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ABSTRACT

For the calculation of total forces in static or dynamic
magnetic-field problems, Maxwell's force formula is con-
venient and generally applicable. A derivation of this
Tormula is given using the idea of Green’s equivalent
strata, and a number of different practical problems
which have been investigated numerically are described.

LIST OF PRINCIPAL SYMBOLS

A magnetic vector potential 5 surface
B magnetic flux density L time
T, f force, force density v volume
H  magnetic field strength 1, permeabilily of
J current density Iree space
M magnetization (M=B/u_-H) p., relative
n normal vector ° r permeability
q hypothetical magnetic ¢ magnelic pole
charge densily
Subscripts
n  normal component
s surface density
t  tangential component
INTRODUCTION

The operation of many electromagnetic devices depends
on the forces acting on conductors and magnelized parts,
as in electrical motors, electiromagnets, and magnetic
levitation systems. In electrical engineering, Lhere-
fore, the calculation of forces is a subjecl of pgreatl
importance,

The treatment of the problem in its general form,
which includes the distribution of forces within the
material, is of considerable complexity as it inveolves
many different aspects, such as microscopic electro-
dynamics, elasticity, and thermedynamics. The subject is
discussed %n several papers, for instance Ref. 1-5, and
textbooks 06,7, and a detailed description is given in
the boolt Ref. 8. In most publications, sowe simplifying
assumptions are made, mostly referring to linear or
isotropic material, or systems without losses.

In many engineering applications, however, it is
only required te know the lotal forces exerted on move-
able parts, while the distribution of the forces within
the material is of secondary interest. What is very
important, however, is that the efflecls of nonlinearity
and anisotrepy, and eddy-current or hysteresis losses
in time-varying fields are taken into account.

Tor such applications, the use of the concepl of
Maxwell’s slresses in emply space offers a convenient
way of calculating forces. This method aveids lhe com-
plicated physics within the material, bul is completely
general as far as total forces are concerned. The ad-
vantages of the metgod are discussed in the pgpers of
Carpenterz, Hammond~ and Carpenter and Ratti 0, where
also many practical examples can be found. Further
applic?¥ion5 are described, for instance, by Reichert
et al.'! and by Kamerbeel!2.

The purpose of this paper is to give a derivation
of the force formula and to describe a number ol dif-
ferent practical problems which have been investigated
numerically. The derivation is based on the idea of
Green’s egu%valent strata, which was slso used by other
authors2:»9:13, but not described in detail.

DERIVATION OF THE FORCE FORMULA

Consider two nonconnected regions of arbitrary shape,
which may represenlt an electromagnetic device with a
movable part., The regions may contain arbitrary distri-
butions of current and magnetizatlion, bul the space
belween the regions is assumed to be emply (Tig. 1},
The aim is to derive a formula for the force that the
regions exert on each other, The basic equations that
will be used in addition to Maxwell’'s eguations for
guasistationary fields are

aF = (3«B)av (1)

Fig.), Diagram for deriving \he force formula



giving the force on a volume element of current and
- -

F =qB (2)

giving the force on a magnetic pole. (The notion of
magnetic poles may be used for mathematical convenience
in the calculation of fields and forces if it is as-
sured that the total number of positive poles eguals
the total number of negative poles, so that a pole can
alwvays be regarded as one part of a dipole. As an ex-
ample, the ends of a long thin solencid may be con-
sidered to represent magnetic poles.)

Field of given sources

According to the Biot-Savart formula extended to the
general case where also magnetization is present, the
flux density at a point x,y,z is
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B = Eﬁ' v{(jwm)xv(%)dv + zﬁ vfz(j+VJxM)xV(-§_—)dv (3)
where r is the distance between the point x,y,z and the
position of the volume element dV and each integral re-
presents the contribution from one of the regions., The
term VxM expresses the fact that a magnetized body pro-
duces the same magnetic field as a current with density
VxM (Ref. 6, Ch. 4.10). The distribution of the magneti-
zation is here assumed to be continuous, which is rea-
sonable since the magnetization at a boundary can al-
ways be considered to vary continuously within a small
transition layer.

Fguivalent sources

An expression equivalent to (3) is
-+

i -
B =52 Vf1(3’+v xix(L)av - (4)
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where S is a surface enclosing region 1 and the point
*,v,z (Fig. 1). A method to prove (4) is given in Ref.6,
Ch, 4,15, and carried out in the appendix. As a compari-
son with (3) shows, the volume integral in (4) repre-
sents the contribution of region 1, and consequently
the two surface integrals represent the contribution of
region 2.

The significance of the surface integrals becomes
evident when they are compared with the expressions for
the fields caused by surface layers of current and

magnetic poles: The first surface integral represents the
contribution of a surface current of density

> + 5

5g = = () (5)
since a surface current produces a field
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B = pre !JSX V(F)ds (6)

analogous te (3). The second surface integral represents
the contribution of a surface distribution of poles with
density

1 + 2
Q= -y (nB) (7)
©
since poles distributed over a surface produce a field
b
B = E%gQV(%)dS (8)

in analogy to the electrostatic case.

Note that (7) is in accordance with the requirement
that magnetic poles must always occur in pairs since
integration of (7) over the surface S gives (with the
aid of Gauss’s divergence theorem)

1 -+ 3 1 +
f—-—(n-B)dS=f——-v- BAV = 0 . 9
g M v oM (9)

The significance of (4} can therefore be expressed
as Tollows: The field distribution inside a closed sur-
face remains unchanged if the external sources are re-
moved and are replaced by currents and poles on the sur-
Tace with densities given by (5) and (78 respectively.
The equivalent currents and poles are often called
Green’s equivalent strata after G, Green, whose theorem
is used to derive the expression (4),

While the equivalent sources do not change the field
inside 3, they reduce the field to zero outside 8. This
Tollows from the fact that a current layer gives rise to a
discontinuity in the tangential field component of magni-
tude - 3 - -
nx (132-131) = Bodg (10)
(Ref. 6, Ch. #,12), where the subscripts 1 and 2 refer
to the flux density immediately inside and outside the
surface respectively, and a pole layer leads to a dis-
continuity in the normal field component of magnitude

< { -
(B,-81)'n = p.o (11)



(Ref. 6, Ch. 3.15). From (5) and (10} it follows then
that

e ERE

nx(B2~B1) = -nxB, (12)
and from (7) and (11)

- 3 - 3 3

(B,-By)n = -n-B, (13)

Eguations (12) and {13) state that the field is zero
immediately outside the surface 3, and consequently it
must be zero everywhere outside S since in lhe equiva-
lent model no scurces exist in that region.

Forces

Since forces can only be transmitted via the electro-
magnetic lield, it is obvious that the equivalent layers
must exert the same forces on region 1 as the original
sources they replace. Further, as follows from Lhe prin-
ciple "action = reaction", this force must be equal Lo
the force which the sources within region 1 exert on

the equivalent layers, and this force can now easily be
computed. For that purpose, it is helpful %o consider
the current and pole layers to be separated by a very
small distance and also ‘to consider Tthe layers to bave

a small thickness. Then, the components of the [lux
density vary linearly within the layer. Figure 2 illus-
trates the conditions at the surface 8.
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Fig. 2. Flux density and equivalen! sources
al the surlace 5

The force density (force per unit area) on the
current layer is according to (1) and (5)

£, = - @B x(m, 3 8y) (14)
Q

where the factor 1/2 is due to the fact thal the tangen-
tial component of I decreases to zero across the current
layer. Correspondingly, the force density on the pole
layer is according to (2) and (7)

.-l 1 -+ ¥ 1 .
fp = = ﬁ‘;(n'B) ('2‘ Bng 0) . (1))

The total force density is given by the sum of (14) and
{15), which by means of the vector identity

(axb)xc = b(3+a) - a(e-B) (16)
can be transformed to
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fc-l-fp = - IJ.-(;' ' + 2!10
The total force is obtained by integrating this expres-
sion over ihe surface 8, and the total force on region 1
is given by the negative of that expression, sco that the
final result is

n . (17}

-’
P 3@ - S s (18a)
A i,

The integrand in (t8a) can be split up into the compo-
nents of the force density normal and tangential to the
surface, which gives

¢ < (pep? 18b

L, = 2 (B;-BY) (18b)
1

T, = H; BBy (i18c)

where the tangential component has the direqtion of Bt.
These functions are illustrated in fig. #. The total
torque exerted on region 1 is

5 -3 + -
T o [(A@dB)(Bn) - 5 p%(rxn) Jds (19)
Ho ' Ho
-5
The forces given by {18) are equivalenl to the so-

called Maxwell!s siresses in vacuum. These siresses
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Fig. 3. Components of the force densily as Tunclions ol @



consist of a tension of magnitude B2/(2p ) along the
flux lines and a pressure of BZ/(2p,) pePpendicular to
the flux lines. The equivalence with (18) follows imme-
diately when (18) is applied to surfaces parallel and
perpendicular to the flux lines,

It should be mentioned that the forces transmitted
by electrical fields are given by expressions that are
analogous to (18), with the magnetic flux density vec-
tor replaced by the electrical displacement vector and
the permeability of free space replaced by the permittiv-
ity of free space, In most practical cases, however,
these forces are by orders of magnitude lower than the
magnetic forces,

Remarks

1. The equations (18) and (19) give the magnetic force
and torgue on any movable part if the flux density
distribution is known over a surface enclosing the
part. Note that the field sources need not be known
for the evaluation.

2. The force densities given by 18b,c may not be inter-
preted as actual force densities acting on the sur-
face, but as force densities that are transmitted
across the surface,

5. The surface of integration may be arbitrarily chosen.
However, it must envelop the part under consideration
completely and may not intersect other parts.

4L, If the surface of integration is coincident with an
iron surface and the iron is not saturated, the tan-
gential component of the flux demsity is zero, so
that only the normal component of the force density
need be taken into account. In cases where the iron
is highly saturated, however, the contribution of
the tangential component can be comparable to that of
the normal component or even be higher (see below).

5, 8ince no assumptions have been made in the derivation
of the formula about the nature of the sources within
the closed surface, the formula is generally valid,
In particular, the enclesed region may contain arbi-
trary distributions of eddy currents, moving parts,
and materials with nonlinear or anisotropic charac-
teristics. A point of theoretical interest is that
the electromagnetic field itself has a momentum
(Ref. 6, Ch, 2.6), which was neglected in the deriva-
tion of the force formula, For practical applications,
however, this momentum is by far too small to be of
any importance.

NUMERICAL INVESTIGATIONS

Fllustrative examples

TFipure 4 shows the flux lines of a long solenoid, which
produces a Tield approximating that of two magnetic

Fig.4. Long solenpid

poles of opposite sign. To calculate the force which

one pole exerts on another one, any surface enclosing
one pole can be chosen, for instance that denoted by Sy
in Fig. 4. Another possible choice is denoted by So,
This surface is assumed to extend sufficiently far to
the region of low magnetic Tfield intensity. Since the
two poles are assumed to be separated in this model, the
small circular element where the solencid intersects

the surface must be omitted from the integration,

For such a solenoid, the force can alsco be calcu-
lated analytically by a simple expression based on (2),
and this can be used to check the numerical calculation.
For the solenoid shown in Fig. 4 the agreemsnt was found
to be within 1%, the small difference being due to the
discretization error in the numerical solution and to
the assumption of infinitesimal diameter in the analyti-
cal solutioen.

A similar example is given in Fig. 5, which shows
the flux lines of twe parallel current-carrying con-
ductors with very small diameter and two possible
choices for the surface of integration. This case, too,
can be treated analytically by simply applying Ampere’'s
law to obtain the magnetic field of one conductor and



Fig.5. Parailel curren|-carrying conduciors

using (1) to calculate the force on the other conductor.

An important point to note is that the use of dirl-
ferent surfaces in a single fileld calculation can be
used as criterium to check the consistency of the re-
sults, Marked differences in the forces can indicate
that the magnetic field solution has nol converged sufl-
ficiently, or that the finite-element net has not been
set up adequately.
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Fig.6. Levitaled copper disk

An example for the applicalion of the force f{ormulsa
in an eddy-current problem is given in Fig. G, which
shows a copper disk that is levitated by the forces on

the eddy currents induced by a rapidly varying applied
Tield. A point to note is that the eddy currents in-
fluence the magnetic Tield, of course, but their distri-
bution need not explicitly be known for the calculation
of the forces,.

