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ABSTRACT

The flux pattern in a Tokamak machine with an irom circuit has been
identiffed by means of 2D magnetostatic codes. The Flux map has thus
been described by means of a certain number of functions depending
on the saturation level of the iron core, on the plasma position, on
the current and pressure distribution insidethe plasma. This descrip-
tion has been used to simulate the evolution of the currents of the
various circuits, the plasma equilibrium and its stability.

|. THE TOKAMAK MACHINE : A TRANSTORMER

The Tokamak, a nested tori machine where the plasma is conflined so
as to control thermenuclear fusion, can be assimilated to a trans—
former whose secondary winding is the plasma. In the Tokamak of
Fontenay-aux-Roses TFR (Fig. I}, the primary winding is consituted
hy a set of poloidal coils coupled to the plasma by means of a ma-
gnetic civcuit, which is made of an iron core and of eight iron
limbs. The poleidal coils (Fig. [ and 2) are either placed near the
iron core (inner coils), or close to the external limhs (outer coils)
just as the equilibrium windings, that generate the complementary
vertical magnetic field necessary for plasma equilibrium. The plas-
ma is confined inside a very thin vacuum vessel and is sometimes
surrounded by a copper shell, which maintains the plasma in equili-
brium by means of the eddy currents induced in it. In TFR 400 there
was a copper shell ; but it is no longer the case in TFR 600', so
that the equilibrium problem is much more diffieult in this machine.

The problem is to simulate the evolution of the currents of the va-
rious circuits, the plasma equilibrium and its stability. It is
first necessary to know at each instant the flux pattern in the ma-
chine.

2. TWO-DIMENSIONAL SIMULATIONS OF THE FLUX PATTERNS 1IN TFR

We have assumed that the Elux configuration is axisymetric, that is
te say we represent the set of the eight return limbs by a conti-
nous cylindrical iron circuit, whose cross-section is the same as
any limb cross-section. The curcents in the circuits being given,
we wank to get a precise map of the fluxes induced by these cur-
rents. We have therefore to solve the following Maxwell equations :
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where the Function it has been experimentally determined.
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The poloidal magnetic field B, can be conveniently expressed with
the help of the flux function { :

-+ ] -+ -
BO=E;F grad ¢ X ¢p

in the cylindrical coordinates (r, ¢, =) (Fig. 3).
We have then :
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The projection on e, of the equation :
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leads to the following non-linear clliptic equation :
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where p' = r up (1?), ur being the relative permeability.

In the case of the inner ot cutetr coils, the longitudinal density
current j, will be taken homogencous in the whole crogs—section of
the coil.

In the case of the plasma current density, we are particularly inte-
rested in the leakape field generated by the plasma current in its
own region. We assume that the plasma cross-section is circular and
that its current density depends only on the distance p’ between
the considered point and?tge centre of the plasma cross-section, for
tZ
example jy = j, (I —-%;r) . In the cylindrical approximation, the
mean transverse field in the plasma region would be zero. If we cou~
gider toroidal effects, this field will be different from zere, hut
it is no longer possible to choose any arbitrary profile of current
density.



Indeed j, must verify the equilibrium law :

-

-+ +
grad p = JX B (3)
where p is the plasma pressure.

Assuming that the ratio of the minor radius a of the plasma to the
major radius R is small, Shafranov has proved? that, in the First
order approximation, the mapnetic surfaces determined by ¥ = gte
form a system of nested tori with circular non concentric crosg=
sections, the center of the magnetic surface of radius p is displa-—
ced inwards relatively to the magnetic axis (i.e. the magnetic sur-
face with a radius equal te zero) by the distance :

F) =08 Ban 1) dpr
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where A (p") =3%8—1Ep1§ [T) ') - p (p'):|+—l—-.1 ‘,({p ) (4)

In this formula p(p’) denotes the mean pressure within a circle of
radius p', p(p') and Bg(p') the pressure and the poloidal field at
the periphery of this circle, and 1;(p') the iaternal inductance
per unit length of the part of the plasma within the torus of minor
radius p'
L)
L") = A BE(r)rdr
20282 (o)

Then the toreoidal correction to the plasma current density can be

determined by means of the zero order quantities, in the coordinate
system (p, &, ¥) centered on the magnetic axis (Fig. 3)

(9)
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We notice that this First-order correction has a dipole configura-—
tion and will generate in the plasma region a transverse field Lhat
2 ~ 2lp
has the order of T x(g {a) (Bs(a) Toa )

field generated by j ¢ and due to toroidieity.

like the transverse

Let us assume that :

2
19 @ = 5 (1 -25)°
. 2 (6)
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Then p (p} = py (1 —-2?)

The peakage of Lhe current density is characterized by g, but can
algo be determined by 1 = 11 (a).

The poloidal beta is defined as the ratio of the kinetic pressure
of the plasma to the poloidal magnetic one :

81p(a 4apg
B = ——-gﬂql - ._zLu_
Bo(a) B;(a)
Let us consider two typical examples

a) flat current (g = 0)

(o) _
L

then 1;{(p) = 0,5

Jo
2
3(p) =G (B 0,25)

j(:’) (D: [)) = - (;05(]-;—1— (I - ZB)jO

The first order correction is null for f = 0,5

b) parabolic current (g = 1}
L) - _p?
J v (p) = Jo {1 —az‘)

Then 1; = 1; (a) = 11/i2

'I'(a) =1R2— (—E—+ 0,162)

j(«i) {p, 0) = -cos 0 joo [1 ~ B2 -1,75K + 112 X/(1 - X)

- 176 Log {1 - xﬂ
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with X = 77

We have also considered the cases where q = 2 (1; =~ 1,22) and
q =3 (li = 1,45).

We have now defined the secoud member of equation (2) and we are
able to see how this equation was numerically solved. We need first
to define boundary conditions : we shall take ¢ = 0 on the limits
of our mesh that will be taken sufficiently Far from the machine

so that we can assimilate them to infinity.

Two codes have been used to solve the elliptic non-linear equa-
tion (2)

. The first one is the code POISSOM3. It is a finite difference SOR
code ; it has already been used for planning Tore II".



. The second one is the code MAGNETIX®. Tt is a finite element code
where Newton's iterations are used to solve non-linearity. The
finite clements ate triangles where Eirst order Lagrange interpo-
lation is used. The mesh used by MAGNETIX is made of 1500 knols
and 3000 triangles (Tig. 4). The important variations of p in the
iren require such a precise mesh.

The MAGNETIX code has a better convergence in saturated cases
than the POISSON one and it is more convenient for elaborate cuor—
rent densities such as those given by (5) and (6).

The mean conbributions Lo the magnetic field of the inner and of

the outer currents have been measured on the machine between the

points A and B (Fig. 4), for various saturation levelsof the iron
core. The comparison between measurements and computation is re-

presented on Fig. 5.

Let us notice the importance of the values of the air-gaps : the
inner air gap has been taken egnal to 3.5 mm and the outer one te
2.5 nm, s0 as to be as clogse as possible to the measurements made
on the device.

The general agreement between simtlation and experiments is about
10 Z.

3. THE FLUX HAP IN THE TORGHMAK

Systcmatic studies have been made with currents in the inner coils,
outer coils and plasma separately first and then all together. Two-
dimensional simulations of the Elux patterns have been obtained for
various saturation levels of the iron, various positions of the
plasma and different values of B and 1{. The position of the ptas-
ma is defined by the quantity A by which the center of the plasma

is displaced relatively to the center of the vacuum vessel (Fig. 3).

The Following results have been obtained :

a) The flux ¢ in the iron core and in the medium plave is given by
the value of the function } at the point C (Fig. 4) and can be
represented by a simple function of a ponderated sum of the -~
Ampere~turns &I

EL = Ig 4 I3 - K I, with K =k, + kA (7)

where I, and Ti denote the total currents respectively iu the
outer and inwer coils, I, the total plasma current, whereas
ko = 1,02 and ky = = 0,5 x 10"%em 1,

As the plasma current is induced by the primary windinps, it is
obvious that it is flowing in the opposite direction, whence the
gign - in (7). The Eact that the plasma is in the medivm plane
and that the coils are not justify the presence of the pondera-
ting coefficient K in (7), which is the more important as the
plasma is closer te the iron core,

b}

c)

The function ¢ versus LI is given on Fig. 6. This quantity ¢ will
be the key—parameter of the system, describing the saturation
Level of the iron core.

