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ABSTRACT

The numerical solution of engineering and scientific problems often
inwvolves solving large systems of algebraic equations. These systems
may have a very sparsely populated coefficient matrix, or an almost
Fuil matrix, dependent on the method of discretization used. The
methods of solving linear systems of such equations are hreoadly
classified as either direct or iterative. The solution of non-
linear systems, such as often arise when modelling saturable
materials, Lor example, almost inevitably necessitates itevative
solution, and for each iterative step a linear system is solved. 1In
this paper some of the recent developments, particularly these that
were not mentioned in the last COMPUMAG Conference, are reviewed.
Botf direct and iterative methods are covered. In additbion somn
methods are included which are slightly older, but which warrant
further exploitation.

1. INTRODUCTION

The increasing availability of computers in the past 20 years has
promoted the extensive development of numerical methods for selving
engineering and scientific problems. A number of general purpose
methods have been widely used. Methods employing Einite dilferences
or finite elements have been used extensively for solving problems
characterized by partial differential equations. An altermative
method of solution is to formulate the problem in terms of an equi-
valent integral equation. Much research, particularly recently, has
been directed towards the development of numerical methods {or
solving such integral equations.

Almost without exception, all these methods use a discretized modcl
of the problem to characterize the continuous dependent variable.

This consists of a finite set, often large, of variables which may
represent function values directly or be coefficients of, for example,
poiynomials which represent the function over a Finite subregion.
The governing equations and boundary conditions are veplaced by a
system of simgltaneous algebraic equatiovs involving these discrete
values. Frequently the system of equations is large. The coeflicient
matrix may be very sparsely pepulated, or be virtually full,dependent
on the method being employed. MNon~linear problems will in general
produce a non-linecar algebraic system to be selved. TFrequently this
is achieved by solving a sequence of linear problems.

Given a linear system of alpgebraic equations, two geveral classes of
methods exist for their solution: direct and iterative. Althoungh
the basic form of these methods is now part of classical mathematics,
there have been extensive developments during recent years.

2.1

Section 2 covers the principal developments in the direct selution
of large systems of equations. 1ln gencral these involve the
exploitation of the sparsity or structute of the coelficient matrix.
For systems of equations with full matrices, in general only
featutes such as symmetry or positive definiteness of the coefficient
matrix are available for improving solution methods and algorithm
design. TFor matrices which are sparse considerable reductions in
the computational work necessary teo solve the associated system of
equations have been achieved. Tive topics are covercd in the section.
First the recent developments in the determination of optimal node
orderings when using a band solution routine are outlined. Then
Section 2.2 briefly reviews the use of the minimal degree algeorithm
for pencral sparse systems of equations. Im Section 2.3 the method
of uested dissection is described. Tt is based on the repeated
geometrical dissection of the mesh used in finite difference or
finite element models. Provided computalion wilth known zero elements
is avoided, the method is likely to be much more efficient than
methods employing,for example, the frontal selution approach,
particularly For problems in two dimensions. Section 2.4 is a briel
description of some of the other highly eEficient direct methods
which are only applicable to special classes of problems, in
particular those governed by separable equations. Fast Fourier
transform techniques and cyclic reduction have heen availablie for
some time, but have lacked extensive use. In addition several of
these techniques and methods can be employed in an iterative fashion
for solving equations which do not satisfy the rather restrictive
conditions. 1In Section 2.5 a novel metlod which has not yet
received very much attention is briefly outlined. It is based on a
marching technique For solving systems of equations obtained from
elliptic differential equations. 1t exploits the extra precision
over and above that required by the user that is available on many
modern computers.

The major developments and advances in direct solution methods have
becn achieved in general by expleiting special features of the prob-
lem. For example the sparsity and pattermed layout of the nodes is
used by nested dissection, and the separability of the equation and
the resultant coefficient pattern is exploited by methods hased on
fast Fourier trangforms and cyclic reduction.

Analopously the majority of advances in iterative methods are based
on the exploitation of certain features of the problem. llowever
first, in Section 3.1, the determination of the optimal relaxation
parameter Eor successive over relaxation is surveyed since this is
still a much used method. Then in Section 3.2 the basic primciple
of the strongly implicit procedure is outlined, and the experience
ol its use over the last six years is summarized. Then in Section
3.3 a class of iterative methods which use the conjugate gradient
method applied to a "preconditioned' system of equations is des-
cribed. They are likely to be the most interesting development of
the decade in this field of iterative methods. Deflerred correction
is a method which can be employed to extend the application of many
solution methods, both direct and iterative, to preblems which do
not satisfy all the criteria necessary [or the particular method.
its use, particutarly in association with some of the recent develop-
ments is outlined in Section 3.4.



Being a review paper, extensive mathematical detail has been
omitted. References te the important papers in the various topics
are given in the text. Additionally the paper by Reid! (and to a
lesser extent Reid?) contain a wealth of detail on the direckt
solution methods for systems of equations. The paper by Fox3 is a
gpood review of iterative methods written before the publication of
the recent papers on preconditioned conjugate gradient and marching
metheds. It does, however, include mention of both classes of
met:hods.

2. DIRECT SOLUTION METHODS

2.1 Band Matrix Methods

Finite element models generally praduce systems of algebraic
equations which are positive definite. This means® that during a
divect solution employing, For example, Gaussian elimination, LU
decomposition or Cholesky factorization pivoting is not required.
The coefficient matrix is generally very sparse because of the
nature of the elements. Each node is assocciated with only a small
number of elements, for each of which an algebraic equation is
obtained. The avoidance of pivoting means that the sparsity pattern
is not permuted during the elimination.

Band matrix techniques exploit the avoidance of pivoting and use the
'outline' sparsity structure. It can easily be shown that during the
solution of a system of 'n' equations satisfying the above conditions,
and for which all the non-zeros of the coefficient matrix lie within
'm' rows or columns of the main diagonal, the creation of non-zeros
(termed Fill-in) only occurs within the semi-bandwidth m about the
main diagenzl. However within that semi-bandwidth, £ill-in tends to
be almost complete. There is therefore no requirement to use a
sophisticated form of compact sparse matrix storage, only the
elements within the semi-bandwidth need be stored and operated on.
Jennings” extended this result to the case of a variable bandwidth
matrix. For a mattix of order n and semi~bandwidth m, Gaussian
elimination employing band matrix techniques requires o( mm?)
computations contrasted with 0(1/3 n3) used by Gaussian elimination
on a full matrix of order n. The storage is also reduced From n2 to
2 .  For typical engineering applications with n = 2000, m might be
200, and the computation is therefore reduced by about two orders of
magnitude.

Irons6 showed that in addition to reducing the computation, band
matrix techniques can be used te reduce still further the in-core
storage requivements during the elimination. With a semi-bandwidth
of m, only a square matrix of order m meed reside in core at any

time since the elimination of a single variable can involve variables
(and therefore the corresponding equation) at most m rows (or
columns) away. The term 'frontal' approach is used because the
elimination proceeds along & "front' which traverses across the pro-
blem. The in-core storage required is then only m“. ALl of the
above figures can be halved, or almost halved in the case of storage,
for symmetvic matrices.

The importance of reducing the semi-bandwidth m is evident frem the
dependence of the amount of computation on m?, tHoreever the in-core
storage requirement is alse proportional to m%. When using a solu-
tion preocedure employing variable bandwidth, one seeks to reduce
both the bandwidth of the matrix and alse the profile, the profile
of the matrix being defined as the sum of the semi-bandwidths of
cach row of the matrix.

Sometimes it is easy to order the variables by ingpection so as to
maintain a small bandwidth (and profile), but for complex mesh
problems it is nol always straightforward. The algorithm devised by
Cuthill and McKee’ has been very widely used. It is based on Che
comparison of several orderings each of which starts at a vertex of
the graph which can be thought of as representing the matrix of
coefficients. George® observed that the profile of the matrix may
be further reduced by reversing the order of the nodes praduced by
the original algorithm. Space precludes a thorough mathematical
treatment, for which readers are referved to the original paper? or
to reference”,

More receutly Gibbs, Poole and Stockmeyer9 have devised a new
algorithm which has already achieved considerable use, and can pro-
vide substantial reductions, about 90% in some typical cases, in the
computational effort required to obtain the node ordering. The band-
widths and profiles they obtained on an extensive series of test
problems are comparable with those obtained using the Cuthill-MeKee
algorithm.

Reid2 states that when solving systems of equations which do not have
a positive definite matrix so that piveting is necessary to maintain
stability, then partial piveting by rows or columns produces only
about 50% more non-zeros than cbtained by piveting on the main
diagonal. The amount of computation and in-core storage therefore
increases by about 125%.

2.2 The Minimal Depree Algoritlm

The frontal solution methods only attempt to minimize computation by
reducing the bandwidth. Other algoritlms have been developed which
aim to minimize the computation dirvectly. These more penerally
applicable approaches! to solving sparse systems of algebraic
equations make use of the sparsity by using a data structure that
stores only the non-zeros of the matrix and associated indicators
giving their positions, or relative positions, in the matrix. In
this way during the solution of a system of equations, full advantage
can be taken of the sparsity structure and only these elimination
operations involving non-zeroc elements are performed; all operations
on known zero elements are avoided. The data structure must enable
non-zero elements to be imserted and eliminated during the solution
procedure as fill-ins and elimimations occur. A possible data
structure could, for example, store For each row of the matrix =z pair
of vectors, one with real values storing the non—zero elements of the
row, and the second with integer values storing the indices of the
column in which the elements occur. In addition a third vector
storing the integers which define the nearest non-zero by columns is
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often specified to aid computational efficiency. Hote that this is
one of only several possibie schemes For packed storage. Corres—
ponding to such storage scliemes, very efficient means have lLeen
developed for combining rows or columns of matrices stored in this
way which only operate on non-zero alements. Clearly the aoverheads
in terms of logical checking are relatively large, and sueh toclh-
niques are only beneficial, if the matrix is relatively sparse,
typically less than 1/20 of the elements non-zero during the
elimination. This result may need teo be qualified for certain
extreme types of problems such as those with a very small anmboyr of
nodes,

For a general ynsymmetric matrix a strategy for choosing the pivots
is required and must consider mnot only the stability of the pro-
cedure but also the £ill-in that is generated. Generally for
stability a criterion based on the relative size af the pivot
compared to the largest element in its row or column is used.
Ordinary partial pivoting corresponds to the choice of one of the
largest elements in the tow or colunn and does mot allow enough
freedom for the exploitation of sparsity. Curtis and Reid!? have
Eound that the choice of criterion for the pivot determined by
stability is not eritical, and recommend , based on experiment, the
selection of a pivot clement not less than a quarter of the maximum
element in the row or column. With this weaker selection of pivol
elements based on stability, a greater emphasis can he directoed
towards reducing £ill-in.

The Hnrkowitzll criterion is frequently used to limik the fill-in
during the sclution of a system $f equations when sparse storage
methods are used. The LU or LDL' factorization cam be divided into
n steps, where n is the ovder of the matrix. Each step comprises
the elimination of one variable (or equivalently the factorization
of one row or ene column of the matrix). At the kth step of Lhe
elimination, a submatrix, Ak, of order n - & + 1 is to be [actored.
The Markowitz strategy is to find that element which salisfies the
chosen stability criterion and which also has the smallest peoduct
of the number of other non-zeros in its row and number of other non—
zeres in its column, and then by column and row interchanges to
bring this non-zero element to the pivotal position. This eriterion
minimizes the number of multiplications for that stage of the
elimination within the stability bounds.

For solving general systems of equations which have a symieltic and
positive definite matrix, the Markowitz criterion constrained to
diagonal elements reduces to selecting at each pivotal step the
diagonal element with least non-zeros inm its row as pivot clement.

Reidl’2 fully describes these types of solution proceditre and their
efficient implementation in computer software. Such software tends
to be divided into three stages. The ‘analyze’ stape determines the
form of the Factorization. The factorization stage in which the
factorization with the matrix values is actually performed using the
procedure determined in the [irst stage. Finally the operate stage
which uses the factorization obtained to solve the system af
equations with given right hand side vector. Of these stapges, the
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first is generally the most expensive. [However Reidl2 believes that
there is potential for drastically reducing the computation in this
plhase particularly for sTmmetric positive definite matrices. (See
also George and Mcintyre!d.)

The less common case of solving non-definite symretric matrices has
also been resolved, and stable factorizations can be obtained in
about the same computational effort as that taken by existing codes
(that is without the probable savings mentioned inmediately above)
for the positive definite case. The strategy and the choice of
pivots is however gquite different., (See Duff, Hunksgaard, Nielsen
and Reidlh.)

2,3 Hested Dissection

Gcorge15 has vecently devised another method of selving systems of
algebraic equations which aims to use the mininum of core storage
and operations during the Gaussian Elimination. It is a method of
ordering the nodes of a mesh so that the resulting set of associaked
alpebraic equations can be solved with the near minimum of compu-
tation. The bencfita are obtained by using a sparse matrix storage
and computation system which stores and operates only on those
elements of a matrix which are non-zero, and emits all operatiens on
known zero elements.

Consider a vectangular array mesh of N by N nodes. For the commonly
used five point molecule, each nodal value only occurs in the
equation for that value itself and the four neighbouring values. For
this problem George'” was able to reduce the operation count to O{N3})
and the storage to O(N2 logy N),both of which are close to their
minimum values. For typical two dimensional meshes these valuos are
significantly lower than those derived using the frontal solution
teclnique and not very much greater than those used by iteralive
techniques for each iteratiom.

As an illustrative example of the method, consider a rectanpgular
region. 1In this each group of Four uodes forming a basic rectanple
combine to form an algebralc equation so that the 'councckions' he-
tween nodes form the sides and diagonals of rectangles. This is the
type of connection one has when using [inite element models. The
nested dissection ordering is obtained by first dissecting the region
of interest into sub-regions of approximately the same size, each
with the same shape as the basic elements. We therefore dissect the
whole rectangle into four rectangles of approximately ecqual size.

AIl the nodes on the comion dissecting lines make up the set 51.

Each of the four repions i3 now itsell dissected into four approx-
imately equal sized rectangles, and the nodes on these lines of
disscction which do not belong te set S; male up S3. This process is
continued until no further dissection is possible, i.e. in the case
of a rectangle until single elements or blocks of two by one, or two
by two elements remain. All these 'loose' nodes Form the Final set,
S, say. 'The ordering of the nodes for assembling the system of
equations then follows by taking first 2all the nodes in the set §_,
and then ail the nedes in set Sq_l. and 50 on. Within ecach set tie
ordecing of the nodes is arbikrary,



The analysis of the method is given by Georgel?, and alternative

caleulations of the operation counts are piven in Allenl6 and

Jacobsl?. However the pertinent result is that, for example, for a

topologically square region and mesh with N nodes in each coordinate

direction, the nested dissection ordering requires only O(N-}

operations te solve the system of equations compared Lo O(NA)

operations used by the banded matrix techniques such as the Frontal

solution. With a very small problem, say 10 by 10 nodes (N=1Q) the

saving is only minimal, but with an average sized problem, say 32 by |
32, the saving in computation is 96% and with a large problem, say i
100 by 100 nodes (N=100)} the saving is 99%, i.e. the amount of com—
putation using nested dissection ordering and spatrse matrix
techniques is only 1% of the computation used by a Frontal selution
method. Tt is interesting to note that the bandwidth of the matrix
obtained using nested dissection orderings is in general close

to, indeed often equal to, the order of the matrix.

Tn addition Georgals was able to prove a very valuable result for the
twe dimensional nested dissection ordering. In essence he showed
that no ordering of the nodes could reduce the computation necessary
in using_Gaussian Climination or related methods to a Eigure less
than 0(N%) for a square region. Thus to reduce the computation still
further, an alternative methed of solving the equations must be
sought. The methods employing Fourier analysis and eyclic reduction
for solving problems with separable equations (see Section 2.4) are
an example of such an alternative method, as are the methods based on
marching (see Section 2.5},

The core storage required can be caleculated and is 0(N2 logz H) in
place of O(NJ) for banded methods. Like banded methods, not all this
needs Lo be resident at one time, the amount depends on the sparse
matrix equation solver routine used.