Small air paps

IT an electromagnetic device conasists of several parts,
it is sometimes required to know the force on each part,
so that, if necessary, appropriatle means of preventing
disruption ol the parts can be devized. From the pre-
ceding sections it is clear that these forces can very
easily be obtained by the application of (18) if each

;axis ol symmelry

Fig.7 Balance of lorces in an eleciromagnet

part is enclesed by a surface, which, for instance, may
follow direclly the conbtour of the parts. An example is
given in Tig. 7, which shows the numerically calculated
flux lines and lhe forces within a simple plunger-type
electromagnet. As the balance requires, the sum of all
the forces is zero within a certain accuracy.

A fact thal can give rise to difficulties in the
numerical calculation 1s that the air gaps can some-
times bLe exiremely small, for instance if two parts are
in contact, as is assumed in the electromagnet of
Fig, 7 for parts 2 and 3, and 3 and 4, In order to sat-
isfy the precondition of (18), il seems o be reasonable
to assume that a very small air gap exists between the
parts. This, however, can adversely affect the conver-
gence or stability of the numerical solution. One point
is that very large differences in the spacing of the
discretization net can impede the convergence of itera-



tive solutions. Another point is that such large dif-
ferences can cause round-off errors of considerable
magnitude,

The problem can be solved easily, however, if the
air gap is so small that it has only negligible in-
fluence on the field distribution. In that case, the
air gap can be omitted in the numerical sclution, since
the required values of the flux density follow imme-
diately from the continuity of B, and Hy. These values
are By{air)=B, and By(air)=Bi/up, so that (18a,b)
transform to

1 yu2 E‘%
Th = Eﬁ—(En - =) (20a)
(o} uo
1
f, = —- BB, . {20b)
t Hobyp 1 t

These expressions can be used for any closed surface,
but the result must be interpreted as the total force
that would be exerted on the enclosed part if it were
separated from the other parts by a very small air gap.

FPole tips

A problem of much practical interest is the caleculation
of forces in geometries with pole tips. Such geometbries
are important in some types of rotating machines and
electromagnets, for instance. Many details of this pro-
blem have been discussed by Byrne and 0’Connori4, An
aspect that shall be emphasized here concerns the pro-
nounced concentration and inhomogeneity of the field
that can occur,

As an example, Fig. 8 and 9 show the magnetic
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Fig. 8. Flux lines in pole 1ip region al low
field intensity
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Fig.9. Flux lines in pole tip region at high
fictd intensily
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field near the pole tips in a plunger-type electromagnet
at low and high field intensity respectively. Clearly,
the air region between the tips is the most critical for
the force calculation since it contributes the main part
to the surface integral. The consequence is that this
region must be subdivided inte very small elements for
the numerical solution. (Since near pole tips a con-
siderable amount of field energy is stored, the discreti-
zation of such a region is critical not only for the
forces but also for the field distribution within the
whole geometry.) In the highly saturated case shown in
Fig. 9, where the permeability near the pole tips
approaches that of air, the effect of field concentra-
tion is less pronounced.

Fig. 10 shows the distribution of the force den-
sity for the field configuration of Iig. 9 along AC
and BC. In this example it is assumed that only the
z-component of the force is of interest, so that along
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Fig.10. Z-component of torce densily aloag AC and BC (Fig 8)
a) normal component along AC b} tangential component along BC



AC only the normal component and along BC only the
tangential component is given. The remarkable factls

are that both contributions are comparable and that the
tangenbial component is concentrated in a small region
near the pele corners.

Magnetic field diffusion

An important topic in magnetodynamic problems iz the
diffusion of the magnelic Tield in Terromagnebic mate-
rials. What is of interest in the present contex?t is
how the diffusion process determines the way in which
the forces are transmitted. The example used Lo illu-
strate this concerns the semi-infinite ferromagnelic
space under the excilation of a tangential surlace
field Mo (Fig, 11). This field ls assumed to vary like
a step pulse (H = 0 for t 20, H = H, for t>0) and to
be of such intensity thatl the material is strongly
saturated.

b
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fig W, Geometry used in
diltusion example

The easiest way to treat this problem is by means
of the simplified theory first used by Rosenbergl!d for
sinusoidal excitation. In this theory it is assumed
that due to the strong saturation a Tlux densily wave
of rectangular shape moves into the material. From
Maxwell'’'s equations it follows then that the eddy-
current density has alseo rectangular shape and that the
magnetic field intensily varies linearly between the
surface and the position of the wave fronl, where it is
Zero.

This behaviour is i}lustrated in Fig. 12 for

t = 0.4 ms agd Hy = 5x10% A/m. Instead ol Il the expres-
sion 1/2 1 H< is shown, which according to (18b) can be
regarded Lo describe the magnitude of the force densily
transmitted across a plane parallel to the surface. The
practical meaning is that if a small cut were wade par-
allel to the surface, this force density would be meas-
ured., (H is not affected by such a cut,)} For comparison,
FPig. 13 shows the same behaviour calculated numerically
using an actual magnetization curve.
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Fig 12, Field diffusion under slep exeilalion
(t:04ms, Rosenberg’s theory)
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Fig.13. Field dilfusion under step excitation
{t= 0.4 ms , numerical solulion)

The time dependence and the variation with the
physical properties of the material follow from the
simplified theory as

d(t) = «/329E O (21)
- aB anour(uoi

where d is the position of the wave Tfront and ¢ denotes
the electrical conductivity of the material, The evalua-
tion of {21) for different materials shows that d and
hence also the velocity with which the force is trans-
mitted depend strongly on the properties of the material.
An important consequence of this fact for a class ol
practical applications will be described in the next
section.



Fast-acting devices

In many relay applications or in high-speed electro-
magnetic actuators, the speed of the moving parts and
high repetition rate are of prime interest. As to the
forces, this means thal they should not only be as high
as possible, but alsc that there should be little delay
between the excitation and the generation of the forces.
The first of these requirements is usually met by choos-
ing a magnetic material with high saturation flux den-
sity and the second by using laminated or slotted ma-
terial in order to suppress the eddy currents. Laminated
or slotted material, however, can sometimes noct be used
because of technelogical difficulties and resulting
excessive costs, as in some devices of very small di-
mensions, for instance. In those cases, an important
factor determining the choice of the material is the
velocity with which the magnetic field can diffuse in
the material. As a basis for an estimation, equation (21)
can be very helpful, but the actual geometry modifies
that simple relationship, so that numerical calculations
are necessary to obtain more precise knowledge.
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Fig.14, Penelraling ilux wave in lasi-agling
eleciromagnet

Examples for such calculations are illustrated in
Fig. 14 to 16, which apply to an electromagnet with
movable armature under step excitation. TFigure 14 shows
the computed flux lines during the diffusion process at
a time when the flux wave has not yet fully penetrated
the material. Tigure 15 shows the time variation of the
force exerted on the armature and the influence of ma-
terial properties. For the iron used, the saturation
flux density is 2.15 T and the electrical conductivity

pure iron

force £N]

chromium iron

02 04
lime {ms]

Fig.15. Force en the armature of lhe eleciromagnet
shown in Fig 14 with dilferent materials

is 6 x 106 5/m, and for the chromium iron these values
are 1.7 T and 7 x 10° S/m respectively, The important
point shown in Fig, 15 is that the suitable choice of
the material depends strongly on the desired rise time
of the force. Another important fact is that wilth in-
creasing saluration a shorter rise time of the force is
obtained (Fig. 16}, This follows from equation (21),
which gives a higher wvelocity of field penetration for
decreasing permeability, In high-speed devices, there-
Tore, strong saturation is necessary for maximum speed,

SA

=

force [N

ZA

o

0 005 o1
time ims)

Fig 16 Force on the armalure of Ihe electromagnet
shown in Fig 14 with difleren! excitation
currenls {matestal:chromium iron)
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APPENDIX

Derivation of equation (4)

Stratton {(Ref., 6, Ch. 4,14) has shown that the vector
analopgue of Green’s theorem isg

-3
f(a.vx vxﬁ_ﬁ.vxv'xa)dv = f(]?‘xan-axVxﬁ)-ndS
v 5

where E and 6 are vector funclions of position and V
a region bounded by the surface 5.

(A1)

is

5
Let ; represent the vector petential A, which satis-

Ties the differential equation
-+ + -5
VX VA = |10(j4-V><]‘»'1)
and let 3 represent the function defined by
-+
o 1 > a
Q =V(F)xa .-:VXF

-+ .
where a is an arbitrary constant vector and r is the

(A2)

{A3)

distance between a point x,y,z within S and the position

of the volume or surface element.
Using the vector idenlity
UxUXD =V (v-"l;)-vzb

and because

-

2a _

v o 0
we obtain R
-
vxQ =vxvx2 v (a.9(1))

r r

and

TXTXQ =T XT (g'v(-})) =0 .
Substituting {A2), (AB), and (A7) in (A1) gives
- -+
My f(v(%) x;)-(j+VxM)dV =

v N
[Rxv@w@d)i-fas « [(@xvd))x(vxR)]-nas .
s 3

(Ah)

(A5)

(16)

(A7)

(a8)

The first integrand on the right-hand side can be written



Exv@v@) = -ox(a-w@)a-v Q)(oxk) . (a9)

The applicalion of Gauss’s theorem shows that the inte-
gration over thg first term gives zero sincg V:{v=b)=0
for any vector b, Using this, replacing ¥x=xA = B, and
applying the identities

nd bl i > > -
('151xb2)-b5 m (byxby )b, = (bgxby) by (a10)
»> - - > -+ + -
(b1xb2)-(b3xb4) = b1~[(bZX(b3xb4)] (A11)
(A8) can he transformed %o

by [ Groxiyxobav = [@B) vbyase [ @) xv (hyas.

v 5 s (a12)

4
Since the function @ has a singularity at r = 0,
(A12) iz not wvalid for that point, so that it must be
excluded. Therefore, let that point be enclosed by a
small sphere with surface S1 and let the corresponding
surface integrals

I =Sf (;-g)V(;—)dS + g‘ (Hxﬁ)xv(%)ds (A13)
1 1

be added to (A12). The integrand in the second term in
(A13) can be transformed to

@) xv(}) = Bxw(@n) + BEvd) wv@@EB) . (a18)

The first term in (A14) is zero because V(l) and 1 have
the same direction, and the last term cancels the first
term in (A13), so that the surface integral over the
sphere is

1=/ 3@ vdy)as . (a15)
51
With >
: vil) =1L (A16)
r

and r - 0 the integral (A15) reduces to

-
fﬁ’(ﬁ’.lz Lyas - f B Ly as « 4B . (A17)
r I
5 54

Adding {(A17) to (A412) and rearranging gives the final
result

-y

v
5
L @3 vas -
5

L -
B -2 [ Groadxvdiay

L [ @Byxodyas .

5

(A18)
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AUTOMATIC PLANNING OF ELECTRICAL OR MAGNETIC EQUIPHENT
STARTING FROM THE STUDY OF FIELDS (%)

h. Di Napeli - G. Mazzetti - M. Mele

Electrical Institute, University of Rome

ABSTRACT

In this work, the Authors set out s method for Lhe autematic plan-
ning of the shape and size of electrical or mignetic equipment,
either in the presence of a high flux, or whenever the potential on
the boundary must assume some pre-established values. The method is
developed if the system is regulated by the Laplace's and/or 'ois—
gon's equation, and the study is cartied out making use nof a calen—
Lation program, developed by the Authors, that utilizes the finite-
element vumerical method.

L. FORMULATION OF THE PROBLEM

The study of [ields may be used either as a direct analysis and veri
fication method for the calculation of potential throuphout Lhe re-
gion occupied by the electrical and/or magnetic system, or as a moe~
thod of synthesis and, hence, of project.

In this work, the Authors set out a method for the automatic plan=
ning of the shape and size of electrical or magnetic equipment. This
wethod is based on the condition that the electriecal or magnetic
Lield on some areas of the boundary does not exceed some pre-fixed
values, or that the electric or magnetic potential in some Arcas sur
rounding the structute realizes such a behaviour as to allow a cor—
rect operation of the said equipment.

