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ABSTRACT

This paper consists of three parts: TFlest, it examines the [luite
element [ormulatfons of tlme-varying magnetic field problems
presently appearing in the literature and shows that all of the
exlsting formulations are derived by uslng a similar representation
of the electromagnetic Fleld. Second, it discusses the nature of
Einite element discretization and demonstrates the utility of
using elementary matrix operators in this process. Third, it
derives a new finite element formulatlon of time-varying magnelic
field problems in wihilch the magnetic fleld is determiped directly,
without recourse to magnetic potential functlons. The

treatment is based on a two component vector formulation of
magnekic field problems in which the non-divergence of the
magnetic [ield 1s iwposed by using a numerical procedure.

1. INTRODUGTION

The Finite element method as applied to electromagnetic [leld problems
is now nearly ten years old, and a number of different {ield problems
have been solved successfully by this technigue. The flrst
application of the finite element mithod to magnetlc fleld problems

was the work of Silvester and Chari™, which treated the Ewo-dlimensional

noulinear magnetostatic fileld problem encountered in electric machine
design. Shortly thercafter, the Finite element method was extended
to the solutfon of time varying magnstic field prochmn, agaln
originating with papers by Silvester” and by Chari”, both of which
treated eddy-current effects. In these sclutions, the magnetin

field is assumed to be a linear fuuctlon of the magnetic Flux

denalty and is treated as a complex valued function which I=
harmonic in time. This procedure has been adapted to different
problems by a number of autkgﬁs who have reported several

extensions of the technifue

A second catepory of time-varying electromagnetic Edeld problems
solved by the [inite element method are skln-effect problems in
which a net current flows in the conducting region. Solutians Bf
the skin-effect problem have been reported by Chattoand Crendes
and by Konrad, Goulowmb, Sahonnadiere and Sllvester

A thicd catepory of time-varying magnetic fleld problem solved by
the £inite element method #s the transient £ield problem. In
this case, the time-varylng fleld 1y solved as a successlon of
magnetostatle fleld probleme each at a difEerent point im Lime,
integrating the magnetic field through time to obtain a complete
solutlon. Electromagnetic Fleld problems in this category are
solved in References 11-14.

Finally, there is yet another category of time-varying electro-
magnetic {leld problems which has been solved by the Fluite
element method. These are [leld problems involving three-
dimensional effects which must be solved using a vector
Formulation instead of the scalar formlation uscd elscvhere.
The principal papeLs in the 1iterature in this categoryﬁnre

the ones by Okuda™™ and by Becker, Pillsbury and Driga

The purpose of this paper iz two-fold: First, 1t is an attempt

to present a unifled view of the finite element method as it

is applied to the diverse problems mentioned above. The peneral
formulation presented here 1s made possible by introducing Lhe
concept of "elementary maltrix operators” to represent the field
equationa. The second purpose of this paper is to Iintroduce

a pew formulation of time-varying wagnetic field problems Iin which
the magnetic Field is solved as a2 non-divergent vector Fleld
quantlty. This formulation differs from those appearing in the
lterature in that the magnetic fleld s determined directly and not
as the curl of the magnetic vector potential.

2. THE ELECTROMAGNETIC FIELD FQUATLIONS

The usual starting poiont For clectrowagnetic field analysis Is
Maxwell's equations, In electrlic machine problems, where displacement
currents and charges are neglipible, these equations atre
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The purpese of the following is to derive a peneral Fleld equation
governing all electromagnetic phenomena in electriec machines, including
those which involve moving media. TFor thls purpose, consider a
material of relative permeability, p_, relatlve permittivity e _, and
conductivity, o, moving with a veloclty V., with respect to an

inertial reference frame. According to the principle of space-time
covariance, the form of any pliyslcal law is unaltered by the relative
motion of the observer. Hence, in the moving coordinate system,
Haxwell®s equations cemain unchanged
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except that primes are used in Equation Z to indicate that all iyantities
are evalvated in the moving coordinate system, It can be shown
that under a Galilean space-time transformation, Equation 1 ylelds

*x (E+V xB) = -3¢
V' x (E + Vc x B) = L
vV xlU = J
_ &)
v e o= 0
vW.D = 0
Since Equation 3 must be the same as Lquation 2, there results
B = E+V xB
c
o= i
= L=
B B (%)
D' = D
J = 7

Thus, fn the absence of displacement currents, the electromagnetic
field vectors H, B, D and J are unaltered when viewed from a moving
coordinate system, but the electric fleld vector E is modified by
the addition of the term Vc x B,

According to the latest experimental evidencel?, the constitutive
relationships between electromagnetic Field quantities are
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where V_ is the velocity of the material with respect to an inertial
reference frame. Combining Equation 4 and 5 gives
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Contbining Equation 6 with the sscond Maxwell equation and assumlng

small velocities yields

' x B' - an i (GEJFC) x B' = au_lt '
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Since the divergence of B is zero, the vector B is_non-divergent

and hence, must be given by the curl of some vector A’
B' = V' xA'

Substituting Equation 8 into Equation 2 ylelds
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Finally, combining Equations 7, 8, and 10 yilelds
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Similarly, substituting Equation 10 into the equation V7.D'
that
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Equations 11 and 12 provide the governlng equations for the electro-
magnetic vector and scalar potentials in electric machlnes. These
equatlonz are solved In References 15 and 16 [or some special] cases.

3. TWO DIMENSIONAL PRODLEMS

Equations 11 and 12 are simpiified considerably in two-dlmensional
problems where the vector potential A has only one component (A in
Cartesian coordinates, A, , in cylinderical coordinates) amd 15"
invariaat in that component in that directlon. tlader these conditions,
the divergence of the vector potentlal 13 automatically zero and
Equation 11 becones
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where 35 == g 7 ¢ represents external source currents.
Five different cases of Equatlon 13 are of interest:
I. Hapnetostatic Problems. 1I no conductors are located in the

problem region, or il the electromagnetic fleld problem is invariant
in time, Equatlon 13 reduces to the Polsson equation
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With reference to the iinite element method, this equation wna solved
by $f{lvester and Charl™.

11. Eddy-Cutrrent Problems. In the absence of source currents and
moving boundaries, and assuming that time variations are sinusoldal,
Equation 13 becomes the diffusion equation

2._. —
VA-Jjwoan A=0 (15)

Equation 15 ig solved in References 2-8.

I1Y. Skin-Effect Problems. Skin-effect problems are simllar to
eddy-current problems, except that external source curtents exist,
The governing equation is this case is

VZK -—jwo nou A= gL U 3; (16)

The skin-effect equation is solved wsing the finike element method in
Relerences 9 and 10.
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IV. HMoving-Body Problems. Im moving boundary problemg, adopting
a coordinate system moving in unlson with the material (V =V ) results
In the equation moe

,2—_. At e -
V' A-juo no A LI (7

This equation is solved using the finite element method Iin Reference 8.
Another possibility, useful in_the linear motor case, is to take a
moving coordinate system V=V with a stationary material velocity
Vm = 0, 1In this case, Equition 13 ylelds

,Z 1 3. k7] ] gl _9__—@:_
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Equation 18 is solved in Reference 11.

V. Transient Fleld Problems. In a transient field problem with
ne external source currents and with Vm= Vc Equation 13 reduces to

A

12 A ﬂ_ =
V' A - @ "ruo T~ 0 (19}

The finite element solution of Equation 18 is reported in References 12
through 14.

4. THE FIRTLE ELEMENT METHOD

Although the finlte element method has been applied successfully te a
wide variety of problems, its theoretical hasis is at times, still
wisrepresented in the magnetic [lelds literature. The Following
analysis Is presented to clarlfy the advantape of using the finite
element method to solve magnetic fleld problems. This analysis is
not ncw; its essentiﬁl features were origlnally published hy Babuska,
Prager, aml Viltasek™".

To begin, let us define a point-valued matrix method (PVMM) te be any
procedure for generating approximate solutlons of field problemg in
which peint values ol the field are determlned by solving & matrix
equation. Thus, i[ the governing equation of a [leld problem Is

A uwlx,y) = §ix,y) (20)

then any matrix equation of the Fform

Au-=F (21>



where the components of the column vector u repregent point values of
the Function u{x,y) provides a PVMM for Equation 20. According to
this definition, PVMMs are a very general category of numerical
methods for the solution of field problems; both finite difference
methods and finite element methods are subcategories of PVMMs,

Although definitions of the finite element method vary in the
literature, the most accurate definltion of the Finite element method
is the following: a finite element method 18 a PYMM in which the
matrix A in Equation 21 is determined by using the Galerkin procedure,
taking the interpolation functions correspending to the point values

u to be the basis functions in the Galerkin method. The Finite element
method is therefore a consistent PVMM in which z specific procedure
must be followed to evalvate the elements of the coefficient matrix A.
OF course, any numerical PVMM will have some error: e, = u,—-uU{x )
at each poinkt (x ,yi) of the solution. A PVMM is calied *
asymtotically op%imal if the solutionm vector u minimizes the
Fuclidian norm of the ercor vector g. The power of the Finite element
method is a result of the following theorem, first proved in Reference 18:
A PVMH will he asymtotically optimal if the elements of the coefficient
matrix A of Equation 2] are evaluated by using the Galerkin procedure.
Another way of stating this theorem is as follows: All Finite element
methods are asymtotically optimal.

17y

An immediate consequence of the above theorem is the fact that no
finite difference method can be more accurate in the sense of the
Euclidian error norm of the point values of the solution than the
corresponding finite element method. It is possible, of course, to
find solutions of equal accuracy by using the two procedures but,

in general, there is no guarantee that the finite difference method
will yield asymtotically optimal results. It is Ffor thils reason that
the Einite element method has become so popular in recent years.

5. DISCRETIZATION METHODS
In its simplest form, the procedure for discretizing differential
equations by Galerkin's method is as follows: first, one approximates
the solution of a field problem by a sum of basie functicns ay {x,y)
N

w(x,y) = E u, o (xy) (22)
o 1%t

For notational convenience, it is best to rewrite Equation 22 in the
form

[L(x,y) = &(X:Y) U (23)

where a(x,y) is the row vector

At y) = o, 66y) 506Y) -aan @ (5,9)] (24)

and u denotes the column vector

(25)

The second step in the Galerkin process is to imsert the approximation
(23) into the operator equatlon (201. Third, the result is multiplied
on the left by the basis functions o{x,y) and integrated over the
reglon of interest. The result is Equation 21, with the coefficient
matrix A given by

A =j ul(x,y) Ao (x,y) dxdy
where al(x,y) denotes the transpose of alx,y).

Traditionally, the finite element analyst has had two choices for
evaluating the integrals in Equation 26. One possibility has been to
evaluate the integrals in Equation 26 completely numerically, using
numerical quadrature to obtaln the required values. This choice has
been advocated by Zienklewicz, among many others, and is today widely
used by the civil enginecring community. The other possibility has
been to evaluate the integrals in Equation 26 analytically using

a symbolic manipulation computer language such as Formac, Altran, or
Macsyma. This choice was pioneered by Silvester and is used today
primatily by electrical engineers.

Both methods of evaluating the Galerkin inteprals have advantages and
disadvantages. The advantage of the numerical integratlon procedure
iz its simplicity and ease of implementation; its disadvankage is
high computaticnal cost and, in some cases, lower solution accuracy.
The advantages of the analytical luntegrationm approach are the high
efficiency and high accuracy obtained by using pre-computed matrix
elements; its disadvantage 1s the difficulty of evaluating the many
integrals required.

In recent years, however, a third method of evaluating the Galarkin
equation matrix eligggis, called the "elementary matrix approach',

has been developed + In the elementary watrix approach, differential
equations are subdivided into basic units called "elementary operators".
Matrix equlvalents are evaluated analytically in terms of parametric
factors for a representative element for each elementary operator; the



Galerkin matrix for the entire differential equation is obtained bLy
combining the elementary matrix factors numerically.

Three types of elementary matrix operators have been deflned: (1)
differentiation matrices, (2) Eunction space metric matrices, and (3)
projection matrices. All three_of these matrices are defined with
reapect to the basis functlong ofx,y), which in finite element analysls
are taken to be Nth order Intetpolation polynomials.

Differentiation Matrices

DifLerentiation matrices are defined by the equation

)
Gm Py &y (26)

1j ¢,

x,y = polnt 1
where u(N)(x,y) is an Nth order interpolation polynomizl in the element,
Em are homogencous coordinates in the element, and the symbol

means that the derivative is to be evaluated at the (N~1)st ordecr
interpolation node f.

