
the approximation for xm and Bi+1 is derived from the B-H 
curve yielding the new permeability as Bi+1/Hi (see Fig. 2). 
This method is stable without introducing under-relaxation of 
the permeability provided the B-H curve is monotonous and 
convex (i.e. dB/dH > 0 and d2B/dH2 < 0) as it is the case for 
the curve in Fig. 2.  The B-H curve of TEAM Problem No. 10 
as defined in Table I is however concave (d2B/dH2 > 0) for 
low field values as in the domain B<BT, H<HT in the curve 
shown in Fig. 3. In such a situation, the stability of the above 
secant method is no more ensured and it becomes necessary 
to use under-relaxation between the iteration steps. A slight 
modification, however, dispenses with the necessity of under-
relaxation and thus results in an acceleration of convergence. 
In fact, the secant method remains stable in the concave 
domain, too if the value Bi = µiHi is first computed with the 
aid of the old value µi of the permeability and the new field 
intensity Hi+1 is hence obtained from the B-H curve. 
Thereupon, the new value µi+1 of the permeability is derived 
as Bi/Hi+1. 
 
It is noted here that, if a magnetic vector potential were used, 
i.e. the unknowns in xm yielded the flux density instead of the 
magnetic field intensity, one would iterate the reluctivity 
n=1/µ instead of the permeability. In this case, the treatment 
of the convex part necessitates using the reluctivity from the 
previous iteration step: the vector potential values in xm are 
used to compute the flux density Bi and this is multiplied by 
the reluctivity ni obtained in the previous step to yield the 
magnetic field intensity Hi. Bi+1 is now obtained from the B-H 
curve and the new reluctivity ni+1 is derived as the secant 
Hi/Bi+1. In the concave domain, the value of Bi is simply 



obtained from xm and Hi+1 from the B-H curve to yield the 
new reluctivity ni+1 as Hi+1/Bi. This is also illustrated in Figs 2 
and 3. 
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Fig. 2. Scheme of nonlinear iteration step for convex magnetizing curve 
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Fig. 3. Scheme of nonlinear iteration step for concave magnetizing curve 

 
The secant method described here is superior to the more 
commonly used Newton-Raphson technique, since it does not 
necessitate the differentiation of the B-H curve to obtain 
differential permeabilities or reluctivities.  This is especially 
advantageous, if the B-H curve is provided in discrete points 
instead of as a formula or a spline. In the experience of the 
authors, the convergence of the secant method is comparable 
to that of the Newton-Raphson approach, but it is insensitive 
to the initial guess for the permeability and is always stable. 
 

B. Nonlinear time-harmonic method 
 
A frequently used approximation to solve nonlinear eddy 
current problems with sinusoidal excitation is to assume that 
all field quantities also vary sinusoidally. This means that the 
time functions of the degrees of freedom for the vector 
potential and the scalar potential are assumed to be 
 
 ( )ˆ( ) cosk k kt t T tω θ= + ,   k = 1, 2, ..., ne (41) 
 
and 
 
 ( ) ( )ˆ cosk k kt tφ ω ϕ= Φ + ,   k = 1, 2, ..., nn. (42) 
 
These can be transformed into the frequency domain, i.e. 
represented by their complex amplitudes (underlined in the 
following) as 
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where j2=-1. Hence, the complex amplitudes of the current 
vector potential and the magnetic scalar potential are 
 

  ( ) ( )
1

ˆ ˆ
en

k k
k

T
=

= ∑T r N r  (45) 

 
and 
 

 ( ) ( )
1

ˆ ˆ
nn

k k
k

N
=

Φ = Φ∑r r . (46) 

 
The vectors x and f are replaced by their complex amplitudes 
X̂  and F̂ , respectively, whose elements are complex values: 
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and 
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Û  is the given complex amplitude of the voltage and Î  is 
the complex amplitude of the current to be determined. 
 