The leakage field between the medium plane and the coils can be
expressed quasi-linearly in terms of the currents, with cocffi-
cients depending on ¢ and 4

B =y~ e T (@) I F Ty () Io v Ly (4, 8) I,

(8)
fo =g~ b = T (0 1 F Ls (8) T4 Lo (b, W) T
where 1 Ly (4, A) = L9 (&) + A-g.l‘T3

13 () + b 26

LG (’bn A)

&

Points G, I}, E and F are represented on Fig. 4.

Functions (Lj, Ly}, (Ly, Lg) and (L3, Ig) have been identified

by simulations with respectively currents Ij, 1, I, alone, and
additivity has been verified with a precision of 10 Z when all

the currents are flowing topether. Let us notice that those con-
tributions depend only on ¢ and on 4 and A, For the plasma contri-
bution.

Funetions L, L, Lg, Loy, Ls, Lg are represented on Fig. 7

al3 dLg : N
vhereasg Th and oy are independent of ¢

g | Mg 6/ e
Y 24 0,022 kAlef

The mean vertical leakage fields in air and in the medium plane
have also been expressed in a quasi-lincar form :

O, D (&) S}
BR= b (b, ) I+ Boy7 (4 A T, 4 by P (4, 4, Ry 1) Ip (9
e {1, 2, 3Y;5m1, 82, 3, being different sur-
faces defined in Fig.h

The index j corresponds to Lhe considered repion :
. The first region (j = 1} is token between € and E (Fig. 4) : ;

B(i) = Y ¥

Bl

. The second (j = 2) is taken betwecen C and I (center of the
plasma) :
B(Z) = ']’I - “’C
v %)



. The third one (3 = 3) is the plasma region (between G and H)

B(\al) = Wy~ ¥

53

The superposition principle, expressed in (9), appears to be true
with a precision of 5 7 in non~saturated cases and 10 - 20 % in
saturated ones. Leb us potice thak, if there is no iron at all, the

plasma contribution 8¢ 1 is well-known in the first order appro-
ximation which is considered here and is the oppdsite of Shafranov's

équilibrium field? Bag *

1 8R 1: . )
Beq‘ToPlT (r,Og_a_ + B o+ i 1.5 (10)

To keep this formula which glves the mathematical dependance of B,
on 8, 1; and A, the quantity B(3 ‘IP has been defined as the atLrac~
tion of the plasma to the core Snd is obtained by difference bet-
ween the average field generated by the plasma in its own region
in the presence of the iron and the one that would be obltained
without iron that is to say the opposite of Beg

h(3)I=.‘m-IﬁG"‘B
p P 53 eq

(there is no current in the coils in this case).

In this third vegion, which is very important for plasma equilibrium
we have obtained :

- (3}
(2) (3) ab
BT A = B )+ 8 el ()
(11)

()
bg(

- (3)
(3) 3b?
[ A} b g ('f') + A -_BT— ('b)

)]
(3) 4, 4 8, 1) =B @) A(g-g—-ﬂp) () + (kpb + kaf + kn)
*(1; - 0,5)

vhere L(g), %(g), L(g) are represented on Tig 8

ab(g) Bb(i) el
7. S ¥ S 7.

ky = 1,2 G/kAt and ki = 0,75 G/KAt.

on Fig. 9, whereas k, ==0,017 G/kAt/cm,

Let us notice that, when the plasma current density is flat

(1; = 0,5), 5(3)  does not depend on B, whereas this dependance is
the larger asPthe current density is more peaked ; b(3) 4g
very much dependant on the peakage of the plasma current densﬁty :
for a flat current in a centered plasma (A = 9) with B = 0 and in
a non saturated case, B{3) = »4 G/kAt, whereas in the same condi-
tions for a peaked correfit (1; = 1,5), we have : b(g) 2,15 G/kAL.

The equilibrium equation of the plasma can now be written :

33 (8, B 1) = B (1, 8, 8, 1D 02

vhere I is the vector of all the currents.

This equation (12) is equivalent to the Fact that Tq.{ i e
the mest external magnetic surface of the plasma (supposed to be
circular) passes through the peints G and N (Fig. 4).

Figures 10 and 11| give examples of such equilibrium configurations

in non saturated and saturated cases respectively for a plasma ha-

ving a parabolic current density (total current 202 KA) and a B va-—
lue of 0,5. The total currents needed in the inoer and outer coils

to obtain equilibrium are specified on the Figures.

Figures 12 a, b, ¢, d show the magnetic surfaces inside the plasma
for various valuesof B and 1. i+ The inner and outer currents calcu-
lated to obtain equilibrium ﬂreof course differents in the various
cases.

4. APPLICATIONS TO THE SIMULATION OF THE CIRCUITS CURRENTS
AND TO THE PROBLEM OF EQUILIBRIUM AND STABILITY OF TUE
PLASMA

The laws established in § 3 enable us not to solve the 2 D magnetos—
tatic problem at each instant,which would be too onerous,and to si—
mulate the evolution of the currents by a system of ordinary diffe-
rential equations.

The fluxes which are seen by the inmer and guter coils and by the
plasma ring can be deduced from ¢, ¢i, by, 501 and B ? . Indeed
each inner coil is submitted to the flux (4 + by ), each outer one
to (¢ + 5¢B (1) by ), and the plasma ring to (¢ + 5B 7))

The primary circuit is constituted by n{ outer coils and n% inner
coils in series ; the equation of its current I} can be written :

o . i. dd o asl 4 i ddy
(1'11 + nl) -—d—L- +ong [51 T 4 T¢to] + n% TL¢t
0 L0 i.i (13)
+ (Il] R™ + ny R) o= Vi

An energy equation has been written for the total plasma curgent Ip
which becomes, after use of the flux of the Poyating vector B A B :

(2)
% + 52(—1—3—-‘*5- - 4uR x 1072 log‘-ﬁ-)
(14)

- -9 bp) dIe -
GuR x 10 Log E) T + K dL



where K = 23k % 107982 ~ 201 x 1079 Log bp, R, 1i
v P a  bp 7

V is the loop voltage at the boundary of the plasma, Ip the homoge-
neous vacuum vessel current, 1S the minor radius of this vessel and

bp an equivalent minor radius of the magnetic circuit assimilated
to a torus.

The preprogramming circuit and the feedback circuit, required for
plasma equilibrium, are made of inner and outer coils mounted in
opposition and with the same number of inner and ouber Lurns 5o as
not to induce Flux in the iren core. Let n i be the number of inner
or outer coils Eor the preprogramming windings and ng Lhe one for

the feedback system. The equations of their currents Ipp and Tp can
be written :

(1)
i dih db; ax
¥ o _ 1 PR
e [3‘ ac -t e To | Yl et R “] Top

ViR (15)

(1)
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where I, and R are the self~inductance and the resistance necessary
to unceuple the preprogramming and Feedback systems.

At last the equation of the homogeneous current T of the vactm
vessel can be written, by evaluation of Lhe fiux hetween itself and
the plasma :
w 4 —9 Lr dIp v da

iR x 10 Log — T + R!, 11.41( de. = v (17)

As the Tokamak has a configuration of nested tori, inear combina-
tions of the circuits equations have heen solved in fact, where the
[luxes between these tori have been made obvious. This has becn made
to avoid singularity in the matrix of the system.

1t is of course necessary Lo associate to this gystem the equilibrium
equation ; taking into account the fact that the time constant of

the eddy currents in the liner is small relatively Lo the plasma cur-
rent rise time, the equation (12} is taken as equation of A even

when the currents are time dependent.

In the formele (9) of B(g), one must take :

- Q
[c = 0y Iy + 1 + n

"pr lpr 1

£ E

1. = n} I

i I - n. I + 1

"rr PR [ E ‘Ba

where 1 ’ is the constant premagnetizing curvent mecessary to have
a flux swing of 2V x 8.

In the formula (10} of B,,, as the plasma is assumed to he always
tangent to the limiter, whose minor amd majov radii are ap and Ry,
we have @

a=a, - |al

R = Ro + A
If we set I' = [ I, & } and if we derive equation (IZ)’then the
whole system of equations (12) to (17) can be written :

1
M (e, I', B, 13) -%-"4- R (t, 1', B, 17) I" = F (,1", V) (18}
where M and R are (6 x 6) matrix and £ a 6 variables vector. The
quantities B, 1;, V are derived Erom a plasma transport code which
ig coupled to the system (I8). The system thus defined and solved
by a predictor-cotrector method enables to simulate the currents
with a precision of about 10 Z. Fipure 14 gives as an example the
comparison Letween experiment and calculation of the plasma current
and loop veltage.