Function Space Mebric Matrices

The function space metric matrix i3 defined by the equation

- T - '
T = i:[ u(N) {x,¥) u(N)(x,y) dx dy (27)

where A ig the area of the element

Irojection Matrices

Projection matrices are defined by the eguation

P=T7" A (28}

where T iz the (N-1)st order metric matrix and
1 [ -o-nt - (N)
A= T e Ge,y) ot (x,y) dx dy (29)

Differentation matrices are useful ip finlte element analysis becanse
they provide an exact numerical eguivalent for the analytlc pcocess of
differentiation of a finite element approximation. The equivalence

is established by the following relation

®,¥y = point 1

3.1
" (N
dulx,y) 3¢ )(x,y) u
Ix Ix -
(30
= ™V v
x .
where the matrix D, 1s composed of a sum of the matrices G(m)
- (m)
Dx b bm G (11)

m

and the bm are determined from the eleuent vertices.

It {s fmportant to notice two things about Equatien 30. One is that no
analytlcal operator appears on the right-hand-slde of Equation 30; the
other is that the polynomlal order of the approximation is decrensed

by one by the process of differentiation. Thls latter fact Lmplies
further that the matrix D 1s rectaugular in shape.

Since twe orders of interpolation polynomials are involved in Equation
30, an apppoximate relationshlp between these two orders must be
deffned. Following reference 20, this relationship is provided by

the projection operator P which minimtﬁ?s the Lzm?ﬂym of the difFetence
between the Nth order npproxiTﬁgiyn u (x2¥&_i)a (x,y} v and the
(N~1}st order approximation u (x,y) = o {x,y) u -

II u(N)(x,y) - u(N_l)(x,y)ll = minlmum (32)

The numerical equivalent of the projection operater P is given by the
projection matrix P. The projectlon matrix satisfles the equatlon

P u(N) (N}

Goy) =P a™ oy w = a™ P ry 33

As is the case with dilferentiation matrices Dx’ the projection matrices
? 1s a rectangular matrix.

6. EXAMPLE

Finite element discretization via the elementary matrix concept will
now be illustrated. Consider the diffusion equation (15} in Cartesian
cootdinates

¥2h, a%a
L 4 z

sz nyz

= jkA (34)



where k = wuurpo- For this equation, the Galerkin equation (21) is
-y 32; e
(J’u m_._dxdy-k-j'a —tu = jkfaudxdyu (3%
Ay - -

where we have set A = a(x,y) u. Using Green's theorem, Equakion 35
may be written as -

(36}
where
- ~r -
13 o Bu
I( . + ay ) dxdy
37)
T = f a adxdy
The matrix T in Equation 36 is simply the elementary matrix T(N) of
Equation 27; teo evaluate the matrix §, substitute -
3a _ -{n-1)
o (n R % 2
53 = u( _1)Dy and use Equation 27 again.
The result is
5 b TT(N—l)D +D Tl(N-l) (38)
X ¥y Y

This result is identical to that given by Silvesterz, although it is in a
different Form.

7. MAGNETIC FIELD FORMULATION

It is apparent from the literature survey presented in Sections L and 2
that all existing Finite element solutions of time-varying magnetic fileld
peoblems are based on a vector potential formulation of the magnetic Field.
The reasen For this is that the vector potentilal reduces to a

single component function In two-dimensional problems. This is not the
case with three-dimensional problems, where, as demonstrated by Okuda, a
four component vector formulation similar to that given in Equations 11

and 12 must be used. Therefore, in three- ~dimensional problems, no advantage
is to be gained In working with the vector potential A instead of directly
solving for the magnetic field vector B, since at least three field
components exist in either case.

A magnetic field formulation of time-varying magnetic field problems is
obtained by starting with the second Maxwell equation ¥V x H = J and

substituting for H and J from Equation 6. Assuming low velocities, there
results

vxB on_M E + an (Vm - Vc) X B (39)

n

Taking the curl of both sides of Equation 38 and using the first Maxwell
equation yields

- - = = B
- -V = L2
Y%V xB oH M (Vm c) x B LR {40}

Finally, noting that the divergence of B is zero, and assuming sinusoldal
time variations, Equation 40 becomes

sz + gup (V - V)xB = jkﬁ a1)
to 'm c

where k = wop . Equation 41, together with the divergence condition

Vv - B =0, governs the behavior of the magnetic fileld in electric machines
under time-harmonic conditions.

Equation 41 for the mapnetic [leld fector B differs radically From the
governing Equation 11 for the vector potential A because the three components
of the vector B are not coupled as in Equation 41. Instead, the three
components of the magnetiec field B are coupled by the zero divergence
condition on the field. Since finite element approximating Functions do

not satisfy the zero-divergence condition automatically, specilal Finite
element approximations must be developed to solve magnetic field problems
using Equation 41.

8. APPROXIMATION OF NON-DIVERGENT VECTOR FIELDS

Although the wagnetic field in Equation 41 in general has three non~zero
components, In this paper only the simplified problem of approximating

a two-dimensional, two component magnetlc Field vector B is presented.

Since any [unction may be approximated by the Finite element basis functions

a(x,y), we may write

B = o (x,y) 5
(4z2)
By = a (x,y) p

where the coefficients k and p are to be determined. Let us write two

component vectors in the column form

=
n

(43)



The approximation given in Bquation 42 may, therefore, be written in the
vector form .

- a (x,y) ]
B = + ~ &4
0 !f a (X.Y) l-..., (|‘)
The coefficlents k and v in Equation 44 are, of course, not all lndependent:

they are }nter—relaLed by the Fact that the vector B is non-d lvergent

at:l(x,y) k 3;(x,y) P
3% -t ay ~ =0 (45)

Using Equation 30, Equation 45 becomes

;(N—l)(x,y) b, 15 e - -1 (x,7) Dy P i)

Equation 46 states the conditlons on the approximation in Equation 44 for this
approximation te have exactly zero divergence at every polnkt. However, Ln
magnetie Cield problems, we are Interested in determining solutlons which
gatisfy all three of the following conditions:

(1) The soclution must be non-divergent;
(11) The solution must satisfy Equation 413
(111) The solution must saltisly the boundary conditfons.

If Equation 43 is imposed exactly then condition (1) is satisfied cxackly,
but conditions (1L) and (iii) are satisfied only crudely. With numerlcal
solutlons, it is better to approximate each reguirement equally, so that
convergence to all conditious is of the same order of magnitude. 1In the
present case, 1f we lmposc condition (i) only approximately, a grealer
number of deprees of freedom on the finite element solutlon are avatlahle
to satlsfy conditions (ii) and (11i). The zero-divergence of Lhe magnetic
field is approximated in this paper by projecting both sldes of Equation 45
onto a lower—order function space. The matrix equation which results from
the projection is

= = A
anif Pny;_x (A7)

This matrix equation is singular, since both matrices P Dx and ' Tt are
rectangular. It is therefore only possible to solve ¥
Bquation 47 for k and v by using the concept of matvix genexalized

21,22 -
ilnversion L . According to this theory, the general solutlen of Equation 4h

iz given by

3.1

&
E = - Dx) P Dy r * Nx 1 (438)
or +
= - - 4
p o) PO kN 2 49)

+
vhere (P Dx) and (P Dy)+ are the peneralized luverses of P Dx and P Dy’
respectively. Nx amnd Ny are the nullmatrices of T I)x and P Dy,

respectively, and the vectors ¢ and & arve arbitrary.

Substituting Equations 48 and 49 into Equation 44 glves

_ a(x,y) 0
B = - k o+ f . 1 {50}
- R - N -
B a{x,y) y | _u(x,y) y
or . . - . B
_ "U(XQ)')RX G(X,Y)Nx
B a(x.y) Pt 0 1 (51)
| - B N
where
R = (b)) po
¥y ¥y X (52)
+
Rx = (P Dx) r Dy

Equatlons 50 and 51 are interpreted in the Lollowing way: If a Tinite .
aelement approximation is made to one component (either ﬂ = ak or B = ap)
of a two component non-divergent vector, then the - y -
other component conslsts of two parts: One pact of the second component
(elthor —aR k or —aR p) contalns those functiona which form a non-

divergent pnir with the {irst component. The second part of the
approximation (either oN % or a¥ q) provides those Functlons whlch are
required to make the app ofimatioli 5F the second component complete in the
vector gpace, but For which no corresponding term in the first approximation
exisks.

It 1s importast to recognize that while the basls vectors for B in Equation
50 or in Equation 5@ form a complete interpolatory set for one component of
B, they do not form a complete interpolatory set for the second component.
Although it is possible to make two different complete interpolatory
approximations for B and for B, as iz given In Equation &2, these two
approxlmations are nBt independeént. To obtain a set of basis [unctions

in a non-divetgent vector space, one may bake either the approximation



for B_ or the approximation for B, to be interpolatory; the approximation ;

for thie second component is not ixterpolatory and is, in fack, related ; Bx alx,y} I 0 k
to the interpolatory basis through equations 48 and 49. - - (57)
Finally, Equations 48 and 49 can be combined to yield two direct By (2,3} -Ry Ny -
relationships between the four coefficients p and £, and k and q.
First, however, mote that if a matrix A is of full row rank, the matrix
A, its genEEalized inverse A, and its nullmatrix N satisfy the following Therefore, the Galerkin equations for Equation 56 are given by
properties
AR =1 T S 2 ~
(53) 1 R w oo -3k 0 i 0 o k
AN = 0 ¥ -
=0 (58}
Using Equation 53 and substituting k from Equation 48 into Equation 49 gives 0 Nyl 0 Vz—jk —R}r N}r L
Ne = (1-@p)prpp) N -__'"Tz“:
¥ y y P (54) Expanding this result and noting the fact that § = —j o V7 o dxdy gives
Similarly, substituting p from Equation 49 into Equation 48 gives
¥ Ad = —JkTy (59)
Ng = (-@p) Pk (55)
X x x -
where —
22 + T T
It is well known = that the matrix (I - A A) provides the orthogonal S+R"SR -R " SN
projector onto the nullspace of the matrix A. Therefore, Equations 54 A = y y ¥ y
and 55 state that the guantities N ! or N_gq are obtained by projecting a T T
the original approximation for theyﬁpposif'é camponent onto the nullspace . - " SR B~ SN
of the operators P D or P Dx. y y ¥y y
4 - . (60)
9. VARIATIONAL FORMULATION B
_ T T
Equation 41, which governs the behavior of time-harmonic magnetic Fields, Bo= T Ry T Ry - Ry T Ny
is solved by using the non-divergent approximation vectors in Equations 50
d i s .
and 51 as follows - T TR - T s N
— — ¥ y ¥ ¥
Setking Vm = Vc and assuming that [}z = 0, Equation 41 may be written in L
the matrix form k
vo= N
v ik ¢ B o ! 1
£ (56) | -
|
0 7% - gk B 0 !
Y | Equation 59 can be solved for the unknowns k and &£; the coefficients p,
— i ~ N b
Furthermore, the non-divergent approximation for the vector B in Equation which provide interpolative values for B_ are determined by using
50 may be written as Equation 49. ¥




10. CONCLUSION

ALl finite element solutions of magnetic fleld problems appearing in the
literature today are based on a vector potential formulation of the
magnetic fleld. In these solutions, the magnetic field iIs determined
indirectly by solving the relevant field equation for the vector
potential, and ther taking the curl of the vector potential to yleld

the magnetic field. Five different types of fleld problems have been
solved: magnetostatic field problems, eddy-current problems, skin-
effect problems, moving-body problems, amd trousicent Efeld problems:

all of these di[ferent problems may be viewed ns speclal cases of a
genetal time-varylng magnetic field formulation.

Magnetlc vector potential formulations of two-dlmensional problems are
especially slmple, because in these cases, the vector potentlal reduces
to a single compouent vector and automatically satisflles the zero-
divergence condition. In three-dimensional problems, however, the
vector potential formulatlon Is considerably more complicated: not
onlty does the vector potential have three nou-zero components in
three-dimensions, but the divergence of the vector potential is, in
general, not equal to zero. Indeed, in three-dimenslions, the
divergence of the vector potential is proportional to the Laplacian

of the magnetic scalar potential, and the wagnetic Fleld problem

must be golved as a coupled system of four equatlons and four unlnowns,

An alternative to the four component vector potential Formulatlon of
three-dimenslonal magnetic field problems 1s to solve for the mapnetie
field directly in terms of its three [leld components. In Lthis
formilation, the magnetic field equation reduces to a set of three
independent {ield equations, one for each of the three [leld companents.
llowever, since the divergence of the magnetic Fleld must alwayn equal
zero, the three magnetic Ffileld components are not, In fact, Indepcendent.