Since the time derivative in the time domain corresponds to a 
multiplication by jω, (23) becomes a complex, nonlinear 
algebraic equation system: 
 

  ( )( )ˆ ˆ ˆjω µ + =  
S M X X F . (51) 

 
Several possibilities exist to choose the dependence of the 
permeability µ on the complex amplitude of the potentials 
(see e.g. [3]). In the present investigation, µ has been simply 
selected as the ratio of the maximal value of B(t) and H(t) 
over a period which have been assumed to be related to each 
other by the B-H curve in Table I. 
 
The nonlinear complex algebraic equation system (51) can be 
solved using the nonlinear iterative method described in 
subsection A. 
 

C. Time-domain fixed-point method 
 
The periodicity condition can be ensured when using the 
backward Euler difference technique to discretise (23) by 
representing x(t) by a sequence of N equidistant time values 
within a period as xk = x(k∆t), k = 0, 1, ..., N with ∆t denoting 
the time step ∆t = T/N. This sequence is cyclic, since due to 
the periodicity of x, we have x0 = xN. Therefore, (40) becomes 
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Sx M x x M x x f , 

 m = 1, 2, ... N (52) 
 
where, as before, the subscripts indicate time values. 
 
Let us introduce the notations 
 
 [ ] [ ]T1 21 ... N=x x x x , (53) 
 
 [ ] [ ]T0 1 10 ... N −=x x x x , (54) 
 
    [ ] [ ]T1 21 ... N=f f f f  (55) 
 
for the hyper-vectors formed by the cyclic sequences as well 
as 
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for the block-diagonal matrices. Hence (52) can be written as 
 

 [ ]( ) [ ] [ ]( ) [ ] [ ]1 11 1 0 0 1
t t

µ µ+ − =
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S M x M x f . (58) 

 
Note that the matrices depending on the permeability vary in 
time. This is reflected in (58) by the symbols [1] and [0] 
following these matrices indicating the sampling operations 
defined in (53) and (54). 
 
The discrete Fourier transform of the sequence x[1] is defined 
as [13]: 
 
 [ ]( ) [ ]T1 2ˆ ˆ ˆ ˆ1 ... N= =x x x x xD , 

 [ ]( ) 2

1

ˆ 1
kN j m
N

m m k
k

e
π− ⋅

=

= = ∑x x xD , m = 1, 2, ... N. (59) 

 
This has the advantage that, according to the shift theorem 
[13], the discrete Fourier transform of x[0] can simply be 
obtained as 
 
 [ ]( ) ˆ0 =x PxD  (60) 
 
where 
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 (61) 

 
and I is the unit matrix. 
 
Applying the discrete Fourier transformation to (58), a system 
of equations with N times as many unknowns is obtained as 
there are elements, i.e. degrees of freedom, in xk: 
 

[ ]( ) [ ] [ ]( ) [ ]{ } [ ]( )1ˆ 1 1 0 0 1
t

µ µ+ − =
∆

S x M x M x f∆∆  (62) 

 
In the linear terms in (62), the elements of x̂ , i.e. the discrete 
harmonics, are decoupled. Were it not for the dependence of 
M on µ, the shift in time would correspond to a multiplication 
by the block diagonal matrix P. The right hand side can be 
computed directly from f[1] as shown in (59). However, the 
nonlinear terms containing the permeability µ depending on 
the unknown solution couple all elements of the discrete 
Fourier transform, i.e. the discrete harmonics to each other. 
Therefore, due to the nonlinearity, one cannot solve for each 
discrete harmonic alone, a fact which, again, significantly 
increases the complexity of the problem. 
 
Decoupling of harmonics 
 
It is highly desirable that the discrete harmonics be decoupled 
and hence be determined independent of each other. This 
would lead to N systems of equations, each with as many 
unknowns as there are degrees of freedom in the FEM 
approximation. As shown below, the decoupling is trivial in 
the linear case but, for nonlinear problems, special techniques 
are needed. 
 