The method of nested dissection is readily extended to non-square
regions and to regions using elements other than rectangles. It can
also be extended to problems in more than two dimensions. llowever i
unlike the case for two dimensiocnal meshes, Georgel5 was unable to

prove that nested dissection provided the otpimal ordering for three

dimensional meshes, and so there is possibly still scope for censider-

able improvement. The operation count when solving a problem in three

dimensions, with say N nodes in each of the three coordinate direc—

tions, using the nested dissection ordering, is O(N"} which is to be

contrasted with the G(N’) operations required if, for example, the

Frontal solution procedure is used. Since typically the N used in

three dimensional problems is smaller than that used for two dimen—

sienal regions, the saving is also generally less large. Even with
such savings in computation iterative methods will remain in many
cases the only feasible means of selving very large three dimensional
problems. Where direct methods are used, however, fairly substantial
savings in computation could be obtained by using the nested dis—
section ordering with sparse matrix techniques in place of band
matrix techniques.

18 . . . . .
George is currently developing methods which will be equivalent to
nested dissection, and will therefore use close to the minimal

computation and core store, but which employ the matrix structure to
determine the order of elimination and net the geometrical con-
figuration of the finite difference or finite element grid.

2.4 Yourier Analysis and Cyelic Reduction

The paper by Hockneylg (see also ankneyzo, Buzbee, Golub and

Neilson“' and Fox? for general reviews) was one of the first to give
details of a very efficient direct solutien algorithm for solving

the system of algebraic equations arising from a discretization of
Poisson's cquation on a uniform mesh. It is based on a numerical
analogue of the methed of separation of variables. The component of
the solution dependent on each dependent variable is found separately.
Hockney'st?:20 wethod consisted of applying a discrete Fourier
analysis using the fast methods of Cooley and Tukey?? in one of the
coordinate directions. The Poisson equation

v = g(x,y)
with, for example, the boundary conditions
u=0 on x=0 and x = 1
and on ¥y =0 and ¥y =m

then becomes after substituting

ulx,y) = [Gk@)sm (nkx/1)
k

gL,y = § B, (¥) sin (mkx/2)
k

the system of second order two point boundary value ordinary
differential equations in the second dependent variable y

2_
d u, Tk 2 -

B A A B TS DR
dy

with Gk =0 at y =0 and ¥y = m.

If the analogous discrete analysis is applied to the Five point
difference equations, then the range of k is equal to the number of
mesh points in the x direction, and the solution of the ordinary
differential equation for the Fourier coefficients requires the
solution of a tridiagonal system.

In Hockney's algorithm, use is made of the method of odd/even
veduction which exploits the identical form of the coefficients in
all the diffcrence equations that are obtained when solving Poisson's
equation on a unilorm rectangular mesh. By a simple process of
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elimination, the equations Lor all the nodes on aild rows are waed Lo
eliminate these nodal values from the remaining equations for Lhe
cven rows. This leaves a system of only half the size invelving
nodes on the even rows only. TIf the number of nodes in khe co-
ordinate direction is an iateger power of 2, then this procedure can
be repeated until only one set of equations remains. The number of
odd-even reductions to be ysed can be optimized for the particular
algorithms chosen (uockneylg) and the optimal number he finds to be
approximately tog, logy N which is close to 2 for typical problems.
The [ast discrete Fourier analysis of Cooley and TukeyZZ can then be
applied on the 'remaining' rows which may consist of all the even
rows, or even just one row if the number of nedes along the rows is
algo an inteper power of 2.

The resultant system of equations Ior the Fourier coelfjcients of

the dependent variable on the 'remaining' rows ore tridiagonal and
can be rolved by recursive cyclic reduction which consists of Lhe
recurrive use of odd-even reduction. Hockncyzo advocates cyclic
teduction in preference to the Gaussian elimination procedure [or
solving the tridiagonal matrices because,for the case that the
boundary conditions are periodic, it aveids the use of an auxiliary
vector; for the case of given boundary values (Pirichiet comlitions)
or normal pradient (Hewmann conditions) there is Little to indicate

a preference for one method or the other. By using the equations f[or
the Fourier coefficients obtained during the recursive cyclic
reduction, all the Fourier coeflFicients for the 'remaining’ rows con
be buiit up. A Fourier syntlesis is then used to petterate the nodat
vatues on all the 'vemaining' rows Lrom which the other nodal values
can be obtained by using the equations used in the odd-even reduction
of the original system.

The method depends on two specific features:

(i) the Eorm of all the difference equations is the same, such
ap those chtained from Poisson’s equation,

and (i1} the nuwbersof prid nodes in each coordinate direction are
integer powers of 2,

llowever with such restrictions the computation on an N by M prid is
onty au astonishing O(NZ logy N} operntionsi which contrasts with the
O(M") for a [rontal solution method, or O(¥’) For nested disscetion.

The cyclic reduction alporithm requives care in implementation Lo
avoid mumerical instability. Buneman?3 developed an equivalent
method which preserves stability. - e developed a solution procedure
which used double cyclic reduction for solving the Eull system of
equations. However this has proved to be slightly less efficient
than llockney's algorithm.

A large number of advances have been made built around the basic
method. Amongst these are the cyclic methods developed by Sweet2d
for general nembers of nodes, although povers of 2 remain_the optimal
choice. Several people, including Swarztvouber and Sweet?? extended
the application of the method to polar coordinate systoms,

.t

Ferhaps the most important cxtension has been that due to Huckneyzo,
of the capacity matrix technique for solving Poisson's rquation in
nou-rectanpular regions. In outline the method Cirst solves
Poisson's equation within o circumseribing rectangle around the
region of interest with suitably guessed boundary conditions. This
solution will not in penaral satisfy the specified boundary con-
ditions on the actuzl boundary and so an error vectar composed of

the errors o the nodes of this houndary can be determined. By vsing
the capacity matrix for all the nodes on this tuner houndary which
relates the potentials te the charges on these nodes alone, the
charges requited to he placed on the real boundary nodes to compen-
sate for the errors can be determined. A second eisson equation is
now solved with these additional charpes added to the source term.
The new potential obtained is that required. llence the selutiow bime
is approximately double that for the cireumseribing rectaupular
region. The capacity matrix has been generalized in a piaper by
Martin® to problems with general bovudary conditions on non-
rectangular regions - llockney’s original method was only applicable
to Dirichlet problems.

Swnrztraubcrz7 has produced a petieralization of the cyclic reduction
algorithm which is appticable to pencral separable equations, and
work is continuing on further extensions of the method to au
increasingly wide class of probtems. (Foxd pives a bLrief atirvey of
some of the recent endeavours.)

For equations which are non-separable, Concus and Coluhza developed
# transformation which produces an iterative solution hased on o
separable system in a Form of deferred correction (see Section 3.4},
Consider the problem of solving

- .0V = s(x,y)

where D = D(x,y) .

Then we transform the dependent variable to
vy = Dol ey

for which the governing equation hecomes
-Vzw +pw = q

vhere o= p(x,y) = D—l VZ(Di)

and a = qtuy) = 0} ey .

This syatem of equations can be solved iteratively, using a form of
deferred correction. Concus awl Golub suggest the form



(—vz + P)wk+l = (P - p(x.y)}wk + q(x,y}

vhere P = J(min p + max p)

llowever many families of iterative solution procedures could be used
dependent on the type of problem and the [orm of the coefficient
D(x,}') '

Currently the only contenders for East two dimensional Poisson
solvers are the methods covered in this section and tliose termed
'‘marching’ methods to be discussed in Sectionm 2.5. If the problem
fits the rather severe restrictions of the method, the only 'good'
reason [or not using these methods is the problem of developing the
software, although packapes are available.

The very substantial computational savings obtained by using these
fast direct solution methods encourapes their use in an iterative
scheme, such as that described above for non- 5ep1rab1e equations.
They could also be used profitably for the inner iteration of other
more general problems where previously an iterative or general
direct procedure might have Leen used. Thus if a general problem
can be reformed to be the limiting solution of say a succession of
Poisson equatiomns, then these powerful rapid elliptic solvers can be
used for each step. For problems involving mild non-linearity this
caun sometimes be achieved quite easily. llowever electromagnetic
problems involving hlghly saturable materials produce severely non-
linear systems of equations for which there is I believe no general
method curvently available For obtaining Lhe solution based or a
loisson equation solver.

Little attention secms to have been directed towards the methods
covered in Lhis section to three dimensional problems. Martin?? is
one reference to such implementations. It would appear that the
computation required for solving large three dimensional problems
may still be larger than that used by iterative techniques. However
if a three dimensional problem can be split into layers of two
dimensional ones, with relatively weak linking between the 'separate’
two dimensional solutions, then a fast two dimensional solutiom
routine can be used within an outer iteration in the third dimension.
Fer certain problems, such schemes could be very efficient.

2.5 Marching Methods

In the class of direct cquation solvers, perhaps the most "novel'
appreach which has been developed over the last few years are the
methods based on 'marching' (see Roache and his Ffortlicoming
papers”", Lorentz”“, Bank and Rose and Bank--). They are
basically extensions of the older shootlng methods wsed for selving
evolutionary problems governed by parabolic partial differential
equations or for one dimensional boundary-value ordinary differential
equations. In their unmodified form, marchimg methods when used to
solve systems of algebraic equations obtained from elliptic differen—
tial operators have been known to be umsuitable because of the

instability and associated rapid growth of errors. The modification
of the methed is founded on the assumption that many modern computers
provide far greater precision than is required in the final resulk.
The marching procedure can therefore be employed provided it is only
used for a small number of successive steps in which the error

growth could be kept sufficiently small.

First the basic marching procedure will be described. Consider a
standard five point difference replacement of the Laplacian for a
Poisson type difEerential equation resulting in a set of daipgebraic
equations, each of the form

b,

i,j

- ha, . . .
-1t *i-l,j '¢1.J * ¢l*1»1 i i}

Lf the values of ¢1 s are known on two adjacent columns of the mesh,
say 3=l and j=2, then the difference equation ean be used to deter-
wine the value on j=3 by "marching' forward. The procedure can be
contimted across the whole of the prid.

Two problems arise. The L[irst is that when solving a Poisson type
elliptic equation the boundary econditions do not prov1de values of
$ij on two adjacent celumns {or tows). Thus one is forced to ‘puess’
the values on say column j=2. The calculated values on j=3 will
then be incorrect. However the three columns of values on 1~[ 2 and
J can be substituted into the difference equations for the j=2 column
which they will in general not satisfy. Ilowever the discrepancy will
completely determine the difference between the correct values of
$i,2 and the incorrect guessed values. Tor a problem in which
derivative or periodic boundary conditions are specified, the values
on both the j=1 and j=2 columns would have to be puessed at the
start. Both would then have to be corrected simultancously alter

the first column march to j=3 by substituting three sets of values
then available in the difference equation for the columns j=1 and

J =2. 1In either case having corrected the 'guessed® values a second
'march' forward is performed and subsequently corrected.

In praectice as is well known this procedure is unstable. Even alter
applying the cotrection procedure, the new values of $y,7 will not
be entirely correct. At the very least they will include round-off
errors which will be accumulated during the m1rching Forward. 1In
the evaluation of L L3+l the round-off error in b is multiplicd
by 4 and added to other round-off errors. The rcsulllng larpe error -
will in turn be multiplied by 4 when the value at m',J+2 is cal-
culated, and so on. Thus for each additional column to which one
maxches, the accuracy will Fall by a [actor which approaches 5.83
because of the bit wature of storage. ELventually if this process is
continued, the error swamps the solutionm. Illowever i the computer
possesses far greater precision than is actually required, and if
the number of marching steps used is sufficiently small, then the
procedure is acceptable. For cxample if the compttter has 48 bit
precision, and not more than 8 marching steps are used, then there
should be a satisfactory growth in the error provided the final
solution is not required to an accuracy greater than 24 bits (about
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one part in 10?). lowvever if more than 8§ marching steps are used,
the growth in ecror would bLe unacceptable.

Clearly tle marching can be performed both [orwards and backwards,
and in this way a problem with up to I8 mesh divisions could e
solved gatisfactorily to the above accuracy. For larger problems,
Larentz”“ has devised a pactitioning method in which the marching is
performed not just from the bouwmlaries but also from internal lines
gruerated within the repion not more than 18 uodes apart. Thus sup-
pese that the number of nodes in one direction is 2%f where k is not
greater than 8. Then the procedure recommended by Lorentz in to sot
two lines of nodes to zero separated by 2k - 2 nodes. Forward amd
backward marching is then used starting from the pairs of zere nndes
spread throughout the repion. The values are then corrected by the
procedure outlined above employing a Fourler analysis to solve the
systems of equations [or the errors incurred,

The method desceibed Ly Lorcntz32 is only applicable to problems in
which the boundary conditions are periodic, and the total computation
is about % n? log2 H for a system of b’ equations for an N » N repion
wuith D decimals of precision lost. The method is therefore, potent-
tally, the fastest direct solver available. The program perLorming
best on grids with the number of nodes in both directions are a power
of 2.

Based on the test problem of solving V2¢ = q in a 128 by 128 meshed
rectangular region set for the GAMM conference held at Karlsruhe in
Hareh 1977, a program based on the Lorenz marching procedure would
take about ome half the time of the nearest *rival’.

Lorentz32 optimized his marching method which restricts its use to
solving Poisson's equation with periedic boundary conditions. llow-
ever the method can be extended to other classes of boundary con-
ditigns by using methods which are not quite so fast. Bank and

Rosel DI describe a similar method which {s applicable to a general
class of block tridiagonal matrices which is only slightly less
efficient than the highly optimized Lorenz procedure. In their two
papers, they wnify the description of fast direct selution methods.
Bank~? describes marching methods suitable Lor certain nnn—separahle
elliptic equations with non-constant ecelficients, Roache?l promises
to describe methods, and experience of their use, he has developed [or
golving non-separable equations.

Undoubtedly with the wide use of computers such as the CNC machines
offering substantial greater aritlmetic precision than §s usmally
tequired in the solution, the use of marching methods is 1 believe an
arca olfering significantly more eFficient solution procedures for
linear elliptic partial differential equations.

For mon-liwear problems, such as electromagnetic problems with non=
uniform permeability, limearization will certainly have to be used
if these methods ate to be employed. I believe that delerved cor-
rection could be employed ko considerable advantape [or classcs of
problems for which a Poisson type equation is a good approximatien.
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The remarks made above are principalily dirccted to two dimensional
problems. For problems in three dimensions, a marching procedure in
one direction would result in the requirement to solve n relatively
full system of equations in the other two dimensions. Thus for an N
by ¥ by H problem, the computation is likely to he O(NG), which is of
the same order as nested dissection. llowever this is an area where
there is current rescnrch, and major progress may bhe macde. The
identification of the major strecture in the alpebraic system For the
two—dimensional sub-problem mipht offer an iterative means of
solution with considerably lower operation count.

3. ITERATIVE SOLUTION METIODS

3.1 Relaxation Paramcters

Successive over—relaxatiou3 (SOR) remaing one of the most used
itevative metheds. Although there are undoubtediy morve elficient
iterative methods available Lor most problems, it remains one of the
methods which is the most easy to code. The block line version is
useful when solving problems with periodic boundary conditions, and
the block multi-line methoeds?® can be used to solve, for example,
second order differential equations with a mixed derivative term, or
a fourth order equation such as the Bihatmonic., Mech of the
clagssical theoretical analyses aod associated results are then
applicable to such cases provided certain conditions are satislied.

However the greatest difficulty vemains the determination of the
relaxation parameter. ¥For simple problems the optimal value can he
obtained analytically. But For most reat problems, no such anatlyrin
is possible. Inatead an alporitlm is frequently used in which the
vilue of the relaxation parometer is updated as the {teration pro-
ceeds.  Virtually all sueh methods which are theoretically based
depend on the coefficlent mattix having Younp's Property A and being
congistently ordered. In addition a symmctric and positive definite
matrix is often a pre-requisito.