The approach is developed in the case in which Lhe system is
regilatel by Laplaces’ andfor Poisson's equation, and the suindy is
carried out using a caleculation program, developed by the Aurhors,
that ukilizes the Einite—element numerical method ',

Substantially, the point is to obtain the coordinates of paints lo-
cated aleng 2 boundarty or along a surface between two mate-
rials with different dielectric or maghetic characteristics, in such
a4 way thalt not only the boundary conditions sufficient lor the sni-
ution of the direct problem are verified, but also further conditiom
are verified that are dictated by well-defined technical opportun-

igbfg'I shows, by way of exewplification, some electrical and mapg-
netic problems with the relevant project conditions

Later in this study, the applications relative to the mapnetic (ield
will be developed, in the assumption of identifying in the system a
plané or cylindrical symmetry, in such a way that the problem may
be considered of the two-dimensional type.

(*) This work was sponsored by the Italian Research Council {CHR,
Roma, Italy).

TABLE I
problem project condition
1} shape of the magnetic imduction of such
pole surface a value ag te prevent the B<B
iron [rom working in the §
saturation area
Z) shape of the sinugoidal distribution
pole surface of the magnetic induction Ax) =
in the air gap along a A sin M-«
polar piteh of a lenght 21 M’ 21

) H.V. electrodes|electrical Field atl along
the gurface of the electrode,

whose value is lower than < Ec
the critical discharge gradi
ent (1

()

4) 1.V, dividers |linear distribution of the
electrical potentinl alonp
the high voltage column of
the lenght 1 divider

(k)= % v{1)

In final words, the compliance with well-defined technical condi-
tions on the potential and on the Field, is the Further constraink
that allows to obktain equation y = £(x) of the curve that represents
the unknown quantity of the problem: for example, the size of the
magnetic pole or that of the high voltage electrode.

2. DESCRIPTION OF THE METHOD

The method used ot defining anunknown boundary is of the iterative
typd*!. In the region under review, the coordinates of the points
whose position is not known, are initially fixed in a congruent man-—
ner to the problem under examination, in order to make the conver—
gence to the seolution gquicker.

Lt is necessary to discrebize the region under examination

into - triangular elements in such detail as would be required

to study; the values are thus calctlated of the electrical or mag-—
netic potential in all the poinks considered, that are tinked to khe
tespective Flux densities by the following relations:

E = - grad V )
T= rot A (2)

Relations {1} and (2), in the assumption of considering the system



two-dimensional, particularize as follows:

B=-2dv; g =--2Y (3
x I x ¥ 3y
B A 3 A
2 z
= : B = -
b= 5y y 5 ()

In the plane case, there exists, therefore, for the magmetic poten
tial, only the component along this plane (A_ )}, and therefore, the
differential relations (3) and (4), linking the electrical or mag-
netic potential to the regpective fields, are of the same shapa.

If we thus indicate by D the electric or magnetic fields, and by P
the respective potential, these equations may be shown, from the
numerical viewpoint, in the generalized form:

Dx = [fi(xJ)} {Pi} (5)
) i=1,2...n
Dy = {,Ei(x:}’)] {Pi} {6)

where P, represents the potential vector in the nodes of each tri-
angular'element, and £, and g, are the matrix function, according
to the finite element discretlzation.
If the elements considered are of the first order, equations (5)
and (6) become linear combinations, whose coefficients, of the type
b, = ¥j. © ¥ °r ¢y = %X - x:, ate the difference between the coordi
nfites of the thred nodfs ofthe triapgle under examination.
With 2nd order elements disecretization, functions £ and g are cx-
pressed themselves through 2nd degree forms, in which there still
appear the coordinates X and ¥; of the six nodes of the parabolic
triangle.
If we indicate by B_ and D_ the components of vectors normal Flux
- n p 1ot
densities and tangemtial to the unknown profile, for each node 'h
laying in it, the following shall apply:

(y - y ) (x, - x )
D, =D he . Th-l -n ____JLﬁ‘_h:l_______.(7)
n x y
( 2 2 2 2
Yh Y1) +(xh“~xh_1) (yh -, -1’ +(xh-xh,1)
(x, — x, .} v -y _.)
- -1
Dth = Dx h h-1 + D h Iy (8)

- 2 P Y A Y
V(yh The) T, ) V(yh V1) T )

From equations (5) and {6) we get D_ and D_ in equations (7) and
(8), to obtain the functions of the geometgical coordinates of the
nodes of the unknown profile and of the corresponding potentials.

If we introduce the project condition im the First member of re-
lations (7) and (8}, the equation in general will neob be verified
by the values of the starting profile coordinates.

In this case, relations (7} and (8) will be solved by expressing
coordinates X, and ¥y as unknown quantities, thus obtaining new
values Eor the coordinates of the profile nodes. The values thus
obtained are utilized for a successive iteration cycle, which starts
by once again solving Laplace's or Poisson's equation, to obtain
the new potential values throughout the region considered.

The procedure terminates whenever, in equations (7) and (8), after
substituting the project conditions for their first member, x and
y, coordinates are such as to result in identities within the scope
UE the desired accuracy. In this case, the values of coordinates Ky,
and y,. in between two iterations will cease to show appreciable
variations and will therefore identify the desired profile rep—
resenting the solution of the problem.

It should be observed that in assigning the conditions imposed by
the project, two cases must be distinguished, as Follows:

1} the project condition is assigned with a condition on the elec=
trical magneticfield in the area adjacent to the unknown profile,
as in problems 1) and 3) of Table I. In this case, the problem can

be directly solved by introducing the project values Dy, and By
into equations (7} and (8), and then proceeding in the above
indicated manner.

2) the project condition is assigned on the electrical and magnetic
potential in a part of the boundary different from the uaknown
profile, as in problems indicated by 2} and 4) in Table I. In
this case, it is necessary to preliminarily calculate D h and
D I, values along the profile, solving the direct electromagnetic
problem with the boundary conditions imposed by the project.
Once such values are known for each iteration cycle, they are
replaced as Eirst member of (7) and (B), proceading in the known
manner.

3. ANALYSIS OF RESULTS

Problem N. 1

Fig. 1 emphasizes the geometry and boundary conditions relative to
the magnetic problem 1), as expressed in Table I. Three distinct
regions may be distinguished in the region under examimnation: a
first one in iron, the second one in air, regulated by Laplace's
equation, the third occupied by the electrical windings and regu-
lated by Poisson's equation.

The project condition referred to in Table I, is imposed on the mag
netic induction in the region adjacent to the pole profile in the
region occupied by the iron. The induction value is chosen in such
a way as to cause the Ferromagnetie system to work in the linear
section of its characteristic; it ensues that Laplace's equation
still results to be linear.

Fig. 2 shows the discretization of the integration field by means
of finite elements of the first order; it is necessary to discretize
in such detail as would be required by the curvature profile.
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Concerning the magnetic problem N. 2 of Table I, an integration do-
main was taken inko examination, that excludes the zone in iron, Ehe . . . . . . :
saturation problem not being now considered. Fig. 5 clearly shows Fig. 2 - Trinagular discretization with Eirat order elements.

the boundary conditions for this domain.

The project condition is imposed on the potential vector A, which,
along the center line of the air gap (sepment CD of fig. 5}, as—
sumes a sinuseidal behaviour-trend, whose maxfmum value is
calculated in the following manner.

The value is first established of the current density {lowing in the
winding, and then the potential distribution aleng the air-gap ren-
ter line is caleulated by solving Poisson's equation; and Einally,
the flux linking with the winding itself.
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Fig. 3 - Polar surface shape for two different values ol magnetic
induction:
1) - B = 1,4 Wb/m
2y - B = 1,3 Wb/m
A
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Fig. 4 ~ Polar surface shape at different iteration cycles:

1} initial profile

2} profile after three iteration ecycles
3) profile after seven iteration cycles
4) profile after eleven iteration cycles.
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Fig. 5 - Problem n. 2: geometry and boundary conditions
1} air
2) winding

Such a distribution will not result to be, as a rule, sinusoidal,
but in the assumption that the Flux should remain constant whatever
the potential vector distribution may be, the maximum value of the
sinusoidal distribution can be calculated by means of the following
relation:

I 4
Awm a1 foA(x) * (9)

being 1 the lenght of segment CD.

Fig. 6 shows the shape of the pole surface automaLlcaIly obtained
according to the method illustrated above, assuming three different
values of the current density in the winding.

Fig. 7 shows the unknown profile that is obtained for an estab-
lished current density value {J = 1,2 A/mm®) at different iteration
cycles starting from the initially fixed profile.



A
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Fig. 6 -Polar surface shape for three different values of cnrrent

densily.
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fig. 7 ~Polar surface sghape at different iteratiom cycles!
1) initial profile .
2) profile after three iteration cycles
3) profile after seven iteration cycles
4} profile after twelve iteration cyclesjsolution
obtained with 0.3% accuracy.

4,  ANALYSIS OF ERRORS

‘Concerning the accuracy with which the profiles may be obtained, the
following causes, in addition to the inevitable Ltruncation errors,
are to be considered:

1) the errors relating to the numerical method used for the calcu-
lation potentials. This method envisages the change Erom a con
tinuous system into a discrete system by means of Finite elements
that may be of a different order.

The error, therefore, is due to the nodal pitch in relation Lo

the sizes of the domadun, and will be thus different in the wari i
ous zZones as a function of the thickening made. Moreover, the
pitch adopted being equal, the higher the order of the elements
uged, the lesser the error will be’;

2) the errors made in the solution of the algebraic equations system:
at the finite elements using the Gauss—Seidl method. A calcu-
lation of this error may be made by comparing the maximum residue
with the potential of the point where this maximum occurs;

3) the ervors with which equations (7) and (B), supplying the coor-
dinates of the profile points, are solved.
These cquations are inserted into the iterative procedure de-
scribed in paragraph 2., which, as it is interrupted after a Ei-
nite number of iterations, involves the presence of a residue.
Therefore, in order that the number of iterations to be performed
may be established, it will be nccessary Lo establish the maxi-
mum ecrrer with which we want to obtain the profile and, hence,
the maximum possible residue. An estimate of this errov may be
made by calculating, on any iteration cycle, the percent differ-
ence between the values D, and D . imposed by the pro;cct and
the relative valucs calcu?nted at ‘the desired iteration.

With reference to the profiles of Fig. 7 obtained at a different

number of iterations, the curve of the difference in percentage he-

tween the values of the imposed potentials and the catculated poten-

tials, is shown in Fig. B, as a function of the number of iterations.

It may be observed that, as it appears from fig. B, this error is

not constant in the various points of the profile, and is greater

in the points where the curve is more accentuated.

Furthermore, in the case under review, starting From the twelfth

iteration the error may be reparded as negligible (0,3%) in relation

‘to the geometrical dimeonsions of the congidered system.

Still with reference to the determination of the Final profile of

[ig. 7, the type-l) error is the one that is, percentapewise, the

most important, elements of the first order having been used; the

\type-2) error, on the contrary, turns to be of non importance alter

‘a number of Gaucs—Seldl iterations equql to 150.
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1) at third iterations cycle
2) at seventh iteratioms cycle
3} at twelfth iterations eycle

Table IT shows the values assumed by the three different errors for
the case under examination:

TABLE IX
type-1) error 3,4%
type-2} error 0,017
type-3) error 0,32

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

The electrical and magnetic field analysis, carried out using numeri
cal methods, may be profitably employed, not only for a better under
standing of the functioning of electrical and magnetic equipment and
machinery, but alse for the purposes of their automatic planning in
view of the obtainment of the pre-established performances.

In the present work am iterative procedure is set out that allows
the automatic determination of electrical and magnetic profiles that
verify some given project conditions.

The caleulation methodvlogy adopted, uses the Finite element techni
que, that lends itself particularly well to the case under consider
ation, in which the boundary being unknown; it is necessary to ap-
proximate the physical system by means of a grid, also irregular, of
discrete elements, whose nodes are not constrained to agsume pre—
established positions.

The proposed procedure is susceptible of further improvements and
subsequent developments.

In the first place, it may be thought of improving the accuracy of
the method by reducing some uncertainties already examined in the
pitevious paragraph, arising out of the discretization of the con-
tinuous system with finite elements of the 1st order. The adoption
of elements, whose order is higher than the Eirst one, would allow
to reduce such discretization errors, while at the same time obtain
ing a better accuracy and continuity in the calculation of the gradi
ent vector.