Linear problems 
 
If the permeability is independent of the magnetic field, the 
system of ordinary differential equations (23) becomes linear, 
since M does not depend on x(t). Hence, the discrete Fourier 
transform on the left hand side of (62) simplifies to 
 
 ( ) [ ] ( ) [ ]{ } ( ) ( ) ˆ1 0µ µ µ− = −M x M x M I P xD . (63) 

 
Therefore, the discrete harmonics in (62) are decoupled: 
 

 ( ) ( ) [ ]( )1 ˆ 1
t

µ + − = ∆ 
S M I P x f∆ . (64) 

 
Indeed, these can be written as 
 

( ) [ ]( )21 ˆ1 1
mj
N

m me
t

π
m

−  
+ − =  
∆   

S M x f∆ , m = 1, 2, ... N. (65) 

 
Since the matrix M is real, the m-th and the (m+N/2)-th 
equations in (65) are complex conjugate to each other 
assuming N to be even, i.e. only N/2 linear systems have to be 
solved. The right hand side vector in (65) can be easily 
computed by discrete Fourier transformation as shown in 



(59). If the excitation f(t) satisfies the condition 
f(t) = -f(t+T/2) (this is the case if, e.g. it is a time-harmonic 
function), the right hand side of (65) and hence ˆ mx  is zero for 
all even values of m, i.e. no more than N/4 linear systems 
have to be solved. Having obtained all vectors ˆ mx  from (65), 
the time values can be obtained by inverse discrete Fourier 
transformation: 
 
 ( ) [ ] [ ]T1

1 2ˆ 1 ... N
− = =x x x x xD , 

 
2

1

1 ˆ
kN j m
N

m k
k

e
N

π ⋅

=

= ∑x x ,    m = 1, 2, ... N. (66) 

 
Fixed-point iteration technique for nonlinear problems 
 
The fixed-point iteration method for the solution of nonlinear 
equations reduces the problem to finding the fixed point of a 
nonlinear function. The fixed point xFP of the function G(x) is 
defined as 
 
 ( )FP FP=x G x . (67) 
 
The fixed point can be determined as the limit of the sequence 
 
 ( ) ( )( )1s s+ =x G x ,      s = 0, 1, 2, ... , (68) 

 
provided G(x) is a contraction, i.e. there exists a contraction 
number 0 1< <q  so that for any x and y 
 
 ( ) ( ) q− ≤ −G x G y x y  (69) 
 
where ⋅  denotes a suitable norm. Furthermore, the sequence 
(68) converges to the same fixed point independent of the 
choice of the initial guess (0)x . 
 
A general nonlinear equation F(x)=0 can be transformed to a 
fixed-point problem by selecting a suitable linear operator A 
and defining G as 
 
 ( ) ( )1−= +G x x A F x . (70) 
 
The fixed-point iterations (68) then become 
 
 ( ) ( ) ( ) ( ) ( )( )1s s s s s+ = +A x A x F x ,     s = 0, 1, 2, ...  (71) 

 
where the superscript s of ( )sA  indicates that the linear 
operator A can be changed at each iteration step to accelerate 
convergence. 
 
In case of the ordinary differential equations (23) obtained by 
Galerkin FEM techniques, the selection of a linear operator is 
straightforward: the permeability has to be set to a value 
independent of the magnetic field. This value µFP is not 
necessarily independent of the space coordinates r, i.e. 
generally ( )FP FPµ µ= r  is a permeability distribution varying 
in the problem domain but independent of the field and hence 
of time. By the same argument as the one used for the linear 
operator A above, µFP can also change at each iteration step. 
This fixed-point permeability function will be denoted by 

( )s
FPµ  below. 

 
Once a suitable fixed-point permeability has been selected, 
(23) can be iteratively solved by obtaining ( ) ( )1s t+x  from the 
equations 
 

 ( ) ( ) ( )( ) ( ) ( )1 1s s s
FP

dt t
dt

µ+ + +  Sx M x  

 ( ) ( )( ) ( ) ( ) ( )s s s
FP

d t t
dt

µ µ = − + M x f ,     s = 0, 1, 2, ... (72) 

 
at each step. The permeability distributions ( )sµ  are 

determined from the solution ( ) ( )s tx  i.e., in contrast to ( )s
FPµ , 

they are time dependent. The mass matrix M on the right 
hand side of (72) is computed with ( ) ( )s s

FPµ µ−  written instead 
of µ. This is permissible, since this matrix depends linearly on 
µ. 
 