It is well known (see Yuung37 or Foxj) that

(i} it is better te overestimate the chojce of relaxation
parameter close to the optimal than to underestimate
it by the same amount; and yet

(ii) a successive monotonic sequence of relaxation parameters
converging to the optimal value can only be found
adaptively by approaching from bhelow.

In general hecause of the wide spectrum of eipenvector components in
the error when commencing the iteration, it is generally best to use
a range of relaxation parameters in the early stages of the iteration.
The parameter value should them approach the optimal value after n
reasonable number of iterations. Such a procedure can be used if the
optimal value is known beforehand. If the optimal value is not knowm
an adaptive alporithm can be used. Perhaps the best known is that
due to Carré-. However the procedure cannot puarantee that over-
estimates of the optimal reloxation would not he obtained, an undesit-
able feature.



Reid39 gives an alternative procedure which appears to have tacked
the attention it deserves. Again he uses the ratio of the norms of
successive displacement vectors to estimate the largest eigenvalue
of the matrix. However he then uses the displaccment vector as an
estimate of the dominant eigenvector of the iteration matrix, and
hence by dividing by the eigenvalue one has an estimate of the
dominant eigenvector of the Jacobi matrix (see Reid3? for full
details). The Rayleigh quotient® is then Formed to give a good
estimate of the maximum eigenvalue of the Jacobi matrix. 1t cam be
shown to be an underestimate, as is desired. In the experimental
results reported by Reid, his method did somelimes require a [ew
more iterations to obtain a solution of specified accuracy than the
methed of Carré or Xulsrudf0, llowever the puarantee of never
exceeding the optimal paraweter and secondly of approaching it very
closely was illustrated in the most difficult problem Reid considered,
a problem of the order of diFficulty that arises in 'real' problems.
Reid's method is undoubtedly one worthy of cousideration if SOR is
being used.

Regrettably, the matrices obtained with many 'teal' problems do mnot
always have Young's Property A. They are also often non-linear so
that the eigenvalues and eigenvectors change as the solution is
approached. ‘The best advice is prebably to use a method such as
Reid's with a relatively slow approach to the optimal parameter.

IT 2 sequence of linear problems is to be soived, all governed by the
same coefficient matrix, the optimal relaxation parameter will be the
same for all the problems. It is then often worthwhile deploying
some effort to obtain the optimal parameter valwe, If a hypothetical
problem modelied by the same matrix can be generated which has a
known solution as can sometimes be done, then the actuval error is
known during the iteration so the maximum eigenvalue of the iteratien
matrix can be obtained more accurately and lience the optimal
relaxation parameter obtained. Furtliermore such a procedure has
other uses. The residual at each stage of the iteraliom can be
related to the actual error when solving the problem with known
solution. This relationship can then be used when golving the 'real'
problems to obtain a measure of the error. (This method of error
determination is closely apalogous to that proposed by Zaduuniskyﬁl
for use when solving ordinary differential equations.)

Despite this rather lengthy section on relaxation parameters, it is
my view that the methods of the succeeding two subsections are
getterally vastly superior to SOR.

3.2 ‘fthe Strongly Implicit Procedure

The Strongly Implicit Procedure (SIP) developed by Ston242 is an
implicit method which derives a new solution of a system by algebraic
equations simultaneousiy, that is each mew value obtained depends on
all the other new values. This is in marked contrast to the classical
iterative procedures in which new values are obtained at single points
as in SOR or at small sets of nodes, Egr example lines as in
alternating direction implicit methods?. 1In this respect the

implicit nature of SIP closely resembles a Fully direct solution

procedure, Indeed the method is best described and Formulated as an
'approximate’ direct methed, and because it is only 'approximately'
direct, il has to e used repeatedly to obtain converpence, i.e.
iteratively.

The basic form of most iterative methods is a Factorization of the
coefficient matrix A into the sum of two matrices B and C so that

A = B+C.,

The [actorization is chosen so that the matrix B is 'easily’
inverted, typically in O(n) computations where n is the order of the
matrix A. The iteration procedure iz Lhen based on the repeated use
of the up-date equation

L2 S b - Cgk

where k is the iteration index. Since B is easily inverted, this
system can be solved very economically. By subtracting ngk Erom
both sides one obtains

B QER - Ek
where S = gk+l - gk is the change vector
k k . .
and LT o= b~ Av is the residual vector.

It is clear from the form of the iteration thap if it converges,
vhich implies §w® + 0, then r® + 0 and lence w" converges to the

solution of the original equation.

The S1P employs an approximate LU factorization of the cocflicient
matrix A.  The exact LU factorization normally takes G(1/3 u3)
computations for a full matrix, or 0(1/2 nm?) computations [or matrix
of order n and semi-bandwidth w. The SIP perfotrms the LU [actoriz-
ation on a matrix § which is 'close’ to the matrix A and has the
important feature that the factorization and approximate equation
solution requires only 0(n) computations. This is achieved by
restricting the matrices L and U to have non-zero elements on the
main diagonal and on those other diagonals which occupy the same
positions as such elements of the coefficient matrix A in its lower
and upper triangles respectively. The product of two such matrices

i = B

has non-zero diagonals in the same positions as those of the matrix
A, topether with a number of additional ones.

For example consider the case of Poisson's equation using # five
point finite difference molecule replacement in a rectangular region.
The matrices L and U will each have only threce noon-zero diaponals.
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The product of two such matrices has seven non-zero diagonals, five
in positions coincident with those of A and two additional ones
adjacent to the outermost diagonals of A, as illustrated in Fig. 1.
In determining the coefficients of the matrices L and U there are
five values to be obtained on each row, one value is redundant and
an efficient expleitation of this sets the main diaponal of the
upper triangular matrix U ko unity. With the five values on each
row of the matrix A given, 1, and U are uniquely determined if the
matrix B is wade identical to the matrix A on the non-zero diaponals
of the latter,

. o | \Oo

L U B

F16.1 __TUE PRODUCT OF TWO THREE DIAGOHAL IAATRICES

However, non-zeto elements also appear on two other diagonals of the
mateix B. In fact the matrix B represents a seven point molecale
involving the five of Fip. 2 together with the twe additional nodes

(i+1, j-1) and (i-1, 3+1), with coefficients bi i1 i1 and
e, .f, . respectively. I
1, i-1,j
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To reduce the effect of these additional terms, Taylor series
approximations are used to relate the two additional values in the
seven point molecule to the Five ‘central' point values. At this
point the iteration paramcter o is introduced. This paramcter is
used to improve the convergence rate of the scheme by "implieitly’
cancelling o times the extra values introduced.

Stone suggests a set of 9 values for the parameter o, The parametets
are used cyclically and each is used For two iterations; for the
first iteration the equations are scanned in one direction, and for
the second the order is veversed. This alternating ovder means that
the extra nodes introduced by the approximate LU [actorization are
those already detailed on one iteration and the oLher twe diagonal
terms, namely {i+l, j+1} and (i-1, j-1), on the second; this
introduces some symmetry into the scheme. The particular cyclie vse
of parameters means thal over each sct of 6 iterations a tairly wide
spread of the parameter o is employed. For many probhlems this
assists efficiency and frequently the solution cunverpes after only
a few iteratious.

Extensions to the method originally proposed by Stone For the five
peint molecule are possible for solving systems of equations derived
Erom other difFerence molecules. OFf these the seven point scheme3
for three dimensienal Poisson type problems is pechaps the most used.

Within the C.E.G.B. we have had the use over the last six years of a
number of subroutines based on §iP for solving general Eive diagonal
{e.p. two dimensional Poisson type equations), seven diagonal (e.g.
three dimensional Foisson type) and thirteen diagonal®* (e.g. two
dimensional fourth order equations such as the Biharmonic) systems
of equations which frequently arise in finite difFerence modelling.
They have been used on a diverse range of problems, including a
number involving the solution of non-linear equations. The signifi-
cant power in terms of the efficiency, and the ease of use assisted
by the alleviation of the need to optimize acceleration parameters
for the vast majority of problems have been the principal attributes.
Uowever for certain large problems, for example a Toisson's equation
on a 70 by 70 mesh, SIP has produced very slow convergence. In
peneral the method is quite satisfactory for most two dimensional
problems with upte about 3000 nodes. In Ehree dimensions, where a
seven diagonal system of equations is obtained, the cxtended method
is just as satisfactory; indeed tha computational work to ohtain a
solution of reasonable accuracy is proportionately very much smaller
compared to general direct solution methods for two dimenzional
problems. This is because for an N x N problem in two dimensions,
even the method of nested dissection would solve the system in 0(N)
computations, and each iteration of SIP takes 0O(NZ) computations,

In three dimensions, the comparable [igures for anm § xH xN problem
are O(Nﬁ) [or nested dissection and Q(N3) per iteratiom for SIP. A
significant feature of the STIP method is the weak dependence of the
rate of convergence on the number of nodes of the prablem, and even
wealker dependence on the dimension of the problem.

The major disadvantages of SIP compared to classical iterative
techniques are



(i) the increased number of arrays needed to store some of the
matrix factors, although the storage is still much less
that that required by most general equation solvers,
including those using sparse storage techniques,

(ii) that to preserve the structured diagonal form of the
coefficient matrix necessary for SIP, it is necessary to
circumseribe non—rectangular regions by a rectangle of
grid lines and to include all nodes within this circum=
scribing rectangle. Although this increases storage, much
of the additional computation can be avoided, and

(iii) thar the wesh must be topologically rectangular, to
maintain the structure of the coefficient matrix, thus
local mesh refinement must be achieved, For example, by
embedding sub-problems with Fine meshes within the actual
problem using a coarse mesh.

However these penalties are generally overshadowed by the very much
faster convergence achieved by SIP than by classical iterative
methods., Tast convergence means that not only is a solution obtained
with the expense of less computation, but also the error in the
solution for a given cenvergence criterion is generally less for a
fast: convergent methed.

Even today after ten years, the Strongly Implicit Procedure remains
one of the most powerful iterative techniques for solving banded
systems of equations such as those that arise from finite difference
models of elliptic partial differeatial equatioms, both linear and
non-linear. For many three dimensional problems involving a large
number of nodes, iterative methods such as SIP are currently the
only viable solution technique. It is still too early to decide
whether the use of the conjupate gradient method on a preconditioned
matrix described in the next section will totally supersede SIP.

3.3 Conjugate Gradients with a Preconditioned Matrix

The conjupgate-gradient method (ReidﬁS) is basically a direct method
in conception because using exact computation a finite number of
computations provides the solution. MHowever with calculations per—
formed on a digital computer with [inite precision arithmetic, the
methed behaves much more like an iterative procedure. For a system
of algebraic equations of order n, the method using exact arithmeric
would invelve at most m steps. At each step the solution is
progressively refined so that at the completion of the Final step
the exact solution is attained. With Einite precision arithmetic,
each step progressively improves the solution, but the exact
solution attainmable to the computer's precision is obtained only after
an infinite or at least very large number of steps,

However two points in real applications are of significant relevance.
First, generally one only requires a solution to a finite precision,
say three or four decimal places. Thus for a linear problem, if a
reasonable rate of convergence can be achieved, only a small numbexr
of iterations of an iterative method need be used. Tor a non-linear

problem in which the solution is obtained by successive steps of
linearization, the solution of each 'linear' step generally starts
from a good approximation, namely the last approximate solution. In
addition only an approximate solution is required since the equations
being solved are only linearized approximations of the real set.
Secondly, when using the conjugate gradient method as mentioned above,
cach of the n steps successively refines the solution. Combining
these two features means that the conjugate gradient method can be
seen when used for solving real problems as an iterative method.

The rate at which the solution is refined when using the conjupate
gradient method depends on the matrix of coefficients and in
particular on the number of distinct eigemvalues. Consider, for
example, the unit matrix. Convergence, in fact the exact solution,
is obtained in only one step, namely ene iteration. Indeed the
smaller the number of distinct eigenvalues, in theory, the faster
the solution will be obtained. When solving a 'real' problem, one
has little control over the eigenvalues of the coefficient matrix of
the algebraic cquations, apart from, for example, changing the geid.
Thus, in particulatr, the number of distinct eigenvalues is not
controllable.

flovever, Meijerink and van der Vorstaﬁ have shown how a pre-
conditioning of the coefficient matrix of the equations to be solved
can be used to produce & matrix with all, or at least most of the
eigenvalues contained in a narrow range. They used an 'approximate'
Cholesky factorization of the coefficient matrix, similar in concept
to the approximate LU factorization used by Stome in the SIP. TIf A
is a positive definite and symmetrix matrix, both of which are
necessary conditions for the conjugate gradient metheod, then the
approximate Cholesky factorization of the coefficient matrix A is
given by

A 2 L'DL'T or LLT

where L' (and L) is lower triangular. In the method proposed the
matrix L' (and L} is constrained to have the same {or clesely related)
sparsity pattern to that of the matrix A. They then use the con-
jugate gradient method to solve not the original system

Ax = b,

but the preconditioned system

(L—l A L_T) LTE - L—].!_J
i.e. By = x
where B = L_l AL_T

y o= Uy

c = L_ili .



With the particular choice of the matrix L, we know that

B

1.

Indeed if T, had been the exact Chiolesky factor of A, Lhen B would
have been the identity matrix and the conjugate gradient wethod
would yield the exact solution in just one step. llowever since the
matrix L is only an approximate factor of A, several steps are
likely to be required. Towever the computation involved in deter—
mining L and using it in matrix-vector multiplications is very small
hecause of its Forced sparsity.

Meijerink and van der Vorst developed the method for a coeflicient
matrix A which has the property of being a symmetric M-matrix. The
latter property is characterized by a non-singular matrix with all
coefficients ofE the main diagonzl less than or equal te zero, amd
with A™F 3 0. The coefficient matrices arising Erom many EFinite
difference and finite element models are H-matrices. They proved a
number of results, includiog ones on numerical stability for classes
of preconditioning. The two methods they propesed for solving [ive
diagonal systems of equations were based on

(i} sclecting the Eactorization matrix L to bave the same
sparsity pattern as the matrix A in the lower triangle,
i.e. to be three diagonal, and

(ii) selecting the factorization matrix L to have six non-zero
diagonals, namely those of the matrix A and one additional
adjacent to the two along the centre of the matrix, and
two additional on the main diagenal side adjacent to the
outermost diagonal,

Their test results indicated that both methods provided substantial
improvements in efficiency over existing iterative metheds, and that
of the two, the second choice of sparsity was the better,

Kershnwh? describes very favourable experience of using the method
on symmetric positive definite matrices obtained From models used
in laser fusion simulation. 1In addition he proposed extensions to
the method for the cases of a general positive definite symmeteic
makrix and of a general non-singular matrix. The lakter

extension makes use of an approximate LU decomposition and the
version of the conjugate gradient method applied te the normalized
equations which have a symmetric coefficient matrix.

Our own recent work (to he publishedﬁs) is a development of the pre-
conditioned conjupate gradient method specifically for solving the
systems of equations derived from finite difference models of partial
differential equations. The coefficient matrix need not be synmetric
and is often non-linear. The preconditioning uses an approximate LU
factorization derived alang the lines of that used in the strongly
implicit procedure. Hamely the banded sparsity structures of I, and Ul
are the same as that of the matrix A and an implicit cauncellation of
extra terms introduced is used. Such a factorization makes great use
of the finite difference molecule [rom which the system ol equations
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is derived. Indeed for the system of equations derived From a [ive
point molecule approximation, by usinpg the cancellation of the extra
terms introduced in the approximate LU Eactorization (see Section
3.2) we know that

A= LU+ O(ij, ij. Axdy)

and hence the "approximate' factorizatiom is relatively very accurate.
The preconditioning of the system of equations using these factors I
and U therefore produces a coefficient matrix which difFers little
[rom the {dentity matrix, and heuce the conjugate gradient method
should converpge very rapidly.