It is then possible to solve the cquilibrium problem : we desire
the plasma position A to Le as close as pessible to a certain refe-
rence Apef. S0 we are led to minimize B 3 (Aref) ~ Beq (Aref)-

The first control parameter is the proportion of inner and outer
turns of primary coils. Let o be the catio of outer turns to the
total number of turns of the primary windings. We search ay such
that :

. . - fUya(a) - 2
J {og) = 3n£(féai with J{a) = IO I'n G “eq(AreE)l dt
T being the duvation of the discharge.

The ratio a, being now fixed (¢, = 0,55), the sccond stage is to

find the preprogramming voltage Vi (t) that minimizes Jagain, this
voltage being bounded at each instant by the maximum voltage V...

The optimal control prolilem is then to Find ng such that

J(v'l’,R (£)) = inE J(Vy, (E))

| |
VPR = vmax

The state of the system being given by (18).

This problem being solved, it is necessary to find if this equili-
brium is stable or not, The stability condition is :

" < Tpeg a9
where npy and npo, are the index of the magnetic fields E(g)and Bog
R aB‘Q’ R q
e

"y T T u(‘}” B 7 "eq T T Beq 24



Tt has been proved® that np, is approximately equal to

. 2
0w 10 B2 b(b,8,8,18) p , db, é E)L}
By Log8R + B + 1i - 1,5 Ip 7 & daTT
a 2

where b{$,A,B,1i) = b(g)(¢,b,ﬁ,li) + ub(g)(¢,ﬁ) + {1 - G)b(g)(¢.ﬂ)

&)
The contribution of E%ER" in ngp is almest 3 ; the attraction of

the plasma by the core has thergfore a very i?portant destabilizing
3
effect. The contribution of Sg;ﬁl and HSEL_ is very small ; the-

refore the inner coils and outer coils, which are very far from the
plasma, have no influence on its stability.

The stability diagram is given on Fig. 13 and the necessity of a
feedback system®? to ensure a broader stability range and a lar-
ger stability margin is obvious.

We can see, in conclusion, the necessityof a precise description of
the magnetic field generated by the various windings including the
plasma itself with the real cutrent density distribution and pres-
sure,in presence of the transformer core,to solve the plasma equili-
briuvm problem, and the importance of a good knowledge of the deri-
vatives of these fields with respect to the plaswma position to

solve the stability problem.
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COMPUTER DESIGH OF THE MAGNETIC FIELD
OF A TRANGVERSE WIGGLER

AL Luccio
INFN - lLaborabori Nazionali di Frascati, Italy

G.Pasolti and M. Riceci
CMEN - Laborakori Mazionali di Frascati, Italy

ABSTRACT

A Lransverse wiggler magnel Cor the storape ring Adone has heen desi
pgned by means of two- and three-dimensional computer codes. Some of
the difficulties involved with such magnekic structure, which would
tend Lto perturb the stability of the clectron beam, bhave been success
fully overcome. The mapneb has resulted in a ralher unconventional
design,

1. INTNODUCTION

A bram of relalivistic electrons of kinebic encrgy B in a mapgnetic
fieltd B GLravels along n curved path wilth radius ¢ piven by

e[m]} = 1.703 107 ysmfr] . (1)

2
where Yy = B/m ¢ + 121957 E GeV .
P

A contineous spectrum of synchrotron radialion is emitbled, with a

crilical plioton nncrgyl

-7 2 ‘
en[Kev] =1.722 10 ¥°B ()

and total power, per mA of beam and mm of trajectoury

«10 2 2
i [}att/mn/mm] = 3.3115% 10 Yoo, {3)
dl ds

From Bgs.{2} and {3} above, it appears that to obtain high Frequency
photons and high power, both electron energy and magnelic ficld
should be made as high as possible.

Synchrotron radiation is currently being produced by eleclron storape
rings, charackerized by high beam intensity and stability. {ligh field

regions are obtained in these machines, by inserting in thrir streaipght
sections so called wippler magnets, consisting of an array of altermalb
ing pole couples (transverse wigplers) or of a btwowwire helical supor-

conducting winding (helical wipplers).

For the 1.5 GeV elecbron storage ring Adone, a 1.8 kesla fransverse
wigpler has been studicd, to be inserted in a 2.5 m lonp straight

section. The desipn of the magnebic circuit has Leen Lhoroughly done
by computer, at first with a two-dimensional code, and then wikh the
three-dimensional GFUN2. Problems arisen in this design are here
discussed.

2. MAGHET NEQUIREMENTS

To make use of existing power supply and wilh regard bto Lhe peomelric
al constraints imposed by Adone, such as the length of the slraights
{2.5 m}) and minimum vertical Lthickness of the donobt in the wipgler
area (4 cm), Tirst design poals werc:

6 poles (5 full + 2 hall-poles); B Z1.8 tesla; 114X 4500 A/pole.

f magnetic structure was thence desipned preliminarly {Fig.1l}, ke be
improved to match the following requirements:

1 -~ highest value of I, = f B2 ds  ;
2 - first rield integral vanishing
11=flld3=0, {4)

along bhe lonpitudinal section of the mapgneb, indepondent ol Ghe
Meld level;

3 - maxima of B as cqual Lo each other as possible in cach magnetic
2ap;

4 - field as homopcneous as possible along the radial (x) conrdinake.

Requirement 1- above means an hipgh radiakion power oulput, nccording
to Eq.{3}. Once the wigpler struchure has hoen optleally malched into
bhe Adone latticca. requirement 2- 15 to he met Lo ensure bhal Lhe
magnet will not perturb the sbabllity ol the elecktron beam. Fig.?2
shows the effecl of a8 non-vanishing Tield first inbepral on the Lraj-
ectories of a "central" electron {n the wippler, i.e. of an cleckron
injected on the axis of the wipgler, with speed parallel to it.

The eleckrons are injected into Lhe storape ring Adone wilh an enerpy
of 320 MeV. Thereafller the energy ls brought gradually bto the opecrat-
ional value, ranging between B0OO and 1600 MeV. The magnebic field in
the wiggler must increasc ab the same time to ils maximum value, to
avold too large oscillations of the low enerpy beam in a strong field.
It is clear that condition 2- above must be met ab all ficld levels,
which i5 an additional design difficulty.

Requirement 3~ implies that the amplitudes of the beam radial osecill-
ations be Lhe same vnder each pole couple. This is a condibion for
Lhe best matching of the phase-space brilliances of the synchrotron
light emitted from the various wiﬂnlcsd.



3. MAGNET COMPUTER DESIGN

A first set of computer runs to analyze the structure of the wiggler
magnet, as designed preliminarly by our engineers, has been performed
by means of the two-dimensional Poisson coded.

The shape of a pole and the computed B values are shown in Figs.3 and
4, These calculatiions are of a Limited value however, because each
wiggler pole niece is far from being infinitely extended in the "oth-
er" direction , as required by Peisson. These runs gave nonetheless
us the confidence that the design of the poles was basically right,
and were used Lo obLain a feeling on the effect of the corrections to
be obtained by trimming pole gaps and adding correction current coils.

Pole basic shape and coil geometry thus frozen, our next step was
that of optimizing the yoke design to fulfill the requirements 1- to
4~ described above ,for the magnetic field.

This task was accomplished by means of the three~dimensional computer
code GFUN, and invelved several runs and a rather large computer and
man time. From the beginning it appeared that designing a transverse
wiggler of this proposed type mebt two main problems:

a - the structure was so magnetically compact that the coupling bet-
ween poles made it difficult to change the field in a given posit
ion, by means of correcting coils or by varying the gap, without
perturbing the field somewhere else. This in turn caused the mak-
ing I1=0 at all Tield levels very hard.

b - Each magnetic gap could be varied only in one way, i.e. by widen-
ing it. This made it difficult te match conditions 1~ (high field)
and 3- (equal Tield maxima) together.

It was clear that the degrees of {reedom to play with were not enough,
and that we had to give up with some of the basic requirements. Rely-
ing upon the feeling that the optics of the synchrotron radiation
could be managed sabisfaclorily in every case, we decided to move
Lowards optimizing the design mainly to fulfill Eq.{(d4) at all field
levels and to get the value of the I, integral as large as possible.