Since (72) is a linear ordinary differential equation system, it 
can be solved by the discrete Fourier decomposition method 
with decoupled harmonics. Indeed, the time discretised form 
of (72) is: 
 

 ( )( ) ( ) [ ] ( )( ) ( ) [ ]1 11 11 0s s s s
FP FPt t

µ µ+ ++ −
∆ ∆

S M x M x  

 [ ] ( ) ( )( ) ( ) [ ]1 1 1s s s
FPt

µ µ= −∆
M x  

 [ ] ( ) ( )( ) ( ) [ ] [ ]0 0 1s s s
FPµ µ − − +

M x f ,s = 0, 1, 2, ... . (73) 

 
Taking the discrete Fourier transforms leads to equations 
similar to (65) for s = 0, 1, 2, …: 
 

 ( )( ) ( )2 11 ˆ1
mjs sN

FP me
t

π
m

− +  
+ −  
∆   

S M x  

 [ ] ( ) ( )( ) ( ) [ ]1 1 1s s s
m FPt

mm = −∆
M x∆  

 [ ] ( ) ( )( ) ( ) [ ] [ ]0 0 1s s s
FPµ µ − − + 

M x f , 

  m = 1, 2, ... N  (74) 
 
where ( ) [ ]1sx  is obtained from the discrete harmonics by 
inverse discrete Fourier transformation as shown in (66): 
 

 ( ) [ ] ( ) ( ) ( ) T

1 21 ...s s s s
N

 =  x x x x , 

 ( ) ( ) 2

1

1 ˆ
kN j ms s N

m k
k

e
N

π ⋅

=

= ∑x x . (75) 

 
A time shift back yields ( ) [ ]0sx  according to the definition in 
(54).  
 
The nonlinear iterations of solving the linear systems in (74) 
are terminated once the change of ( )sµ  between two iteration 
steps becomes less than a suitable threshold. Similarly to the 
nonlinear iterations taken to solve (40), both the mean and the 
maximal value of the relative change over all integration 
points are monitored but, in addition, all time values within a 
period are swept. The most striking difference to the time-



stepping method is that, whereas there the time-stepping is the 
external loop with internal nonlinear iterations carried out, in 
case of the time-domain fixed-point method, the nonlinear 
iterations form the outer loop and time-stepping over one 
period is made internally. 
 
The most computational effort is needed for the solution of 
the N/2 (or, e.g., in case of a time-harmonic excitation, N/4) 
linear equation systems in (74) (remember, half of the 
systems are complex conjugate to the other half). Since these 
are independent of each other, they can be solved parallel 
with each core responsible for the solution for one harmonic 

( )1ˆ s
m
+x . Once these parallel computations are ready, the right 

hand side for the next iteration can be determined by first 
computing the time function of the solution as in (75) and 
then carrying out the discrete Fourier decompositions 
indicated in (74). This is the part of the process when no 
parallelization is possible, but since the computational effort 
necessary for it is much less than needed to the solution of the 
large linear algebraic systems, the method is massively 
parallel. 
 
One of the most important factors influencing the rate of the 
convergence of the fixed-point technique is the choice of the 
fixed-point permeability. As pointed out above, this is not 
necessarily constant with respect to the space coordinates, i.e. 
it can be selected to be different at each Gaussian integration 
point of the finite element mesh. The analysis of the optimal 
choice has been carried out in [8], the result for ( )µ s

FP  below is 
taken from there: 
 

 ( )

( )

( )

[ ]
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min max
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t T t Ts
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m mm
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∈ ∈

   +  =  
 
  

∫

∫
. (76) 

 
The permeability ( )µ s is a function of the space coordinates 
and also of time since it is determined by the magnetic field 
distribution, itself space and time-dependent. According to 
(76), the fixed-point permeability depends on the space 
coordinates but not on time. The computational effort 
necessary for the evaluation of (76) in each nonlinear iteration 
step is negligible. 
 

IV. NUMERICAL RESULTS 
 
The modified version of TEAM Problem No. 10 as defined in 
section II has been solved by the methods presented in the 
previous section. 
 
A finite element model including of one eighth of the problem 
domain has been developed. The elements used are second 
order hexahedral ones with 20 nodes and 36 edges shown in 
Fig. 4 [14]. The discretization data are summarized in Table 
III.  
 