In spite of the seeming complexity of the proposed procedure, the
calculation program developed allows to come Lo a solution suf-
ficiently accurate for the requirements of the practice in a few
aumber of iterations, of the order of one tenth, provided that the
boundary of the domain under examination is sufficiently repgular.

In the case of more complex boundaries than the ones here considered,
the convergence rapidity needs to be improved through the intreduc-
tion of properly studied algoritims.

Finally, the ealculation procedure set out here lends itself to be-—
ing extended Eor the automatic determination of profiles in problems,
in which project conditions are simultaneously imposed on both poten
tial and field, as for instance, in the magnetic case, a problem for
which both the conditicns 1) and 2) of Table T will apply.
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OPTTIHIM DESIGN OF A MAGNET WITH LAGRANGIAR FINITE
ELEMENRTS

A. Marrocco ~ 0. Pironneau
TRIA-LABORIA

I - INTRODUCTION

In this paper we shall dizcuss some aspects related to the design

cf systems for which a good pumerical simulation by partinl differen-
tial equations cen be done. The typical situation is the following
some engineers and numerical analysis have spemt & great deal of time
at making an efficient numerical simulation of a system. This numeri-
cal scheme is now currently used by the enginears in the design of
new producks. There, the “know how” of the engineers is used : he
knows that if such and such parameters arg changed, such behaviour is
induced. The numerical analyst raise the following question : can this
be done automatically ? In gemeral the snswer is no ; indeed dialo-
gues with engineers reveal that the criteria for optimal design are

nuwerous and that the constraints are hundeeds.

However the numerical amalyst can be of great help to the engineer's
intuition. With respect to one differentiable criteria, he can
1 - give the optimum design under certain constraints

2 - tell the direction of chanpes to be done to improve design

The method proposed here operates in the physical plan and can be
considered as a natural extension of the numerical study of the ktate
equation. The method is the discrete analogue of the continvous case
in 0, FIRONNEAU [17] . The method is applied for the design of an elec-
tromagnet. The state equation is a non linear equation considered [or
example in R. GLOWINSK! — A. MARROCCO [ 2] ,(03). (The e¢lassical
magnetostatic equation in potential vector form). We have look for
electromagnet with constant interpolar field but the techuique can be
adapted to other criteria and other P.D.E. The computation are done
with triamgular Lagrangian piecewise linear elements. The nodes are
alloved to vary on pescribed curves {to avoid intercrossing, but it

is not an ebligation). The gradient of the driteris with respect te the

‘coordinates of the moving nodes is computed analytically via ap adjeint
state equation and the criteria is then minimized by the mekhod of stee-

pest descent

II -~ STATEMENT OF THE MAGNETOSTATIC PROBLEM

We consider the eclassical magnetostatic equation in potential vector

form
2.1 Ux(uxh) = u,j

which can be in the two dimensiomal case written as

(2.2) (WA, = uuj3
of
A
Z 3 3 :
LR T A PR R

. . . -1,
In these previous equatious P is a constant equal to 4 w 10 ° in MKSA
3

system, V the relative magnetic reluctivity, which is constamt in air and

cocper (Vv = 1) and is a non linear Function of [EI2 = IVXKIZ - IVA3|2 in

the iron (¥ is the Flux density vector)(see fig. |, For an analytical

approximation of the velative reluctivity v by a function of the Family

a
%
ve,u,C,T(x) = e+(Ce) o )

x +T

For the computation we take a bounded domain 2, and the potemntial
vector must satisfy suitable properties on the boundary of Q. (see
Fig.2). On AD = FI we have natural symmetry condition , i.e.

31% = 0 (flux lines cross orthogonally this line), and on Fc = 39“?1

we have homugeneous Dirichlet condition (no Flux lines cross this boun—

daty To).

Lot us define the functional space ¥ by

(2.6) v= {vveti@y, 2l@), o o
diy Fo

It is easy to see that with the norm

(2.5) V-—.-Ilvlly-‘f;z!'?vlzdx

o is an Hilbert space, and the magnetostakic problem can be formulated as

an optimisation problem in the following way :



Find A¢y such that

(2.6} HA)2 F(v) for every vel

Yt . where % is given by

2.7 &) =%_/;2‘i'(x,|Vv|2)dx- fn b jvix
with Y defined by

TE z(x,l-ﬁiz) = vix, 1315
(2.8)
¥{x,0}) = o

The optimization problem {2.6) has a unique solution (see R.GLOWINSKI
= A. MARROCCO [2]))characterized by the variationnal fermulaztion

fn\){x,IVAlz)‘?A.Vv dx- ./Quejvdx =0 Vver
{2.9)
it AeT
” [ - oo o e we For the finité element approximation the variationmal formulatien

. _‘ (2.9) is used. The triangulation U, will be a set of triangles T
Analytical approximation of relative seluctivity By g o 7Y, (e = 5063619 % 107, 0= 541924, £ = 0175775, h
T= 8.758756 X 107), such that

Fig. 1 (2,10) Y T
'rel"h

For T, and Tze'ﬂh we have

> N € . T,nT, = é

(2. }oor ’l‘l and T, have a commom side

or T] and T2 have common vertex

1
i (see for example fig. 3 for an initial triamgulation)
1

i The functional space % (2.4) is approximated by Yo

(2.12) %, = ivhlvheao(ﬁh),dovhsl on T,Ted ;v = oon T -

Computationat domain.
where roh is the approximation of T‘o

Fig, 2 and we can express the approximated problem by

Find A ¥ . such that
(2.13) S(Ah)s '.;E(Vh) for évéfy e,

vhere F is given by (2.7)
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If wj(x).j = 1,2...¥.is a basis of the finite dimensional space
1gh, the diserete potential vector can be expressed as
N
At =, shy
{2.18) Ah(x) 1£] Alml(x)

and is solution of the variational non linear system

2 :
fg\;(x,lt‘]\h] )W\h.ij dx*J;!u.ij dx = o

(2.15) §= 1,2.0.0

I1 - STATEMERT OF THE OPTIMUM DBESIGN PROBLEM {(CONTINUQUS CASE).

1"is an open set of r" (n = 2 in our case), and j and E, are two

d
givwenfunctions of Lz(ﬂ). Let F be the ferrous region, C the capper

region and G = -FUC

The potential vector Ar(which depends on the shape of ferrous region

F), is solution of the non linear elliptic variational equality

2 .
ﬁv(x,l‘?l\.r | PyoA,.vu ax -j;.!‘ljh;m dx ¥ uel
Apev

1f T is some open subset of G, we wish to solve the problem

3.1

(3.2) min J(F)
FeTF

where
2
3. J(F) ‘.[1)'V"F‘Ed| dx

and § is the set of admissible shapes for the ferrous regiom., For

(3.2) to be well defined (with fixed copper region), we must have
(.4) e {F/F:n,?nﬂ - 6}

Strictly speaking {(3.2) is an optimal control problem for the dis-
tributed parameter system (3.1), where the control appears in the
coefficient of the P.D.E. as a discontinuity of v, Furthermore it
should be pointed cut that problem (3.2) is verv similar to an opti-

mum design problem (withNeumann condition on the unknown poundary).

How let us outline how such problems can be solved by gradient techniques,

More details can be found in O. PIRONNEAU [1].
Let F' be obtained from F by
(3.5) aF' = {x+u(x) |xe3F}

Where o is a given vector valued function (usually one takes

a(x) - B(x);(x), where 1 if the normal to oF) .

We must be able to evaluate the first order terw in o of the varia-

tion
83 =« J(F)-J(F)

For the sake of clarity let us assume that D does not depend upon

a from (3.3) with &Ay = An,-Ap

(3.6) &1 = 2_/!;(VAF-Ed)V5A.Fdx+o(GAF)
and from (3.1) with dv = v(x,IVA?.lz)—v(x,lVArlz)

fn[\l(x,!VAFIZ)VGA.F.%+6\JVAF.VN] dx = o(8A)
¥ wel

3.7n

Now let us give the first order term for &v evaluation
in F'nF &y = 20(x, 19AL17) A, EA,

in &'n dv =0

in F'nG &wv = v(x,IVAF,Iz)—l

in Fng' Sy = I-\J(x,|VA.F12)



Where O(x,IVA]2}= -—-""5(U(X,IVA|2)
vAl

& P

Ferrous regions £ and F', copper segion C, and complementary 1epions G and G,
Fip.4

Therefore {3.7) becomes

z . 2
];;[“(x-l‘%l VIEAL. Fut 20(x, | VAL | )VAF-VSAFVAF.Vm]dx
(3.8) +.j1:"nG [v(x.IVAF.Iz)*I] VAg . Yudx
+ JEnct [i-v(x,IVAPJZ):'vA_F.dex = o(SA}.) Yol

If a{x)<<] the last two integrals in (3.8) can be approximated by the

surface integral R
2 - Y
(3.9) dé;_[v(x,!VAFl )—1] VAF.Vwa(x).n(x)ds +o (o)
Therefore if we define PP as the solution in Vof
2 . 2
fn [\:(x,[w.l,l )va.vw+2v(x,luF1 )VA.F.VPFVAF.Vw:ldx =
Z_fD(VAF—Ed).dex 2 ¥ wel

Then by letting o = EAF in (3.10) and w = Pr in (3.8) we find from
(3.6), (3.8), (3.9) that

(5.10)

(310 8Tt v, 1AL -1)TAL. 2 B0 R(x)ds  +o(a)
How it appears from (3.1])} that by choosing a(x) such that

(3.12) E).3x) = -D(\J(x,IVA.Flz)-l)VAF.V?F‘BF

{where p is a small positive parameter), we can decrease the criterion
J by

; 2 4 Z
3.13) &1 = - o_faF [v(x,IvAFE ) 1] [vA.F.va] ds
This is the essence of the gradient method :

0 - choose Fo’ P and gset 1 = o

1 -~ Compute AF.‘PF. from (3.1}, (3.10)
i i

2 - Compute B, = - [u(x,lvAF |2)—|J VAp VP i
i i i|3F,
1

3 - Set aFi+| = {x+ DEi(x)n(x)IxeaFi}

Set 1 = i+l and go back to |

IV -~ OPTIMUM DESIGK WITH FINITE ELEMENTS

N
The discrete vector potential Ah Eiél Aimi is solution of

2 R
(4.M bjgu(x,IVAhl )VAthldx = _/g U,ledx 1=1,2...%

As is the continuous case we search for § such that Vﬁhis as clase
as possible to Ed in a subdomain D of 0.

We define
- _ 2
(4.2) 3 (T _[D 194,-E | “ax
And we wish to find the coordinates of the nodes of ¢Uh sugh that

31(W?1) is minimum. Thus if % is the set of admissible position of
the nodes X = {xk} vk = 1,2...N, then our problem is

(4.3) min Jh(q:h)
XeX
In order to apply z gradient method, we must compute
-3 i 1 -
% TaCTR) = lin (T )-3, (T e 1
(4.4) Hay 110
for k = 1,2..,¥

Where “G', is the triangulation cbtained from *r% by moving the kth

node x into the position x +u
% k—k

It is convenient to assume that

(4.5) D =ngTj



Mete that D may or mav not depend upon .

if Ed is piecewise constant Oﬂ“fh

) - LI 2 - —
{4.6) Mh - Jh('ﬁ'h)—Jh(‘Gh) jEJ U;J. 1vA h Edl dx ‘/;jlvnh Ede]

let be C and C' two sets of mz. we shall denste

(4.7) c\c' « C-g'nl (see fig.5)

’ . R
' =2 TAT, : T.ToaT,
3 r
FOTAT
Transfarmation of the trianpelation by moving the node xp.

Fig.5

{4.6) can be written as

1, JzJ[ﬁ oy (194 7Eg 190 1 e
f\T Iw;\h E,l dx-f \T,lmh | dx]

(4.B)

If Ai is the value of the potential vector at node number i, let us

introduce the following notations.

'y
1
~
=

(4.9) GA. = AE-A.