Numerical counditions for approximating two-dimensional non-dlverpeot
vector fields are investipgated in this paper. The procedures develnped
are based on the use of elementary differentiation and projection matrices
to replace the processes of differentiatlon aud approximation on flnite
element functions. It 1s shown that Lt is not possible Lo approximate

the two components of a two-dimensional non-divergent vector Tleld with
two independent Finite element functlons. To obtaln a sel of basis
functions in a non-divergent vector space, either cowmponcent may he

taken as interpolatory; the other component is related to it In a simple
way.

The ideas developed in this paper are being investigated further to
determine their utility; the results of this Llovestigation will be reported
shortly.
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LAYER THEQRY ANALYSIS FOR INTEGRAL-BAR INDUCTION DEVICES

5. Williamson and A. C. Smith
bepartment of Engineering, University of Aberdeen, Aberdeen, U.K,

ABSTRACT

This paper is a preliminary report of a development of layer theory
which takes the discrete nature of the rotor currents fnko accounk,
and which is therefore applicable to the vaat majority of rotaling
induction machines. The analysis is verified by comparison wilth
the equivalent eircuit method.

1. INTRODUCTION

The analysis of induction machines using a multilayer model has
gained favour wilth the rise of research activity in the Field of
linear motors. fThis may be attributed to two factors. Tiestly,
there is an obvious phyalcal simllarity between the linear motor
and the idealised layer theory model, and secondly conventional
equivalent circuit technigues have proved unable to wodel the linear
motor accurately. In addition, layer theory has the inherent
ability to incorporate the unbalanced electric conditions that
prevail in the linear motor, and being a field solution technlgue
it will yield the fleld distribution in the airgap for a little
extra computational effort.

The normal layer theory approach models the rotor condugtion layer
by a homogenzous conducting sheet. 1In a linear motor Lhis lnvolves
no approximation, since these devices almost invariably nnploy sheet
secondaries. The vast majority of induction machines, howover, have
cage rotors which consist of discrete bars housed in sloks in the
rotor surface. TFurthermore, the rotor cage is [requently skewed,
so Lhat the rotor bar currents are constrained to flow in skrictly
non-axlal paths. Both of these aspects introduce features which
cannot be included in a homogeneous-rotor model. The discrete bav
currents produce slot~harmonic fields which can constitute a
significant part of the rolor leakage. ‘'These are not present in
the normal model. Similarly, there is no mechanism in the homogen-
ecous rotor model Eor constraining the rotor currents to flow in non-
axial paths, so that the axial flux variations produced by skewing
cannot be examined. It is not surprising, therefore, that layer
theory has not found widespread use For the analysis of robating
induction machines,

This paper introduces a new form of layer theory which enalbiles Lhe
rotor currents to flow in discrete paths, and which is therefore

applicable to rotating induction motors. The analysis is developed
in a form appropriate to cage rotor machines, although, with a Eovr

minor modifications it is equally applicable to wound-rotor machines.

2. THEORETICAL DREVILOPMENT

2.1 Sheet Rotor Layer Theory

Many of the features of discrete-bar layer theory are essentially
similar to those of the usual 'sheet rotor' version, and it is
therefore appropriate to begln the development with a brief account
of the latter. Full accounts may be found in references 1-3.

1Me machine is modelled by a series of parallel {or concentric}
regions, as shown in fig. 1. Each region 1s characterised by its
position, thickneas, and material constants, which are empliracally
derived from the part of the machine that Lthe reqlon represents.
The regions may be isotroplc or anisotropica' , but are assumed to
be both homogeneous and linear.

Region
Number

=z

I
—

e Z

r Praol" ‘Sr e

—_—

x[oul

=<y
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—

figure!  Genergl loyer theory model.

The analysis is guasi-two dimensional: it is assumed that no
guantities vary in the transverse {(x) directlon, and the use of
harmonie analysis and the principle of superpozition allow the
longitudinal (y-directed) variations to be accounted for. Variation
of Fields in the z-direction can therefore be determined for each
longitudinal harmonic. It is assumed, here, that the sinusoidal
steady-state prevails, so that the jw operator may be used to
advantage. Fach region is allowed to move in the y-direction with a



velocity which may differ from all the other regions. This allows
the relative motion between the rotor and stator to be taken into
account.

For a general region (the ru‘) and a general wave number k, it is
relatively simple to show that the electric and magnetic field
strengths measured within the region in a reference frame that is
attached to it, are given by

=0

p.4

_ j{s, wt~ky)

H; = y{C sinhyz + D coshyz) eJ k o

] j (s, whk-ky)

H: = jk{€ coshyz + D sinh‘(z)eJ( k ¥ {1}

e TR
Ek X n

x k z
L 0
Y z
where Sy is the fractional slip of the rth region with respect to

the stationary reference frame -~ usually the stator - for the wave
number k

vrk
Sp =l 2
and
v2 = k? + is, wpo (3)

The constants of integration in equations (1) may be expressed 1n
terms of the Field values at the region boundaries, but a more
convenient formulation employs the transfer matrix concept, thus

=k dkp . =k
Br coshys r Y ] 1nhYSr Br—l
= {4)
=k Y s nk
Hr 7 s:.nhYSr coshysr Hr—l

- =k

B}; is an abreviated notation for the value of Bz at the upper
boundary of region r and ﬁ:—l is the value of the same field
component at the lower boundary of region r. Similarly, ﬁ: and

ﬁ};—l refer to Ii: at the corresponding boundaries. Continuity
conditions dictate that E: and ﬁ: should be invariable across the
ragion boundaries, sc that their explicit calculation at any one
boundary allows their calculation at all other boundaries, and
hence the solution of the field inside any region is possible, if
required. The field values at the boundary surfaces of the
excitation layer when just one winding is excited can be calculated
directly from the current density produced by the excitation, after
an intermediate calculation of winding surface impedances, which
are derivable from the transfer matrices®.

The boundary field values are subseguently used for the calculation
of coupling impedances between the excited staktor winding and all
other stator windings, which are temporarily assumed to be open-
circuited for this purpose. The harmonic components are summed and
winding resistances and external impedances are added, until,
finally a makrix of coupling impedances is obtained.

V51 %41 ,81 231,52 31,83 Is1

v = {% Z 7 I

52 %ga,51 52,52 52,53 Isa (3)
Vs3 “33,81 233,82 53,53 Iss

It has been assumed that there are three separate stator windings,
but it will be appreciated that the impedance matrix will be of
dimension M, equal to the number of independent stator windings.
Solution of equation (5) for the winding currents is a routine
matter, and the total field at any point in the machine may sub-
sequently be detexrmined by substituting back into the original
equations.

It must be emphasised, hexe, that the rotor layer is treated like
any other non-excitation layer, so that the rotor currents need not
be calculated explicitly.

2.2 Discrete Bar Layer Theory

In the discrete bar layer theory the rotor is regarded as constit—
uting an excitation layer, which is eventually short-circuited when
the final impedance matrix is assembled.

The solution begins, as before, with the calculation of the stator—
stator coupling impedances, with the essential difference that the



conductivity of the rotor layer is set to zero, although coddy
currents are allowed to Flow In any other non—exciltation layer, as
appropriake,

The emf induced in the rotor when a stator winding is excited is
used to define stator-rotor coupling impedances. The response of
the rotor differs between space harmonics, so that it is necessaxy
ko caleulate stator-robor coupling lmpedances for each hiarmonic
independently, and these may nob be summed in the way thal Lhe
stator-stator impedances may. ‘The emfs induced in the rolor bars by
a stator-driven field of wave number k have a fixed amplilude but a
phase progression of k) radians, where A is the rotor slot piteh.
The response of Lhe whole rotor cage te a particular wave can Lhers-
fore be typified by a single bar, which may be positioned conven-
iently at the origin of the rotor reference frame. The emf induced
in this bar, which is assumed to be rectangular, of depth & and
breadth b, can be shown to be given by

=k =k

E +E js, Wt
5 = S, K 3 K mz—ml ej k (s)

wliere w is the bar length, m is the reference number for the rotor
bar layer, and K and lﬁak arc depth and width Factors for the bar.

dk
kd kb
K. = tanh (-—2—) Fj; _ sin ('-2"—} (7)
dk —_— k —
&g by
2 2

E:I is the value of E‘; at the top surface of the rotor bar layer, and

=k
E
m-1 X
from Bz at the corresponding positions using the standard layer

is the wvalue at the lower surface, These may be calculated

theory techniques described in the previous section. The ralio of

-k N .

U to the winding current then defines the coupling impedines hat-
ween the refercnee rotor bar and the current in the excited winding,
for a wave of number k.

The harmonic emfs induced in the rotor bars drive rolor correnls

with the same spabtial phase distribution and of the same [requency
as the induced emfs, The next step is to dekermine the coupling
impedance between these current distributions and the stator windings
and with themselves. This is done by assuming the rotor carries a
current distribution of the form preseribed for, say, the k™ wapm-
onic. BAs before this can be characterised by the current I Flowing

in the reference bar. Fourier analysis is used ko converl these discrehe

bar currents into an equivalent sum of current density distribultions.

j(skwt—ﬂy)
3 (8)

where %P. is defined in equation (7}, and % is related to the

summation index n by

R =k +n [3‘{1] {9}

The value n = 0 produces £ = k, showing Lhat this current density
wave has the same distributlon as the inducing wave., 'This moy be

called the principal current density wave for the kLh harmonic.
Other values of n produce £ # k, which signifies current densiky
waves of one wave number (R) with a speed of rotalion not approp-
riate to that harmonic. These are the rotor slot harmonics for the

£ .
ko wave, and their significance is that they Lend to induce non-

mains frequency emfs in the stator windings, although they induce
emfs of the same Frequency and distribution as the parent bar
currents in the rotor cage, Thelr effect on the stator is usually
small enough to be neglected, and this will be assumed to be the
case in this instance, but they can contribulea significant part of
the (leakage) impedance of the rotor cage. It is these slot harm-
oneis which are neglected in the sheet rotor model.

Having resolved the bar curxents into harmonic spectra, the conven-
tional layer Lheory approach may be used to dekermine coupling
impedances with the stator winding {n=0, only) and the rotor refer-
ence bar (all values of n). fThe latter involves a summation over
all the roter slob harmonics, to give a single impedance component.

The coupling impedances are finally assecmbled into an impedance
matrix, which takes the form illustrated in fig. 2. fThe first
subsgceript, 5, refers to the stator, whilst the sccond, R, refers
to the rotor., The second stator subscript indicates the stator
phase numbex, whilst the second rotor subscript refers to the rotor

bar llarmonic ¢urrent number, For example, Znn sm indicates that
N:

when stator winding wm carries a current of im amps, the nth harmonlc

emf induced in the rotor reference har will be imﬁrm &m volts. The
r

impedance matrix dimension is now M + N, equal to the number of

independent stator windings (M) plus the nunber of harmonics con-

sidered in the analysis (N). For clarity M=3 in fig. 2.

The external impedance components must now be added bto Lthe internal
coupling components in the Impedance matrix, and the matrix eguation
spolved for the winding and harmonic bar currents. These may now in
turn be inserted back into the layer model, so that field distrib-
utions may be calculated as required.
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3. VERIFICATION

The initial verification of this analysis was by comparison with
the more usual equivalent circuit approach, te be found in most
standard electrical machines texts. A worked design example by
Says, for a 5kW, 415V, 3-phase, 50Hz, 4-pole cage motor gave values
for the eguivalent circuit components as well as the lamination and
winding details. The data for this motor was input to a computer
program for the discrete bar analysis which was used to predict the
variation of torgue, speed and input power with speed. These
predictions were compared with those obtained using the eguivalent
circuit method, and were found to be indistinguishable.

The experimental verification of the analysis is currently being
undertaken at Aberdeen University.