 
 

Fig. 4. A second order hexahedral element with 20 nodes and 36 edges 
 

TABLE III. DISCRETISATION DATA OF THE FINITE ELEMENT MODEL 
Number of elements 24,960 

Number of nodes 107,893 
Number of edges 315,444 

 
The model is plotted in Fig. 5 with the finite element grid of 
the steel plates and the coil shown. As mentioned, it is 
sufficient to model one eighth of the problem region, since 
symmetry boundary conditions apply at x = 0 and y = 0 
(B.n = 0) as well as at z = 0 (H x n = 0). The finite element 
mesh extends in the three coordinate directions to a far 
boundary where the boundary condition H x n = 0 is 
assumed. The coil is not modelled by the mesh. 
  

 
Fig. 5. Model of TEAM Problem No. 10 
 
Applying the T,Φ-Φ formulation described in section III.A, 
the number of degrees of freedom is 115,561 and the number 
of nonzeros in the upper triangle of the system matrix is 
3,891,957.  
 

A. Time-stepping method 
 
The time-stepping method has been applied using a time-step 
of 0.5 ms, and 800 time-steps have been taken, i.e. 20 periods 
have been stepped through. 
 
The nonlinear algebraic equation systems (40) have been 
solved in each time-step by the secant method presented. The 
linear algebraic equation systems arising at each nonlinear 
iteration step have been solved by the conjugate gradient 
method employing incomplete Cholesky preconditioning 
(ICCG). The initial guess for the ICCG method was the 
solution at the previous time-step for the first iteration within 



a time-step and was chosen as the previous solution for the 
subsequent nonlinear iterations. The ICCG iterations were 
terminated as soon as the norm of the residual normalised by 
the norm of the right hand side had become less than 10-6. 
The nonlinear iterations were stopped when the relative 
change of the permeability averaged over all Gaussian 
integration point had fallen below 1 percent and the maximal 
value of the relative change over all integration points had 
become less than 5 percent. In order to facilitate the 
comparison of the numerical efforts needed by the various 
methods, the total number of ICCG iterations carried out will 
also be shown for each analysis.     
 
The computational data of the time-stepping method with 800 
time-steps with the voltage amplitudes of 32 V and 64 V are 
shown in Table IV. The computations have been carried out 
on a single processor of a 16-core Intel Xeon E5-2687W 
server.   
 
In case of the voltage amplitude being 32 V, the time function 
of the computed coil current is shown in Fig. 6.  Increasing 
the voltage amplitude to 64 V, the time function plotted in 
Fig. 7 is obtained. 
 
TABLE IV. COMPUTATIONAL DATA OF THE TIME-STEPPING METHOD 
Voltage amplitude/V 32 64 
Overall number of nonlinear 
iterations 10,869 13,101 

Mean number of nonlinear 
iterations per time-step 13.6 16.4 

Overall number of ICCG 
iterations 1,855,820 2,096,547 

Mean number of ICCG 
iterations per nonlinear iteration 170.7 160.0 

Overall CPU-time/s 130,661 147,610 
CPU-time per ICCG iteration/s 0.0704 0.0704 
 

 
Fig. 6. Time function of coil current, voltage amplitude is 32 V   
 

 
Fig. 7. Time function of coil current, voltage amplitude is 64 V   
 

 
Fig. 8. Coil current values at the time instants t = kT, k =0, 1, ..., 20 
 
To illustrate how the periodicity condition is satisfied for the 
20 periods, Fig. 8 shows the current values at the time instant 
t = kT, k =0, 1, ..., 20 for both voltage values. It is obvious 
that the coil current has reached steady-state in the 20th 
period. 
 
In addition to the coil current, the time evolution of the mean 
flux density B1 in the centre of the middle plate and the power 
losses p in the steel plates have also been  evaluated over the 
20 periods. The mean flux density is shown in Figs. 9, 10 and 
11 and the power losses in Figs. 12, 13 and 14. 
 