Our preliminary test results show thak for twe dimensional problems
with less than about 3000 nodes, the new method is directly comparable
in performance to the strongly implicit procedure. Tor problems with
excess of 3000 nodes the new method provides substantially faster
convergence rather than the strongly implicit procedure. Even with
about 22 500 uodes the rate of convergence is only about )} that of a
problem with 3000 nodes. We are developing general purpose solution
routines based on the new method for various different multi-
diagonal systems (e.g. 5 diagonal Cor a two dimensional proeblem and

7 diagonal for a three dimensional problem involving a second order
partial differential equation) and also endeavouring to evaluate the
method on a range of problems.

There is little doubt, even at this relatively carly stage, that pre-
conditioned conjugate gradient methods will offer a powerEul alter-
native iterative solution method to the classical iterative
techniques. They would appear also to be substantially more
efficient and rcliable than the strongly implicit procedure if only
for two dimensiomal problems with a large number of wodal points.

3.4 Deferred Correction

The method of deferrved correction (regrescnting developments of the
original ideas of Fox??, see also Foxd) is a general technique which
can be used in many formg te assist in the solution of systems of
equations which do not preeisely Fit the criteria necessary feor a
particular specialized solution procedure. Already in Sections 2.4
and 2.5 mention Dhas been made of using the methods developed for
solving separvable equations in an iterative mode for solving certain
non-separable equations. This is a Form of deferred correction {or
perhaps more descriptively termed defect correctiom).

Bagically deferred correction is a solution procedure vhich has a

similar form in matrix terms to most of the iterative procedures.,
In place of solving the specified system of equations

we use an iterative procedure characterized by the equation



k+1 k k
where X = x +8x .
The matrix A' is selected to approximate closely the matrix A but to
be of a form suitable for selution by the selected methed which might
be direct or iterative. For example suppose thal nearly all the
non-zeto elements of the matrix A lie on five diagonals. A few non-
zero elements, perhaps introduced by incorperation of derivative
boundary conditions on a curved houndary, might lie off these five
diagonals. The solution of such a system using a technique, for
example the strongly implicit procedure, which depends on the banded
structure of the matrix is therefore made more complex by these extra
non-zero terms. llowever a Eorm of deferred cotrection can be used in
which the solution procedure for the caleulatjon of the correction
term uses only the coefficients conforming to the strict diagonal
pattern. Thus the 'iterative' scheme becomes

where Ag is the matrix consisting of only the five main nen-diagonals
of the matrix A.

We have used this methodso to obtain high accuracy solutions to
problems using a low accuracy difference replacement bto generate the
solution procedure, but calculating the residuals using the high
accuracy form. Tor a number of trial problems For which the strongly
implicit procedure was wsed, high accuracy solutions were obtaimed at
little extra computational cost to that required to obtain solutions
to the less accurate system wused as the basis of the solution
preocedure.

With the development of very efficient solution procedures, such as
the fast Fourier transform and marching methods, and the fast
iterative metheds, SIP and preconditioned conjugate gradients, the
use of deferred correction is a powerful means of extending the use
of these new methods te a wide range of problems. Tor example
Hockney's procedure of Section 2.4 is only applicable te the solution
of preblems governed by a constant coefficient differential equation.
When solving a problem with mild non-linearity, his procedure could
be used in an iteration wsing deferred correction. The matrix A’
would be ehosen as that Formed from the linearized constant
coefficient problem. At each iterative step the direct solution
procedure would be used to correct the dependent variable values in
accordance with the residuals determined from the full non-linear
equation. Although I have scen no mention of the use of such methods,
as the computation of inercasingly complex .problems is pursued they
might well provide a powerful additional selution tool.

Another form of deferred correction can be applied to the solution of
systems of equations with a virtually full coefficient matrix. Such
systems arise with many of the integral methods and For which little
of the foregoing sections is directly applicable. However the
dominant, or at least relatively important, features of Lhe probliem
may be characterized by just a few of the coefficients of the matrix.

Frequently the dominant features will be those characterized by the
largest elements on each row of the coefficient matrix. If these are
of the form or in the pattern that makes them amenabie to selution by
ene of the methods already described, e.g. Five diagonal form Ffor the
SI? or preconditioned conjugate gradient method, then the vast com-
putational savings they offer can be partially exploited by using an
iterative scheme based on deferred correction in which the inner
solution uses an update procedure based on the specially structured
matrix of coefficients. .

Regrettably such algorithms are likely to be very problem and
geometry dependent, and therefore do not lead themselves to easy
incorporation in general purpose packages. However Eor problems
involving very large systems of equations (n very targe),vhere

the direct solution usually takes 0{n?) computations, the use of such
an iterative procedure could ¢ffer very substantial savings. IE the
system of equations is non-linear, an outer ireration is probably
being used, and can be combined with an inner iteration based on a
suitable matrix reduction. However for highly non-linear problems it
may prove very difficult to obtain a satisfactory matrix reduction
since the elements of the coefficient matrix may change very rapidly.

4. CONCLUSIONS

The majority of the developments in the solution of large systems of
equations have exploited particular Features of the coefficient:
matrix. The method of nested dissection compared to say methods
using banded matrix techniques can provide fairly large reductiens in
the computation required to solve systems of equations directly,
particularly for large two dimensional problems derived from finite
element or finite difference models. Although the method is based on
the geometvical features of the grid, George is developing equivalent
methods which it is believed will produce the same effect but will
use only the matrix structure. The marching methods, on which
considerable development has taken place recently, now join the
methods based on fast Fourier transform and cyclic reduction, as
being very rapid equation solvers for Poisson and separable linear
equations. Both groups of methods are restricted to solving certain
classes of systems of equaktioms, although extensions have been made
and are under development to enable the wetheds to be applied to more
general types of equations. For two dimensional problems the methods
are highly efficient and use little more computation than a single
iteration of iterative methods. Tor three dimensional problems the
savings in computation are large, but for large problems in three
dimensions most forms of such methods are still prohibitively expen-
sive,

The development of iterative methods has advanced. The new procedures
generally employ some of the features of direct methods, and the
"difference’ hetween direct and iterative, at least in conception,

is being narrowed. Like the advances made in direct solvers the
iterative procedures tend Lo use features of the structure of the
matrix. The Stromgly Implicit Procedure exploits the diEference
molecule from which the system of algebraic equations is derived.

The more recent development of preconditioned conjugate gradient
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methods use the structure of the matrix and therclore are more widely
applicable than SIP, FPreliminary results also indicate that some of
the latter class of methods provide substantial improvements in con-—
vergence rates for large two dimensional problems compared with SIP,
for example. Such iterntive procedures are permitting the economic
solution of increasingly large three dimensional problems.
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ABSTRACT

The Bumeister & Waln FIM-system DEW-FINEL is based on Family of
lgoparametric, ilermitean finite elements presented in ref. 2. e
reasons for the cholce of these higher order elements is explained
and their performance as compared with linear elewents are dis-
cussed.

B&W-FINEL has been used since 1970 for the computation of solutions
to the poisson differential equation e.g. instationary, non-lineax
heat conduction and compressible fluid flow. Also elastostatic
problems have been solved in tvo and Hiree dimensions and in axl-
symmetric structures with non-symetric loads. In ref. 1 a solu-
tion of magnetostatic problems was anncunced and an acltunl result
was presented at the symposium.

Since then some practical experiences have been gained with the
program especially with regard to the non-linear behaviour.

The program handles magnetic fields caused by electric currents and
polarised regions. Symmetry- and antimetry conditions may be
applied, but open circuits with a high dispersion Field requires
the modelling of large parts of the space. A method for connecling
up finite elements with regions with a series of exact solutions is
presented at the MAFELAP 78 conference in April 1978 at Brunel
University, Uxbridge. A post~processor computes magnetic forces by
means of line integrals of the Maxwell stress tensor.

In the paper much attention is pald to the requirements which a
material wedel has to fulfil ko be consistent with the physical be-
haviour of the material and the mmeric apalysis of the program.

Two models are proposed: one for reversible materials which has been

implemented in the program and a new one developed through the last
month before the conference. 'The latter handles the case of fully
three—dimensional, anisotropic, non-linear fields with hysteresis.
Examples of three-dimenslonal loops with non-parallel B~ and -
vector are presented, - -

2.2

INTRODUCTION

The Burmeister & Wain Finite element: system BRW-PINEL is based on a
family of isoparametric quadrilateral Hermitean elements in Ry pre-
sented in ref. 2. Compared with llermitean elements as presented in
standard text books the FINEDL elements differ in the respect that
the degrees of freedom are the function value and its derivatives up
to order q in the four corpers, whereas conventional elenents con-
tain some additional degrees of freedom which are of order up Lo Zq.
The reasons [or this difference becomes evident when isoparametric
elements of arbitrary shape are called for as it is simply not
possible to transform a m'th order derivative (g<m< 2q) to deriva-
tives in another co~ordinate system without knowing the complete set
of derivatives up to order m of the Function as well as the iscpara-
metric mapping.

Other attempts have been made to construct polynomials for this pur-
pose but it may be shown (ref. 2) that there exists a unique fam.t]x
of interpolation polyromials based on a complete polynomial Etnd o8,
1+ 34+k< 29+ 1=p, plus a minimm of extra Lems of degree

i+ 3+ k<2q + n namely those having ak least two uneven exponents.
The polynomials for 0' ard 1' order represent the same terms as the
so~called serendipity elements.

The interpolation polynomials of DEW-TFINEL are expressed in the local
curvilinear (£, n, & }-co-ordinates of the isoparametric mapping.
The matrices are then subjected to a linear transformation so that
degrees of freedom become expressed In global cartesian co-ordinates
(x, y. 2).

"In points where all the joining elements are of the same material,

the global {but not the local) derivatives are identical and by
chosing these as degrees of freedam we have obtained 4 advantages:

1) The total mmber of unknovms in the system has been
reduced without affecting the accuracy.

2) The field is almost continuous with continuous deriva-
tives up to order q in the nelghbourhood of the corner
nodes between elements.

3} For second order problems (e.g. the electrostatic and
magnetostatic) and g > 2 a muber of unknowns may be
eliminated by introducing the equilibrium equations
{ref. 2} which further reduces the mmber of unknowns.

4) I is possible to construct an extension of lhis ele-
ment family in which the order is attributed to the irdi-
vidual nodes rather than the elements. By this method
which is not yet implemented in any program it will be
possible to make a cheap low order trial run to find the
interesting parts of the slructure and then make a final



run where the accuracy is incieased sufficiently in these
argas, As the error is O(hPTl) then an inerease in P gives
exponential convergence whereas a decrease of h only gives
polynomial convergence. ‘The simple term p~ and h-conver—
gence is often used.

In practically all electrotechnic finite element programs in litera-
ture linear elements are used. This is sufficient from a mathema-—
tical point of view as second order problems only require Co—con-
tinuity. However, apart from the advantages menticned above there
are several other effects to be considered:

5) Few high-order elements are necessary for the
modelling of a given structure i.e. saving in

manpower ,

6} UDigher order isoparametric elements can model
curved surfaces accurately. 2MAn error is introdu-—
ced where curves are represented by broken lines
(See ref. 6 , p 196).

7} Graphical representation becanes increasingly
popular. Results obtained by higher order ele-
ments fit the geometry exactly, are more accurate,
give smooth field lines and are therefore appeal-
ing ko the eye and need less intellectual effort
to ba understood..

There is a minimum nurber of elements necessary to model a given
structure. IE the order g (and the degree p) is raised then the
compubing time raises drastically. Buk if the task is to solve a
problem with an error not greater than a given small figure, then
the high order elements will often be chieaper to use than the linear
ones in terms of computing time.

The BSW-T'INEL elasticity programs comprise the plane 2-dimensional
cases, the axi-symmetric case with non-symmetric loads and the gene-
ral 3-dimensional case. All using cubic Hexmite elements, Further—
more, there exists a program which covers the plane and the fully
axi-symmetric case with quintic elements which exploit the ideas
expressed in point 3 and which give extremely accurate results.

Fig. 1 shows the isostress lines in a strip with a semi—circular
cut-out subjected to in-plane bending. To appreciate the accuracy
of the result it should be considered that the curves correspond to
lines through points with equal gradient of the field. With linear
elements these curves cannot be drawn as the gradient is constant
within eacli element.

BeW-FINEL furthermore covers axi-symoetric plus 2— and 3-dimensional
transient non-linear heat conduction, plane and axi-symmetric com-
pressible fluid flow and plane and axi-symmetric electrostatics

and development of periodic linear electromagmetic and acoustic
programs is in progress.

APPLICATION OF B&W-TINEL TO MAGNETOSTATICS

The program which is the subject of this paper works in plane and
axi-symietric geometry with cubig, isoparametric llermite elements
and non-linear material properties. In the program we have chosen
to represent the B-vector as the curl of a vector potential

= i = A
A {O'D'Zﬂr] A, = 10,0.3)

B ) oA B 1.3

T Znr 9z x| _J & %y
4oLl P 7). HbY

Bz Znr oL, Y Lt ax

for axi-symetric and plane geonetxry respectively.

Much attention has been paid to the modelling of the material proper-
ties. It was found that the model proposed in ref. 1 for reversible
materials led to a zero saturation magnetisation and as Newton—
iteration is more effective with a magnetisation curve which is

smooth (has a continucus derivative] piecewise linear models were also
ruled cut and a continuous model has been suggested which is now in-
cluded in the program. Quite recently a general three—dimensicnal
model including hysteresis has been developed but it has not yet been
implemented in the program.

Any solution of a non-linear P.D.E. must be based on successive
iterations and linearisations, i.e. on a relationship of the form:

I=vg (B-J)=vg¥ (B *B  (2a) i Brhg(HaM)=)gu(ll) -0 {2k} ;

in which single underlining denotes a vector, double underlining a
matrix or a tensor. Thus ¥ (B) and U (l) are tensors with dimension-—
less elements and Vg=1/Mg; ¥ = y:l and J = g M. We do not assume

isotropy and parallel B and Il vectors.

We wish to minimise the energy functional:

1r=L’2(jo HT-d_E_i -f-ﬁ—f-;)dnmmin. (3}

the internal integral is eliminated by the linearisation

f( i
LN [+ %uo-BT-g(g)-g-gl-gg—f-gdnmnin. {4)
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and the process is repeated until t!;e difference belween successive
iterations Aj41-ny s less than 107/ - (N Pmin) in any one node
and My (Pnin) i5 the largest (smallest) A~value in the entire
structure.

AL interfaces between dissimilar materials two possibilibies exisk:
Either to use the relations Hg, = 1l and By = By_ wlere n and s
are directions normal and tanqentiaf to the interface or to discon—
nect the derivalives of A in thie normal direction at nodes on the
interface. The resulis shown have been obtained with the Cirst
procedure but the latter has advantages when Newton-methods and
hysteresis are involved.

A oA

At ¥ = o in axi-symvetric problems A = F 37 ° 0
and B = 0 r %
o
2u 33:2

M external boundaries and planes with antimelry A = 0, and at planes
of symetry the natural boundary condilion satisfies %2 =0 in a

least sguares sense. A principle has been developed in ref. 4 for
connecting domains with exact solutions containing singularities and
domains extending lLowards infinity to the finite elements, bul so far
this has only been used to connect axi-symmetric slructures with non—
symoetric loads to general 3-dimensional structures in elasticity.

The program accepts magnetisation Mo and current density 1 which are
constant within elements. Line— and point-loads like magnelic double
layers, current sheets, poles, etc. may be included, bul we have pre-
ferred to leave them cuk as tiey lead to singularities.

Computation of magnetic forces can be made by means of line integra-
tion along element boundaries of the Mwwell stress tensor. ns there
is a small discontinuity in Hp normal to the interface, slight dif-
ferences can also be observed In the force if computed on the basls
of the elavents exterior or interlor to the path of integratlon.

hisg can be used as an eskimate of the accuracy of the result.

There are two key-problems in achieving efficient computations:
material models and iteration strategles, and the rest of the paper
will be devolted to these subjects and some computabional results:

MNGNEEIC MATEREAL MODELS

Any model should camply with the following rules:
1. The model should be point symmetric.