4. CONCLUSIONS

A Form of layer theory has been developed which is capable of
taking the discrete nature of the current flow paths in a rotating
induction motor into account. 'tThe theory has proved to be compar-
able with the equivalent circuit approach for the analysis of a
balanced three phase motor, but has the added advantage that
unbalanced electrical conditions can equally well be taken into
account. Its use will free the analyst from some of the more
esoteric calculations of reactance and resistance componenkts forx
use in a conventional equivalent cirecuit model.
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SURFACE ELEMENT MNODELS OF CONDUCTING PLATES
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ANSTRACT

The limited depth of penetration of alternating fields inte larpe
cenducting plates, and the correspondingly large field pradients,

make {t necessary to use small mesh intervsls when computing the
interior field numerically. This is commonly aveided by surface-
element models which depend on the assumption that the penetration
depth is small compared with the plate thickness. The flux in the
conductor, and the currents induced, then depend only on the
tangential field at the surface. When the plate is sulficiently
thin, on the other hand, the induced currents depend only on the
aormal component of the incident flux, and limit the pencteakion depth

in Ffrom the edge instead of in from the surface.

Both modes of penetration are combined in plates whose thickness falls
between the two extremes. A more general form of surface-efement
model is described in which the nodes are confined to the conductor
aurface, but both normal and tangentizl fluxes are represented inside.
Thick and thin plates are modelled as limiting examples. The paper
gives details of the results obtained by applying the method to
conducting plates subjected to a uvniform incident Field. The {lux

and loss distributions are compared with those computed numerically by
placing sufficient nodes in the plate to obtain an accurate description

of the field conditions.

The model is well suited to three-dimensional problems since only the
external field is computed, and the equations are therefore derived
in terms of magnetic scalar potential. The magnetic vectot-
potential formulation for two~dimensional transverse-magnetic

geometries can be derived by duality.

1. INTRODUGTION

It is typical of many eddy current problems, particularly in larpe
electrical machines and the like, that the depth of penetration in
some, or all, of the conductors is small compared with the principal
conductor dimensions, Under these conditions it is commonly assumed
that the variations in the field quantities inside the conductors is
sufficiently dominated by the gradient in the directien normal te the
surface to make the interior selution approximately one-dimensienal.
The exterior Field then "looks inte" an equivalent surface impedance
which can be cateculated by solving the field equations in a semi-
infinite block. This approximation makes it possible to avoid
interior nodes, and confine the conductor description to surface
elements, in a {inite—element model, or the equivalent in finite-
difference terms, The simplification is, of course, particularly
important when the penetration depth is small, since a numerical
solution inside the conductor demands correspondinply small elements,

and hence lotge numbers of them.

Surface element models have been shown to work well in regions in
which the tangential field gradients are sufficlently small. Tug
they are less satisfactory near corners, particularly when these form
junctions with secondary surfaces of smaller dimensious, and methods
of modelling corners with better accuracy are under examimation.

The most important single example is a conducting plate whose major
surfaces are large, relative to the penetration depth, but whose
thickness is not, and it is the study of this particular configuration
which is reported here. The thickness commonly exceeds a penetration
depth, but may not be sufficient to prevent some interaction between
the two surfaces. Moreover, detailed numerical solutions show n
sipgnificant penetration of normal Flux right through plates of
moderate thickness, in a manner entirely inconsistent with a simple
surface—element model. The additional Flux may greatly affect the

toss distribution, which is comwonly concentrated near the edge.

The cbjective i3 to find a discrete model of the plate in which the
nodes ate confined to the surfaces, but which gives good accuracy for
node spacings greater than a depth of penctration, d, defined by
lld2 = won 1
o



where w is the angular frequency, ¢ the conductivity, and n the
permeability. The method applies to arbitrary waveforms, and to
transients (both directly and by Fourler transform), but it is con-
venient to assume sinusoidal time variatioms, and hence linear
material. Although saturation is of considerable practical
importance it is the problem of modelling the geometric properties

which is here of principal interest.

One advantage of surface-element models is that the magnetic scalar
potential formulation of eddy-current problems1 becomes particularly
simple. The difficulties associated with the magnetic vector
potential2 are avoided, and three-dimensional solutions are straight-
forward, requiring no more than the appropriate increase in the number

1,2 is used inside the

of nodesa. Here the mixed T-Q formulation
conductor, and is found to be particularly convenient for deriving
the more general form of surface-node model., 1t reduces to the

simple scalar () description of the external field.
2, MODES OF PENETRATTON

The classical one-~dimensional theory of flux penetration into a
conductor assumes that the field is confined to the tangential
direction, and the surface-element model likewise relates the eddy
current loss to the tangential component of the flux density. The
normal component is ignored, except for the implicit requirement
that the continuity conditiom,

divB =0
is satisfied in regions in which the tangentizl component is changing.
This is in direct contrast to the behaviour of a plate, or lamination,
which is so thin that the tengential field induces no significant
amount of current. The eddy-current behaviour is then described
entirely in terms of the normal component of flux density, and the
tangential component is ignored. This thin-plate-type of response
is specifically anisotropic, a5 can be seen by considering a stack
of such plates, as in a laminated steel core, in which the flux
directed in the plane of the laminations indirces no current, whereas

the response to normal fluxes is essentially that of a solida.

The different types of response of thick and thin conductors leads

to the concept of two different modes of flux penetration occuring

simultaneously in plates of moderate thickness, such as that
illustrated in Fig, 1. Whereas the tangential, or x,y, components
of the flux density penetrate in from the x,y surfaces, the normal,
or z component, penetrates in from the edge., This simple picture is
useful in gaining a qualitative understanding of the behaviour of a
conductor which is plate-like im shape (i.e. with two dimensions much
larger than the third). But it also provides the means for predict-
ing the behaviour quantitatively, and the primcipal purpose of the

paper is to describe how this can be done.

The qualitative piecture shows at once a crucial difference in the
nature of the two modes. Whereas the penetration of the tangential
(x,y) conponents depends only on the material properties, in
accordance with equation 1, the behaviour of the normal (z) component
depends on the external conditions. This can be illustrated most
simply by placing the plate in an air gap between two non-conducting
iron surfaces distance g apart (Fig. 2). It can readily be shown
that the propagation distance d', measured in the x direction from
the plate edge, is '

d' =d fgft - (2)
for the range of variables within which the field conditions are
approximately one~dimensional in x. Thus we may expect a penetration
depth substantially larger than d when the irom surfaces are removed
altogether, or are relatively remote. This sugpests that one way of
utilising the nodal properties is to compute d' from equation 2, and
combine the resulting behaviour with the thick-plate type of
propagation mode from the surfaces, but this result is unnecessarily
approximate, even when there are iron surfaces in close prozimity.
Having defined the plate in terms of nodes on the surface, the pur-
pose of the numerical solution is to solve the ewternal field, and,
since it is the interaction of this with the conducter which
determines d', it is clearly very desirable to make use of the
information. To see how this can be done, it is helpful to consider

first the problem of modelling a thin plate.
3. EQUATTICONS FOR THIN PLATES

When the plate is sufficiently thin, so that there is no significant
change in the internal field with 2, and the intermal tangentiat

flux is negligible, only its electrical properties have to be taken



inte accoumnt. The induced current can be described in terms of a
cutrent flow [unction, defined so that its pradient pgives the surface
current density. Thus the value of the flow function at any point
pives the total current in the sheet between the point and the sheet
edge. 1t follows that the flow function is a measure of the m.m.f.,
and hence the magnitude of the external magnetic potential
discontinuity at the sheet, so that it is denocted AQ. It is this

which describes the electrical conditions in the conductan.

The equations for a sheet in the x,y plane are pgiven in veference 5.
The lnduced currents are due to B and are given by
? (Aﬂ)lax + 3 (Aﬂ)lay = (Aﬂ) Juwtﬂ (3)
This has to be solved sxmultnneously with the flux continuity
condition
vt
X3¥s2
at all external points, whilst the corresponding equation for nodes

Q=0 (4)

on the plate is derived from the continuity of 2 on one side with
(0 + AQY on the other, B in equation 3 is then computed (rom the

potential gradient at the surface.

When the plate thickness is increased the elfect of the two surfaces
ia to screen the interior from the tanpential field, hut not [rom .
The reduction in Bz at any point depends on the extent to which the
m.m.£. due to the total current Elowing between the point and the
edge - i.e. AQ - opposes the applied "z field. This suppests that
A2 is also important in desceibing the reaponse of thick plates, and

should be taken into account in modelling the plate.
4. FIELD EQUATIONS IN PLATE OF ARBITRARY THICKNESS

The modal description can be expressed quantitatively in a plate
which is not thin by replacing A% by an electric vector potential, 1
satisfying the condition

curl T = J (5)
The T function is thus the electrical amalogue of the mapgnetic vector
potential, A, but it is usually convenient te define it differently
from A by choosing the gauge, or divergence, so as to limit the

- To derive the mode equations the

nunber of vector components
plate thickness, t, is assumed to be sufficiently small, compared

with the other plate dimensions, to make the z component of the

current density J neglipible. The electric vector potential can

1,2 and the

then be limited to a single component in the z direction
electric and magnetic field conditions inside the conductor are
described by two (three-dimensional) equations, ocue L[or T and the

other for the magnetic scalar potential, 0.

The equation [or T is derived From Taraday's law,
curl & = ~ juB (6)
Substituting from equatien 5 and expanding ¥x¥x T in Cartesian co-
ordinates pives
2

Vx y T = JmuB 7N

with no term in Blaz, although T varies in the z direction. The [lux

density B is derived Erom

B =y ul
o
where
H =T - grad 9 (8)
from equation 5, since
curl 11 = J (M

Substituting in equation 7 and integrating both sides with respect to
Z, frnm one plate surface to the other, gives

y(fm) = j{a0 + B, =8 )fd (10}
where 9 and ﬂ denote the magnet;c potential values at the plate

surfaces (Fig. 3), and

t
Aﬂ=j T dz (11)
o

is numerically equal to the total current flowing between the line of

integration and the edpe of the plate,

Thus the total current flow funckion, AQ, in a thick plate, satisfies
the same differential equation {3) as in a current sheet if we replace
B, by

- 1 t
ﬂz = 'Ej; Bz dz (1)

Horeover, by substitution from equation &, this average Bz value is
ohtained directly from the two potential values at the surface,
together with AQ, i.e.

B, = wn (a0 + 0 - @)/t (13
Thus Bz is easily computed, and equation 10 shows that it is this
which determines the total current flowing in any part of the plate,

and thus the m.m.£, opposing flux penetration from the edpe.



FEquation 13 shows that ﬁz is the value of Bz which would be observed
in a hole if sufficient material were removed to eliminate the field

variations with z,

Equations for RO and Qt are obtained by integrating the magnetic
continuity condition
div B = 3B_/ax + aBy/ay + 0B, /32 = 0

in a similar manner between nodes o and t on the surfaces. This

gives
0 Jox + amy/ay =B, =3B, ' (14
where
t
mx =~l\ Bx dz (152}
<]
t
b = B dz 156
v ‘j: y (15b)

are the total fluxes, per unit length, in the two tangential directions.

It is these which aré given by the tangential flux penetration mode.
We have to solve this mode in terms of the surface Q values, and
relate the two modes to the two surface values of B?, denoted BZO and

B te complete the surface equatioms,

zt’
5. TANGENTIAL FLUX PENETRATION

No assumptions are needed to derive equation 10 other than the neglect
of J,» so that the edge-mode behaviour which has been described in
terms of thin plates is remarkably general, It is only in analysing
the flux penetration from the surfaces that we need to add the
conventional assumption that the normal, or z, pradients of the Field
gquantities predominate. The Fluxes ¢x and ¢ ecan then be computed
Erom the tangential field components at the two surfaces but, whereas
it is wsually assumed that the twe surface layers are independent of
each other, a more general model is needed here which takes account

of the interaction.