_.
1

~
=

(4.1t0) 5w (x} = w! (x)~m.(x)
Then

N
(G.11) BA = AA - iEl(himi-Aiwi) =L, @A o th Bu 48K B, )

The KEY RELATION of the problem is
- — 3 : L] ! *
6wi(x) wk(x)Vwi(x).uk +o(uk) ¥ xeTjnT 50 ¥i,j

such that xinnd

xk are nodes of

(4,12) T
)
= 0 ¥xeT,nT", Yi,}
XE] _]' J
xk(Tj
Therefore ﬁAiﬁwi is & higher order term, and the first integral of
(4.8) is equal to

413) 2.1, _/T‘inT.j(mh—sd)..[iglsi\ivmi—izd jkAi(vfuiak)vf..k] as vol)

where I, is the set of indices of nodes T, if x eT, and I, = ¢ if
Jk j | jk

kaTj.

Therefore if we let

(4.14) 64 -iglﬁnimi

and denote by Ek(.) the function of [Lz(ﬂilz such that

uk(x) -0 if = and XRETj
(4.15)
=0 if chj but xkle

Then using the fact that the aera of domain T' \\T and T, \\T‘ are

of order a, (4.13) becomes

(4.16) _/1;2(%\ ) [\'GA—VAh o, Vo, :}dx +o(uk)

It is easy to compute integral om T'j\Tj and Tj\\T'j in (4.8) as
boundaries integrals on the sides of Tj or T'j, and by using Green's

formula we can obtain

f[vths } Yoy .o, dx +o(uk)
and finally (4.8) can be written
GJh _[.2(V)\1 ~E ) [VGA UAh .o, Vw ]dx

(4.17) | v .
b VAhwEd] wk.ukdx ol

W)



To evaluzte the first term, we go back to (4.14), (4.9) and to the

definition of Ai (2.14), and from equation (4.1) we have

v 2 =p 1 1 _f 2 !
E_/;.'v(x,IVA h| }TA h.Vw ldx T_v(x,lmhl }th.ledx =

(4.18) f ] 1
. v -
0 uoj.(m 1 mi)dx o

Using the same procedure in integral's evaluation we find that {(more

, 1= 1,2...1

details can be found in [41Y
fu(x,mh|2)vﬁ.v@1+2\a<x,|vAh12)v,xh.mv.n.n.Vm1] ax =
2 o o 2 -~ .
(. 19) ["("vmﬂ YOA B, T T 200, [OA | )VA.h.VkaAh.ukVAh.le]dh

2 ~ ~
+ nu(x,lVAhl ) [VAh.Vkaul.uk—VAh.Vw1mG.uk} dx +o(uk)

Then like in continuvous case, by introducing the adjoint state

P e Woh solution of
2 e 2
(5209 '/;}[v(x,IVAhI Yo, P, +20(x, |04, | )E'Ah.VmIVAh.VPh]d):
= QZ(VAh—Ed)ledx T e 1,2,,.K

We obtain the following result :

Assuming that E. is piecewise constant on“Ch and that j = o in T,

d
for all j such that x, eT,, if L', is obtained from 9. by moving the
h k3 h h

k" 'node from *, tO X He, then we have
3 (-3 (T = Q\’VAh';hvmk'vphdx
- _/S.E-\JVAh.vmkVPh.akdx
(4.21) -_/S;UVAh.VPthk.'d‘kdx
+ fQZ\'NAh iy VA, SkVAh «VP, dx
+ J;lvnh—a o1 Vo

ﬁ“/;Z(VAh—Ed).VkaAh.ukdx +ola,)
It is easy to apply & gradient technigue using (4.21)
¥ - NUMERICAL EXFERIMENTS

The numerical experiments have bean made on the electromagnet showed

+in fig.2. The trianmgulation is composed of 267 triangles and 158

nodes. the number of unknows is 124.

We want to find the iron shape in the air gap in order to obtain a uni-

form distribution of the flux density in a subdomain D of this air gap.

This region D can be fixed or can move with the iron boundary.

Let us give new the region of interest for the oprimum design problem

and show the parametrisation of the triangulatienm.

Trlangulation of the scgion fo1 an optimum design
problem (o are [ixed nodes, « ste principal moving nodes,
and © are apociated moving nodes).

Fig. &

- the nodes [] are fixed nodes

- the nodes * are the principal moving nedes (nodes at the boundary

berween iron an air), and the nodes o are associated moving nodes

— the coordinates of these assoc¢iated woving nodes are simply related
with coordinztes of fixed nodes and principal moving nodes.

- all the "moving nodes” must move on pescribed curves (in our case
straight lines).

See fig.7 for an admissible shape for the triangulation

5.1 - Numerical experiments with FIXED CRITERION DOMAIN

, We can see in fip.B the domain D where the criterion J =-/;IVAh—EdI2dx

is evaluared, and we can see also the initial iron geometry retained



. Transformation of the prianpulation by meving the
nodes.

fig.7

AR

. Inlua) peometry of the magnet with the fixed domain
D € nt where the critcikon J Is evsluaied {examples 1, 2,30

Fig.8

EXAMPLE 1
The current density j=5x 106HKSA ( even with this current density

value the magnetostatic problem is non linear).

The parameter Ed in the eriterion is
Ed = (0,13) i.e. we want to have ip D 2 uniform {lux den~

gity B = (1.3,0).

The starting value of the criterion is
3 = 0.6116 % 107
2]

and after 9 jterations in the optimization process (9 gradient steps)

the criterion is

g = 0.3h 45 X 0

1n figure 9 we can see the initial magnetostatic state and in fig.10

the wmagnetostatic state and air gap shape after optimization.

T, Magnerostatic skaie and alr-gap thape (exampie 1,

Inktia) magnetosiatic state {examplt . s1ep 93,

Fig.9 ' Fig. 10

EXAMPLE 2

— current density j= 20 % 106 M.SA and
E; ™ 0,1.3)
The initial value of the criterion is
© g, - 0.1003 % w3
and after 9 steps we obtain

1= 0.4613 ¥ wt

Hote that at the first step the value is Jy = 0.6057 % 10°°

in fig. 11 we give the initial magnetostatic state for j = 20 ><I(J-'6

MASA and in Eig. 12 and 13 we give respectively the results at step

| and @ respectively



« Mogne tostatic state and air-gap shape {example 2,

- Initial magnetos1atic state (examples 2, 3,43, siep 1)

Fig.ti Fig.12

. Magnetortatie state and air-gap shape (example 3,
step ).

Fig.13

We give in table | and 2 respectively the numerical value of flux
density in the triangle 2ying in D for the initial state and after

optimization,

tritial value of Nux density § in the subset D (fixed)  Mux density 8 after op'!im‘u:liun Eg={0.13])

Triangle - Module I E_,. Madule B, 5)‘

240 1.60867 0.20120 1.59592 1.29559 0.0950) 128210
241 1.64087 0.16562 1.63249 1.23829 0.04575 1.33736
282 1.60118 0.12%10 1.59597 1.29233 0.00452 1.29213
143 1.56817 0.16568 1.5591% 1.24786 £.04978 124687
244 1.80634 0.12910 180172 1.29589 ¢.op4s2 1.2988%
245 L.B611D 0.10560 1.85810 130013 0.00400 1.30012
2456 1.B0368 0.08216 15018 1.2989) 0.00350 1.298%]
247 1,74862 0.10566 174543 1.29768 0.00462 1.29768
248 1.56961 0.08216 1.86280 1.30322 0.00150 120322
Fils 1.90283 0.0658% 1.90165 1.30800 0.00151 1.120300
250 1.k6330 0.09959 1.86264 130316 ~0.0005) L30316
251 1.62495 0.065%0 1.82376 1.29338 0.00149 1,298
252 1.8991% 0.0496% 1.89855 1.3015% ~(.0005 | 1.3015%
253 1.92386 0.03531 183346 1.30337 ~0.00125 130337
254 1.B9842 0.0287% 1.89E20 130147 =-0.00204 130147
255 1.873710 0.03%17 1.87330 1.2996% -0.00130 1.2956%
256 1.91882 0.02879 1.95861 1.29861 000204 1.29561
257 1.93446 0.02224 1.93433 1.29745 -0.00155 1.2948
258 1.91842 0.01558 194836 1.20854 -0.00111 1.29854
25% 1.90276 0.02213 1.90263 1.29870 ~0.00159 1.299%0
260 1.92936 0.01558 1.92930 1.29769 =-0.00111 129768
261 . 1.93978 0.00123 1.93574 1.79662 ~0.00066 1.29662
262 152098 . 0.06652 1.92916 125765 ~0.00023 £.29765
263 1.91875 0.01117 1.91871 1.2967% ~0.00068 £.29872
264 1.93397 0.00682 19319 129775 ~0.00023 1.29780
268 194211 0.00342 1.84213 1.29751 -0.00011 1.297251
266 1.933%4 0.00000 19319 128779 0.0000¢ 1L.23779
267 1.8251% 0.00340 1.92577 1.29807 -0.00012 1.29807

7= 046138507059 X 107,

Table 1 Table 2

EXAMPLE 3
We take j = 20 x 10 © MKSA and
E, = (0,1.6)
The initiai value of r..tlue cri!;e.t:::;.o'\;s is

J, = 0.2542 x o™t

and after 8 gradient steps the value is

Jg = 0.1886 x 107

the flux lines are plotted for step 1 and 8 in fig. 14, 15



qﬂ/—gé%

. Magnttostalic 31ate and alr-gap thape {example 3, Mzgnetertatic state and alr-pap shape {example 3,

sep 1) siep 3).

Fig. 14 Fig.15

5.2 - Humerical experiments with MOVING CRITERION DOMAIN

We can see in fig. 16 the initial domain D where the criterion J is
evaluated . A the boundary between iron and air can move, the set D

is a moving domain,

Enitial geome tey of the magnet with the varisbie
deomaln [ € £k where the crilerion S iy evalusied [example 43,

Fig. 16

EXAMPLE &

We take j = 20 x 10 6 MKSA and

Ed = (0, 1.3).
The initial value of the criterion is

3 = 0.2724 1073

and we can reduce the value to

-6
356 = 0.6785 x 10

For this example the result is obtained with 3 runs in the followinp
way. The first vum is is made as in the previous examples. We jer-

form 16 iterations and the final criterion value is

1, = 0.113 x 107"

16
If we look at air-pap geomstry, we cbserve an "pscillating " bounda-
ry (see fig.17) , for wich we substitve a straight boundary and ob-
tain » pew geometry (fig.18), The new valve of the criterion after
modification is

-5
JIG* = 0.9789 % 10 73

.
In the second run we perform 20 more iteration starting with this

last initial state, and we obtain

-5
J36 = 0.18465 » 10

Ve make 8 new manual Fitting of the oscillating boundary and obtain

a new geometry. The criterion value is then

I, = 0.3607 x 107°
36,
In the third run vwe make 20 new iterations and obtain
-6
356 0.6785 x 10 ~.

and the magnetostatic state is given in fig.19

SR
| _‘\j\n
i

Il
it

N Magnelostatic tlate and sit-gap shapt (example 4, - Magoziostatle state and zle-gap shape {example 4,
aep 10). step J6).

Fig. 17 Fig.I8



+ Magnetostatic state and airgap shape {example 4,
step 38).

Fig. 19

EXAMPLE 5

The current density j = 5 x 106

MKSA (initial magnetostatic state in
fig.9), the domain D (criterion) is showed in fig. 20, and for

Ed = (0,0).
The initial value of the criterion is
3, = 0.1384 x 1072

and after B steps, the criterion value is

J, = 0.9747 % 1073

8

and the megnetostatie state is given in fig. 21

PR ENITE 2 LIEES  BUGINE-D

URE D IVAURTION T CAITERE gulﬂ; EITRS 02 kﬂ]‘sgﬁym
o v Al
DENSITE DE COUMMNT MHSA  0.500547
LTAT TR5IR :}- g.

Fig. 20 Fig. 21

5.3 REHARKS

Thes, once the state equation is mastered, it takes only an additio-

nal "automatic" triangulatiom subroutine to optimize the design.

However, it should be pointed out that the topology of the answer

must be provided.

Let us also say that if the automatic trianpulation subroutine is

found to be too expensive to produce, one may compute the gradient

vector only. Engineers find it to give very valuabie information for

the imorovement of

-
o

L

[zl

£2]

(43
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CROSSTALK IN A PAM-TECHNIQUE TELEPHONE SWITCHING NETWORK
OUE TO SKIN EFFECT
APPRDACH WETH THE FINITE ELEMENT METHOD

€. Lenati, G.C. Macchi and D. Raveglla
ITALTEL Societd Italiana Telecomunicazioni, Milann, Italy

ABSTRACT

In the local telephone exchonge of PROTED switching sysiem, si-
phals fram different sources are conveyed, in Time Ddvision fultiplex
{TDM) mode, into a transmission line (or bus) named "speech highway"”.