 
Fig. 9. Time function of mean flux density in the centre of the middle plate 
B1, voltage amplitude is 32 V 
 

 
Fig. 10. Time function of mean flux density in the centre of the middle plate 
B1, voltage amplitude is 64 V 
 
It is clear that the mean flux density in the middle plate has 
already settled but the same is not true for the power losses, 
steady-state has been not yet arrived at, but the transients 
have been considerably damped. 



 
Fig. 11. Flux density values B1 at the time instants t = kT, k =0, 1, ..., 20 
 

 
Fig. 12. Time function of power losses p in the plates, voltage amplitude is 
32 V 
 

 
Fig. 13. Time function of power losses p in the plates, voltage amplitude is 
64 V 
 

 
Fig. 14. Power loss values p at the time instants t = kT, k =0, 1, ..., 20 

 
 
 
 
 

B. Nonlinear time-harmonic method 
 
The computational data of the nonlinear time harmonic 
method are summarised in Table V. This approximate method 
is obviously much faster than the time-stepping approach. 

 
TABLE V. COMPUTATIONAL DATA OF THE NONLINEAR TIME-HARMONIC 
METHOD 
Voltage amplitude/V 32 64 
Number of nonlinear iterations 18 21 
Overall number of ICCG 
iterations 4,988 8,515 

Mean number of ICCG 
iterations per nonlinear iteration 277.1 405.5 

Overall CPU-time/s 349 581 
CPU-time per ICCG iteration/s 0.0700 0.682 
 
The sinusoidal time functions of the coil current and of the 
mean flux density in the centre of the middle plate as well as 
the time evolution of the power losses (being the sum of a 
constant value and a double frequency component) are 
compared in Figs. 15, 16 and 17 to the time functions 
obtained in the 20th period of the time-stepping method at the 
voltage amplitude of 32 V and in Figs. 18, 19 and 20 for the 
voltage amplitude of 64 V. The approximation is surprisingly 
good for the current and the flux density but much less 
satisfactory for the power losses. 
 

 
Fig. 15. Time function of the coil current in the 20th period computed by the 
time-stepping (TS) method, the sinusoidal time-function obtained by the 
nonlinear time-harmonic (NTH) approximation as well as the steady-state 
time evolution yielded by time-domain fixed-point (TDFP) technique, 
voltage amplitude is 32 V 

 
Fig. 16. Time function of the mean flux density in the centre of the middle 
plate in the 20th period computed by the time-stepping (TS) method, the 
sinusoidal time-function obtained by the nonlinear time-harmonic (NTH) 
approximation as well as the steady-state  time evolution yielded by time-
domain fixed-point (TDFP) technique, voltage amplitude is 32 V 
 

 
Fig. 17. Time function of the power losses in the plates in the 20th period 
computed by the time-stepping (TS) method, the sum of a constant value and 
of a double frequency sinusoidal time-function obtained by the nonlinear 
time-harmonic (NTH) approximation as well as the steady-state time 
evolution yielded by time-domain fixed-point (TDFP) technique, voltage 
amplitude is 32 V 



 

 
Fig. 18. Time function of the coil current in the 20th period computed by the 
time-stepping (TS) method, the sinusoidal time-function obtained by the 
nonlinear time-harmonic (NTH) approximation as well as steady-state the 
time evolution yielded by time-domain fixed-point (TDFP) technique, 
voltage amplitude is 64 V 
 

 
Fig. 19. Time function of the mean flux density in the centre of the middle 
plate in the 20th period computed by the time-stepping (TS) method, the 
sinusoidal time-function obtained by the nonlinear time-harmonic (NTH) 
approximation as well as the steady-state  time evolution yielded by time-
domain fixed-point (TDFP) technique, voltage amplitude is 64 V 
 

 
Fig. 20. Time function of the power losses in the plates in the 20th period 
computed by the time-stepping (TS) method, the sinusoidal time-function 
obtained by the nonlinear time-harmonic (NTH) approximation as well as the 
steady-state  time evolution yielded by time-domain fixed-point (TDFP) 
technique, voltage amplitude is 64 V 
 

C. Time-domain fixed-point method 
 
Similarly to the time-stepping analysis, the time-step has been 
selected as 0.5 ms resulting in 40 time-steps per period. Due 
to the excitation being time-harmonic, this means that the 
number of independent linear equation systems (74) within 
each nonlinear iteration step is 10. Their solution has been 
carried out parallel. The thresholds for the ICCG iterations as 
well as for the termination of the nonlinear iterations have 
been selected to be the same as for the time-stepping method. 
 