The relationships required are given in the appendix. The flux in
either tangential direction (x or y) can be separated inte two
components, one associated with the bottom, and one with the top,
et Qyo and
In both the x and y divections, taken separately, the two

surface, giving Four components in all, denoted ¢xo’ 4

b .
¥t
components are related to the tangential H fields at the surfaces,

taken in the relevant direction, by the equations

i = 16
jue = Y H + ¥ M (16a)
jub, = - - 16b
Jmﬂlt Ymﬂo YsHt ( b]
where the suffices o and t refer to the surfaces. The coefficients
Ys = (1 + jaz)IZUdu {17a)
Y= (-1 + ja*)/20da (17b)

represent magnetic field admittances, or electric field impedances,
per unit surface area, one a self-admittance and the other a mutual,

or transfer, admittance. o is given by

a=[1 ~exp(- 7 t/]/[1 + exp(- V3 e/ay] /T (18)

As the plate thickness increases . tends to zero, but the modelling
of thin plates needs closer examination as tbe magnitudes of the real
parts of both Ys and Ym tend to 1/ot when t is small. DBecausa the
two surface fields tend to the same value as t tends to zero, the
contributions from the real parts of Ys and Ym cancel, and the
resultant flux progressively diminishes in a thin plate. The
imaginary parts then predominate, because of the similarity of sipn.
These tend to jmuoutlé when t is sufficiently small, so that the
tangential properties are correctly represented over the full range

of t values.
6. SURFACE NODE EQUATIONS

The simplest way of combining the two aspects of the plate behaviour
ig to describe them in terms of the properties of the branches in an
equivalent magnetic network, that is, a network representing electro-
magnetic behaviour in which the flow and potential quantities are
both magneticﬁ. The node equations are then obtained merely by
summing fluxes in the appropriate branches. A two-dimensional cross-
section through a typical node pair of the required metwork is shown
in Fig, 3. For simplicity of illustration only one external
comnection i5 shown to each surface node, but when using a triangular
mesh each comnection represents the array of branches representing

the edges of the elements which join at the node7. The first-order
surface elements derived from equation 16 can be represented by
horizontal branches, and when the plate is sufficiently thick these
branches model the plate in the usual way. The more important aspect

is the addition of the wertical branch to account for the transfer of



flux throupgh the plate. When t is small this branch dominates the

network behaviour.

In general, the connections which are illustrated diagrammatically
in Fig. 3 enforce compliance with equation l4, since L and B
together represent the tangential (lux in the plate. Tf che
vertical branch is defined as an m.m.£. source AR in series with the
appropriate reluctance, then it carries a flux 4 satisfyinp equation
13; more specifically

4= Bz hxhy (1
where hx and h_ denote the tangential node spacinmps. Thus, provided
that Aft satisfies equation 10, the branch properly contrnls the amount
of flux transferred through the plate (i.e., the mis-match between the
fluxes incident at the top and bottom and the amount dircctly
tangentially), and it also represents correctly the responsc ol Lhe
plate to that Flux. Provided that ¢0 and ¢t satisfy equation 16, aill
the necessary conditions are satisfied, and summing the [Juxes at the

surface nodes give equations for QD and ﬂt.

The details are best illustrated in terms of a specific node array.

A rectangular mesh with node spacing hz in the z direction is assumed,
for simplicity, outside the plate, and the surface and surrounding
nodes are pumbered according to the scheme shown in Fig. 4.  The
equivalent branch elements are shown in Fig. 5. The flow quantities
in the network are not flux, %, but ju %, in order to represent the
enerpy storage and enerpgy digsipative properties correctly, and
reluctance becomes the magnetic equivalent of capacitﬂncen’ﬁ. The
reluctance of the vertical branch 01 is, by inspection tl"n“hxhy' and
placing this in series with the appropriate m.m.f. source, denoted
Aﬂoi' gives a branch flux in sccordance with equations 19 and 13,

The model differs in this respect from that uvsed for thin sheetﬁs,

in which the reluctance tends to zero, the potential difFerence

91 - QO tends to AQOI and Bz has ko be Found from the extarnal
potential pradient, but the more gencral descriptien in terms of two
different sets of surface nodes is always valid provided only that the
two sets are uok allowed to coalesce. Equation 10 can tlen be
expressed in terms of vertical branch quantities enly. The resnlt

can be derived by inspection, It reduces to

2 ap 2.2 7 2
880, (/W42 /0 45 /4) = (80, + 82, i (Mg + Y+

Mo

2
Q-2 )j/d 0
{ 1 0)J/ (20)
in a three~dimensional array, and when there is no variation with y
the relevant terms have merely to be omitted, This equation defines

Aﬂol.

From equation 16a, the flux in a typical surface branch 02 ias given
by

ju P

02 = Y5(n

0~ Qz)hy/hx + Ym(ﬂl - QT)hy/hx (21)

when the problem is three-dimensional, or by
= - - 22
PR SRCONL oL S G 9,170, (22}

when it is two-dimensional in x and z. Thus the surface behaviour

Ju ¢0

can be represented diagrammatically by the network branches shown in
Fig. 5, in which the admittance is Yqhy/hx' or Yq/hx, as appropriate,
and the Ym term is equivalent to a flux source in parallel. Summing

the fluxes at node 0 in a two-dimensional mesh therefore gives the

equation
(Qz+n&~290)(hz/2+Ysluou)/hx + (QT+99—201)Ym/uouhx +
- -0 - = 2
(96 no)hxlhz + (2,0, Aﬂol)hxft 0 (23}
Eor ﬂo. The extension to three dimensioms is obtained by using 21

instead of 22, and summing over more branches.

The equivalent network hecomes planar in problems which are two-
dimensional, trangverse~magnetic. The conditions can them be re-
formtlated in terms of the mapgnetic vector potential, A, merely hy
taking the dualG'B, and this may be convenient for some purposes,
particularly when combining the simplified model for some conductors
with the conventional numerical description of others., The A net-
work is shown diagrammatically in Fig. 6. The equations are

obtained by invertinpg potential and Elow quantities.
7. TEST EXAMILRE

‘I'he surface-node model has been tested in two dimensions by uwsing it

to compute the induced currents and lesses in non-magnetic plates of
various size subjected to a uniform applied field, This excitation

demands a substantial amount of computing, because of the open

boundary, but it removes what are otherwise arbitrary parameters from



the external Field conditions. Results obtained by McWhirter and
Thomasg, and by Stollg, provide a convenient check, and these have
been amplified by suitable numerical field solutions, using a
sufficiently large number of nodes inside the conductor to give good
accuracy. Two plate thicknesses, one equal to the skin depth, &, as
customarily defined, i.e.

t=8=d7Y2
and one of twice this value have been used for most of the calculations.
These are sufficient to give large changes in the field quantities
with depth, but the thickness is not so large as to prevent a
significant interaction between the tangential fields penetrating
from the two surfaces. In consequence the results are representa-
tive of the more critical ramnge of parameters, well separated from
the thin-plate mudels, at the one extreme, and the usual surface—
element formulation at the othet. In the surface-node model the hx

spacing between nodes was §.

An important measure of accuracy is the behaviour of the normal
component of the flux density, i.e. that penetrating through the
plate. The magnitude and phase are plotted in Fig. 7, as a function
of the distance in from the edge along the conductor centre-line, For
a plate of half-width 8§. The curves illustrate the close com-—
parison between the results obtained by the two methods, and they
also show the nature of the penetration im from the edge. The
initial slopes of both the magnitude and phase curves are similar to
those in plates of infinite thickness, but this small effective

penetration depth is not representative of the plate as a whole.

The simplest, most sensitive and most useful single indication of
accuracy is the total plate less. This is plotted in Fig, 8 for a
range of plate widths, As the width increases, so that the relative
effect of the edpes diminishes, the surface-node approximation gives
results which agree to within about 1% with those obtained by the
detailed, interior-node caleulation. The ervor rises to 187 in a
plate of half-width 3§ (that is, one which is modelled by only 4

nodes) but this may be reduced to 107 by halving the mesh interval.

The significance of the cross-plate (i.e. z~directed) branches in

these caleulations was investigated by repeating two calculations

with them removed. This reduces the model to surface elements only,
but allows for the interaction between the two surface layers. The
plate half-width was again 88. 1In the plate of thickness & the loss
was found to be 0.033 of the correct value, this proportion rising to
0.15 in the plate of thickness 26. The unexpectedly low losses

vere accompanied by correspondingly low field components in quadrature
time phase to the applied field. They show that, somewhat surprising-
ly, most of the current induced in plates of these sizes and
propertions is due to the normal, not the tangential, component of the
flux density - i.e. the dominant penetration mode is from the edge,

not from the surfaces.

The internal node spacings chesen for the "exact” solution were

hx = hz = §/10,
so that 3381 interior and surface nodes would be needed to model a
full plate of width 166 and thickness 28, giving a similar accuracy
as that obtained with only 34 surface nodes when the cross-plate .
branches were connected. The method thus pgives considerable
potential savings. Since rectangular meshes were used, the increased
number of interior nodes in the "exact" calculation was also reflected
in an increase in the number used in the exterior region. 1In testing
the surface-node model the exterior node spacing hz was the same as
the plate thickness. The boundaries were sufficiently remote to have

negligible effect.
8. CONCLUSTONS

Tt has been shown that models of Flux screens and conducting plates

in vhich the nodes are confined to the surfaces can give vemarkably
high accuracy provided that the usual surface-element approximation

is suitably modified. Two modifications are necessary, one to allow
for the interaction between the tangential fields penetrating from
the two surfaces. But, more important, there is a second mode of
penetration in from the edge which can be easily allowed For and which
appears to have a dominant influence over a range of parameters of
most interest in many practical applications. The modifications give
a general form of surface-node model which can be applied to plates of
any thickness having an adequate width/thickness ratic. It can be
used for both two- and three-dimensional calculations, and provides a

choice of potential function in two dimensions.



The method of analysis used pives a useful qualitative instght into
the two modes by which flux pepetrates inte a plate and induces
current, as well as a computer model by which the penetration ecan be
predicted quantitatively. The accuracy of the model is being
further investipated over a wide range of parameters, including

thickness, mesh interval and permesbility.
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10. APPENRIX - TANGENTIAL FIELD SOLUTION FOR A
PLATE OF TFIMITE THTICENESS
The tangential field components in the plate can be caleulated by the
vsual assumption that they vary only with z, giving solutions for both

“x and B eof the form

N = Klexp(ﬁ j z/d) + Koexp(-/ j z/d) {24)
Solving for the complex constants Kl and KZ’ and substituting in
equations 14 and 15, gives similar expressions for L and &y;

- +
L (“n ﬂt)uoudu (23)

vhere o and H_ are the appropriate tangential field values at the two

surfaces, and o is given by equation 18, Ex and EY vary in the same

manner, so thab the total current flowing in the plate 1is likewise
given by

1= (E0 + Et)oda (26)
where, again, the suffices denote surface values. I, like #, has two

components, defined by

E
Ix Hf Jx dz (27)
o

t
1 =f J dz (28)
Yy o ¥
and both are given by equation 26 in terms of the appropriate surface

values.

Integrating Ampere's law (B) gives the surface H values in terms of
the current,

“xt - llxo - I)‘ (29)
n_ - ==T1 (30)
yt yo x

where the suffices x,y denote directions, and o,t the two surfaces.

Likewise, from Faraday's law (5)

E, -E ==~ jué Gn
xt X0 ¥

E.~E =jwéd 32
¥t Yo jw x (2)

and each 4 can accordingly be separated inte two components, e.g.

Eyo =~ i mxo (33)
P = 3 i/
Eyt jue (30}

Eliminating between the equations in terms of these flux components,

and the surface H values, gives equations 16 and 17.
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ABSTRACT

An extension te the [inite elemenk technique is desciihed which per-
mits economic solution of opem-boundary problems. The method con
allow for both diffusive and moving media in the inbternal and exkteri-
or regions.

Resulls are given for a coil moving above a conducking plake which
conld be conzsidered as a simulalbion of a levitatbed vehicle-

1. INTRODUCTION

Hary practical electromagnetic induction problems invelve bobkh Lime~
varying currents and moving media. ‘Although in numerons cnsesn Lwo-
dimensional modelling is appropriate, the media in question are often
infinite in extent and Lhus require correspondingly infinite models.
For example, a rectangular current-carrying coil moving parallel to
an infinibe, conductive half-space mighl be taken ag o Circhk rlectro-
magnetic model of a moagnetically levitated vehicle. llare a wmajlor
problem in numerical modelling arices from the eddy currents which,
although locally dense, extend infinitely far im the hall-space.

Classically, such problems have been treated by the inbrodeclion of
artificial bonndaries. In finite difference or finilte eclemenk mekh-
ods, it has been usnal to model a large but finite section of the
field, with arbitrarily imposed boundary condibions. On physical
grounds, it has been argued thal the nature of these conditions doos
not matter, provided they are imposed nt a sufficiently diskant honn-
dary. 5imilarly, in approximate Fourier series solutions, arbitrary
boundary conditions are imposed implicitly, by assuming perindicily,
where none in facl exists.