The spesch highway crosstalk, which is dependenk on the skin
effect, is analyzed through the Finite Element Mathod (FEM].

FEM permils establislment of lumped-paremeter equivalent olr-
cuits allowing the higlway dasign to be optimized and provides a ma-
thematical tool to study those phenomena which are gensrolly mslima-
ted on an experimental baesis only, since tha analytical treatment
is mﬁrely possible in special cases.

The npossibility is provided to considerably reduce the cross-
talk Uy introducing some ferrite slements in the speech higlway. Tha-
se ferrite elements should be properly placad so as to allow an effi-
cient shaping of the magnetic field.

Very large natwork design is now possible using khe pronosed
methods and the crosstolk is predictable.

1. INTRODUCTION

The crosstalk due to skin affect in the local telephone exchan-
ga of Protes switching system 1s analyzed through the Finite Element
Methaod .

Proten 1is a fully-electronic integrated telecommunicabtion sys-
tesn, which 1s likely to replace today's electromechanical and semi-
electronic systems. IL 1s capable of switching and transmdtting vol-
ce, dats and imeges. Essentially, it consists of three unibs: Central
Control, Transit Network and Local Exchangs.

The local exchange carries out the local user switching. direc-
tly, and routes the non-local btraffic to the transil nelwnrk. AL pre-
gent, several local exchonges are operating in ltely within tha MNa-
tional Telephone Melwork.

Local exchange operates a Time Divislon Multiplex (MM} swit-
ching with Pulse Amplitude Modulation {(PAM). Connechions Liebwesn -
sers are carrled oukt through transmission lines, which are namerd
"speach hiphwoys". Coch speech highwoy permits 80 simul Lanpous cobe
nections, since it 1s assighed to B0 different pairs of nsers, in
subsequent Lime slots [phases]. Each time siobt is lasbing

125}l5/UU = 1.56/(5. which enables Lo Lransmik, every second, 0000
conversation samples., Figure 1 1llustrates two simultaneous palrs of
connections using tha same speech highway (hwl.

In (!)‘m ()Ik (lr)ln hw

@ f
Ly % Ll S LB 4’
Sl i

Uh Um Uk

ol ol te) Tl

Fig., 1

In phase 1, users Uk anl Uy, are connecked by closing swit-
ches T, end Iy for a time inkerval ¥ of asbout 1 ps.

Instead, in phase i+1, users U and U, are connecled by closing
switches I and I,.

During the Ffollowing 78 phoses, other 78 user pairs should be
connected; at the end, connections start over again from phase 1.

In one 1idesl connection, during the time intervael v, lasting
w|tC , & current pulse flows through speech higlway, consisting of
positive half-sinewove with an amplitude (1/2) C/L {Vh-vk], whare
V, and Vk arg voltages on capacitors Eh and Ck' respectively, before
switches I, and I, are closed.

In a non specific dinstant of 4, the current density Is unequal
in sll points of a cross-seclion of each single speech highwoy con-
ductor, because of the skin effect. When the switches I, and Ty
are open, the current flowing Lhrough the cross-section of the gene-
ric econducltor is zero, but the current density is nob zero in every
cross-section points, because of previous current distribution non-
uniformity. DOuring the following time slot, » portion of the magne-
tic energy (essociated with these eddy currents) flows into the user
capacitors to which this phase was assigned, thus generating a
crosstalk.

2, SKIN EFFECT EQUATION

Since, for long sections, speech highways are stralght and
with constant cross-sections, this problem may be handled as a two-
dimensional case, namely by considering a plane perpendiculer to the



highway axis. Besides, displacemeni currents can be neglected at the
frequencies iInvolved. Then the skip effect equation becomes as shown
below:

r L
VA-/Ag-g—%- = - peE (1)

where A 1s the magnetic vector potential, € is the externally-ap-
plied electiric field, 2 is the magnetic permeability and g is
the conductivity of the waterial. Knowing A, the current density J
may be determined through the spesch highway by using the following:
A
J = g {E~- —) (2]
it
In our case, the field of integration of {1) has the form of
fig. 2, where:

E, (t) over 5
1 4
Elx,y,t) =
El[tJ over S,
G -1 .4
g = 57.143 x 10 L m over S5 oS
ay 1 2
glx,y) =
0 aover §
[
/.i(x,y] = /% over Sou Siv Sl (3)

with the Dirichlet boundary condition:

5, and 52 represent the cross-
section of a speech highway,
realized by a multilayer strip
-line. SD represents the die-
lectric.

As a matter of fact, the
field of integration of the
problem has o boundless exten-
sion since the radius tends to
infinity.

In consequence of  tes-
ting, R was selected about 5
times greater than the major
geomeirical dimension of the

cross-section which is proper Fig. 2
of the highway in order to
prevent the distribution of the magnetic potential A from varying

in conductor area, when R is increasing.

In the practical case, equation (1) is difficult to integrate
because of both material non-homogeneity and shape of the figld of
integration; an analytical solution may be found for very simple geo-
melries only.

That's the reason for applying the Finite Flement Method. Be-
sides, the symmetry available would enable the study of one single
quadrant in Fig. 2, provided Neumann condition was established:

L

on axes X, Y. an

0

3. ANALOGY WITH HEAT CONOUCTION EQUATION

A analogy  exists between the skin effect and conduction heat
propagation. This latter phenomenon ids ruled by Fourier's equation
which, in the cese of isotropic material, is:

XVQGJ{Q:CJ’)O@%‘, {5)

where 9 is the temperature, g 1s the quantity of heat generated
inslde both time and volume unit, X is the thermal conductivity,
¢ 1s the specific heat of the malerial and P is the density of the
material.

A similarity is thus established in variables involved in hoth
the phenomena:

A §--=----- > o

E €---mmme > q

Hog PR » 1/A (in copper)

g Emmmm » c f’ {in copper)

0 e > cf [(in dielectric material)
g./g o » cp [in ferrcmagnetic meterial)
f €mmmm e » 1/% (in Fferromagnstic material)

This has enabled the analysis of the skin effect by using pro-
gram FLRE (Flow of lEat), which employs the Finite Element Method to
study the therial conduction fields with wvarious boundary con-
ditions, in either transient or steady state.

FLHE 1is a component of a FEM program family realized by the
CEGB, Berkeley Muclear lLaboratories, UK.



3.b. CAPACITANCE BETWEEN CONDUCTORS

FLHE 1s also used to calculate the capacitance bebtusen hlghway
conductors. This capacitance evaluation 1s Tundamental for bnth ana-
lysis and synthesis of the local exchange highway system.

Singe electric polential V 1s described by Loplace's equabion:

1
Vv-=-o, (6]

the Tollowing analogy may he established with the heat propegalion
tiy conduction:

Vo e > 9
L Cmmmm e > A
E €ommmemms > {8

whare € is the dislectric pernebbivity and € is the mlecltric fisld
intensity.

At First, the distribution of electric potential V over Lhe
field S, was caloulated with FLHE, by Imposing potential V = 1 and
V = 0 to both conducltors, respectively (Fig. 2).

Slnce teflon layers are placed between conduckors, Theld Bg An-
cludes different materials.

From potentlal V, capacitance betwesn conductors is calculaled
by evaluating the electrostatic energy W, using the Tollowing aqua-
tion:

]
Wa 1720 f €0V v dx dy 7

SD

Then, capacitance C 1s obtained from:

2w
C ='—'—"-‘-“—‘—‘——-i— ny
(Vig,-v1, )

Integral (7) was calculated by means of a program. which ope-
rates the integration on each finite element taking the voltapge
vaolues at  the nodes, as obtained by FUNE, and then using quadratic
shape functions and a 5-point Gauss Integration formula.

J.c. GRAFIC QUTPUTS

Flgures 3 and 4 1llustrate the meshes used. They consist of
isoparametric triangular and guadrilateral second-order elements.

e e e

input data for FLHE wers obtained by using a coor-

table and & progrom, realized speclfleally for this
purpose, which can alter the mesh when the conductor dimensions are




Figures 5 and 6 i1llustrate the eguipotential curves of the e-
lectric field associated with the capscitence calculetion program,

with boundary conditions V = D and (3V/3n) = D, respectively.

calculated capacltances are practically the same.

Fig. 6

The

Figure 7 is the plot of the magnetic vector potentisl when ba-

lanced dc currents are imposed {i.e., with reference to Fig. 2, ocur-
rent through SL is egual and opposite to current through 52].
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4. LUMPED PARAMETER EQUIVALENT CIRCUIT OF SPEECH HIGHWAY

Figure 8 shows a lumped-parameter eguivalent circuit of a short

section A1 of the speech highway, which takes the skin effect into
consideration.

During dead intervals, between consecutive TOM connections,

some devices reset the electric field energy thet was stored in the
speech highway.
In our case, highway AAAAA AT
capacitance Chw’ calculated A AR A TECETE
with the above-described ' '
method, has a negligible . : : !
influence on the crosstalk : ' ' '
calculation. This was veri- _i_ AT — ;
fied through calculations C,.,,_;_ — A
carried out on models and ! AR s L1 1 Iy H
experimental results. : ——~NAﬁfJV~ww13?Imﬁ——~ !
Each lranch of the | ——t— ' . —
equivalent circuit of Fig.8 :
corrgsponds  to one, or mo- L AAAAA——— T —
ra, of the finite elements
into which conductors were Fig. 8

diviced.




Each branch consists of a resistance, a sglf-inductonce as well
as mutual-inductances with all others. Inductiva parameters are ol-
tained by doc-loading, one at a time, the finite elements fovming Lhe
conductors.

program FLHE provides the distribution of the maghekic vector
potential  A. The average value Ayo0n aach alement is obtalned by u-
sing a quadratic interpolation starting from node values. These va-
lues enable the calculation of the inductive parameters. Comparison
between the average value Agyon each eloment and that in the borycen-
tre, and verification that mutual-industances mps and miy are eruak,
{a necessary rerquirement for the reclprocity principle applind to
pairs of elements, thot wers lumped in their respective barycentres?
enable the eveluation of the quality of the diacreteness aud the va-
lidity of the equivalent circuit thus oblained.

The highest frequency in the valldity renge of this equivalent
circult 1is a functlon of poth mash fingness and number of squivalent
cireuit branches.

Current densiby in each finite alement of conduclors was sUNpo~
sed to be constant. This approximation validity was avaluakad by cal-
sulating, using program ASTAP, Lhe 2 MHz eguivalent circult responsa
{2 Mz is the highest frequency of interest of this particular ocasel .

This freguency responsa Was gompared with the resulks obkai-
ned by program TRIREFE, to which this same problem was subinitled with
a Finer mesh with second-order elements. Deviation of rasults was
less kthan 1%.

TRIREPE is a finite element program that CRIS-ENEL of Milan da-
veloped to study the thermal phenomena of dams in harmonic condi-
tions.

ASTAP (Advanced STatistical Analyals Program) is o program de-
veloped by IBM Lo analyze electric networks under dc, ac andd tran-
sfent conditions, with either deterministic or gtaltistical para-
meters.

The equivatent eircull, integroted with terminal circuil ele-
ments (Fig. 9), constitutes a tima-division switching model with a-
bout 500 parameters.

Crosskalk was obtained by a transient analysis of this model
aceomplished by program ASTAP.

5. CROSSTALK CALCULATION BY GONVDLUTION INTEGRAL

The crosstalk celculation may be operated by the convnlublon
integral whenever the highway response to birac's voltage pulse 1s
known.

In thermal analogy, this is equivalent to svaluating the tran-
aient by imposing the following initial conditions: unifurm beiperas
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ture & - 1 on the pulse-strained conductor 5/ (4 = 1,2), and uniform
temperature 0 = 0 on the remaining inteprating fisld,

The transient response A (x.y,t) to the voltage pulse ylelds
the transient response J.(x,y.t} of currant dgnsity when the voltage
step utl) is applied, because of the following raelatlon:

3.0y t) = glult) - n1{x,y.t]] [§13]

The crosstalk of the clrcult, with sequence operating switches.
shown in Fig. 9, may be evaluated by consldering the Lime-invariant
ciroults corresponding to the followlng situalbions: closed switchas
and open swiltches.