Our first attempt was te decouple magnetically pairs of far-away
peles. Fig.5 shows a sketech of Tield lines for the original geometry.
In this, the return path for the magnetic field in each pole couple
took place through the adjacent pole couples and gaps. It is apparent

how a certain amount of flux couples e.g. pole (0) with the hall-pol-

es (3} and (4],

Some insight into the sitvalion was obtained by means of a resistance
network analogous (Fig. 6).

The following steps were then taken, starting from the original peom-—
etry depicted in Fig.1 {run id = WM, sec also Table I}:

e~ return llux bars were attached to the sides of the magnel, thus
making a series ol Heshaped structures {run ids = WW and Wi);

ﬁ— cuts were made on the main yoke, to minimizec magnebic coupling
between far poles (run ids = TOB2 through TOBIS).

This latter scheme resulted in the “Tobleronc" design, or "chotolate
bar" shown in Fig.7, The TOB geometry we Tound capable of giving
satistactory answers to all 4 requirements of sec.?. On lhe conlrary,
corrections on the original WH and on the Hesbructures WW and Wl were
not effective.

The results obtained with the structure of Fig.7 are shown in the
Figs.8 to 12. Fig.B shows the vertical field component on the lonpit-
udinal axis of the wiggler as a function of the coordinate, for
various values of main coil current (uncorrected). As the Fipure R
shows clearly, the maxima of B under each pole are different (however
the said geometry pives the best situations we could obtain).

Fip. 9 shows the field integrals fB ds for the various curves of
Fig.8. With no current in the correction coils, thesc inteprals have
non-zere values. The figure shows as our design aims at giving with
no corrections a low value for B ds for the highest values of the
main exciting currents.

Fig.10 gives Lhe results of sysktemalic calculations ol the correction
currents to cbtain a vanishing field integral at all Tield levels.
These calculations were performed hy varying the current in the centr
al pole main coil only. The maximum pelative correction is v -2500
A-turns, which appears obtainable with no difffculty. It is also
clear, even if we did not pursue this in detail because of the high
cost of GFUN calculations, that the same general correcticns could be
also cblained by

Y - inserting correction coils on each pole;

¢~ changing the pole pgaps somewhere (e.g. under the central pole),
to equalize better the curve of Iip.10;

€ - with the use of iron field clamps at the two ends of the magnet,
to gain an additicnal control eon the fieild integral.

Fig.11 shows the behaviour of the fisld vaiue under Lhe central pole,
as a function of the corrected currenkt, according to Fig.l0.

Fig.l2 gives finally, for the corrected values of the current, the
second field integral B? ds . This is proportional to the synchr-
otron radiation power emitted by the wiggler, per unit electron beam
current, from Eq.(3), through

dp -7 .2f 2
H[watt/mn] = 3.312 10 ¥ fu ds . {5}



From Fig.12, Tor example, it can be evaluabed a synchrolron radialion
output of ~ G600 walt, at the maximum coil current of 7 XAG00 A-turns
and an cleclhron energy of 1.5 GeV (Yo 3000),

There is skill a problem left: the homogencity of the vertical compon
ent of Lhe Field U, aleng a radiug musk be very sbringent, if we

like Lo have a Tirsb (ield integral vanishing at all radii (x). This
in btuen would enable ws

a — to gnsure that the lield integral is also zero along Lhr waving
trajecltory of the eleckrons in the wiggler; aml

b - Lo move Lhe beam across the wipgler at injection with ils magnei-
ic Cield already on.

Actuzlly, as for as the condition a- ks concerned, the lietd intepral
could be mnde zero along the trajectory also by giving it rmall non-
zero and opposite values on twe lines x=xy and X=Xy hordering Lhe
radinl oscillations of the beam. However, it is much more desirable
Lo make Hy independent on the coordinate x, which will aulbocmntic-
ally cancel out the quadrupole term?.

With the btwo-dimensional program Poisson,a study had been alrendy
made on the radial homopeneity of ﬂy 5. Some of those resulbs are
shown in Fig.13, compared with three-dimensional GFUN resulbs. Wilkh
no correcting shims on poles Lhe [ield is homogeneous radially,
according Lo GFUN, wilhin 1073 only in a 15 cm wide repion across
the conteriine of the magnot.
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Fig.l. Six-pole wiggler. Preliminary wagnebic structure.
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Fig.2. Computed electron trajectories through a six-pole wipggler for
three lleld confipurations with diflferent first field inkegral § B ds
values: a) = +523, b) = +39, ¢} = -203 G-m,
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Fig.4. Vertical (y) field on the longitudinal symmetry plane of the
wiggler, Halfl pole. Two-dimensional Poisson runs. a) y=0, b) y=2 cn,

Fig.5. Wiggler schematic. Field lines pattern showing
en far-away pele couples.

coupling betwe-

Fig.6. Linear electric network analogous lor the reluctance magnebic

network. Field pattern of Fig.5,
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ig.7. Final configuration of the wiggler

magnet. "Toblerone” or "Chacolate bap”
design, which minimizes far-away poles
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Fig.12. Second field integral in the wiggler as a function of main
excitation, in the corrected conditions of Figs.10 and 11.
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Fig.13. Radial inhomogenelty of the vertical field in the wiggler.

Mo correcting shims on poles. 3-dimensional GFUN resulbts are here

shown for center (o) pole and next-to-center {1) pole. Poisson re-
sults are also shown for comparison,
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ABSTRACT

The presented paper indicales how magnetic field analyses can be done by
using standard software available ot severol soflware service componies ond
institules. As an example some resulls are shown of the mognetic field onalysis
between two copper conductors placed in a hormonic  axiol magnelic field.
Finite Element techniqeus deliver the solution of the magnetic vector polential
whereas the magnetic induction is colculated foliowing the usual woy of Flux-
or stress data recovery in finile element codes.

1. INTRODUCTION

Magnetic induction has o great influence on the behaviour of the gas discharge
belween lhe contacts of a circuit breaker. In arder 1o study this behoviour it is
essentiol to know the magnetic induction between the contacls,

Placing an electrically conducting body in a hormonic magnetic field will
couse eddy currents to be introduced in it. These currents gencrate a mognetic
field which inlerferes wilh the originol one. The solution of the resulting mag-
netic induction is achieved by using o description of the physical phenomenen
in terms of the magnetic vector potential, The calculations have been made
with two finite element progroms: PAFEC 70% and MSC/NASTRAN. A new
functional wos added to PAFEC to foce the Laplacian operator on the mognetic
vector polential in cylindrical coordinates whereas in MSC/INASTRAN the
analogon with thermal conduction wos used and the Laplocion operator wos per-
formed in carthesion coerdinales, The finite element discrelisation in PAFEC
waos performed with linear tricngular ring elements whereas in MSC/NASTRAN
the discrelisotion was done with three dimensionul solid elements, eight node
bricks. In order to save costs in these three dimensional calculations in
MSC/NASTRAN the standard provisions are used 1o loke advantage of oxial
geomelric symmetry. This provision is called eyclic symmetry. The colculation
of the moagnetic induction, containing linear combinations of the derivatives
of the magnelic vector potential, follows the normal routine of Mux- or stress
data recovery. Via a small Fortran program the various derivatives ore
collected afterwords, correctly added, transfarmed bock to the time domain
and put inle formats which can be used by standard (for example NASTRAN}
plot routines.

2. MATHEMATICAL FORMULATION
2.1, THE MAGNETIC VECTOR POTENTIAL EQUATION

Neglecting the dielectric displacement current and assuming o linear relation-
ship between the magnetic induction B and the magnetic field strength 4 the

magnetic induchon is determined by the following equations (Maxwell):

VxE = —g%
IxB = ul 1

g =0 —é
The first equation of 1) wiga the defigition of the magnetic vector polential A:
- »

leads to an equation for Iln_g cIIrIVegf density,of
=TE:= -G’%% +dV 9

The current density partdV P is not influenced by the magnelic field so it
is the part without eddy currents ond it is expressed as the electrical current
density Je so 'j= g ,%,E_ + ﬁc 3)
Substituting the magnetic vector potentiol definition 2} in the second equotion
of 1) will lead, together with 3) to |

o R =

-Vv.ﬁ +V,H -a};‘-’-— + Al {g =0

The divergence of A equals : i ! J

P PE-Y: VU ¥ : PR I 1 3Ap |, 3y
3= ‘a3y v T ar("n’h?aa it
and since the considered problem is on axigl-symmelrical one, in_.which only

the term Ae exists independently of angle o, the divergence of A is equal
to zero so the above equation becomes

v:f‘i'o-ﬂ%le +AL jg =0
Because of dealing with harmonic changing fields it is sensible to transform the
formuloe from the time domain into the complex domain:

zjz-;‘lcfﬁ lje R 5)

i -’amu'/u.ﬁ )]s =0 6}
The word "simple" in the title of the paper poinls to o constant permeability
{ ) for each element ., If the permeability was not o constont for each element,
this would lead to @ much more complicated set of equations s the three un-
coupled diffusion equations given by 6).