2. The model must exvibit & monolonous behaviour
with saturation.

3. The saturated material must be isotropic even though
the unsaturated material is not.

2.2

For materjals with hysteresis there are two additional rules:

4. Laws of thermodynamics imply that all loops
absorb energy, {and twm it into heat)

5. Inkemal small loops close themselves and are
Forgotten (rel. 7T,

For isotropic reversible materials B and I are parallel and the
tensor u(H) reduces to a sealar n(i), U= fl. In the program we

have preferrext to express the relative susceptibility x= 1 - l:
M= y() - H

For reasons of canputational efficlency we have chosen an express-
icn of the form

M= Moo (e k) (&)
0 [T

An which B = Mj/ X3, Mi is the saturation magnetisation for the

i'th component, ¥; its susceptibility for It = 0 and 0%xi <l is a
dinensionless shape parameter. With £ = I we have chosen
Hy

plE, K = % [\/(EH:)Z T 1-r - ‘\/(E-K,Z b - ]:
) 2t N

Viera? a- ¢+ Vim0 v 1- ¢

This is a smcolhed ramp function, which satisfies
p & k)=t L for & +2=; 9 (5, k) =-p (-E, K)

p (0, k) mo;g% (p(0,1)) = 1
£

v = 0 glves p(g, 0) =
! Verr 1
-1 for £ <-1
k = 1 gives the broken line p(f, 1) =¢{ £ for -1< £ < 1
lforg>1



B, . - 9B
Even though i =llg is a scalar, the matrix {muoaﬁ}

is not a scalar but a tensor which must be used for Newton iter-
ation:

dm/[-!; + HZ + H%) _ I{x- (fiE]x + l-ly-dfly + IEZ-dHZ H -
d{H) = __—Ldll - dit =

H it
odlil, + PAll, + Y,
(8)

in vhich @ = [{X r etc. are the directional cosines of the I vector.
Differentiation of g = Hghg (M) + H gives dB = u,*[dug * B+ jg dH]

dB = g [ug + (g - 115)(12 (g = uS)uB {pp —ugloy) - di =0 - di

Mt (Hugd B (g = ng) By

symmetric Nt (Mp1ig) Y @)
Vg = “—B“ may be termed the relative secant permeability and
o
_1 dB ; § -
My = Tl the relative tangent permeability.
o

This is consistent with the reciprocal relation
~1
@l = v fug + (v - vgle® (v -vglaB  (vg - vglay |48 =D aB

vgt (p-vg) B2 (v - v BY
symmetric \)S+(Ut—\JS)Y? (10)

o 1 1
—— V= =
in which Vg i and i

Next we consider a material which is anisotropic because it consists
of lamination with airgaps in between. 'The base material is iso-
tropic and the proportion of airgap is § . The saturation magne—

tisation Mg is reduced by the factor 1-8 . With ¥g = g1 we can
write the relative pammeability parallel to the laminations.
Mp = Xp + 1= (1 - Sug + & Xp = {1 = d)xg {(11)

and normal to the laminations

(L -4

Now Xg € [E + O for H* = , when the saturation magnetisation Mg
is approaclled. We see that X,/X,* 1. These are therefore the
formulas to use with anisotropic material.

In case of crystalline anisotropy a similar behaviour would be ex—
pected.

AL the previous conference the question of a fully 3-dimensional ma—
terial mxlel exhibiting hysteresis was touched upon and Found as yek
unsolved. In the last month before this conference I decided to in-
vestigabe if it were possible to construck a model consistent with
the rules quoted earlier {p. )} on the basis of the classical concept
of a magnetic material as a matrix of small magnetic spheres which
initially were randomly orientated and which subsequently were
aligned towards the same direction under the influence of an ex-
ternal field H. ‘The assumptions made was firstly that each magnek
could move independently and that each of them was kept in position
by an individual strictly local field Hy. Tor an isotropic mate-
rial Hy is constant and unformty distributed in all directions in
space and we can now calculate the magnetisation curve for such a
material analytically. The spheres orientate in the direction of
the resultant Hp of the local field i,
and the external l-field. The magnetic
moment within the interval ¢,] 4yt Clib,
which covers the solid angle

2-5in by, - dth is:

. 20 .
M_ * cos bt g SN dpddp {13)

H
If we introduce 5"";{; we can write

cos flJL + &
cos P, = (14)
® Vicos b, + D74 sin? 8

The magnetic moment integrated over all solid angles is

T
~ Mg (cos ¢y, + £) sin ¢y
M = 5 - d rbL
o '\/(COS g, + E)? + 5in? 'i’L
1
Mg I (t +£) dat - - {%E for j£| < 1}
2 , Vie+ 21 -¢F F AL - "iié—f') for[gfz 10 (15)
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The asymptotic behaviour of the previous model is consistent wikh
this expression.

‘The model, (which probably is not new) is continuous in tts concepk
but leads to a magnetisation curve with a disconbinucus second deri-
vative. Non-isolropic distributions of iy, and Mg are concelvable.

If a Coulomb-type friction momenk n - Hy, * Mg, independent. of (I is
introduced the component of I, at right angle to the direction of
the magnetisation ML, of a sphere should be greater than n - Iy,

to be able to turn 1t. Aoy rotation will take place in the common
plane of My, and lp until the friction and the moment balances. An
analytic integration over the solid angles is no longer possible
but a mmerical integration can Be used and in ref. 5 several for—

mulas for integration over the surface of a unit sphere can be found.

The integration points are placed as the vertices of regular poly-
hedra plus certain intermediate points.

To make the model reproduce real hysteresis loops it was necessary
to assume that in the same direction in space there are a mmber of
magrets which have friction factors  which were different: and 1n
the results presented in the figures I have chosen 12 integrakion
roints with 5 friction levels 1 A | N’ 1 p ad 0 and an

equal proportion of the magnel:g ak gach lgvel, go that the magnebi-

sation at each level is Mg/60.

‘The procedure loops over the direckions in space and compute the re~

sultant field Hp. Then it loops over the Friction levels: Let gy,

be a unit vector in the direction of the magnetisation vectkor

M, (=g, - Ms/60) left over frem the previocus iteration. Then

Sn = gg, ¢ Iy is a vector notmal to the plane common Lo My, and iy

its meveric value Sp is the moment acting on a unit magnet aixt

©n = §n/5n is a unit normal vector to the plane, If 8n 1s less than
ntl, the magnel does not move, otherwise it moves towards IR unkil

Sp = nif,. ‘o do this we Find a unit vector er = ipAig and form

Bh ™ R ¥ Bn. The three vectors are orthonormal and the hew el 1s

found as

=g s+epVi-s?  (16)
inwhich 5 = sin 0 = ipAI.

The results obtained wikh the model
are in good accordance with the
behaviour of actual magnetic mate-
rials and without making any spe-
cial effort to do so the loops
close and in the demagnetisation

v P4 exanple on £ig. 6 the end points of
each leop follow the virgin curve
quite closely,

2.2

This suggests that in spite that the model neglects the existence
of the Weiss-domains and other known physical phenomena pertinent
to the magnetic behaviour 1t contains some physical truth.

Non-isotropic materials can be modeled by assuning that 0y, 1s a
function of the direction in space, and also Mg and (i, may vary
between the individual integration poinks.

A nunber of computer plots show the performance of the model; Flg.
2 to 6 have B and Il patrallel.

Fig. 2 shows the magnetisation curve for a reversible material ob-
tained with 12 integration points. It is very close to the theore-
tical value as given Ly (15).

Fig. 3 shows the magnetisation loop obtained with a single level of
friction. ‘he model gives internal loops which are lines paraliel
to the ll-axis. It also exhibits a phenonenon equivalent with
Barkhausen jumps when a magnet which 1s locked in a position almost
pacallel to the field but orientated in the opposite direction
suddenly is torn leose and flops over to be nearly parallel to il.
This phenomenon cannot be avolded hub it is diminished when the
mmber of integration points and friction levels are increased.

Fig. 4 shows a loop dravm with 5 friction levels. The virgin curve
is now in accordance with experiments, hut for very intense R
fields the jums are still appreciable.

Fig. 5 shows a number of loops inside each other and it seems in
good accordance with fiy. 1 of ref. 7.

Fig. 6 shows a magnetisakion followed by a series of demagnetizing
loops with decreasing amplitude of H.

Fig. 7 is a sequence In which H, iz increased from 0 to 21, There-
after the H-vector is rotated around the z-axis. 1 = 1.0 has been
chosen, The M-vector is app. 19° behind the I-vector. My versus
N, is plotted] B

Fig. 8 is a similar sequence in which I not only rotates but is also
decreased at the same time.

Fig. 9 is a sequence in which the starting Il = (2,0,0). H is then
rotated around the direction {1,1,1).

One other important question is computing time spent on the hyste-
resis model related to the total computing time and it is ob-
vious that a model which requires the storage of 3Ix5x12=180 quan-
tities for each integration point in the structure may be costly.

In case of 2-dimensional and axi-symmetric problems there is a
symmetry around the X¥-plane in the hysteresis model and therefore
only half the integration points are necessary. Numerical experl-




ments show that 8 integration points and 5 friction levels give
accepltable results whereas a large number of integration points do
not give reasonable results with only 1 or 2 friction levels. Often
only a small region has to be txeated as non-linear and the linear
regions may be eliminated from the computations by means of static
condensation which is now a well known procedure within finite
element analysis. A typical job with a complexity as fig. 11 may
contain 140 elements of which only 4-8 need to be treated non-
linearly. Even though each of these uses 10 times as much comput-
ing time as the rest, the problem is still managable as the com-
puting time for the linear case is only 2.2 SUP-min. on a UNIVAC
1106.

ITERATION SiRATEGILES

The above statements naturally lead to consideraltions of the opti-
mal strategy in computations and we may inmediately divide the
problems in two classes which are either reversible (conservative)
or non-reversible (with hysteresis, non-conservabtive). In the
first case the result is independent of the sequence in which the
fields are changed but in the latter this is not s0, therefore the
optimal strategy in the First case is the one which gives the cor—
rect answer in as few steps as possible, whereas when hysteresis
is involved the minimum nuber of steps is determined also by the
sequence of changes of the Field.

In the reversible case the mathematical principle behind the con—
vergence is that of a contraction mapping and the smaller the
Lipschitz-constant the Fewer iterative steps are needed. However,
the time spent on each step may be considerably reduced if the
same matrix could be used several times. MNewton-iteration is more
complicated as it requires a new matrix each time, but it is very
efficient as the number of digits corrected is doubled from step
to step. The iteration strategies for the reversible case may he
sumarised as Follows:

L. When a point (B,H) which is not
on the magnetization curve is
found, we must extrapolate to a
corresponding point on the
curve in which we compute the
permeability for the next iter—
ation. For this we may move
along lines with either B or H
or B+H constant.

2. Ns explained above, we need nol:
update the left hard side for
each iteration step. The mabtrix
need only be inverted after each
updating.

3. We may base cur iterations on the
cenventional (secant} or the
differential (tangent) perme-
ability. The latter which is iden-
tical to Newton iteration is shown
in the diagram.

The experiences gained so far are not conclusive but the indications
are:

ad 1.

Extrapolation along H-constant should always be used. In case of an
infinitely long homogensous bar in a long solenoid this is the exact
solution. Extrapolation along B-constant is nearly always divergent.

ad 2,

This method is sowetimes divergent iF only the absolute values and
not the vector components of (B,/H) are carried over to the next
iteration. It may be possible to optimize the number of iterations
between updating the matrix.

ad 3.
For B=curl (M) proper Newton iterations imply exbrapolations with B=
constant. liowever, H=constant is a better guess from the physical

point of view. The non-linearity always implies anisotropy because
the permeability perpendicular to the field veclor is vnaffected by
the field strength.

From {10) we can deduce
M= BBy = 07RO B i s DL (BB 4 (17)

where (Hj,Bj} are the field vectors from the previous step

(4} now can be wriltten:

Mgy = f G Vo B0 Ln-p" e romisp ey 2T ) ae (18)
Q



Fig. 2 ] Skt

which 15 the version of the Newlon iteration scheme included in the \ \
program. \

For the irreversible case with hysteresis no experience with reqgard I
to computational strategy is as yet available but the methods deve-

loped for plasticity which exhibits several seemingly similar fea- T “ (¢4, r4) 7
tures can probably be used. g- ===

CONCLUSTION R IR R

The use of ligher order elements in magnetostatics can give econamic, BN P - -—/"
accurate and appealing results as demonstrated by the results pre- ) )
sented in [ig. 10.a,b,e, 1ll.a,b and 12. The problems of represent- — I/ / Fig. 4
7/
|7

Sk, Aa)

ing the material properties correctly seem solved but some simplifi- ____
cations in the model could be desired. [
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Sample problem of two identical spheres magnetized parallel to their
cemiion centerline. Fig. 10a shows the complete inpul to the B&W~PINEL
program. The four KONTEL cards represent four integration paths for
the computation of magnetic forces. These coincide reasonably well
with eachother and the theoretical value.

Fig. lla and b. Magnetic field in a magnetren. The field is created
by two radially magnetized ring-shaped permanent magnets. 'The central
field has been drawn in more detail to the right.

¥

force computation very litkle.
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-—\ ———— - il L A L Fig. 12. Magnetic actuator with
>~ ) A LTV solenoid and and open ciruit.
The fact thal Lhe far field is
Bl E \ ) distorted at the boundaries of
o |[% \ the finite region affects the

||

In fig. 10b the magnetization is opposed in the spheres (case of
antimetry}. ) |

In fig. 10c the magnetization is in the same direction (case of
symmetry) . All drawings are computer-plots produced on a Tekironix
4014-1. \
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A CLASS OF METHODS FOR SOLVING
TWO-DIMENSIONAL LINEAR AND NON-LINEAR
STEADY STATE AND TRANSIENT PROB LEMS

A G Jack R L Stoll
C A Parsons & Co Ltd. Department of Llectrical
Heaton Works Engineering
Newcastle upon Tyne The University
Southampton

ABSTRACT

The paper describes a class of methods for solving two-dimen-
sional steady-state or transient eddy-current problems. The
technique employed is to treat the problem as an initial bound-
ary value problem the solution at a particular time being obtained
by time stepping to the desired point. The method of lime step-
ping is explicit and is based upon the Dufort-Frankel algorithim.
The performance ol the original Dulort-Frankel algorithm for
linear prohlems is tested apainst models capable of analytical
solution. Following this the performance of the nonlinear mod-
ification of the method in one dimensional form is examined male-
ing use of an established one dimensional nonlinear sslution, A
method of dealing with nonconducting zones in two-dimensional
models is detailed. This allows the use of numerical/analytical
hybrids which are advantageous in terms of computation time in
certain circumstances. Lastly an example of the use of the

method for a representative two-dimensional problem is descri-
bed. .

1. INTRODUCTION

Many practical devices have regions in which significant eddy-
currents are produced, Such eddy-currents may or may not be
desireable but a2 capability to predict them in the design phasc is
essential. The presence of ferromagnetic material is a further
complication making the representation of nonlinearity important,
Examples will often be large, geometrically complicated and con-
tain many different materials.

In this paper a numerical method is described which can deal with
such problems as may be adequately modelled using two apatial
dimensions,

2. A BASIC APPROACH TO THE PROBLEM

Two-dimensional eddy-current problems may be usefully descrihed
in terms of the magnetic vector potential. We may be interested

2,3

in either transient or steady-state solutions. DBoth may be gained
by a solution of

3A AA
(%) LTE) ey e )

where v , the reluctivity, is a function of the curl of the vector
potential., Steady-state problems can be svlved by treatment as an
initial boundary value problem, the steady-state solution arising
after the decay of an initial transient. A suitable method of sol-
ution for either transient or steady-state problems is to [ollow

the solution in a step-by-step manner through time. This is the
type of method described here. Such a method is capable of deal-
ing with saturation and the harmonics it produces without drastic
assumptions.