Figurs 10 1lluskrates the invariont circuit thal 1s yalid in
the firsl transient phases the highway is represented by the two-port
with terminals t-2, 3-4, and is featured by ocurrents Ij,i[h]
(1 =1,2; 3 =1.2), where Ijri(t] {s the nurrent flowing along the
spaach highway conductor 1, when a step voltage is applied across
the terminals of comduckor J. while the other canductor termlinols are
short-circulited. I}ri(t] are caleulated through a sultable program,
starting from two transient analysis obtained by FLHE.

The equations below refer to the analysis of the cirouit illus-
trated in Fig. 10.

e 1
! conducter 1 ‘| 3
e I

‘I\ 'm

1
- |
| |
Ry, : :
I 1
2 1 |
=1 : i
b
i ! ' Flg. 8
Cu | |
T ! !
Fig. 10
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These equations were integrated with the finite difference me~
thod, by considering Iﬂ[t+dt3, Tolesat), v, (£), 3(t], Va, (t],
Vo, (t), as unknown guantities; besides, these equations provided the
initial conditions for the invariant circuit, which is wvalid in the
second transient phase.

The use of the convolution integral avoids the caleulation of
the numerous paranelers of the eguivalent circuit of Fig. 8 and gi-
ves more accurate results because it is not necessary to consider
constant current density in each finite element of the cenductors.

Dn the other hand, the equivalent circult approach offers ad-
vantages in the highway synthesis because, by utllizipg a proper me-
sh, the geometrical conductor variation (obtainable by elther acti-
vating or desctivating some finite elements}, corresponds to either
an addition or deletion of branches to and from the eqguivalent
circuit.

B. MAGNETIC FIELE} SHAPING BY INTRODUCTION OF FERRITE ELEMENTS

The possibllity is provided to considerably reduce the cross-
talk by introducing some ferrite elements in speech highways. These
ferrite elements should be properly placed so as to allow an effi-
cient shaping of the magrnetic field.

. A nop-uniform current distribution over a speech highway con-
ductor cross-section is causing crosstalk in the TOM transmission.

Usage of thin conductors (+) provides a possibility of reducing
(+) By thin copductors we mean those_conductors having & lower thic-
kness than depth of penetration S =V}°/ﬁﬁpb . wherela is the resisti-
vity of the material,/pu is its permeability and f is the fraguency.

such  a non-uniformity din the thickness direction; in the direction
perpendicular to +the tickness the irregularity disappears when the
cross-section has a radial symmetry.

Hence, the good behaviour versus the crosstalk of a coaxial
speech highway having thin ring cross-section conductors.

In practice, teflon 1s used as a dielectric in order to minimi-
ze the diglectric hysteresis phenomena. Besides, the availability of
a plene structure with laminated conductors, results to be an useful
solution, because a coaxial teflon structure has a difficult techno-
logical embodiment. On the other hand, even an indefinite flat line
with three thin conductors (Fig. 11), which is obtainable by exten-
ding the radii of Ethe thres conductors of a coaxizl line, such as
that specified in Fig. 12, to infinity, shows Tavourable crasstalk
characteristics.

Fig. 11 Fig. 12

Passing from this ideal struc-
ture to a realizable one (Fig. 13), which
consists of three conductors heving a fi-
nite width (such as those we examined so
far), the megnetic fisld would be
unchanged within the 1line if appropria-
te boundary conditions are dimposed on
margins A-A and B-B. This is possible
by bringing the structure, in A-A and
B-B. inte contact with & material having
a high and constant initial magnetic per- Fip. 13
meability in our interesting freguencias.

A practical realization is possible by placing ferrite elemenis
as shown in Fig. 14.

The structure with ferrite elements was analyzed by the above
methods by using the mesh illustrated in Fig. 15, where the ferrite
is symbolized by the shaded area.

The low values of magnetic field intensity make it possible to
linearize the ferrite magnetization curve in the working area.

The remarkable improvement thus obtained is noticeable by com-
paring Fig. 7. relative to a ferriteless structure and Fig. 1B, re-

Pr——— ®
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rig. 14

lative Lo a structure comprising ferrite with /Li’ 1000, which rerer
to egual loading condiltions. These figures illustrate Cthe enuipoten-
tial lines of A {which is everywhere perpendicular ko Lhe surface of
the drawingl, in the case of conductors loaded with balanced do cur-
rents.

Fig. 16
7. CONCLUSIONS

The experimaental tests of crosstalk due to skin effecl confir-
med the values obtailned by digital simulation: these lests are diffi-
cult te corry out when crosstalk values are small (about -90 dB per
meter of highwayl.

In the case of ferriteless highways, experimenlal tests and
calculation results gave dB crosstalk values with o 1.2% deviation.

In the case of highways with Fferrite elemenls. very small
c¢rosstalk values (about -135 dB3) were obtained from the digital
gimulations; only one gualitative confirmation was obtained by experi-
mental measurements.

Mathounlogies developed enable Lhe design of conductors for
mach single sewitching network branch, by foreseeing performances in
advonce to 1ks physical realisation; often, this is tims consuming
and expensive. Basldes, it is possible to delve Into crosstalk phe-
namena caused by eddy currents in local exchange transmisslon paths
and to simulate very large switching networks, by also considering
other crosstalk causes and real working condltions.
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ABSTRACT

In the paper has been reprosented application of fhe
genalty function methods to the problem of determina-
ion of the optimum distribution snd course of magnetic
induction on tho edge of en elliptic magnetic cylinder
g0 a8 to obtain, after predetermined time, distribution
of induction aseigned fto the cylinder orose-sectlon, For
the inquired distribution has been defined the quality
criterion in the form of the functional of mesn quadra-
tic error complemented by componenta of penalty whilch
take into account limitations imposed on the menrched
funetion. The cbitained modified quality funotional has -
been brought by method of Lagrange approxluntion by me-
ang of the gecond order finite element to the quadratic
form optimization,

1. INTRODUGTION

of the penalty function to variation problems.|[7]I.
Iiong has 1t proposed to optimization of evolulion
problems in the work |6]. A widened mathemnbicnl usti-
fication for this method gare A.V.Balaokrisbnan [2],
Actunlly thim wmethod is applied to problems of mynthe-
alg, identification and optimization of systemg with dis-
tributed parametors. Its mathematlcal subatance isg
following: the problem of searching the extremes of &
functional with limitntione is reduced to the problem
of determination of the extrema without himilimtions,
which makes an eapler problem, In this work fthis method
has been applied to determination of Neumanlen boundary
conditiong P A/Bn belonging to the space of admiesi-
ble magnotization U , determined on the edge
[}nf’ﬁ(O,T) of & maffletic cylinder of cross -mechicn
A% < R" end edge [1 , for vector potential A(x,t) be-
longing to the mpace of state 154 0,1,HY )Y [+, 61,
asatyelfing in the region Q = {ix (0,T) +the elale oqua-
tion, a8 well as initial and boundary conditiona. The
atate equation joinitly with initiel and boundary con-
ditlons compose limitations for the extreme of quality

R, Courant has Introduced for the firet btiwe tTu role

functionnl, J{A,b), By introducing penalty functionals
2,6 thege limitationg have been added to the quality
functional, thus forming a new J (A,b).This proof of
exigtonce and wnivecal character of the extremo of modi-
fied fumetional presented J.L.ILiong [6]. To congtruction
of the optimum couple.{hE, b, Yheg been aplied approxima-

tion of the mtate function g(x,t) and boundary magneti-
zation b(x,t) by means of the smecond order finite gpace
element [8]. In congequence of the accepled approrima-
tion the ptated problem has been reduced to optimization
of quundratic form with rempect fthe state vector{ Al and
boundary magnetization vector {byin a finltely dimen-
glonal epoce.

2. STATEMENT OF OPTIMUM MAGNETIZATION PROBLEM
The electrodynamical state on the orogg-section of the

eylinder is depcribed by the Maxwell s equations set [6]
rot # = } , (2.1}
Yot E o - 2B (2.2)
2t
divB =0 ; div D=0 ., (2.3

Introducing electrodynamic vectorial potential A(x,%)
by relation

rot A{x,t) = DB(x,t) , (2.4)
the above set hae bLeen substifuied by one equation of
parabolic type, for which will ho siated the problem of
optimum boundary magnetization. 2,

The electrodynamic vectorial potential A(x,t) & L°{0,T)

H1(_0-)‘]:ln the region Q ={lx (0,T) satisfies the stn-
te equation

'\ N
{5 Gotom slatx, ) =0, (e @ (2:5)
ag well ag boundary end initial conditiona
)
<A = b(x,t) 1 (=,nHe) , (2.6)
on
A(x,0,b) = & (x}," x & Q- , (2.7)
where L ig elliptic operator
2
Lwe=})" LR B NS (2.8)

101 0%y Pqy 9%y



b e'LLe(Zf), AOIE Lz(il) are spaces of functiong inte-
grable with aquare and H1(£l)z{;A A e LQ(Jl);

DA
O,
Ve hare to determine function W(x,%t) which:

1, belonge to space of admiseible boundary magnetiza-
tione UadC: U

& LP(L) ﬁ is the Sobolev mpace {1, 6].

Upg =ibs v er®( 5y, T=rxo,r b, (2.9

2. after time T (™ will create the magnetic state
of the conductor

a(x) e (o) 5 Qer®

3. together with generalized solution A(x,t) of the
problem (2.5) ¢ (2.7) will satisfy condution

J(b) = inf J(v) ’ {2.10)

V'E‘Uad

where

J(b) = f(ll(x,Tde(x))E dx + Y Iba(x,t)dxdt’
£

A - (2.11)
ig the quality functional of the atated problem, ¥ is
& number over zero,

Theorem 1: When the set of admissible magnetizations
Uad is closed and convex and the bilinear form =(%,a,

)
a(t,A,7) = f Yo DAx) Q4 (2.12)
a1y My 0 x5 9%y
induced by the operator L (A), (2.8) )

1) for each couple 4, v & 12 O,T,H1(£l) J is measu~
rable function versue variatle +t fgr,"be (q T
11) for each A ,and t belonging to€I4 0,T,H'{a )}
thig form eatisfies condition of coerciviiy

alt,,0) > < A 12, =>0  (2.13)
1°()

then the optimum magnetizetion b(y,x,t) & U doeg
exist and necesgary and sufficient conditionﬂgf ites op-
timality is fulfilment of the following conditiong

iii)

~1

B”-:‘i— +LT-0 1in q , (2.14)
ot
EL& = ; on R {(2.1%)
In
A{x,0) = Ao(x) in ’ (2.16)
- :@...2. + o(*p = 0 om Q , (2.17)
2t
2p . g on , (2.18)
on
[tp+ ¥D)(0Braxat 20, beU, o (2.19)

~ ok
where (A,b) ia a couple of optimum distributions in
Q and on the edge 3, p(x,t) is the state functicn
conjugate with stafle A(x,t), conjugate variable, and
ie expressed by relation

p(x,1) = K(x,1) = Ay(x), xe < (2.20)

x—
L (L) is eliptic operator conjugate with operator
L(8) (2.8) . - 5
o[,fh)'-'-’ - >—-| f) A (___L J A

=
131 ng Mg 0%y

e (2.21)

Condition (2.19) is a generalized form of principle of
Pontriagin maximum. ~
Determination of the optimum magnetizing b enalytica-
11y from optimality conditions (2.714) + (2.19) with
respect To quality oriferion is connected with conside-
rable difficulties and is feasible in particular casges.
In work [5] basic limitation which iwm expressed by the
gensralized state equation hes been taken into account
et optimization of quality functional by numerical de-
termination of the operator repementing the smource
function as state function. This procedure leads to con-
giderable expenditure of calculation. Honce, it ism
worth while %o apply other methods. The most univermsal
ig here the method of penaity function {2, 6],

3. TIE METHOD OF PENALTY FUNCTION

General methodica of penalty funciionals consist in
such modification of the gquality fumctional (2,11) only
to obtein the problem without limitations, equivalent
or convergent in some sense fo the preliminary problem
with limltetions [2, 6]. The problem siated in the pre~
ceding paragraph, i.e. opiimization problem of boundary
magnetization btx,t) with final obgervatien A(x,T).