2.2. THE SOLUTION IN THE FORM OF A STATIONARY
QUADRATIC FUNCTIONAL

For a Hilbert spuce it can be proved [1,2] that if the operator L, upplied in
the equation Ly =¥, is lineor end positive, the quadratic functional F:
F o (Lvp) - () - (%) 7)
is stationary ; and vice versa if F is stationary than follows Ly = F.
Following the finite element text books it is quite obvious to take os operotor

Lonv: Lv 2P +jwdeyv 8)

and define the scalar product {u,v) os
(u,v}-ﬂf uv'dV
This means thot if the above requirements are fulfilled the requirement of F 1o
be stolionary is the same as Viv -juduy + ] =0
An investment of the scalar product {Lv,v ) resufts in

(v o f 19 jooa b4 - [ (9)Re%dS



If the domdin is large the value of v, representing a potential, will venish on
the boundary so the surface integral will vanish. However, the results mean
Hiet the operator L is not positive so the statement of the functional has no
sense . This problem con be avoided by defining another operator L' as

t=(2 ) 10)

T lwtw D

in which Dv is defined as Dv = -Vt
This operator is applied to o vector {v] equal to {:;} in which v| stands
for the real part of v and vy stands for the fmaginary™ part,

. £l .
It can easily be shown that together with the vectar {f] equal to {0} this will
lead to a quadratic functional in the meaning as mentioned before.
So L {uf = (7] 1)
Vhat is actuslly done by this excercise is splitting the complex equation Into
two real equations, one for the real port and one for the imaginary part. This
is the way the solution is performed, however, for readers convenience the
complex notation of the equations is maintained throughout the paper.

Two functionals will be considered cne for carthestan coordinates and one for
cylindrical coordinates.
The functional in carthesian coordinates is considered first, Since, dealing
with the magnetic vector potential the Laplacian operator is applied to a
vector. This means: . . . .

vl a(%? *—i—‘f o-::-l-;-)(v,'f 4\/,3 +V3k) 12)
For each vector component, this operation gives the same result as for a scalar
operation, Substitution of v=Ax and f=+ 4Jex in 7) in the complex notation
by using the rules of partial differentiating and applying Green's divergence
theorem, will after some algebraic work lead to:

At | (3T, (30T | n - A
Fom fﬂﬁi‘ﬁ) P8 4 (32 jw gk - 2ulexfeR]dV {j(vn.‘)nn,as
As for the considered problem the boundary cendition is a zero value for all
potentials, the surfoce integral vanishes so

3 1 v - L
Fzsffl [(i—fzt) q(%%‘) p(%.'iz) ¥ WA, -2 ] gx chz]dv 13}
The same functional exists for a diffusion preblem or @ trensient heat con-
duction problem. The functionals for the other components are identical.

For the cylindricel coordinate system only the e-component is considered.
The Laplacian operator on this vector component works out as Follows;

Vo = 3vp (v.zt)

3 o -Using +Jcase /

3 T1=131=1211

Fig. 1.

—
ke

o at Q i -
V', = (‘I’_%"%} + T}-‘Té‘ +—§—11)(—\/gmnef +Vp cosej)

and this eperation gives

At v gv’ Vi s"/o z2
V- (P2 . 3 - 0 323 "
This result is not the same as for a scalar. The difference is the kerm -5

which is not present with @ scaular Laplacian operation .,
And now the substitution of v = Ae and F=+y Jee in 7) leads, after the sume
kind of algebraic work os was done for the carthesian caordinates, fo:

E;__,.ffr“.‘;_@e)zf(%az\\ 2., i?‘D + _g;_w_q. ‘]md}un; —Q/MJesﬁgHg]cls
5

r

Because of the term “@,’f this is not the same functional as is used for heat
conduction problems. Thus standard finite element codes for heat conduction
in eylindrical coordinates are not suitable to solve the equation of the vector
patential unless the used functional is changed. And this is done by Horink

in the program PAFEC 70+ [3] .

The requirements of the functicnals being stationary will be pointed out Tn the

section of the finite element Formulation.

2.3, A FINITE ELEMENT FORMULATION
2.3.1. THE SET OF EQUATIONS

The area in which the solution for the magnetic vector polential is to be cal-
culated, is divided into a number of small areas of simple geometric forms

like triangles or bricks. On the corners of the elements, dnd sometimes on
other pluces too, nedes are specified. Connected elements have the same
nodes on their common border [4] . With an interpolation functon over the
element, mostly polynomials, the variable on an arbitrary place in the element
is expressed in the values of the nodes of the element. And these values are the
wnknowns ta solve.,

In matrix notation this can be expressed as:

va [N] {v

b4
S Vp = [N!E] {Ve}
16)

e

vy - [N] v
Y

[
NV [N {v)
Using the symbol for the magnetic vector potential and substituting these
matrix expressions into the discussed funciional gives for the case of the
carthesian coordinates

Fe = J (T In0 {mg) + (ST INTINGI(RS] » (mf TN TR (RS} +
+ (ALYTINT jogee [N] [A2) - 2 Do IN) {RE) J0V
The requirement of Fx to be stationary means that the derivative of Fx to any

of the unknowns, that means to any of the terms of vector (Ae} , hos to be
zero and that results in as many equations as there are terms of (Ae

i
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In matrix form this con be written as
%‘ = Jf![ [N;}T[N.—] [H:] 3 [Ny]![NT] {ﬂi} ) [NI]T[N,] [n:] ' 18)
VIND o e () (R3] - Jee [N]' ]V <0

The equalions of all the elemenis are assembled in one functional that shoutd
be stalionary. The set of equalions can be written in a simpler notation by in-
corporating the inlegration:

(K1 (A} ~delr) (R3] = (P} 19)
[K] is known as the conduction matrix or stiffness matrix, [M] is known os the
heat copacity muairix or mass matrix and the vector {P] is known as the lood
vector. In the cose of this calculation of the magnetic vector polential the
role of the mass matrix corresponds to the stiffness matrix. Therefore
NASTRAN's possibility of changing the sequence of program modules, or insert
or delete other NASTRAN modules, is used to multiply the massmoliix, once
it has been assembled, by jw ond sublract it from the stifiness motrix [K] [5].
Then the heat conduction sequence of modules was proceeded with o correcied
stiffness malrix: [¥]= [K]- jw{H].
Once lhe set of equalions is solved the gradients can easily be found by using
16). For simple lincor elements os were used those gradients are constanis for
each element [4] . The calculaled values are eomplex numbers. These com-
plex numbers are the input of o very simple Fortran pragrom which Iranslorms
the complex numbers back to the time domain, takes the right combinations of
gradients to form the curl of the magnelic vector polential in order to find the
vector camponents of the magnetic induction, and finally mokes an MASTRAN
aeceploble inpul deck to plot the magnetic induction arrows by slandard
NASTRAN plot routines.
For the case of eylindricul coordinales a similar explonation could he written,
except that it is not passible to use the standard heat conduction routines.
Much work has been done, not only a new functional hos been incorporaled
into PATEC but olso o complex sclution procedure has been added and new plot
routines have been written.

2.3.2. CYCLIC SYMMETRY

Consider o segment that is repealed
n-times around an axis, like the shaded
arca in fig. 2 that is eight times re-
peated around the axis AX, If each seg-
ment had no common nodes with the
other segments the lolal stiffness motrix
would, in the cose of the example,

exist of eight identical blocks of coeffi-
cients grouped around the malrix dia-
gonal, Because there is no coupling be-
tween the segments the system con be
solved by handling one block of coelfi-
cients with different load vectors as is
shown in fig. 3. " fig.2 eyclic symazelry

And this procedure would save much computing effort. However, the connec-
tion conditions destroy this nice blocked situation of the matrix and the com-
puting task is larger with all its consequences.

([AMO 00000 (1Y (Pur
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fie.3 Symbolic teptesentation of the sel of tquations for
n idenfical mol coupled seqmenis.