The computational data of the time-domain fixed-point 
method with the voltage amplitudes of 32 V and 64 V are 
shown in Table VI. The computations have been carried out 
on five processors of the 16-core Intel Xeon E5-2687W 
server used for the previous analyses. 
 
 
 

TABLE VI. COMPUTATIONAL DATA OF THE TIME-DOMAIN FIXED-POINT 
METHOD 
Voltage amplitude/V 32 64 
Overall number of nonlinear 
iterations 46 86 

Overall number of ICCG 
iterations 100,006 169,768 

Mean number of ICCG 
iterations per nonlinear iteration 
per time step 

217.4 197.4 

Overall real time/s 2,843 5,233 
Real time per ICCG iteration/s 0.0284 0.0308 
 
The overall time needed is 28 to 46 times less than in case of 
the time-stepping method carried out for 20 periods. This 
factor could be considerably higher if the transients needed a 
longer time to fade, e.g. if the resistance of the coil were 
lower resulting in a larger time constant of the system. Indeed 
in such a case, the number of periods to be stepped through 
could be substantially higher than twenty; it could even be 
several thousand for a typical power transformer application. 
 
The acceleration in comparison with the time-stepping 
method is not only due to the considerably lower number of 
ICCG iterations needed. Indeed, the CPU-time per ICCG 
iteration is also lower thanks to the parallelisation in solving 
the equation systems (74) within the nonlinear iteration steps. 
Note that the computation of the right hand side of (74) needs 
all the time values within the period, and this deteriorates the 
efficiency of the parallelisation: although five processors have 
been used, the time needed for one ICCG iteration is not less 
than about 40-45 percent of that of the nonparallelised time-
stepping or nonlinear time-harmonic approaches (see Tables 
IV and V). 
 
The computed steady-state time functions of the coil current, 
of the mean flux density in the centre of the middle plate as 
well as of the power losses in the plates have also been 
plotted in Figs. 15, 16, 17, 18 , 19 and 20. In case of the coil 
current and the flux density which have attained steady-state 
in the 20th period of the time-stepping, the time-domain fixed-
point solutions are practically identical with these. The power 
losses have not yet settled in the 20th period as already seen 
in Fig. 14 and also clear in Fig. 17 showing that the two half 
periods are different. However, the time function of the power 
losses obtained by the time-domain fixed-point technique 
obviously satisfy the condition p(t) = p(t+T/2). 
 
The steady-state solutions obtained by the time-domain fixed-
point method are illustrated by plots showing the moduli of 
the flux density and the current density in the plates at the 
time instants in which the mean flux density in the centre of 
the middle plate and the power losses attain their maximal 
value. Fig. 21 displays the flux density distribution in the 
plates at t = 10.5 ms with the voltage amplitude 32 V, and Fig. 
22 presents the same for the voltage amplitude 64 V. The 
current density distribution at t = 7 ms is shown for 32 V in 
Fig. 23 and for 64 V in Fig. 24.  
 



 
Fig. 21. Flux density distribution on the surface of the plates for the voltage 
amplitude 32 V at t = 10.5 ms 
 

 
Fig. 22. Flux density distribution on the surface of the plates for the voltage 
amplitude 64 V at t = 7.0 ms 
 
 
 

 
Fig. 23. Current density distribution on the surface of the plates for the 
voltage amplitude 32 V at t = 7.0 ms 
 

 
Fig. 24. Current density distribution on the surface of the plates for the 
voltage amplitude 64 V at t = 7.0 ms 
 

V. CONCLUSION 
 
The solutions presented for TEAM Workshop Problem No. 
10 with a sinusoidal voltage excitation have illustrated that 
the time-domain fixed-point method can efficiently compute 
the steady-state of nonlinear eddy current problems roughly at 
the expense of time-stepping through one period. 
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