(2.10) has principal, main limitations in the Torm of
atate equation (2.5) as well ae boundary (2.6) and ini-
tial conditions which, according to egsence of the meb-
hod, will be added to the functional (2.11). In conse-
quence we will obtain the modified functional of two
variables, i.e. the state function A{x,t) and bounda-
ry megnetization b{x,%).

By introducing a naw get of functionsg

Ye{d;jae L2(0,T; H1(-Q~)), %% +Lh 1) ’
2h e 2y (3.1)

and agguming penalty factor
c=16 & &% £70 4a1,2,3  (3.2)
2 "33 &

in the space (Y,U) we determine the modified quality
funotional

3. (A b) = J(b)+ —— ||:ﬂ+-tnli2 +
' 284 ? 12(Q)
) 2 2
R IR o [CENCT
2 ‘N 2 = 3 2
Lo(L) L)

(2.3)

where norms in apace LZ(Q) and Lz(}:') are expreaned
by relatione

T 1
NA(x,$)| = { J | &(x, %) | 2 axdt '7]2- (3.4)
() © )
3
T 2
e, oll = f | [ Tae,wl 2 aas) .

2 o f i
BE) (3.5)
‘{‘ha directional derivative @ A/?n ig given by Formu-
1a
an & Da
: = )_, = cos(n,x,) . (3,6)
an e 0%

where n ig a vector normal to the edge [ of space 12

T
F

Pe{xpxp 0 5262 ¢ 5202 <1}, D)
0=z  m2 + k2P <Al (3.8

Therefore the new optimization problem conslet in deler
mining the couple {4 , b‘.,ﬁ saliofying the following
relation g ¢ ‘

inf J (A,0) = (3.9
£ £

he¥

b c‘-Uud

Theorem 2: The problem (3.9) hag unlvocal selution
{he )0 (3.10)
rogeessing such property that when ¢ =(€1 Eé&s)-—-:} 0
8O
— A —= (b b—s> b
d& T H c (b); )

in epace ¥ and U ,, reapectively.

Proof of this thoored ig given in work [6]. In fact,
when 4 end b will obtain optimum values, smo congti-
fuent penalties in the modified funciional l3.3} will
be nulling and

Je (A.E by £ IA(b) b) = J(0) =§ , (3.,11)

In further consldsrations we will treat construction
of the optimum couple (3,10} by approximation mathod
of the state funciion A(x,t) ond magnetization
b(x,%) by weans of the finite element [5, 7, Bj.

4. APPROXIMATION OF THE SOLUTION BY MEANS OF THE
FINITE ELEMENT

The quality functional (3.3) in the open notation haa
the form

7
J. ()= f (ACx, T)-A (x))2axs V72 | [ v2x, t)axase
¢ 2 Ja 0 &

i

2 2
(<L agx, by 1 5 D5, 2
9% y: 2;’1 —*'z,(-)xi (x,4))° ax dt +

2
1 ) 2

P () == A(x,t) 8,(x)-b(x,1))" ax db +

2 &, "[) 1ot O%y

(4.1)



vt | (x,0) - a2 ax . (4.1)

2(._3 o3

Cengldering that functional (4.1) depends of derivati-
veg of second order in relation to the variebls
xn(x1,x2), it le neceseary to apply approximation of
the state function and boundary mngne‘hizationzby meeng

of the second order polynomials Pﬁ(x,t)é ne (qQ%),
E = (x1 ,xz)

A(x,8) = [P] 4ty ] (4.2)

where
] = [1,1:1 Xy x12 x22 ' X4Fy X4t X 1]
fkY ={oty S o O Sholg ob oy A A T,

Region Q had been divided into M trihedral elements
ag in Fig. 1

M
Q=x (0,1) = | of® (43)

exl

}
- ._(Lcex @é)@)

%

Pig. 1. Conflguration of nodes in the element

In the e-th element Q(®) @istribution of the state
function A(Q®) is expredsed by relaetion

aa®) = [PIer™ Al or (4.4)

A%y = [W}{sy , (4.5)

where [G] is a squere matrix of the order (10 x 10).
Ita elements are expressed by co-ordinates of nodes
x1{5,x2r5,tﬂ,f>uijk1mnoprs;[Njiﬂthe

vector of shape function
N] =[m Ny N ¥y N, N, N, N, W, N,] , (4.6)
fatalay LT SO A T T L (4.7}
ag well as

Np(x1x2t)= -JA--(an, +bpx1+cp, xytdn ’c+fr,, x12 +

+ g_p,x22+h{,, t2+ur_, x1x2+'v.p X4 by, xat) ) (4.8)
PL 1
—5;:3 = -E(bp +2f{5 Xyt Xo#¥p, $) ’ (4.9).
PLI I
57, = Z(GP +23P x, +uP Xy4vg ) , (4.10)
O Atay somy b ) (4,11
orale =< [ +2hpy BV, Xqbig, X, ’ 4.11)
21, 5%

(4.12)

Ly 3 '““'"“""'="2-8 ’
’Bx12 A (" )xzz A fb

where A is determinant of matrix [GJ.

Therafore, distribution of the state fumction A(x,t)
end boundary magnetization  b(x,%) can be represented
in the form

A(Q%) = z(j Np(x1x2t)nf,, , (4.13)
(2= 5= _Np(x1x2t)br, . (4.14)
)

According to additive properties of the integral the
functional (4.1) will be repre?ented in the form of sum
of components determined in Qi€J) by the elements

M
I av) =Y J(Ee)(l\ b) . (4.15)

e=1

where the e-th compconent of the above sum equals to



' 3
Jé‘”(n b) = 3§04 J§,") NS R [cy] = ‘L[NJT (] (1) ax (4.23)

i=1
(
fccordingly Jge) ({vYy) -_-}2‘-{‘::8'1' (c,] °) { by, (4.24)
J%e) (A b) = g I. (A(x T)-2A(x T)hd(x)+Ad(x)hd(x)dx % whore o A
-yﬂe (4.17) | AR [ oy axae (4.25)
J_g’e) (h,b) = "y J f b(x¥) blx,t) ax dt , (4.18) Atr
. )
7 (awy e A j (Rron, _e__a__a . @) (ay) = m oI fay , (4.26)
E'I 261 At CARCA / r)LI '
. where
N %lﬁﬁa P, 2% 1,’92ﬁ P yax gt (4.19) | Ry
’ w2 9x,? Pox,? .P“ ox,? dx,2 ; )¢ = J;J}: -;Q- m” —5-;[11] +
N9 * t
(e) 1 r ¢
J (A b)) = — {a, a, — =
£2 £ Jm: fr Tt ox oy },,(2 2 [NJ LN] [Nl ,a'—g [N] +
oA N 24 94 D4
+ 2a, B + a, 8 w28, — b +
1 2bx1})x 2 2})1 ox, 1?):\:1 +2'b—;g[N] é——a—[lﬂ -!-’5—?-[1\!]'1"a [‘N)_l)dx dt
- 2“23‘“ b 4 b{x,t) blx,t)) dx at (1.20) (4.27)
X
2 a8 nivy - m“’ 10 0y +

;
3@ ) - ) fn (A(x,0)A(x,0) ~ 24(x,0)4 (x) +

T ](9){bk+ {b'l e fu} , (1.28)

+ A (x)4 (x)) dx . (4.21) 2&
By approximation of each of thim components we obiain where
(e) 2 T 9 +
. T et . p)le) - (g2 2 (877 2~ [N] +
J%‘”_(M})‘= %{A}T [ey 1Ay - {a4F o) {a )+ [¥] [{t J_toq Dx, CES
1 T T O im 22 T 2. at,
oot e {raY (4.22) * gy o - ~— ] “2{ 1+ 2 [ ¥ upax

. (4.29)
where matrix {C] is a square matrix of the order

(M x M) . ; . 5 .
rrj(®) - A;'éd(a1 < () [N] + vy - (W ex at

1 2 {4.30)




e = [ [[m® (e, axdr , (43D
At &
ag well as

Aeltan < {!U]T [03{ oY - —{MT [e) ©){a g+
3

o [03] {Ao} , (4.32)

(e)
where matrix {Oﬂ equals

[og) () = J’l[n]T [w](0) ax . (4.33)
The functional (3.3;; (4.1} in the descrete space

(Y x U)h ig precisely convex and radially diver-
gant, Therefore, condition of 1ts exireme apsumes
the form

3—— Ay {vhry = o, (4.34)
S % 3 (s D) ’
2

T E({h} {vhry = o , (4.35)

Derivatives of meperate components: (4.22), (4.24},
(4 26), (4.28), (4,32) 1in relation to vectors {4}
and {b}] are equal respectively %o

388 (s 1vh) [91](9){“}'[01] (e)\“cﬁ

'})JM (4.36)
i SIS TC VI (4.37)
)
’ﬁ@'ﬁ Jﬁ,"’ daiivh = o, (4.38)
;3 }E") ar{eh = o, Oy, (4.39)

(a% ESUCIVERSD )= %y, (440

{ gres JE(eJ({Ag{ba; -0, (4.41)

gCe) = rgled; - (e)
'a{ﬁ ey AMAMD) = 5 [TV - o ) (}::2)’

2 gle) I D
Sqmy Ea MAPD E [F10°{ v}, (4.43)

2 (e) 1 (e) 1 {o0)
—_— ext b 2 i [ A ——
STay gy ARTED e, [0 M 5 T
{(4.44)
-?—che)({A‘r{b“n = 0 (4.45)
2{vY
Conditions (4. 34) and (4.35) give the set of equationg

in relation to vectors of gtate {AY and magnetization

{b; These equations aegume the following form fox the
e-th element

() + 201+ =01 s 110 5 {ay 0

mfe){ b} - ([eq >“”{A o+
+ 5;([05])(*"{ RY s (4.46)

Lo qmeday - oypey e +51:-f°41'(e){"|}= 0
R 2 . (4.47)

Aspembling partial matrices slong all elements e=1,2,
essy11 we obtain the met of equatione

(] {u) - = (r{vY = {ry , (4.48)
2

- g... [FI{AY +[D){b} = {0} , (4.49)
2
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where

M
(6] » S0y @)« L [p)(®) 4 ;_ 5)(®) .

exl £1 2
+ %-“[03](3)) , (4.50)
3
M
F]= ¥ (7, (4.51)
a=1
M
D]= oy {o ](") r L e '](") ' (4.52)
(P)1= 3= 2 A
e=1 g2
M -
fry= 32 ([e1(®0 {agy +1E-[03] (@) §aly, (4.52)
gal 3

Further, the set (4.48) ond (4.49) will be recorded in
the form of a single matrix equation

[' fo] -;—2m iy {r}
= (4.54)

[-g_zm o) | [ t] [qo]

-1
{2y (e - (A {1y
- “2 (4.55)

[y] EEEr o] gy
2

Vector (4.55) represente the inguired solution of the
ptated problem of optimization of the boundnry magoti-
zation, The stats vector { A} dotermines distribubiom
of the vectorial potential inl the region ©Q =.(i x (0,T)
in ite discrete modew.

Voctor | bl determines distribution of maghetla Induc-
tion in points located on the adge of the ellplic cylin-
der ¥sp X (0,T). This vector caumes that after time

(T) daistribution of the magnetic {A(T)Y is optimaly
near to the pregent distribution {'Adg. Thig proximity

%s undeget?gd od the esgence of the gquality criterion
3.3), (4.1).
Panal%y factors Y y€4 (1=1,2,3) should be melected

beforehand mo ng to aveld dominatlon of the fumctional
(2.11) by penalty functionals.

5. CONCLUDING REMARKS

The reprepsented method of penaliy functionala makes 1t
poonible to substitute in an effective manner the pro-
blem of optimization with Limitatlons by the problem
without limitations. Thie eimplifies calculations con-
nected with construction of the functional extrome point.
However, substitution of the egiete equation (2.5) as
basic Iimitatlion by functional (4.19) in the nomrm

LQ(Q) involves necemsity of approximation by an element
of higher order, at loagt of second order, and thim is
conmocted with some addlitional calculations.

Selection of factorst of regulerization Y and of penal-
ty g (1=1,2,3) requires cortain experience in cal-
culat $ns and ia performed individually to the problem.
The represented mlgorithm of determining the optimum
boundary magnetization with final observation A(x,T)

is executed on @ digital computer in language FORTRAN.
The program of calculatiohse 1s scfually in cause of
realization.
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