Various attempls have been made in numerical modelling to creake gqua-
gsi-infinite finite dilference meshes 1.2,3. There rernce in escence
te finding a discrele Green's function on an infinite, regular, Fin-
ite dilference mesh. Finding the continuum Green's funckion of Lhe
pitysical problem instead leads to a direct integral equation formn-
}atign, representing the local effect of infinitely remnle boundarvies
"5\ -

In a recent paper 7 a recursive technique has been deseribed hy which
a very large, topologically annular, Laplacian region can be piven a
very cconomic finite element representalion. As in bthe sarlier Lech-
nigues, localised source distributions and fields con then be model-
led by encasing a local ("inkerior") region of inkerest in a very
large annular {"exterior") region. The inlerior region in this bech-
nique was allowed a broad variety of sources, material inhamopenei-
ties, or nonlinearities. The exterior, however, was required Lo be
purely Laplacian.

The present work extends the method described earlier, to allow dif-
fusive and moving media in the exlerior as well as inberior regions.
The relaltively crude artificial boundaries found in earlier work 8,9
thus become unnecessary.

2. THEORY

2.1 The inclusion of the velocity term

If the finite element derivation is based on an encryy balance Lthen
Ehe inclusion of motion modifies the lunctional by adding a velocity
dependent voltage. The basic dilfusive field ocquakion is!

((13A/3%)"+ (3A/9yI")/ 21} - JA = GEA (1)
where E is a vollbage given by
E =- A/t (2)

The corresponding element matrix B may be derived from the universal
matrices given earlier 10 and, for a lirct order element, is given
by:

by b, by
E-= g,Gu_v b, b, b, (3)
b, b, b,

where V is a velocity in the x-direction.

The requirement of the problem [unclional Lo be rendered stalionavy
may now be writlen as

(8§ + EJA = T4
where 5 and T are matrices developed in previous worl ",

2.2 The exbterior region problem

The basis of the method lies, as previously 7, in the ability to con-
struct a series of apnular regions around the solution area. These
annuli have certain, well-defined, geomebric properiiem:-

a} Bach annulus is geometrically similar Lo every obher annmlus
and all the annuli have the same inlternal finile element subdivision.

b} Bach node on the inner boundary of an annulus is mapped onto
a node on Lhe outer boundary by a {ixed mapping ratio wilkh respect to
a gktar poinl within khe interior region (Figure 1).

c) The mapping ratio is the same for all annuli.

If the nodes on the first annulus are numbered so that all the inner
perimeter nodes come first, the internal nodes next and the outer pe-
rimeter nodes last, then the S and E matrices for the annulus are gi-
ven by:



S;0 0 Sgp B3] | Bip o By Byg| |#

X D e [!
S Bz Bagy (el v [Byy By Bpgpfel =0 (W) i
S51 S ) | B B2 Pyl [P

The internal nodes may be removed by matrix condensation te give two
new matrices in which the imner perimeter nodes are directly related
to these on the outer perimenter:

5 5 @i B E %
11 12 N 11 12 -0 (5)

Saq Syl |#o By Epp|{fo

The 5 and E matrices have been kept separate up to this point bhecause
they exhibit somewhat different properties.

The S matrix is symmetric and, in two~dimensional problems, ilts terms
are independent of length. Ilence each annulus has an identical 8 ma-
trix and this fact can be used to accelerate the recursion process.
In the Laplacian problem then, the maximal rate at which the outer
boundary can be made to recede is given by

2k
r

where r is the mapping ratio and k the number of recursion steps used.

The E matrix, however, is length dependent. The 'b' terms in equation 3
are functions of y. Conseguently, although the E matrix has the same
form for each annulus, the terms have to be multiplied by the mapping
ratio applying to that anpulus. The maximal rate at which the boun-
dary recedes for the E matrix is then given by

k
r.
Unfortunately, for the moving conductor problem, the combined S and E

matrices cannot be separated during the recursion process.

2.3 Tinite thickness, infinitely long conductors

The description of the exterior region technique given above sets a

restriction on the generation of the annuli. This is thalt the mapping

procedure is related Lo a single star point within the interior space.

This implies that the moving conductor becomes an infinite wedge (in-

cluding the half-space as a special case). In most practical situa-

tions the conductor has a finite thickness and this requires a modi-

fication to the method of boundary generation. !

In the problem of Figure 2, the single interior star point is repla-
ced by two te allow for the infinite Laplacian half-spaces above and
below the conductor. The conductor itself is extended using a one-
dimensional mapping. This implies altering the 5 matrix as well as
the B matrix at each boundary step. The procedure is relatively sim-
ple as the geomelric dependence of each term of the S matrix is well
defined.

%. EXAMPLES

The examples given in this section illustralte each of the stages out-
lined above for a simple coil moving above various conducting sheets.
The data for each analysis was generated using the Mag-Net 78 system
12 allowing all the models to be produced and analysed in less than
half a man-day.

3.% Dunal conductor problem - Laplacian

The first example shows a dual bus-bar problem with no ther conduc-
tors present and a simple Laplacian boundary. Figure 3 shows the flux
plots obtained. The number of boundary steps, using Lhe slow expan-

sion, was 20 and the results agree with standard snalytical resultis
13,1 to within 2%,

Z,2 Dual coil, D.C. excitation, conducting halfl-plane

Figure 4 shows the same conductor geometry above a moving, conductive
half-plane. The entry and exit effects can be seen in the fipgure.
The presence of the exterior region is indicated by the way in which
the flux lines 'cut' the boundary.

%.3 Dual coil, D.C. excitation, finite thickness plate

The conducting plate has now been given a finite thickness, otherwise
conditions are the same as for section 3.2. Fipure 5 shows the flux
distribution with Figure & comparing caleulated flux densities with
those predicted by the theory of Freeman and Papageorgiou 15 one cen-
timetre above the plate.

3.0 Dual coil A.C. excitation, finite thickness plate

The same model is considered as in section 3.5 but with 50 Hz a.c.
excitation. Figures 7 and 8 show the instantanecus flux plots at
times a quarter-cycle apart. It will be noted that both the spatial
and temporal distributions are nonuniform, with the currents "slosh-
ing" about in the solid conductor.

%.5 A more complex model

The model of Figure 9 shows a finite lenglh iron block placed behind
the coil above the conducting sheet. The coil is again a.c.

The flux plots, showing the effect of linite length stator iron, as
in, for example, a short stator linear induction machine, are given
in Figures 10 and 11.

As before, at least two plots are required to indicate how the spa-
tial distribution of flux alters in time.

4. CONCLUSIONS

The exterior region approach earlier developed for Laplacian regions
7 has been extended to allow consideration of diffusive regions, such
as might be found in problems involving eddy currents and/or motion.
The technique is simple but has a slower convergence rate than the
purely Laplacian problem. It is also interesting to note that, un-
1ike the Laplacian problem, the E12 and E21 terms do not approach



zero as’ bhe boundary recedes. The reason is that the conpling termn
give a measure of the current present in the exterior region. Conze-
quently Ehe inner and outer boundaries are nobt de-cowpled in Ehe same
way as in the Laplacian solution.

The method lends itself ko aubomabic exterior mesh generalion and fhe
enbire region can be computed from a knowledge of Lhe node posilinns
on Lhe inner boundary. Consequently the boundary condilkion can be
applied withoul user interaclion.

The technique is also computationally fasti typically lLaking around
0% of the solution time for a complelte problem to generake and con-
dense the exterior region. Because the number of inner bonndary
nodes is relatively few (for a unilorm rectangular mesh the ratio of
Loltal Lo boundary nodes being around "/l ) the sparsity ol the com-
plete S matrix is only slighltly affecled.

The theory descrihbed here has considered only velecities in the x di-
rection, similarly velocilies in the y direction or robtationnl velo-
cities can be included 17. The method can be used Lo analyme the pe-
neral 2-D problem of a coil moving in an arbitrary direction relalive
to an arbilrary number of conducting hodies. Ilence, on a skep by
step basis, the complete dynamic behaviour of a propulsien synlem Lo-
gebher with its suspension can now be examined.
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DEVELOPMENTS IN TUE RUTHERFORD LABORATORY EDDY CURRENT PROGRAM

€ 5 Biddlecombe
Rutherford Laboratory, Chilton, Didcot, Oxon, OX1P OQX

ADRSTRACT

Further developments to the Integral Equation Method [or eddy currents
are described. These are 2 new method for time stepping, the treat-
ment of asymmetry, and the inclusion of permeable materialt. Results
are compared with analytical methods and messurements.

1. INTRODUCTICHR

This paper restates the algorithm fot the solution of eddy current
problems hy an integral eguation method, and details the developments
made since its first publication.! These are the inclusion of
permeable material, a new time stepping procedure, and the treatment
of asymmebric peometries.

The two~dimensional limilL of one component of current density and two
of magnetic Field is treated, althouph the method is applicable to the
other limit, and can in theory, be extended to three dimensiona.

The eddy current and permeable regions are vepresented by infinite
prisms, over which current density and magnetisations are assumcd to be
uniform. The current dengities are connected by an intepral equation

. s . . . ;

in terms of magnetic vector potential, and the magnetisatiouns in lerms
of mapgnetic field strength,

A new, and as yet untested method, using the magnetic vector potential
throupghout, is suggested to improve the solution of the permeable
regions.

2. THE INTEGRAL EQUATIONS
The integral equation method is hased on the assertion Lhat Lhe field
quantities ak a point can be expressed as a sum of contributions {rom

all sources. Thus, using subscripts J, M and D to dennte eddy currents,
magnetisations and driving fields, the magnetic vector potential:

Amhp byt hy (2.1)

and the magnetic field strength:

= * + 2.2
" ny e ey (2.2)
.1 : s - :
Analytic expressions exist for AJ, A“, IlJ and "M:
y Jic")

-y = =2 ' .
A‘](L) = W IW dv (2 3)

1]
N B e 1 o) d” (2.4)

c -

“_](-E) = f J(E') X'[—“,T[E_—_ET dv' (2.%)

- -y Y | "
”H(‘E) v }'M(L } (—?!-;E:E"—[—)dv (2.6)

A, and N are known. Thus the total field can be expressed in terms
o? the unknown cutrrent density and magnetisaltion source strengths,
with the driving field.

The current density can be eliminated using Maxwell's second equation:

. =n
VL= T (2.7)

the definition of magnetic vector potential:

VxA=10 (2.8)
awd Ohm's Law:

J = o (2.9)
Substituting (2.8) inte (2.7):

2
VxE=- T (v x A) (2.10)

and integrating:
A
E=- G} + ™ (2.1

Using (2.9):

1=-adt s g (2.12)

where ¢ is a scalar potential. In the Limit considered by this paper,
the pokential can be, in most cases, ignoted, since there are no
surfaces perpendicular to the current. It is useful, as will be shown
in treating eg. the mid-plane of a asymmetric three-dimensional
object.

The total field strength can also be eliminated, if the Field point is
within the permeable material:

(2.13)



3. DISCRETISATION

Only the eddy current and permeable regions need discretisation, and,
using zerc order elements, (2.3-6) become integrals over the cross-
sections of infinite prisms. They are evaluated by the method
suggested by Collie.?

The field points are chosen to be the centroids of the elements. Thus
equation (2.1) becomes:

Ay =l v

[ B ]
-

sh,, . D
5 Riy Gpi* o Bioner %y v S, 0 Gl
For i = 1,2,3....¢

and (2.2) becomes:

< A
" o T LT Tok-1,5 G 3
P 8
t MUa,20m1 7 %) Yo ¥ Uaken, 20 Myp 342
and
C
- 3A
0= ”nyk j£1 2%,j Gp J
P - .d,kg‘.
+££1 [u%, 2001 Meg * (UZk’n ~ ) Myg] (3.3)

for k=1, 2, 3 ...p, where ¢ is the number of eddy current elements
and p, the number of permeable elements. The coefficients R,S,T,U
and the integrals in (2.3-68) with the appropriate signs and constants.

A matrix of equations can now be Formed, sub-matrix G, formed from
coefficients R, GB from S, GC from T and GD from U and U-§.

G G JASBE

(3.4)

4. SOLUTION OF LQUATIONS

The equations (3.4) could be solved as they stand. The method chosen,
however, involves a modification of the matrix Gp» and a reduction in
the number of equations first.