Now by using symmelric components it is possible 1o solve the whole problem
with the stiffness or coefficient matrix of one single segment. The method of
symmetric components, published already long ago by Fortescue [71] . 1s
well-known by elecirical engineers. The method is commonly used by foult
calculations in three-phase elecirical cirevils,

The basis of the method is the siafement that every asymmelric n-phase system
can be constructed by n symmeltric n-phose systems.

fig. 4 Symmefric compontals

For inslance, the asymmelric thice phase system v, Vor Var displayed in

fig. 41 can be constructed by adding the three-threephase symmelric systems
%0 %! and X2 shown in the same figure.



- 1 2

In formula v]~X]+XI+X]
o I 3

\.r?-—Xz-!-}(z-i-)(2

1 2

0
v3—X3+X3+X3

and because the systems are symmefric these equalions can be written os

2 =X§+X: +>(]2
v, =xf+x: F +><]2e':“%r
vszx‘]’+x; o "T"+xfe‘-"galr
And from this
X7=5 v +‘:ia”"2+%"’3
X?=% v, +%v2e"j£¥ 4—%v3e'i2::Tr

can be obtained.
For an n-phase system can be written:

(x} =11, {¥] 20)
{J =01 11(x] 21}

Instead of the voltoge vectors of an electrical system, Yie Vgs ens ¥ canbe

interpreted as the temperature, displocement or potential of o specific point
in the nth segment. The result of substituting 21) in the functional and assure
its stationarity will be a set of equations with the symmetric components as

T T k[T {4 - (7] “

Until here, there is no significant change in the situation. Only there exists
another set of unknowns. But now transforming the segment conneclion con-
ditions info symmelric components will show that it is possible fo express these
conditions in relotionship between the symmetric components of the two sides
of the segment that are connected with other segments (as indicated bn 1 and
2 in fig. 2}, The result of this excereise is: (xk)side 2 =(Xk)side 1edh 23)
And this means that for solving this problem in symmetric components only the
stiffness matrix of one single segment is necessary since by using relation 23)
no coupling with the other segments are left. More computing effort can be
saved for simple load conditions, for instance for a cylinder under hydrostatic
pressure it will be only the X© compenent thot supplies a contribution to the
displocements so the other X components are zero and there is no need to cal-

culate them. Symmetric components are @ mighty feature in slecirical engi-
neering but it is o mighty feature in finite element use too; further details ore
given in the program manvals [6] .

3. PRACTICAL RESULTS

Experimental calculations were made with a coil of two solid copper conduc-
tor rings. The situation is displayed in fig. 5, The magnetic induction on the
z-axis as a funciion of a de current can ewsily be colculated by hand. The
finite element discretisation (fig. 6) is performed with eight node solid bricks.
In the circumferential direction 24 segments were chosen and by using the
feature of cyclic symmetry only one of these segments was needed to discreti-
size. Only the positive z-axis was considered for symmetry reasons too., The
potential values on the outer boundary in the radial and 2 directions were set
on zero just as wos done on the z-axis. The choice of the outer boundary is o
matter of experience. The computer results of the de calculation were reolly
satisfactory in comparison with the onalytical solution (Tig. 7). The next cal-
culation was o 50 Hz ac current calculation. Eddy currents in the solid copper
rings cause a decrease of the magnetic induction and o phase delay with the
precribed current. Measurement and computer calculation are shown in fig, 7.
In comparison with other experimental calculations the expected inaccuracy
of the mognetic induction in this case is 5 to 8%. Fig. § shows a plot of the
magnetic induction vectors on a specific moment.

The following step wos to bring two copper discs in the coil simulating the
contacts of a circuit breaker. {Fig. 9).

The magnetic induction vector is plotted on several moments during the cur-
rent loop. These plots are displayed in figures 10 to 17, Only the place of the
copper disc is shown for that is the region of intrest.

There were no significant differences between the results of PAFEC with
lineor triangulor elements and the NASTRAN resulls with the 3d solid ele-
ments, It may be concluded that commercial programs, even if these are not
directly designed for the field of intrest, can offer an alternative for others
who have no programming capacity and perhaps even to them whe are
accustomed to make their own programs. Considering the world of structural
engineering it can be seen that the role of home made programs is mainly
taken over by large general purpose packages and this may happen in elechi-
cal engineering too.
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Fig. 5 The coil.
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LIST OF 5YMBOLS

vector of magnetic induction
vector of magnetic field strength
vector of electric field strength
permeability

vector of current density
electrical conductivity
magnetic veclor potential
electrical potential

Nabla operator

Laplace operator

angle of cylindrical coordinates
radial distance in cylindrical coordinates
carthesian coordinates
functional

linear operators

arbitrary variable

complex conjugate of v

load

periodicity

normal unit vector on boundary surface
unit vectors

time

column vector

makrix

transposed matrix

malrix of shape functions
stiffhess matrix

mass matrix

load vector

Kth symmetric component
transformation matrices

(1
[2]

[3]

14)
[s)
le}
[7]
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BENDING MOMENTS COMPUTATION IN SUPERCONDUCTING

TORGIDAL COILS OF DIFFERENT SHAPES, FOR TOKAMAK

FUSION EXPERIMENTS, IN NORMAL AND FAULTY CONDI-
TIONS

M.¥. Ricci, M. Caclotta’ and F. Nesci”
C.N.E.N., Laboratoric Superconduttivitd, Centro di Frasca
ti, Rome, Italy

ABSTRACY

The determination of the bending moments distributions
for toroidal coils of different shapes, when a coil goes
normal, helps the choice of the shape that requires the
lightest mechanical structure.

1. INTRODUCTION

One of the main problems presented by Tokamak Fusion reac-
tors is the hehaviour of the superconducting toroidal coils
in fault conditions, i.e. when one of them collapses to

the normal state.

In principle the coils can be operated in twe different
ways: either connected to constant current generators, or
short circuited once energized. In the first case, if one
coil collapses, & very high voltage develops at the genera-
tors, but the current remains constant. In the second case,
large extracurrents develop in the neighbouring coils.
These extracurrents interact with the modified magnetic
field pattern and produce large variations of the bending
moments acting on the windings. ¥ith constant current ge-
nerators this effect is limited to the modification of the
field pattern. The large voltages that tend to develop in
the first case can be I1imited by an electronic system. The
large moments of the second solution require an external
mechanical structure.

Certainly none of these two extreme solutions will be adop-
ted because the large voltages would damage the coils and
the current generators, while large extracurrents would
produce a cellapse of the whole superconducting system.

The final solution will try to eliminate these problems

but it is unltikely that extracurrents will be completely
avoided.

In this work we consider the coils short-circuited with

no limitation to the extracurrents. It is clear that in
this way we obtain overestimated values of forces, which
must be considered as limit values.Most of the designs

of toroidal systems consider D-shaped coils which, in

normal conditions, are conly tensioned.

+)Tstituto Elettrotecnico, Universitd di Roma

x) Candidate for degree of Istituto Elettrotecnico, Uni-
versitd di Roma.

The structure, which is required to substain the stresses
in fault conditions, is inactive for most of the 1ife of
the reactor.

The aim of this work is to analyze the possibility that,
by adopting a different shape for the coils, the struc-
ture can be lighter.

This may happen if the stresses that are generated in
fault conditions compensate, at least partially, those
already acting during normal operation. ’
The bending moments distribution changes, but the abso-
lute values canh be smaller than in the case of D-shaped
coils.

2. COMPUTATION PROCEDURES

As a model of,D-shaped coils, we consider those of the
FINTOR design .

Each layer of conductor has its own pure tension D-shape.
This causes a strong increase of the,cross-section of the
coils in the upper {and lower) part =.

For computing requirements, the real shapeshas been simu-
lated by four sub-coils as shown in Fig. 17,

Then a circular shape . has been considered such that the
dimension of the reactor are the same (Fig. 2}.

in this way also the magnetic field on the plasma region
is the same.

To calculate the extracurrents, it is necessary to deter-
mine the mutual inductance coefficients, a probltem which
is complicated by the shape of the coils.

We have then developgd the code INDA which utilizes three
different principles®, The first is the summation princi-
ple, according to which the coefficient can be calculated
as the sum of those between the real or fictitious parts
in which the coils have been divided.

The second one is the sectioning principle, that allows

a subdivision of the cross-section in smaller elements
and to sum the coefficients of each element with respect
to the others {fig., 3). The third principle is that of
Rayleigh. If the dimensions of the elements are small,
the coefficients can be caleulated as a combination of
those between filaments passing through the center and
the corners of the elements (fig. 4).