To set up a time stepping process the time differential term of
Equation | may be replaced by a first order difference approxim-
ation, The choice of this difference replacement has implications
for the resulting time stepping method. [f, for instance, a back-
ward difference approximation is used an implicit method results,
and, upon substitution of a numerical approximation for the left
hand side of Equation ) a[ get of simultaneocus equations has to be
solved at each time step. If, on the other hand, a forward dilfer-
ence approximation is used an explicit method results and a set of
independent linear equations must be solved at each time step.
Intuitively we might expect that an explicit method will take less
time per time step to compute but need more time steps than an
implicit method to achieve results of the same accuracy.

Which of these methods will be the better approach? A useful in-
dication is given by one dimensional problems in which both app-
roaches have been used. For instance, Stell {1974)° page 86 gives
the information that from numerical tests an one dimensional
problems an implicit method in the form of the Crank-Nicolson
scheme is marginally faster (in computation time) than ag expli-
cit method in the form of the method known as Hopscotch™. Ina
one dimensional problem the matrix resulting from the 'replace-
ment' of the spatial derivative is tridiagonal. In the two-dimen-
sional case the matrix is banded, the size of the band being dep-
endent on the shape of the mesh. This is of no consequence for
an explicit method. However an implicit method requires comp-
utation time which is strongly related to this band width. As the
number of nodes increases the band width also increases and an
implicit method suffers increasingly in comparison with an exp-
licit method., In conclusion, it appears that an explicit method
will be advantageous for two-dimensional problems and increas-
ingly so as the number of nodes increases.



3. DESCRIPTION OF THE METHOD

For one dimensional problemyg it has been demonstrated that the
Hopscotch method is efficient . ¥For two-dimensional problems
the advantages of the Hopscotch method over the closely related
Dufort-Frankel algorithm are mostly lost and in any event the
special splitting of the mesh required for the Hopscotch method
is not necessarily possible for a finite element mesh. For a
linear region of single permeability the Dufort-Frankel replace-
ment of Equation | may be written in {inite difference form as

k+l k-1 2r k k k k k-1
= o -
Aij Aij 4r+l { i+l * i-1j ¥ Aij+l ¥ Aijnl 4‘Aij )

()
where ij refers tp a nodal position in %3t given by x=ih, y=jh, t=kat,
and r = At/o’)uh . The exclusion of the node A,, from the algor-
ithm is to avoid instability. Two-dimensional ~ nonlinear vec-
tor potent]éal versions of the Dufort-Frankel algorithm implicitly
involve A, via the calculation of the reluctivity. A further dis-
adva.ntage”o{ a two~dimensional formulation over a one dimen-
sional forraulation in terms of the magnetic field strength is
that the nonlinear parameter in the one dimensional case ~

(3B/3H)is a function of the magnitude of the independent variable
(the magnetic field strength) whereas in two-dimensional problems
the nonlinear parameter {the reluctivity Y }is a function of the
slope of the potential (i.e. on curl A). These two disadvantages
necessitate the use of reluctivity damping, where the reluctivity
at any time step k is based upon previous tirmne step reluctivities
by

k . k k-1

V" = B(function (curl A7) + (i - B) ¥ (3)

In this equation B is the 'damping factor’ and values of £ in the

range 0,02 and 0, 35 have beun found to produce stable results

of acceptable accuracy over a large range of excitations given

suitable values for At and h. The accuracy of the method des-

cribed above (and its stability for nonlinear problems) is depen-

dent upon the choice of space and time step. A linear one dim-

ensional example, for which an analytical solution is available,

provides a suitable vehicle for establishing suitable values for
space and time steps {i.e. Ay and Ot} for linear problems.

It has been found that such information provides valuable insight

into the choice of these parameters {or nonlinear problems. The

model used is that of a thick solid conducting block with & spec-
ified sinusoidal tangential magnetic field strength at the surface
and an arbitrary boundary of A=O many skin depths {rom the sur-
face, Figure | shows a plot of lines of constant maximum error
in the current density occurring at any depth within the block.

From this it can be seen that the choice of & large space step, 2

large time step, or a large ratio of time to space step all result
in large errors. The last mentioned virtually obscures errors

due to too large a time step, The space step limit is in line with
that found by Carpenter” for finite element analysis of fundamen-
tal harmonic problems. It is simple to show using the analytical
solution that for this problem to minimise the errors we require

1 o} At { 4 = skin depth,
fZ Ayls W = circular frequency) (4)
1 >> W At
a (5)
i A
Ve

(6)

From this and Figure 1 two ideas can be drawn:- (i) the space step,
time step and ratio of the two must be chosen in relation to the sol-
ution and (ii} a more accurate and yet quicker to compute solution
can be gained by judicious choice of space and time step. )

Extending the problem to allow saturation of the block makes
necessary the use of another numerical solution E%r test purposes
An available established method ig that due to Lim. Ina nonlin-
ear problem harmonics are produced by saturation and the analy-
sis of the effect of space and time steps becomes {far more com-
plex. Another factor is the effect of the damping factor B . Snye
rules are much harder to define as Figures 2 and 3,showing dif-
ferences between a single Lim type solution and the described
methed using various space and time steps, demonstrate. How-
ever in these figures the ground rules established in the linear
study apply in that large space steps result in lazge errors {show-
ing first, perhaps not surprisingly, in the harmonics); large time
steps are not particularly harmful, unless accompanied by small
space steps, in which case instability results, The relationship
between space and time steps can be traced back t?C_ﬂ\e regkaice—
ment of the node A, in the spatial derivative by (A,  + Al 5
(to avoid instability). Nonlinearity reinstroduces that nodé via
the calculation of the reluctivity hence the presence of instability
and the inducement of it by using large ratios of time to space
step. Experiments have shown that a2 good choice for the space
step is equal to the unsaturated skin depth and for the time step
about 1/300th of the periodic time, An example of the compari-
son between 2 one dimensional solution posed in vector potential
form is described here and Lims method of solution which uses
the magnetic field strength is given in Figure 4, The compari=-
son is good and yet the vector potential solution is twelve times

2.3



faster than the Lim solution because much larger space and time
steps are possible.

A linear two-dimensional example is that of a conducting block
subjected to a tangential magnetic field strength in the [ormof a
travelling wave on its surface. Using the analytical solution for
this problem it can be shown that for small errors, conditions

can be placed upon the two space steps, the time step and the ratio
of time to space steps as follows:-

for Ax, (where x is tangentiat to the surface of the block)

1 >> L bx (g = pole pitch of the travelling
1z ¢ wave) (7
for Oywif gy KS
? 7
I 2y
>> /64 (8)

or ifg << ZEEJ

YAt

for At,

l>>__(,._)jB_A__t

{10)
and for the ratios Atfax  and Atfay
1 tJ At + w At
>>fi Ay /g 12 Axy
(i)

Again the behaviour of the solution is scen to dictate the required
value of the space and time steps in the same way as the one di-
mensional solution,

Experience with two dimensional nonlinear models indicates that
the results of the one dimensional experiments hold for two
dimensional problems with the possible exception that twe dimen-
sional problems tend to be more stable,

If near to optimal space and time steps are used the method is

2.3

quite attractive in terms of computational time and it is viable to
time step 6000 nodes through 3 or 4 cycles on mederately fast
computers. This seems to be in excess of the capability of cur-
rently available implicit time stepping programs.

4, METHODS FOR ZONES IN WHICH THE
CONDUCTIVITY I8 ZERO

Two-dimensional problems often have zones in which the conduc-
tivity is zero, such as air gaps, laminated cores, etc. Tor areas
such as this the equation being solved is either Laplaces or
Poissons equation. There seems to be no reason why the Pufort-
Frankel difference equation should not be used for this area.
However using the Fourier method it can be shown that the method
is marginally stable/unstable and numerical tests have shown

that with certain boundary conditions instability results. We can
get over this by exploiting the fact that the method is explicit,

The areas in which the conductivity is non zero require only val-
ues at the time steps k and k-1 to compute k+l potentials. From
the areas where the conductivity is zero only values at time k are
required, Once all the nenconducting arcas have been maved for-
ward to k+l, a solution at k+! can be sought in the conducting areas
using the previously calculated values of potential-on the boundary
between the regions as a Dirichlet boundary. Having gained this
golution by some means (e.g. SOR) it can be used along with k+l
and k values in the conducting areas to gain a solution at k42 in
those areas and so on.

This technique is not limited to the Dufort-Frankel method, any
explicit method is open to the same technique, One important
point to note is that at each time step a complete solution for the
nonconducting areas is not pecessary;: only 2 boundary condition
for the conducting areas is required. Any method [or solving a
boundary value problem can be used lor the Laplacian or Peoisson-
ian regions and in many practical cases an analytical solution can
be used. The use of an analylic magnetostatic solution combined
with the fact that only a boundary condition is required can result
in a very considerable saving in computation time. An example
of a case where an analytical solution is appropriate is the air
gap of an electrical machine (where the stator boundary is con-
sidered smooth].

5. A FINITE ELEMENT VERSION OF THE METHOD

Equation 2 defined the Dufort-Frankel algorithm for a linear sirgke
permeability region represented by a finite dilference mesh with

equal mesh squares of side h. It is 2 simple maiter to extend
that algorithm to nonlinear multiple permeability regions repres-



ented by an uneven rectangular finite difference mesh. The
finite element method can also be used but the classically de~
rived equation using a linear variation of potential in each ele-
ment Tequires some modification. This classically derived
equation can be written

[S]'[.A] + [M].__gT[A] +[F]= 0

To make an explicit method possible the structure of (M), which
is such that off-diagonal terms exist, must be altered so that
only diagonal terms are non zero. To accomplish this a techni-
que known as 'lumping' is applied in which the induced current
in each element is split evenly between the three vertex nodes.
Also the equivalpnt term in {5) corresponding to the contribution
from the node A,, in the finite difference method mﬁﬁ be :icp_}i}ied
to the equivalentin the [inite element method of (A +4 .. ")/2.
This is necessary to achieve an equivalent form of' the Dufdrt-
Frankel algorithm rather than an equivalent of Richardsons
{unstable) method. This is achieved by splitting (S) into two
matrices,(T) with only off-diagonal terms and {U} with only
diagonal terms. The [inite element algorithm now becomes

[T)[A]k+ %{U]{[A}k+1+[}\. k'l} + [ Mimod] [[A k+1-[A]k-!} El.{é

+[F]=o0 (13)

7
Numerical tests have shown the algorithm to behave similarly
to the finite difference method on the same problems.

{2

6. A PRACTICAL EXAMPLE

Turbogenerators retors are built [rom large solid ferromag-
netic forgings. The field winding is restrained within slots in
the forging by conducting wedges. During certain abnormal
operating conditions eddy currents are induced in the various
components of the rotor. Calculation of these currents is an
important part of the design of the machine, The method des-
cribed here has been applied to 2 mathematical model of such
a machine during unbalanced stator current operating conditiors.
A flux distribution resulting from that is shown in Figure 5.
The model contained 4369 nodes in the rotor and in the air gap
an analytical solution was used with 50 spatial harmonics.
Following switch on of the stator excitation the periodic solution
was dominant after about 3 ¢ycles,to reach which 1200 time
steps were used. To talk of computational time is difficult siee
it depends so much upon the individual machine used, suffice to

say the solution, although very large, represents a quite mod-~
erate amount of execution time,

7. CONCLUSIONS

A class of methods has been defined in which finite element or
finite difference methods can be used to model the spatial mag-
netic vector potential variation in conducting areas and any suit-
able numerical or analytical method can be used in the noncon-
ducting areas. Large problems are capable of viable solution;
problems with over 6000 nodes have been treated successfully.
The solutions gained make no drastic approximation about sat-
uration or harmeonics.

2.3
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SUR LA RESOLUTION DE SYSTEMES LINEAIRES,
PROVENANT DE L'UTILISATION DELA METHODE DES ELEMERTS FINIS,
PAR LA METHODE SEMI-DIRECTE DE STOME

Hubert Froidevaux
Ecole Polytechnique Fédérale, Lausanne

RESUHE

On applique une méthode de Stone modifiée & la résolution
de systémes linéaires, provenant par exemple, de la
discrétisation par &léments finis de problédmes aux 1i-
mites de type elliptique. On énonce des conditions de
convergence du processus itératif. Or présente des expé-
riences numériques.

1. INTRODUCTION

.L. Stone, dans un article de 1968 (SIAM J. Numer. Anal.
Vol. 5, Ho 3, septembre 1968) a introduit une méthode
gtégante de résolution de systémes lingéaires provenant de
Ta discrétisation par différences finies de problémes aux
limites et i1 la compare 3 d'autres méthodes classiques.
En s'inspirant de son idée on introduit toute une classe
de méthodes de résolution.

Soit le systéme lingaire

AY = F ()

que 1'on veut résoudre. On suppose gue Ta maltrice A est
symétrique définie pogitive, c'est-d-dire qy'elle satis-
fait Ta condition (AX,X)>0 quelque soit X # 0 . Dans
ce cas une méthode de solution de (1) est doppge par
Choleski. La matrice A se Factorise en A = LL' ,
L @&tant une matrice triangulaire inférieure. Alors le
systéme (1) devient

"y - -+

X = f (2)
On obtjent ﬁacilemen}?ia sglution en deux étapes. On ré-
sout Ly = F puis L' x =y . St A est une matrice
creuse de la forme

AT

)
alors L ne sera pas creuse.

O (4)
2

Ce fait présente Te grave inconvénient d'utiliser beau-
coup de place, Alors que le stockage de A demande environ
4N places, celui de L en demande enviren J¥N.

L'idée de Stone est d'utiliser une méthode itéraltive con-
servant les zéros de A. On décompose A en une somme

A=+ (5)
Avec L de la forme

J‘ 0 Y (6)

-
t

Alors (1}devient

L% + 6% = ¢ (7}

systéme que 1'on resout par itérations
L% . o= F 8% 8
ey T *n (8)

On introduit un facteur de relaxation comme suit
xn+£_ est calculé par

T k
LL Xpey © f - Bx, (9)
et in est calculé par
¥ = o -+ -—)- ]0
X et xn+u[xn+5 Xu) (10)

a nombre positif, est le facteur de relaxation.

En &liminant §n+£ entre (9) et {10}, on obtient

LU Ry = WK ~a[AX -] (1)



2. CONVERGENCE DE PROCEDE ITERATIF (11)

On s'intéresse évidemment & la convergence du procédé
itératif (11} vers la solution de (1} guelque soit le
vecteur de départ x4

Proposition 1

Si A est symétrique définie positive, «>0 et si la
matrice 2A°'LL"-al est définie positive, algrs le
procédé itératif (11) converge quelque soit X,

Démonstration

> -1
{11} s'écrit =z

PR R CH (A LY S A (TR

I étant Ja matrice identité.

On sait que 1a condition de convergence est que

[ T-a({LL"}y* Al <1 pour une norme matricielle quelconque.

On introduit une norme matricielle particuliére définie
par Te produit scalaire

[x,0] = (Axy) et Ox0 = Vx,x]
(.,.) @ produit scaltaire habituel

Calcutons, en posant M = (LLT)_I ,

Gi-aMAYR([2= (X1 2+ a2 MAX]Y =20 [MAX,x]

d'of

D(I-«MA)X 2 - (%] 2 =a(a[MAX]" -2 [MAx,x])

= o [MAX,aMAX-21X] = a[¥,al¥-2A-1LLFy]  (avec y = MAX)
Le dernier terme est négatif quelque soit y # 0 , donc

quelque soit x # 0 ,
d'oi

Oii-eMa)x 02 <0202 quelque soit X , ce qui permet de
conclure.

}

Examinons la signification de la condition 2A~ LU -al

définie positive

[(2a LU - «1)%,%]50

[ 2a L 7,7 ]5e(R.5)

et en vertu de Ta définition de [+,-] on a
(2L %,X)>a{AX,x)

d'oil 1'cn tire une condition nécessaire pour la convergen-
ce du processus (11}

T
iké—éiil > & quelque soit X # 0 (12)
(Ax,x) 2
On peut aussi traduire la relation (12) en terme de va-
teurs propres des matrices A et LLY . Ces deux matrices
étant définies positives ont toutes leurs valeurs propres
positives et on a lTes relations

-

_ o ]
AAllszs(Ax’X) s xalll
. w o = {13)
AXIZ (LT R, X) s © %12

Ap(2) : plus petite valeur propre de A(LL")

?A(T) : plus grande valeur propre de A{LLT)

{12) et (13) donnent une relation suffisante pour assurer
la convergence du processus itaratif (11).

a

A>3 % a0 (14)

Cette relation montre que pour un systéme Tingaire (1)
donng, {1 est fixeé) , i1 est toujours possible de
trouver une décomposition LLT et un o tels que les
itérations convergentes. Théoriquement, du moins, Lt
peut &tre quelconque.