Defining H; as the total field from all currents, the second line of
equation (3.4) can be written:

G, M= Hj (4.1
This could be solved directly for M. llowever the matrix Gd is severly
ill-conditioned,especially if the permeability is higl. In such cases
direct solution leads to leoping in the magnetisation vectors 3,
although the field values outside the iron are virtually unaffected.
This can be cured by several methods." The method chosen is regular-
isation since it involves only one change to the watrix and wo itera—
tive procedures, which would be needed at each time step. TEquation
(4.1) is substituted with the minimisation of:

Hep ¥+ | + o] fn]|? (4.2)
with respect to M. This leads to the equation:
T -1 T
M= (G, Gy +al) Gp i, (4.3)

which can be written exactly as equation (4.1) after the necessary
transEormation of matrix Gy

A small value of g is chosen which removes the looping, but does not
affect the values of field outside the permeable material.

o =4 x 1075 max (G
i,j

2
pij) {4.4)

To reduce the number of equations, the second line of equation (3.4)
can be written:

dA - -
GC‘d_L' + GD M= HD (4.5)
Rearranging:
=-g.-l dh
M Gyl My + Gpp) (4.6}
Substituting into the top line of equation (3.4):
- =1 A p - -1
[Ba-6pCp! Gl qg=A- 4y * 665" 1y (4.7)
=1 .
The matrix of coefficients is now & x c)and A =A_ - E?B Gp H_| is the
combined driving field, Equation (4.7) can tRerffore be writtén more
clearly:
dA _ .,
G K A AO (4.8)



The solution could have been further simplificd by liwmiting the
problems solvable to steady state sinusoidal excitations and Lreating
teal and imaginary parts scparately. However it was decided te solve
equations as an initial-value problem (4.8) For Lransient cddy
currents.

Three methods are used; a fourth order Runpge-Kutto method, an ecigon-
value method and Gear's method. The last two arve described here:

4.1 Eigenvalue Method

The ecigenvalue method depends ou the eigenvalues of the inverase G
matrix being distinct. This property enables a similavity transg—
formation to diagonal Lorm:

Plgilp=np (4.9)

where I is a diaponal matrix, the diagonal members being the eipen—
values, and the matrices P and P~! contain the right and left eipen-
vectors. Thus equation(4.8) can be written:

dA -
T =pDor! oA - Ao) {4.10)

Pre-multiplying by 7! and rearranging:
d
= (r-1 - -1 = - -1
at -t A -({@prt AN (o r Ao) ity

Putting y = P! A, the equations can be separated:

d

S — = - ~1
T (@71 A0, (4.12)

This can be integrated multiplying both sides by

-D,t
1
e
—Bit 4 —Dit
= =1 417
y;e ie (e, bt .13}

Providing such an integral exists A is readily obtainable

A=Ty (h.14)

%%, J and M ean be found [rom equations (4.8),(2.12) and (4.6).

The main advantage of the eigenvalue method is its speed, heing
unafEected by changes in time constants caused by varying geomelry ov
element parameters. Results can be calculsked for any value of time
without integrating numerically through previcus times.

4.2 Qear's Method

Gear's method is a predictor-corrector type mcthod modified Lo solve
stiff systems of ordinary differential equntimw.5 Stiff systems are
those with a large ratio of the largest to smallest eigenvalues of
the matrix dzA/dt.dA:]. Such cases occur Frequently, especially
with unconnected conductor tegions (see section 5 below).

Gear's methiod is reserved for cases which have repeated eigenvalues.
5. CONNECTIVITY

Connectivity is the name given to the "end" properties of the condue~
tors. Connected conductors have a return path for current delined

by symmetry. Unconnected conductors do not, and for them the con-
servation of charge must be applied, fe:

[fids=0 5.1

In other words, there must be no net current Elow. Although this
camot be applied in a strictly infinite problem its application

makes the two dimensional limit uwselful in solving real problems, where
the condition does apply.

This is where the scalar potential, equation (2.11} matters. Eqguation
(4.8) should in these cases be written:

G 0%% + pgrad ¢) = A - A, (5.2)

although this equation can be derived exactly as before. The prad term
can be eliminated by introducing a new vector potential, A'.

L)
* - % + grad & (5.3)

Then by integratiop:
A= A+ E(D) (5.4}
Thus equation (5.2) becomes:

da' v -
¢qr = (A - A, - (D) (3.5)

Equation (5.1} coan be digeretised:

n

3
f=

A’ 5.6
.1 EE* Oi ﬂi =0 ( . )

o1

-
"
[

where o, and a, are the conductivily and area of element i, and the
element® i are’all part of one uncomnected region. Equation (5.6} is
equivalent to:



ne -1
Lu,oa {§=1 © )y [a' - Ao); - f(t)j:] l=40 (5.7

for all elements i in any one region. By defining matrices R, § and T:

R

-1
gp T2 IG5 a5 0y 5.8
ij
i e region k

j & region &

=L (G‘i)ij a, o, 5.9

S .
kJ i i

i e region k

=)
It

1
§ G )ij (5.10)

ik
j £ region k
and noting that f(t) is constant over each region
£(e} = B°1 5(A - A (5.11)

Since f(t) is in terms of (A_Ab) a new matrix can be formed:

new ol

d
¢! =g ~fTr! T (5.12)

Solution proceeds as in other cases, but net current is ensured zero in

each region. Since one zero eigenvalue is found for each unconmected
region the eigenvalue method might fail with twd or wore such regions.

The above method has been tested by comparing the currents induced by
a uniform external field, in a symmetric bar, represented by symmetry,
with those in a completely specified bar, of the same overall
dimensions. Without the comnectivity condition, the results only
coincide when the bar is placed symmetrically about the zero of
magnetic vector potential. With the condition, agreement can bhe
obtained at all levels of potential.

6. RESULTS

Results from a program, BUEDDY, written by the author, have been
compared with analtyical solutions and measurements. The analytical
test case is the hollow cylinder, inside radius 0.!m and cutside
radius 0.2m. It is made of either copper, with conductivity 10%m~!,
or iron, with conductivity 10%Sm~! and relative permeability 1000.

The driving field is of | T perpendicular to the axis of the cylinder.

It is switched on at zere time and the transient response is
calculated.

The results tabulated (Pable 6.1) are of induced flux density, in
line with the applied field, at radial positiomns, also in line with
the field.

Table 6.1 Results of Cylinder test

posi~ Induced Flux Density B [T]
tion ¥y -
m]
Numbers of Elements Analytic

! 20 40 60
0.0 — 1,000 -1.000 —-1.000 =1.000
Cu 0.1 ~1.000 -1.000 —1.000 ~1.000
Time 0.2 -0.943 ~0.941 -0.964 -0.950
= 0.,0025 0.3 -0.393 —0,405 -0.416 -0,423
0.0 -0,645 ~0,652 -0.654 ~0,658
Cu 0.1 0,650 —0,654 ~0.655 0,658
Time 0.2 ~0, 385 ~0.389 -0.389 -0.391
= 0.5 0.3 -0.167 ~0.171 =0.172 =-0.164

a0 42 56
0.005 |-1.017 -1.014 | ~1.011 ~1.000
Fe 0.105 -1.013 -1.013 -1.018 -1.000
Time 0.205 1.323 E.282 1,124 0,885
= 0,0125 0.305 0.358 0, 359 0. 359 {, 400
0.005 ~0.968 -0.975 ~{1.9280 -0.996
Te N. 105 —1,213 ~1.152 ~t.106 ~0.816
Time 0.205 1.123 F.074 1.040 0.947
=2,5 0,305 0.419 0.442 0.6423 0.428




Convergence towards the analytical selution is obviows in Lhe case

of copper. The iron results are less pleasing, but are still within

the rvight order of magnitude.

Fipures G.1-4 show flux lines aud discretisations. Except [or Lhe
60 element, copper case the discretisations do not make use of any
prior knowledge of skin effect.
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For comparison with measurements, a linear induction motor, made and
tested at Imperial College, was used. For this the RMS [lux density
in the ajrgap, and force on the plate as the plate is displaced, are
shown graphically in Eigures 6.5-8, The computer model is shown in
figure 6.9, the broken lines indicating that part of the model
treated by symmelry.
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The poorer results for forces are attributed to Lwo factors.
Since the force was calculated at different horizontal positions
of the plate, symmetry could not be employed., The same number
of elements was used, covering the whole model, thus giviug a
coarser discretisation. Also, the force is a second order ecffect,
depending on current density and flux density values.



7. ALTERNATIVE TREATMENT TOR LRON

To improve the results for iron, especially conducting iron, m
alternative formulation is proposed. It starts from the expression
for mapgnetic vector potential due to a magnetisation source (2.4):

Ay =Y f ue™ x V(I ) dv (7.1
M= -y - S —
4 ]r_EHI

The magnetisation can be expressed in terms of the Field strength
(2.1

M=y (7.2}

which can, in turn, be expressed in terms of the vector potential

M=t ¥xA (7.m
[|]
Therefore
A(£)=u_DI)LVxAxV( 1) d” (7.4
H yt it [e - ]

In two dimensions, A has ouly a Z copponent, ‘Therefore (7.4) can he
simlified, using the two dimensional form of (7.1)

M= -Yo f me x (x-x" da
on | m————
lx - "2 7.5
to the follewing form

Ao = - Mo f X v A(x") . ¥(log (r - ™) )da (7.6)
2m iU

This can be tramsformed using Green's theorenp to a boundary term
and a volume term.

AL =-o [XAG" dtog (x - ds
H am It dh
+ M fAGe™ v. (X9 (log {x- 1 ) ) da (7.7
2w u

For lincar problema, this can be Further sinplified, since the second
term i3 zevro except at the field point,

The final form Tor the total vector potential is

B a(e’) [ 2 21y tog (1x') dx dy

o X{E)y o yo

A{_l‘) (1-po U(E)’ AD(E} + Lo
x(x™) ny d e

- ;_: J n(e™ AG™) 3, (log (x-z7)) s

(7.8)

Permeable regions can now he treated by discretising only the
beundary. The intepral equation in terms of Field streungth can be
replaced by a second equation in terms of vector petential, the field
points being the boundary nodes. This method derises from the work en
D magnetostatics at the Rutherford Laboratory.

8. CONCLUSIONS AND FUTURE WORK

As it stands, the integral equation method is a powerful way in

which to solve eddy current problems in two dimensions. 1€ the

modifications sugpested in section 7 give thie hoped [or improve-
ments, it will be worth extending Lo a steady state version, and
investigating extensions to the eipgenvalue method, for repeated

eigenvalues. Other applications could be axisymmetry and moving
conductors.
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THE EFFECT OF GAPS DETWEEN LAMINATIONS
ON AXTAL TFLUX AND EDDY CURBENTS IN AN IDEALISED STATOR CORE

T.G. Phemister and C, Wymer

N.E.I. Parsons Ltd., Hewcastle uporn Tyne, HEG 2YL, England

ABSTRACT

The effect of gaps between laminations on axial {lux and eddy
currents has been calculated for an ideslised model of a stator core
which corresponds roughliy to what happens inm an actual pecerator more
than 100 mm from the core end. Equations have been formulated and
solved Eor half-lapped and third-lapped cores. Compared with
calculations for a core without gaps, for the same axial Elux density
at the inner and outer sucfacea, the gaps increase the total axial

flux by about a Fifth and the total eddy current loss by about a thied.
1. TINTRODUCTION

Calculations of the three-dimensional magnetic Eield in a
generator stator core necessarily use a smoothed or homogenenusl
representation of the laminated structure. The number of layera of
laminations in the First half metre of the core is of order a thousand
and no computation- could contain so much detail., Hevertheless, the
presence of electrical discontinuities in the core and the fact that
they are stapgered in neighbouring layers must have a sipgnificant
effect on the axial component of Elux density., It is this effeet

which has been investigated for an idealised stator core,

The model adopted is a stack of rectangular laminations of finite
width in the direction corresponding to radial in an actual machine,
but extending to infinity in the other two directions. Thus there
are no end effects and every lamination has the same pattern of
electromagnetic fields, though the pattern is staggered in adjacent
layers, The permeability of the irom is assumed to he linear, but
this is of no importance because the pattern of the fields is
determined by a skin-depth almost entirely dependent on the stacking
factor. The model corresponds roughly to what happens in an actual

generator stator core more than 100 mm from the end.

2

A companion paper® generalises the equations so that the effect

of the gaps on fields near the core end can be investigated,
2, TYPES OF LAPPING CONSIDERED

Tuo types of lapping are considered: half lappiug (Fig. la), in
which the gaps between laminations in one layet are opposite the
middle of the laminations in the neighbouring layer; and third
lapping (Fig. 1b), in which the paps in the neighbouring layer are

displaced by one third of the width of the lamination.