0f course, the larger is the number of elements, the bet-
ter is the approximation.

The forces acting on the different points of the windings
have been computed using theaioca1 values of the field
and of the current density .

The magnetic field pattern has been calculated using the
three dimensional code MAGID-WF B

The computation gf the bending moments has been carried
out as follows: the orizontal plane of symmetry divi-
des the coil in two halves which are considered as cur-
ved beams. Each beam is rested at one end while is hin-
ged at the other end (fig. 5).
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ped coils.
The effect of one beam on the other is represend by a ben-

ding moment at the hinged end. More details on this code
are reported in ref. 7.

3. RESULTS AND DISCUSSIGN ; Table It Extra-currents in T-shaped and cirenlar cotils
In Table I are reported, in percentages, the extra-currents : Number coil Circular B-shaped

for the D-shaped and circular coils produced by the failu- coliapsed collapsed
re of coil Neo. 1.

1

2 39.0 % 42,0 4
We can see that they assume a relevant value only for the 3 -0 % -,
nearmost coils (2 and 24). For force calculations we have oL T
then assumed that the current of the rest of the coils 1 3 -1
remain constant. 2 -2 ~ R g
In Table IT (and fig. 6) are reported the hending moments, 6 P 3.P %
on the plane of the coil, for the D-shaped coil No. 2, 7 PO -, 5l
in normal and fault conditions. b2} L% 2.7
In Table III (and fig. 7) are reported the results for ! 9 -1 4 2.3 k
the circular coils. 10 o 1.4 %
For the D-shaped coils, in normal conditions, the bending 1 oG LA
moments should be zerp, The data of Table Il give a maxi- 17 -3 % L9
mum value on section No. 10 of about 1500 ton x m. This 13 LAl RELI

is probably due to the approximations used for the compu-
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Fig.

fiable TT: Pending moments in the more stressed D-shape
coil in normel and fault conditions.The mo_

3 - Sectioning principle: H = HAB+ MA'B+ Mag: + Marpe

ments are measured in kton x m.
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Fig. 4 - Rayleigh principle:
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ter calculations. However, we must consider that the
bending moment on one section results from the sum of

the forces acting on ag1 the preceeding sections, which
are of the order of 107 ton x m.

When one coil goes normal, the bending moments on the
nearmost coils reach a maximum value of 2300 ton x m,
which is not dramatically larger than that in a normal
conditions. This result can be understood if we consider
the Fact that the failure of one coil, out of 24, produ-
ces a limited variation of the field pattern. As a conse-
quence the pure tension shape is not much different.

As expected, the moments acting on the upper parts of the
winding tend to reduce the height of the coil, while tho-
se on the external parts tend to enlarge it.

For the circular shape, large moments are present even

in normal conditions and increase targely in fault condi-
tions. The direction of the moments is opposite to the
preceeding case.

These results confirm that an "intermediate” shape must
exist , such that a reversal of the moment direction oc-

[%;]



Fig. 5 - Mechanical representation of an half-coil. Po-
sitive moments are clockwise.

curs going from normal to favlty conditions.

The results indicate that this shape is close to the D
that we have considered. In this case, the absolute values
of the moments should be smaller than those that develop
in faulty conditions for D-shaped coils.

Work is in progress to determine the exact shape of these
coils.,
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Fig. 6 - D-shaped coils: bending moments distribution (in
ktons x m) in normal and fault conditions for
the most stressed coils. ’



Tahle T1X: DBendings moments in the more shressed cirou
1ar ecil in normal and Tanlt conditions.
The moments are measured in kton x m,

Section mipher Normanl Trualt

4 0.0 0.0
bl -1.,5 -2.8
M CIRCULAR COILS 6 -4,0 -7.7
. 7 ~-T.1 -10.0
R -3 -11.2
9 -, 5 -11.5
10 —-f.1 -10.8
A 11 7.1 -0, A
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o 15 —h -1
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Figg., 7 - Circular coils:bending moments distribution
in normal and in faull condlitions in Lhe
mosk slressed coils.
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HOMOGENBIZING SURFACE COILS FOR PRECISION MAGHNETS

. Czok, G. Moritz, and H. Wollnik
II. Physikalisches Institut der Universitdt, Giessen,

Germany

ABSTRACT

Surface colils produced by etching techniques were used
to improve the homogeneity of a magnet. This magnel is
designed for high precision ilon optlecs. The improvement
in the calculated width of an ldeally focused particle
beam (¢o= 40 m rad) was better than 20 for a magnet
with and without homogeneizing coils.

1. INTRODUCTION

Particle spectrometers cften reguire magnets which

combine high resolving power and high transmission, thus
corresponding to a high "Q—Value"1
to postulating a large Field area enclosed by the beam

envelopes. However, in such large areas the field devia-

. This is eguivalenk

tions inevitably become large, which in turn cause a
broadening of the imagez. To aveid such image distor-
tions the distribution of the magnetic [lux density
must be reguired to deviate only slightly f[rom the
design.

The authors will present a simple method to improve the

homogeneity of the magnetic flux density in a large area
magnet by using very thin colls at the pole faces. The
improvement in resolving power due to the homogeneizing
procedures is calculated by ray tracing methods. The
advantage of the method is lts simpliclbty, its small

space consumption {coll thickness less than 0,4 mm} and,
last but not least, its low price. Perhaps even more im-
portant, however, is lis wide operating range at different
flux densities.

2. REAL FLUX DENSITY DISTREBUTION

In a window frame magnet (see Fig.1) with pole face

VAL ','/_///.'»’/ fz_/f/7 o
ringe tiehd % f{/:/%//,; /f' B

tlamp

TS o
FaTag ¢
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T
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Fig. 1: A window frame magnet to be used for high
precision ion optics. The beam envelopes
are marked for a bundle of ions gassing
through the magnet. In the gap, 2Go=76hw,
close to the pole faces two surface coils
are mounted in order to homogenize the
magnetic Elux density.
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areas of O.4m? the magnetic flux density distribuiion
was measured by an NMR probe with an accuracy of a few
times 10~6. For this purpose the magnetic power supply
was stabilized by another NMR probe achieving a
stability of the magnetic flux densilky of better than
#1075 over 24 hours. With the first NMR probe the
magnetic Flux density was measured as close as possible

both te the upper and the lower pole faces. In our case
these minimal distances were 3mm, determined by the
size of the NMR probe. From these measurements the Flux
density distribution in the midplane between the pole
faces was calculated by a computer program3. This
procedure yielded a higher precision for given errors
of the measuring device than one could have obtained

by measuring the flux density distribution in the mid-

plane directly. This is because, as VzB vanishes

in a volume, the largest variations of the magnetic flux

density B are located on the surface. Fig. 2: The magnetic flux density distribution measured

In fig.2 the measured distributions close to the gzizitgeaggpiiosgle;sze;ifE;E:icgfb:E:Zénf1ux

upper pole faces are plotted. The distribution close neighbouring lines is 2-10-3 % at an average
to the lower pole face is similar. The general shape flux density of 0.26 T
of the magnetic flux density distribution in a normal

dipole magnet is a saddle surface. The magnitude of

the magnetlic flux density is low near the entrance
and exit boundaries of the magnet (fig. 3) since at these B

points the fringing field uses a certain portion of the [T]
main £lux. Near the yokes of the magnet the magnetic

flux density increases since a slightly larger than

normal portion of the flux passes through a unit

area of the pole faces. ' k\\\\‘\\ﬁa____,,f«” i_
! M}L
0,2602+ =

Fig. 3: The magnetic flux density in the midplane
between the pole faces as calculated from
measurements near the pole faces.

The deviations from an ideally homogeneous
magnet are shown

—




3. HOMOGENIZING PROCEDURE

To compensate the inhomogeneity of the magnet one could
try to scrape some irom off the pole faces in all areas
where the magnetic flux density is too high, or add

some iron foils in all those areas where it is too low.

This procedure has been used successfully For NMR and

for precision sector magnetsd. A gquite different proceudre

uses surface currentss. Colils are used, designed Lhat
the magnelic potential of each coil will be an ortho-
gonal function Lo the functions of Lhe other colls.
Thus the operator is able to optimize the currents

in each coil withoul disturbing the effect of Lhe okther
colls. These coils may be produced with wires or
"printed"” like electronic circuit boards.

We combined the shimming method with surface colls.

The idea was to compensate the field devialbions in

those areas where the Elux density deviatilons will
occur. For this reason the surface colls add flux

where the flux density is too small and substract

flux, where Lthe flux densily 18 too high.