L'erreur & T'itération n est donnée par la différence

Poew R
"y = XX {(15)
o x est Ta solution exacte du systéme (1). Pour le pro-
céde itératif {11) on obtient facilement 1a relation
> T~ ,70*
rp = [I=(LLT) Al Tr (16)
Un autre vecteur intéressant est
+ +  F
Rn = Axn-f (17}



11 est relié & ?n par

Ro= AF (18)
et on a
R A[E~a(LLT) "A]"A TR, (19)
et pour une norme quelconque
W Ji=HAlt-acitTy T ada Rl = cHRgl  (20)

Alors le nombre
Coofl1 -a(LLT) A (1)

mesvure 13 qualité du processus itératif. On sait déja que
poeur avoir convergence, i1 faut que C€<1 . La vilesse de
convergence augmente Yorsque C diminye. C est i au
rayon spectral y de 1a matrice I-a(LLT)']A .

y = p(l-u(LLT)']A) (22)

-1

3. CHOIX DE LA MATRICE A

ta matrice A doit &tre définie positive et avoir la
structure indiquée en (3}. Le plus simple pour réaliser
ces deux conditions est de discrétiser, par &léments
Finis triangulaires du premier ordre, le probléwe
(elliptique) aux limites

div({a(x,y)grad } = 0 dans @
ulaq = 9 {23}
a(x,y)>0 dans «

Pour obtenir la structure creuse de {3) il faut trianguler
et numéroter convenablement les noeuds.

b

Le domaine Q(0) est le carré de la figure suivante

Y

/

Le domaine q{a) est 1'image de q(0)} par laz transforma-
tion T(a} :

a(0) a(a)

{ X ) T(a) i+ay

¥ |

et tous les domaines ont la mdme triangulation 3 1la
transformation T{a) prés.



les différents probtémes gue 1'on résout sont

Pl hu =0 dans 2{0)
U = X+y sur 2Q(0)

peZ (4 = 0 dans 2({3)
U o= Xty sur a(3)

P3 : by = ] dans a(5)
u = Xty sur 3g(s)

P4 (div(rzgrad u) = 0 dans n(5)
u = x+y sur ag{5)

P5 [div(r“grad u) = 0 dans o(5)
u = X+y sur 3(5)
r2= yxZyy?

4. CHOIX DE LT

A &tant donné, 11 faut choisir LLT 'de telle sorte que 1la
condition (12) ou bien (14} soit satisfaite et que

C (21} soit le plus petit possible. Ces deux conditions
sont pratiquement impessible & vérifier & priori, ¢'est
poeurquoi on fait des décompositions A = LLT +B de ma-
niére heuristigue. Le choix est toutefois guidé par la

Remarque 1 : Si LL¥ est exactement €gal & A , le pro-
cessus jtératif {11) donne la solution en une itération.
On a donc avantage i choisir LLT "proche de A" et fa-

cilement inversible,

Pour préciser, introduisions quelques notations. La
matrice A est décrite par les vecteurs

a{N) , b{N-T} , c{N-0+2} , d{N-J+1) et la matrice L
par les vecteurs r(HN) , s(N-T) , E(N-3+T)

On veut construire LLT satisfaisant 3 la remarque 1.
IT semble naturel d'identifier les diagonales et les
surdiagonales de A et LLV respectivement. L'atgorithme
de calcul est

r(1) = [a(1)1}
s(1) = b(1}/r(1)
t{1) = [uc(i)+{1-u)d(i)1/r{1)
r(i) = Ta(i)-(s{i-1))21} } .
s{i}) = b{i)/r(i) 2¢igd-1
t{i} = buc{i)+(1-u)d{i)¥/r (i)
r(1) = rali)=(s(i-1))2-(t(1-041)) 21}
s{i) = b{i)/r(i) Jeigh-d+1
t(i) = [uc(#)+{T-u)}d(i)1/r (i) f
, . . . 3
) 2 B Y

r(H) = Ta(N)-(s(N-1))2-(t(N-d4+1))21}

Dans 1'algoerithme on introduit un paramétre u qui
permet piusieurs décompositions de A . On note L

A Lo u
la matrice obtenue pour un u fixé,

5. ESSAIS NUMERIQUES

On itére
X o= LLx -alaX -?j } (24)
EuLuxn+l = Lutu®y u[ *n
Xg= O

Le processus dépend des deux paramétres a« ,u . Les
propriétés de convergences dépendent de la matrice A
donc dans motre cas du probléme (P1, P2, P3, P4, P§)
et de u et o. La vitesse de convergence est définie
par

v = log C (25)

Cette définition provient de (20) qui indique que
>
Toglir ll= n log C+togll Rl (26)
La vitesse de convergence caractérise la convergence vers
zéro de l1a suite {||Rg|}. La figure (27) montre que (26)

est effectivement juste. Pour cela on définit les deux
normes vectorielles.

IRy = 1y xgse g2 mFE uxi|g (28)
gig
N

WA, = |l (x .x ,...,anh=[15](xi)ﬂ% (29)



La figure {(30) montre les demaines du plan {nu} ol il ¥y

a convergence de (24). Ces images montrent la dépendance
de la convergence en P1, P2, P3, P4, P5,

eru R, 1\

N \\ 100 So0

Ffﬁure 27
Courbe &1/]/?,_” = A La'lc"" 'g"‘-//ﬂg//

Probléme Pt avee U=0 =03

la vifesse e cenvergence £Lf MesUree

/:ar- -fna
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F('gure 30: DPomaines de convergence pour
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6. REMARQUES ET CONCLUSION

1. Les valeurs des paramédtres {e,u), pour Jesquelles la
vitesse de convergence est la plus grande, se situent
au bord du domaine de convergence.

2. La vitesse de convergence dépend,comne on pouvait s'y
attendre, de la matrice A, donc du probléme 3 résoudre.
Cependant dans le cas P5, elle est encore trés conve-
nable.

3. La méthode se programme trés simplement et elle écono-
mise (c'est son but) la mémoire.

4. On a tenté d'améliorer la vitesse de convergence en mo-
dififant légérement la matrice L , par 1'introduction
d'un troisiéme paramétre multipliant la diagonale de L.
Les résultats ne sont pas intéressants.

5. 11 me semble qu'uneamélioration possible pourrait étre
obtenue. Mon projet est de construire 1a matrice L en
introduisant plusieurs paramétres u . Soit {ul)cet
ensemble de paramdtres, Lpy} la matrice L correspon-
dante. La matrice L{u} pourrait satisfaire

”L[ulﬂ;u}" Al = minimum sur {ut

pour une norme matricielle.

6. La mé&thode peut évidemment s'appliquer a des matrices
quelconques en effectuant une décomposition A=LU+B

7. On peut aussi appliquer Tes mdmes idées & d'autres
types de matrices A.
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MAGGYZ2 AND PADDY,
PROGRAM PACKAGES FOR 2 AND 3 DIMENSIONAL
MAGNETOSTATIC PROBLEMS

A. Wachters
J.van Weli)

5.d. Polnhk,
A. de Beer,

ABSTRACT

In this paper the Drogram packaoges HMAGGY2 and PADDY are
discussed, Special abtentlion 1s pald to the mesh and
geomebry definition and the linear algebra.

I. THTRODUCTION

A greabt denl of experience has been obtained wibkh nlgo-
ritbhms for 2 and 3 dimensionel magnetostabic problems
[2 ] (2 ]. The essential difficulties in such prohlems
now are

- complicated configurations

~ high accuraciesn,
In an Industrial environment the second plays a minor
role wherens the first is of major importance. Becnuse
our background is industrial we mostly pay attenblon %o
difficulties from problems with complicated configura-

tione. BSuch problems inveolve long
~ detn preparabion and
- computing

times,

For obvious rensons the relative importance of Lhe flirst
is increasing w.r.t. the second. One way Lo make GLhe da-
ta preparation easier ias the construction of a program-
package with n problem oriented language, POL, see e.g.
13 ) ana {W ],

This problem oriented languange should allow the descrip-
tion of the problem in a terminology close Lo the usual
technical notation,

The program packages MAGGY2 and PADPDY mre construckbed for
resp. 2 and 3 dimensional magnetostatlec problems. MAGGY2
has WAGLAN ns a POL and PADDY has PARDEL. Bobh roffer sl-
milar problem description facilities.

In this paper we pay attention to the mesh and geomebry
specificatlions in the problem oriented languages and Lo
the linear algebra in these packages. We will do Lhis
against the background of both packnges ns o whole,
kowever n separnote paper on MAGGYZ has been submitted
such thal we concentrate here on the aspects in PADDY.
For the sake of comparison we do treat the MAGGY2 Ten-
Eures as well.

In scction 2 we glve csome information on our idens w.r.b.
program packages. In section 3 problem oriented languages
are dlscussed and in section 4 the mesh mnd geomebtry spe-
cifications are consldered. In section 5 Lhe nlgorithms
in MAGGY2 and PADDY are further described to form a back-~

ground Tor section 6 where we consider the organisation
of the linear algebra.
2. PROGRAM PACKAGES

A program package conslste,
items

- n problem oriented language(POL) and

- a set of programs.
The POL is discussed further in section 3.
The set of programs contains

- n syntax checker

- o semantics checker-expander

- the principel slgorithm

- output programs.

in our termlinology, of tweo

The basic structure of hoth packages FADDY and

MAGGY2 i3 the same and shown in fig, 2.1,
l Input | Error mossagos Prim/Piot

NN

+\ S/

L]

/

LB PRE[C L |CAL PRI PLO
Fotlran
Filo
Materials Data Aundli
Dala Fila ;“?W
Libeary Dala Filn
LIB = Library CAL = Calcutalions
PRE = Preprocessor PRI = Primt
G = Compilp PLO=Plol
L =Link
fig. 2.1.

Phe structure 1s discussed in detail in [U ],
The only point which needs some abtention for the rest
of this article is the compile-~llnk step. This is done



to enable the inclusion of both generated {(by the inter-
preter) and user specified FORTRAN programs, This way
alsc the FORTRAN fixed dimension problem is solved,

The dimension statements are generated.

3. PROBLEM ORIENTED LANGUAGES

A problem oriented language should enable the specifica-
tion of the feollowing data in a well separated way

~ problem description

- algorithm information

- I/0 requirements
Po enable & specification of the different information
types the input is subdivided in bloeks. These are

- region bleck{s},

~ algorithm block,

- print,

- plot,

- curve and

-~ result
blocks
A theorcugh description of our basic philosophy w.r.t.
this topic ean be found in [3 } and [% ]. Because it is
essential for the foliowing to understand the basic
principles a short survey follows here,
The problem description is given in the region blocks.
In those the geometrical and material data sre specified
per physical part of the problem. We try to keep the ter-
minology here as independent of informatics as possible.
The basic rule being that the problem exists without a
computler,
Once more, examples are given in [6 ] and [} ].
in practice we find Iin the region blocks of MAGGYZ2 and
PADDY material property statement such as

BE = row of number pairs

or Bl name
or I = number

and geometry descriptions as discussed in section I,
The algorithm bloeck containg mesh definition statements
and accuracy control statements such as parameters for
the termination of iterative processes ete,
Of the further blocks only the curve and result blocks
are not selfexplanatory w.r.t. to their usage {(seel5 J).

b, MESH AND GEOMETRY SPECIFICATION

(4.1) The mesh for MAGGYZ2 consists of the quadrilaterals
formed by two sets of broken intersecting lines as

shown in fig. b.1. Thus the mesh is topologicelly equi-
valent to a square mesh,

T

2

-5 9.0
12

fig., h.1.
Neighbouring lines must have consecutive numbers. In the
algorithm block a "coarse mesh" is defined by giving only
Lthose lines that are strictly necessary. The mesh is then
completed by linesr interpolation.
The meshiines are followed in the mesh statements apd
their coordinates given.
Thus the mesh in fig. 4.1 is given by

R(1} = hxo,R{4) = 2,3,3%2.8,R(8) etec.
and
Z{1} = L=x0,...

Here the % symbel is used to indiecate that a number of
consecutive points in the coarse mesh have Lhe same
coordinate along & mesh line.
In general the mesh statement has the form

co(lnteger) = row of finters.
Where co {coordinate) may be

X,Y,%2,8 or PHI
g2 finter is either a real or a name.
The name can be a function name which corresponds Lo a
user given fortran function see ([ 31).
The disadvantages of this mesh are

~ restriction of the geometrical flexibility

-~ usually %too many unknowns,

2.5



The advantages are

- n perfect bandstructure in the malrix

- easy bo specify.
We think that Lhe advanbages of Lhis mesh (ar ouwtweigh
Lhe disadvantages for the following reasons. The
restriction of Lhe flexibility 1s not serious in praxis
{see [6]), buk the mesh is very easy to specify. The al-
gorithms for banded matrices (e.g. [T]) are such bhnt
Lhey compensate for the second disadvantage,
(h.2} The mesh for PADDY is a logical 3 dimensienal ex<
tension fo the MAGGY mesh. It should be stressed Lhat Lhe
advantages of this type of mesh In 3D are even larger
because thinking in bricks is the only practical way of
constructing such a mesh.
llowvever the disadvantage of too meny unknowns is also lar-
ger, Therefore we first construct o complete mesh, like
the MAGGY2 mesh. Then the mesh may be locally refined or
polnts may be delebted wilh ensy special Cacilities as
explained in the following.
(h.3) The mesh is specified by following meshlines in
three directions now, instead of twe, but further ann-
logous with the MAGGY2 mesh.
A mesh statement has the form.

cot(tEitly [ tlitly @dUitly gy wn e
co X,Y,Z2,R,PINI,THETA

i integer

0 natural number.
The left hand silde of the mesh statement conbaine al
mosl one *%.
With the mesh statement the values of o cerbtain ecocordl-
nate on one or more meshlines may be given. If for one
complete plane a coordinate value is the snme thls mny
be glven by

co(i) = real
e.g. %(10)= 5.1
If in a meshplane the coordinabe value varles, n numher
ol mesh lines in the % direction can be given In a mesh
stotement like

¥(10,%,3:7) = h.,0,225.1,6.0
This stabement indicates that the Y mesh lines im the
10th X plane for the 2 plane numbers 3 to 7 all have
four conrse mesh points with the indlcated coordinates.
In one meshplane we can have a number of bundles of thin
type, e.g.

x(10,%,1:2)

¥{(10,2,3:7) h.0,2%25.1,6.0

¥{10,%,08:10}) 3.0,2%5.,1,7.0
The number of coordinate values in the r.h.s. must bhe
the same as the number of mesh plafes glven lor Lhe car-
reaponding ecoordinate, Thus we musk have Cour planes glven
in the Y-direetion for this example.
{h.h) The rerfine and delete optlons must be used wilh Lhe
help of the volume stalement, With the volume shabement

oo

hizh, 0

o

2.5

vwe can indicate a topological hexanhedron in the mesh.
The volume statement has Lhe lform

VOLUME name = co(l:i),coli:1},cofi:1)
where co is defined as before and the six integers are
possibly different integers. Volumes may degenerate into
planes, lines or points if Lhe appropriate line numbers
are equal.
{4.5) The refine and delete facllities are given with

REFINE[INSIDE]namelist(c?® * 1 €e xn €o xm
[ Ina {n * co}[’{n * co}[’[n * co}]]

e [InsIDE] ;
DELETE  (© e pp) Nemelist co(1)[ecol1)]...
With the first statement vwe may refine the mesh in volumes
given in the namelist., These volumes must correspond to
names in volume statements. For each coordinate a refine
facbor, n, may be given. If different refinements are
given for o part of the mesh the union of the points de-
fined in the different refinements will give the tolal
mesh.
With the delete statement we can remove poinbts from Lhe
mesh., This is done by using the volume statement either
to remove points Inside or Lo remove poinbks outside the
volume. The names of the volumes are specified in bhe
namelist and the intersectlons of bthe planes following
the namelist znd in or outeides of the volumes will be
omitted.
{4.6) In MAGGY2 a region occcupiled by one material type
i given with the help of area statements of the form
AREA = row of line identifilers
Thus the shaded area in fig h.1. is given by
AREA = 2{1),R(8),2(15),R(12) ,2(30) ,R(H)
(h.7) In PADDY the material reglong are not given in
terms of the mesh but in terms of the actual coordinates.
The statements $o be used have the following form.
string
LINE nome = namelist
repeat
shift

string
SURFACE name = namellst
repent
shift
from to

string = (n,n.n)[{ﬁig}(n,n,n);...{[gﬁg;[(n,n.n)h

namelist = name[ ,name]...

repeat = REPEAT n % [OVER] (R,R,R) OF[:ﬁ;iggst}



shift = SHIFY[OVER](R,R,R) OF {izzigfst)

- tring gtrin
from to = FROM{® s

[nnmelist} To {nameliat}
R = renl.