The same coordinate system 1s used for both Lappings. The x~axis
corresponds to the circumferential direction in an actual stater, and
the y—axis to the radial direction (Fig. 2). The boundaries y = iw
are the finite boundaries of the Infinite stack of laminations and
correspond, respectively, to the outer radiug and the radius of the
bottom of the alots in an actual stator. The other boundaries of the
lamination, corresponding to the radial gaps in an actual stator, are
at x = 2y for a half-lapped core, and at m = &3¢ for a third-lapped

core.

It is assumed that the radial gapa, although perfectly non-
conducting, are infinitesimally thin. This simplifies the algebra,
without introducing any significant error inte the solution, since the
mean magnetising force in the plane of the laminations does not appear
in the idealised model. For the more general work described in the

cowpanion paper, a better representation of the gaps is necessary.
3., HOTATION AND DERIVATION OF THE EQUATIONS

The work on the idealised model of a core precaded the more
general work described in the companion paper and gave the necessary
ideas for the generalisation, IHowever, it would be wasteful to repeat
the derivation of the equations, which will be taken as required Erom
the companion paper., They were obtained by integratinpg Maxweil's
equations across the lamination and by introducing the assumption
that the mean values of the magnetising force and Elux density across
the lamination were equal to the averages of their values on the two
faces. 1In this way, the electromagnetic Fields in each lamination can
be described by five scalar quantities, each a Eunction enly of x, ¥

and time, t.



8 and s are scalar potentials which define the symmetric and
antisymmetric parts, respectively, of the = and y components
of the magnetising force. Thus, on one face of the lamination
the surface magnetising force is the gradient of 5~s, and on

the other face it is the gradient of 5+5.

B and b are the sympetric and antisymmetric parts, respectively,

of the axial flux density.

T is a stream function which defines the mean value of eddy

current density in the plane of the laminationm.
The other notation required is straightforward.
a is the half-thickness of the lamination,
4 is the thickness of non-magnetic material between laminations.
ug is the fundamental constant of permeability,

v, is the relative permeability of the core-plate material,

assumed to be constant and isotropic.
72 is the two-dimensional Laplacian operator.
p is the resistivity of the core-plate material.
w is the circular frequency.

With this notation, and using the representation of alternating
fiaelds by complex algebra, equations 10, 16 and 12 of the companion

paper become!

T= 4 ovs + cané:‘fant, ¢ eeeses (1)
20 _ 2b
s ;E?Eiﬁ;iﬁf » senass (2)
v2rp =%93. reoans (3)

From the symmetry of the problem, T, S, 5, B and b must all be even
functions of y. The remaining equations will be treated separately

for the two types of lapping.

S is undefined to the extent of a solution of Laplace's equation,
Since this plays no part in determining the eddy curremts, it will be

ignored and set to zero.

4, THE SOLUTION FOR HALF-LAPPED CORES

It is obvious from the symmetry of the half-lapped core that
S§=0and b = 0 and that T, 8§, and B are all even functions of x.
Continuity of the scalar potential between laminations (Equation 14

of the companion paper) therefore gives
i
B = —Eﬂ-[}(a:,y) + glx-20,y)] for x>0.

Because of the symmetry, there is no need to consider x<#, and the

symmetry also permits the last equation to be rewritten as

B = P;P-[B(x,y) + s(Zv-x,y):[ for x>0, toeass (B}

To obtain useful equations,it is necessary to divide g and T into
symmetric and antisymmetric parts with respect to x-v in the half-

lamination for which O<x<2vy:

81(z,y) = ¥[slz,y) - sl2v-z,y)],
syfm,y) = ¥[sta,y) + aldv-m,yl],
Ty(zy) = %¥[Tlzy) - T(20-z,y)],
Tolz, ) = ¥[Tlxy) + T(20-z,y1],

1

giving 8 = 81 + 82 and T = Iy + T5. Equation 4 shows that B is
necessarily symwetric with respect to x-v. Substituting these forms
in equations 1, 3 and &4 gives, after soms rearrangement and after

absorbing the arbitrary constant of equation ! into Ty,

Hody

B = 2 T e (5)
i 2
7y = [E*hu ]52, veenn (8)
8
Tl = 7"1: 3 LR N} (7)
27
v2g, = Egz"’z’ ceeee (B
via; = 0, verar (9)
- in which g2 = {22turitle e (10)
Qb gt
?gd zg d is the skin-depth of a composite material of resistivity
ath)p aqs voup{ 2a+hl}
- and permeability M_EE;EQ;__ These are exactly the



resfstivity and permeability used in a bomogeneous! representation
of a laminated core. Although the distribution of axial flux is
changed by the paps between laminationg, the partial differeatial
equation satisfied Ly the axial flux demnsity remains the same as if
there were no gaps. Since %5 will usually be much less tham &, the
permeability of the irem is gE little importance in the equations;

that is the justification for assuming it to be constant.

The boundary conditions are that T is constant avound the edge
of the lamination, which implies that Ty = 0 at y = iw, T = constant
at y = #w, and Ty + T, = the same constant at x = 2. This implies,
through equations 5, 6 and 7, that 8y = 0 at y = *w and that F and 83
are constant at y = #. It is striking that the axial flux dewsity
at the surface of the stack of laminations is uniform whether or not

there are gaps in the core,

Solutions of equations B and ? which satisfy the boundary

conditions at y = #@ must take the forms

(2n~1)n(z-v})

™ 7t
. (2n-1}11y] oin 2

8, a,coa[ (Zn=1)nv) * seer (1D

n=l Bzﬂf%——iaﬂ“J
((124)y)
hBO cosh —-a—li" . E b {2n— 1)ny] cosh[ﬁnfm'vl]
By = (Ti7e coa 2w ] ecosh(B}
2ug coah--—jqw-v =1

vees (12)

2 . &, (8n=1)%12
where B" 27 + T

and By is the axial £lux density at the surfaces of the stack of
laminations, y = #w. The coefficients a, and b, can be determined by
Fourier analysis of the remaining boundary conditions. Symwetry ensures

continuity of T at # = ¢ and also implies that 37/3r = 0 at = = 0,

8
B‘B[Bl+ [1 1"}'1—-—]82] = at z = 0.

The condition that T must have the same constant value at x = 20 as

giving

at y = w gives

2a Za |hBg
a; + [1 + 7;';’-"]82 [1 + hlip]zl}{) at = = 2v,

These equations, together with equations 5 to 7, give a complete
gsolution for the electromagnetic Ffields in this idealised represent-

ation of a half-lapped core.
5. THE SOLUTION FOR THIRD-LAPPED CORES

Finding the solution for an idealised third-lapped core was more
complicated than might have been cxpected after the simplicity of the
solution for half-lapped cores. It will not be possible to present
the equations in the space available, but the way in which they were

obtained will be described.

The biggest difference between the twe sclutions is that it is
not possible to develop a set of equations for third-lapped cores on
the assumption that the mean scalar potential, S, is zero. It is
necessary to divide each of T, 5, s, B and b into symmetric and
antisymmetric parts in each of the three intervals —3u<xe-v, ~v<mTsy,
and vemedv. By use of symmetry, these six functions can be reduced to
three for each of T, §, €, B and b, BRoth equation 13 and equation 14
of the companion paper are required, as well as equations 1 to 3 of
the present paper, and finally it is possible to reduce the fifteen
sets of equations to two sets of three simultanecous partial different-

ial equations.

When this was done, it became possible to see that the mean
scalar potential, §, had little effect on the axial flux density and
the eddy currents. Since the mathemetical model! was already lighly
simplified, there would have been no gain in accuracy in calculating
this small effect; moreover, there is little value in bringing § into
a linear calculation, since the radial and circumferential components
of the magnetising Force are more strongly affected by the non-
linearity of the magnetisation curve than any other components of the
electromagnetic Fields. For these reasons, the equations were
gimplified Dy assuming that the same pattern of axial Flux density
existed in all three parts of the lamination, which is equivalent to

supposing that the axial £lux density is not influenced by S.



After this simplification has been made, it can be shown that
the axial flux density, 8, is constant along the surfaces of the
stack of laminations and that B satisfies the same complex diffusion
equation as in half-lapped cores (equatiom 8, with s, replaced by 7).
Thus B has the same form as before (equation 12 multiplied by E%”J'but
the coefficients b, are different. The rest of the solution,
including these coefficients, can be determined by solving equatien 3.
The stream function, ¥, can be expressed as the sum of a single
solution of the complex diffusion equation, proportional to B, and a
solution of Laplace's equation different in each of the three parts
of the lamination, The mean scalar potentiak, 5, obtained from this

solution is not zero, but its effect on T and B is small.
6. PATTERN OF AXIAL FLUX DENSITY

All the resulis which follow are expressed per unit and are based
on the same axial flux demsity at the surface of the stack of
laminations. The reason is that, in anm actual stator, wost of the
axial flux is carried inand around the teeth. This dominates..any
differences that different designs may produce in the back of core and
so a unit axial flux density at the surface is the most reasonable

basis for comparison.

The pattern of axial flux density is shown in Fig. 3. For balf-
lapped cores there is a low ridge along the radial gaps, whose height
is about 10% of the axial flux density at the surface. There iz a ‘
similar low ridge in third-lapped cores, but it is only about two
thirds as high as in a half-lapped core. Such a pattern has been
observed experimentally at the Central Research Laboratories of the
Central Electricity Generating Board®, but the fields were not

homopolar and quantitative comparison was impossible.
7. EDDY CURRENT STREAM LYNES

Eddy current stream lines have been plotted for half-lapped
(Fig. 4) and third-lapped (Fig. 5} cores. The total current between
twe stream lines is roughly the same in 21l the figures. Some of the
figures seem surprising, but it has been checked that they are the

solutions of equation 3 for the patterns of axial flux shown in Fig. 3.

8, EFFECT OF CLRCUMFERENTIAL WIDTH OF LAMINATIONS

One application of the work has been to study the effect of
varying the width of laminations. A size of core typical of a 660 MW,
50 Hz, two-pole turbogenerator was taken and calculations were made
for various numbers of laminations in the same layer, the circum-
ferential width of each lamination being inversely proporticnal to

this numbex.

The total voltage induced by axfal flux in a pole-pitch (Fig. 6)
and the total eddy current loss (Fig. 7) were calculated by adding
sinusofdally distributed fdealised solutions and should be treated
cautiously for the wider laminations. For a typical width of
lamination for am actual generator, the total voltage (proportional
to the total axial flux) is about 2Q% greater than it would have been
in a core made of continuous laminar rings and there is a small
difference of phase. The total eddy current loss is about a third
greater than it would have been in a core made of continuous laminar
rvings. A theoretical model developed at Imperial College also

predicts effects of this order®,

Both the total voltage and the total eddy current loss decrease.

as the circumferential width of the laminations increases,
9. EXPERIMENTAL EVIDENCE

There is no direct experimental confirmation of the predicted
effects, but, as well as the qualitative behaviour mweasured by the
CEGE (discussed in Section 6}, there is some quantitative evidence,
admittedly eircumstantial.. The work has been used to correct HEI
Parsons' existing three~dimensional calculation of electromagnetic
fields near the end of a generator stator, which is based on a homo-
geneous model. With the correction, the prediction of total losses
attributable to axial flux is within I07% of the total deduced from
local measurements of loss densitiesd, Predictions of temperature
riges have alsc been improved by including the additional loss caused
by axial flux at the radial gaps®. Thus there is some reason to
suppose that the idealised model is a fair approximation to the effect

of the radial gaps sufficiently Ear, say 100 mm, from the core end.



10. CONCLUSIONS

The effect of gaps between laminatioms on axial flux and eddy
currents has been calculated for an idealised core. ‘There is a low
ridge of axial flux density at the gaps, which may increase the total

axial flux by a Fifth, and the total eddy current loss by a third.
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FIG 3 TYPICAL EONTOURS OF AXJAL FLUX BERSITY FIG 4 TYPICAL EDDY CURRENT STREAMLINES IN HALE LAPPED CORE
{a) HALF LAPPED CORE ‘ {a) IN PHASE WITH SURFACE FLUX DENSITY
(b} THIRD LAPPED CORE (bl IN QUAORATURE WITH SURFACE AXIAL FLUY DENSITY
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