AL each point of such a coll a current density i may

be calculated according to the tangentlal componentl Et
of the mangetic Elux density B which must be compen-
sated. In order to determine the current which must

be passed through such a coil we muskt determine the
tangential component By of the magnetic flux densily B
in the plane of the pole faces. Homogenizing B (1.e.
making ann/3t=0) is equivalent Lo making ?Bt/an=0 due

to Maxwell's equation curl B=0. Naturally this postulate
is fulfilled if we require B.=0. This can be achieved by
having a surface current I flow in the pole face

perpendicular to Bt' For this purpose consider a cross

sectional view of the pole face perpendicular to the
plane shown in fig. 2 in the direction t of the
tangential component B, as indicated in fig. 4.

Filg. 41: A current density 1 on a iron surface_produces
a magnetic flux density distribution B with a
component B,, perpendicular to the surface and
a component B, in the surface perpendicular to
the current direction.

The B, compensaling current can now be determed:

3
{I.

i xj(iII? - [ (3p) dt o

‘l
by integrating along the dashed line in £ig.4. Note that
the part for which/h103 is neglected.

NMext consider the tangential component Bt'



An NMR probe, used for high precision magnetic field
measurements, can not be used to measure Bt directly
since only the total magnetic flux density[ﬁ]sﬁ:#ﬂ§+ﬂj
is measured. Since the magnitude of By, in most cases
is very small compared to the normal component Bn one

can write:

h=h, [4 + 05 (Bt/B“)L-& o] 2B (1)

Assuming that the direction of B, is parallel to the
direction of the gradient of Bn' the current I must
flow in the direction of lines of equal flux density
in fig. 2. Furthermore if Bt varies linearly acroess
the magnet gap 2GO and Bt vanishes in the midplane
because of symmetry, i.e. B, /6 ~ 3B;/lu  then we
may estimate:

B (3)
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Experience indicates that these rough estimates are
sufficient for all investigated cases.

Combining Bt from eg.(3) with eq. (1} the compensating
current I that must pass between the lines of magnetic
flux B, and B, perpendicular to the gradient of B can
be written 35:1

5

The AB bhetween two neighbouring lines of egual magnetic

flux density is constant throughout fig. 2. Thus the
tangential component By should be able to be compen-
sated everywhere on a pole face if the same current I,
determined according to eg. (4}, is passed through all

o (3B, _ G N Sl 2 Y. GoaB (1
o [g—?d'.t "F[ﬁ({!) B(t")] /"o(Bl E“) ,“ld ()

lines of equal flux density.

This condition can be achieved by producing two etched
circuit boards which have copper stripes of Lhe same
shape as the lines of equal flux density in fig. 2 and
passing through all these copper stripes the same
current I. On these etched circuit boards all lines of
egqual flux density are advantageously closed outside
of the region which is to be homogenized, that is the
region in which the particles will move. This is
accomplished by surrounding the field distribution
with a distribution which is continuous to the
measured region and has a constant value outside.
(fig. 5,6}

Fig. 5: The field distribution surrounded with values
which are all equal at the outer boarder and are
continuous to the measured values

The connection of the different loops of copper stripes



is made so that the current flows on cone side of the
printed circuit board in a kind of spiral from the
outside to the points of highest or lowest Flux
densities (see fig. 7).

Fig. 6: The lines of constant flux densiky are
c¢losed by the surrounding values

At these points the current passes through to Lhe
other side of the etched circult board where again
a copper lead spirals outward. This spiral is com-
plementary Lo the upper side thus filling all re-
maining gaps in the upper side. The currents on Lhe
two sides always flow in the same direction. This
double etched cirecuit board ensures that the current
density 1s almost continuous.
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Fig. 7: The area between two neighbouring lines of

conskant [lux density are painted black, and
the interconnections between two windings
are inserted. The connections on the back
are marked by a dashed line.

After the coils, which closely represenl the flux density

distributions of fig. 2, had been placed at the corres-
ponding pole faces a current I was passed through them
according to eq.(4). By measuring the f£lux density
distribution B{xg,1-t6,} both with and without a
current in the circuit boards, and by calculating

¥
x
vy = E_[B(I,h,ﬁn,h]- h(”] for different currents,

LEr]



the curxrent which minimizes V(I) was found. Here BO(I) is
the average flux density

y
ﬁ}ﬂ:ﬁéﬁﬁ(f}uﬂ“.id . The deviation between this optimal
[

current and the value found from eq.(4) was only 4 %.
This devliation should be acceptable for most cases. Thus
the estimates of eqgs.(1-3) seem sufficient. The
resultant overall flux density distribution has also
been recorded near the upper and lower pele faces by an
NMR (fig. 8).

Fig. 8: The magnetic flux density, corrected with
homogeneizing-coils, measured near the
upper. poleshoe.

Note that in Figure 9 the saddle shaped distribution

0,2605}

0,2602

Fig. 9: The flux density in the midplane as calculated
from the measurements close to the pole faces
after the homogenizing.

of fig. 3 has disappeared completely and the remaining
inhomogeneities are less than 10 % of the original ones.

To show the effect of this homogenizing procedure for

a mass spectrometer or separator we have calculated how
a bundle of charged particles originating from a point
source would be deflected in the midplane with the
currents I=0 and the optimal current I=145mA (e.g.
IwGO-bBﬁpﬂ=151mA in our case for AB=5-10_5T,

2Go=76mm and ﬂo=4 '10—7Vsec A—1m—1).



The divergence of the particle beam, used for the ray
tracing procedure, was «»40 mrad. The deviations of the
different trajectories in the real magnetic field

(see [ig. 3) from the trajectories in an ideally homo-
geneous magnetic field are plotted in Fig. 10.
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Fig. 10: The deviations of particle trajectories for a
real magnetic sector field from an ideal
homogeneous sector field are demonstrated
{the radius of the optic axis is 0.5 m and
the angle of deflection 1099). It is assumed
that the particles originate from a point
source. The different lines indicate charac-
teristic trajectories within the ion bundle.
Obviously there are no deviations until the
magnet entrance boundary. The deviations bhe-
come very large in the magnet and are still
significant at the image. In the upper part
of the graph the deviations of the particle
trajectories in the initial real magnetic
field (see flg. 2 and 3) are shown and in the
lower part the deviations in the field homo-
genized by surface coils (see fig.8 and 9).

In this case the minimal width of the image of Lhe

peint source should be about ?Oftm if all image aber-
rations are corrected. The same Lype of plot was made
for a magnelb homogenized with the described surface

volls. The image size here was found to be only about

2.5 pm. In each case the same initial bundle of particles

was assuned.

4. HOMOGENIZING AT DIFFERENT FLUX DENSITIES

The described homogenizing procedure using surface
currents seems very effective. Although we have des-
cribed its action here only for a given magnektic flux
density (0.26 1), we have also varied the Tlux density
[rom 0.2 T to 0.4 7. As expected it was observed that
mainly the height buk not the shape of the fluxgdensity
distribution varied with the flux density. Thus the
homogenizing procedure wilkh surface colls showed almost
equally good results For different flux densities. The
current in the correction coils, however, had to be
varied according to egq. (4} which, it should be noted,
does not increase linearly with B, Thus the use of
surface coils should be superior to the usual method

of homogenizing, the shimming (i.e. adding or raemoving
thin sheets of lron from the pole faces), since in this
case all corrections automatically do increase linearly
with the magnetic flux density.

At very high flux densities we expect a reduced homo-
geneity through the use of surface colls since the
shape of the flux density distribution should vary due



to saturation effects. In this case, however, one can
extend the homogenizing procedure by using two sets of
homogenizing coils for the two different flux densities
By and By

The homogenizing currents at the flux density B, would
be I, in the first set of coils and I, in the second
set of coils for B,. For any flux density B in between,
the current in the first of the two coils then should be
(1-11, and in the second 12-12 with properly chosen
coefficients L MZ' In a first order approximation
these coefficients can be determined from:

o= (3,~3)/10,-3,) w, = (8-3,)/(Bu"3,)

5. SUMMARY

The described procedure to use surface coils for improving
the homogeneity of a given dipole magnet has been

shown to diminish the original deviations in mag-

netic flux density by more than a factor of ten.

The ion optical resolving power of a sector magnet cor-
rected for image aberrations should increase even more
than this factor.

The method is imple and straightforward. It can be

applied to any existing magnet whether its initial
homogeneity is good, fair, or only reasonable.
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