A string is a series of points connected by straights
{STR) or circles (CIR). A part of a circle is given by
three consecutive points connected by {twice) CIR.

If the last peint of the string is equal to the first the
last may be omitted@ and the string terminates with STR
or CIR.

In & line statement a string 1s considered to be a line.
In a surface statement a string must be closed to specify
a surface. The names in a namelist refer to other lines
or surfaces. In this way a number of lines or surfaces
may bte concatensted to form a larger entity.

With a repeat lines or surfaces can be copied any number
of times over & vector (R,R,R). The name in the left
hand side of the repeat statement jis associated with both
the original and the new surfaces or lines,

With a shift & surfece or line may be translated once.
The name in the left hand side of this staltement is only
associated with the new line or surface,.

With from to, aurfaces between two sets of lines can be
given, The number of points used in specifying each of
the sets of lines must be equal,

{k.8) A region block contsins a number of sitatements of
the type described in 4.7. The surfaces specified this
way must enclose 8 volume. Of course there are ample
possibilities for user errors here. Therefore the volume
described in one regilon bleck is rigorgusly checked

on completeness.

Points used in the descripiion of the volumes also must
occur in the mesh, ALl the imtersections of the surfeces
and the meshlines must be meshpoints. The last still
holds after refinements apnd deletes |

5. ALGORITHMS

(5.1) For the computation of B and H in MAGGY2 we have
chosen the ususl veclor potential formulation combined
with Newton-Raphson a&nd on choice of the user, a block-
frontal [ 8] method or an ICCG method [ 7 7. Both are
shortly described here. For PADDY we have chosen the
composite scalar potential as proposed recently in [ g].
The nonlinear equations cobtained by using a variational
formulation for the approximation of this potential are
egain solved with Newton-Raphson and an ICCG method is
used for the solution of the linear equations. We shall
not discuss the variational formulation of the problem
or the Newton-Rephson but we will concentrate here on
the linear equation solving. Tn principle we have to
solve !

(5.1.1) Ax = b

Where A is a positive definite matrix.

(5.2) In MAGGY2 A has the usual niné peint band structure,
Then we may use a Choleski decomposition organised in the
Toilowing way.
T

Say A = LDL
Then, when constructing a row of LT we only need informa-
tion in anﬁ gbove that roew of L., Thus only a triengle of
coefficients is needed.
In frontal methods (e.g.[ll}) assembling and decomposing
is always done simultanecusly. Suppose we have decomposed
ane bléck with a length equal to the band width, then we
assemble the Tollowing biock. Contribubtions for the third
block which are found while doing this are temporarily
stored in & work array. When the second block is complete-
1y assembled it is decomposed. Then the first block can
bte stored on disk ete. This is a reasonable ccombination
of I/0 and core space. A matrix of length 2500 and band
width 50 will be decomposed 1n some 15 secs on IBM 370/168.
This way, cccupying 25K bytes.
{5.3)}) The ICCG method available in MAGGY2 and PADDY is
briefly discusied here, A detailed discussion of its im-
plementation in PADDY is given in section 6.
First we construct & cheap epproximate decomposition

A=t R
Then we solve
{5.3.1) Mg = v
o

with M= L7lan" , @ = L¥x and v= 7% g

This means that we have transformed Ax = b

into L "TaqrTyt Lt x = 17t b,

For the scolution of 5.3.]1 we use the conjugate gradient
method, This method is, because M usually has a cluster
of eigenvalues with possibly a few exceptions, particu-
larly suitable,

The practical experience reported e.g. in [10} and [12)
and our own experience indicates that this indeed is an
excellent algorithm for sets of linear equations with

a sparse positive definite matbtrix.

(5.4) The mpproximate decomposition 1LY of A is construc-
ted by leaving elements of L zerc where they are zero

in A. This is termed ICCG(0) in [10], whereas ICCG(I)

is an algorithm in which I extra elements in emach row of
L are calculated in positions where A has zeroes.

In the case of a banded matrix, ms always Tound in
MAGGY2, the positions of these extra elements are logical
(see {10]3) but for arbitrary sparse matrices this is not
the case., Therefore we have LCCG(2) in MAGGYZ2 and IcCG{0)
in PADDY. P

The approximate decomposition of A inte LL™ in PADDY is
further discussed in section 6.



6. DECOMPOSITION OF A INTO LLJ

(6,1) When no refine or delete statements are used Lbe mesh
will stay topologically equivalent to a square mesh {(say

a finite difference mesh). Then we find a band mabrix with,
in emch row 27 possibly non zero elements. Only those ele-
ments ni] are non zero for which

|i~J]€[0,1,n-l,n,n*1,mn—n—l,mn-n,mn—n*l,mn—l,mn,mu+l‘
mn+tn-1, mn+n,mon+n+1}

where m and n are the number of meshplanes in resp., X (or
8) and Y {or PHI) direction. The number of plane$ in the
Z direction, k,gives the number of unknowns kmn.
llovever if refines or deletes are used the band sbructure
is disturbed. This even can be such tha% no band struclure
gan he recognised at all.
In general we do not yet have much knowledge nbouk the
practical consequences of this fact. It should be realised
here that nlgorithms for perfecl band mpbtrices coan be
very fast because there is no bookkeepling Lo speak of,
In case of nn arbitrary gsparse matrix the bookkeeplng will
take a not negligible part of the Lotnl compubing Lime,
The algorithms therefore have been structured ko take a
maximum advantage of possible substructures in the matrix.
. {6.2) We think the maltrix subdivided in loglcal blocks.
There are Lhree Lypes of loglecal blocks.

- crystal hand,

- band anpd

- non
structured bvlocks.
The erystal band structure is generated by a regulear mesh.
Band structure is taken in the usunl sense and non struc-
ture i1s, as the contradictory name shows, found in a
block without band structure.
In fig, 6.2.1 there are three different logicnl blocks.
These have been subdivided accordiug to the previous logl-
cal blocks needed for bthe decomposition. Typleally for
block 2 we decompose a block-2 type structure wikh a
block-1 type struckure.
From this it may be seen that a decomposibion algorilhm
depends on a palr of bloek types. There are thercfore a
number of different decomposition algorithms.

2.5

logicnl bloek 1
‘ 1
| j " 2
2 I3
!
: " 3
h 5 S
1
1
fig. 6.2.1

(6.3) The informetion needed during the decomposition is
found in three in~core arrays and on Lhree disk Tiles.

The mrray ILGTYP contains a2 block type indicetor for each
Joglcal block.

In case of band or erystal band stLructure the information
w.r.t. the column indices 1is contained in the arrays
KLGINF and LGINFO. KLGINF conbtains the starting adresses
of the information in LGINFQ per loglcal block. In case of
non-stiructure bthe column indices are stored row-wise on

a f1le called K-file. The structure of a record on Lhe
K-file is shown in fig. 6.3.1.



number of rows
ointers to begin of a row of column indices

column indices

fig. 6.3.1
The nonzero elements of the left lower triengle of A are
stored on the A-file and the matrix L is stored on the
L-file.
A record of these files has the form shown in fig, 6.3.2

first rownumber on this record

pumber of rows on this record

number of the logicel bleock to which the first row
belongs

Fdem for the last row
aumber of the first record on the K-Tile with
column indices belonging to this record

number of the second record with column indices

pointer to begin of a row

pointer {into one of the K-records) to the
field that points to the begin of the row
of column indices belonging to this row

pointer to field bWehind last

W
‘Tow elements roe

1
HI

(6.4) In general only a part of A and L will be in core.
Buch a part is celled s physical block. A physical A-block
consists of a number of records. The number of records read
Tfrom the A-file into HA may be different each time HA is
filled, depending on the structure of A. These numbers

(of A=Tile records) are contained in an array NRECA. This
array 1s filled during the assembly of A. A physical L-
bicek consists of one record and is called HL.

As is seen in fig. 6.4.1 HL determines a window in HA.

This window can be decomposed with Hi.,

logical
subblock

HA

' l
e i

window Tail

fig. 6.h.1
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The intersection of a physical and a logical Nhlock is enl-
led a loglceal subblock. The logical subbloecks of HA and
i cause a partitioning of & window in subwindows.
The decomposition is performed in the order indicnted in
fig. 6.4.1. That is subwindow 1,2,3 etec.
Eaeh subwindow is decomposed columnwise.
Thus decomposition is performed
per window, per logieal subblock, per subwindow,
per column.

START

READ HA; PARTITIONING HA IN
LOGICAL SUBRLOCKS

HL NEEDED

READ HL; PARTITIONING HL IN
LOGICAL SUBBLOCKS
LOOP QVER SURBLOCKS HA

LOOP OVER SUBDLOCKS HL OR HA

F{ND RIGHT SUDROUTINE

PECOHI'OSITION SUBROUTINES
] I 1 | I I

1 1 3 4 iy 1

1 T | | 1 | |

A DECOMPOSED
WRITE RESULT ON L-FILE

TOTAL MATREX DECOMPOSED d;_________J

RETURN

2.5

Once the windows in a physical subblock are decomposed
there is o tall left (see fig. 6.4.,1),

This tail is decomposed column wise (using HA)}.

{6.5) The flow chart in fig. 6.5.1. now is selfexplannto-
ry. The HPCO routines perform the acturl decomposition and
some of them are described in bthe following.

(6.6) When decomposing the element oy, obe hos to evaluate
the inner product of two rows of L, J

This inner product is glven by

J-1

E 1
k=1

A fast evalustion of these inner products is the main pro-
blem of the decomposition algorithm,

The nonzero elements of row p have distances to the diago-
nal given by a function

rlye 1 JsE

r_: {1,....,n} >N
P P

Here n_ is the number of nonzeroc elements in row p and p-
f (k) Pis the columm number of the k-bh nonzero element
ifi row p, counted from the disgonal.

In the case of crystal band or band structure k counts
the subdiagonals of A. We shall alsec use £ in thal case
to index nonzero elements in a column.

So in row i only those elements are decomposed for which
(6.6,1)1-j= ri(n), te[l,....,ni )

The only contrlbutions to the innerproducts are given by

the triplets (i,3,k) with

(6.6.2)1-k= ri(s), 55[1,...,ni} and

(6.6.3))-k= fJ(r), rs[l,...,nJ]

From 6.6.2 ond 6.6.3 follows
(6.6.0)i-y= r,(s) - rJ(r)

and from 6.6.h and 6,6.,1
(6.6.5)fj(r)= fi(s) - fi(t) avh

In turn when 6.6.5% holds then

(6.6.6)1J+ fi(t},J " fi(t) - fi(s) *

Y- () £ 0

So the problem is to find triplets (r,s,t) far which
6.6.5 lolds.

In case of bandstructures of both logicrl blocks involved
we can use these relations to evaluate the innerproducts
in & very fasl way,.

As mentioned in 6.4 we will be decomposing a column in =
subwindow. In that column, J,we will have in the subwin-
dow in question, say, 3stsh.

Then we will find for enmch t a rownumber J + f,(t}.

{It should be realised thaot f, now it used to index the
nonzero elements of & column Gf bhe structure of rew f).



Then we must evaluate
the type 6.6.6. S50 we
which £.6.5 holds. In
structure and f = T
relation. J

the innerproduct involving terms of
have to establish all peirs r,s for
zase both bloeks have crystal bang

there is one table which gives this

This table is given in fig, 6.6.7

t pairs {r,s}
1 {2,3)(3,4){5,6}(6,73(8,9)(9,10)(11,12){12,13)
2 (1,3)(6,8)(7,9}(9,11)(10,12)
3 (1,4)(5,8)(6,9)(7,20)(8,11)(9,12) (10,13}
b (5,9)(6,10)(8,12}(9,13)
5 {1,6)(3,8)(h,9)
6 {1,7}(2,8)(3,9)¢k,10)
7 {2,9)(3,10)
9 (1,10)(2,12)(3,12)(b,13}
10 (2,12){(3,13}
iy (1,12)
12 (1,13)
13 -
rig. 6.6.7

In case HA has a2 c¢rystal band structure but r # fj

there is an suxiliary

table.

With that table we can comstruet s table like 6.6.7 in case
HL hes band or crystal band structure.
Agein suppose we decompose column j in & subwindow. We can

find £,(t) as before.
teble In fig. 6.6.8.

To use relation 6.6,5 we can use the
In this table we find the right hand

sides of 6.6.5, i.e. I, {s) - £,{t) for all the pairs s,t
(n.b, s,t only relate to the stbwindow structure},

r,(s) - £ (1) {(s,t)

1 {3,2){(4,3}(6,5)(7,6)(9,8)(10,9)(1z,11)
(13,12}

2 (k,2)(7,5)(10,8)(13,11)

n-2 (2,1)(8,7)(11,10)

n==1 (351)(8:6)(9)7’)(1159)(12310}

n (4,1)(8,5)(9,6¥(10,7}(211,8)(12,9)(13,20)

n+1 (9,5)(10,6){12,8)(13,9)

n+2 {10,5)(13,8)

2n-2 {11,1}

2n-1 (1196}(12y7)

2n (11,5)(12,6)(13,7)

2n+1 (12,5)(13,6)

2n+2 {13,5)

mn-2n-2 (5,4)

mn-2n-1 (5,3)(6,k)

mn~2n (5,2)(6,3)(7,8)

mn=-2n+l (6,2){7,3)

mn-2n+2 {7,2)

nn-n-2 {(5,1)(8,4)

mh-nel {6,23(8,3)(9,1

mn-n (7,1308,2109,3){10,)

mn-n+l1 (9,2)(10 3)

ma-n+2 (10,2)

mn-2 (8,1){11,4)

mn-1 (9,13(11,3)(12,1)

mn (10,1)(11 2)(12 3)013,b)

mu+1 (r12,2)(13,3)

mp+ P (13,2)

me+n—2 (11,1)

mn+n-1 (12,1)

mn+n {13,1)

fig, 6.6.8

There are two more possibilities, We may generate a table
like 6.6.7 without the help of a table like 6.6.8 or we

may find the triples 1i,J),k without using r,s,t. In the

last case a binary search is used to find the nonzere con-
tributions for the innerproduct. The different possibilities
can be found in fig. 6.6.9.
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HA
HL crystal band nen
crystal
band
r;= 3 6.6.7 like 6.6.7 binary
gsearch
crystal 6.6.8
band table like rike 6.6.7 binary
r.#f 6.6.7 senrch
S
6.6.8
band table like like 6.6.7 hinnry
6.6.7 genrch
nen binary binary binary
search search search
rig. 6.6.9,.
7. CONCLUSION

In this paper we still
For the programpackage
in [k J,[6 ] and [ 81,
dence w,r.t. the linea
stil1l too restricted ¢
Novever it slready ind
tation. A Murther acco
conrse,

miss a display of results ohtalned.
MAGGY2 these resulbs can be lound
For PADDY we only have some evi-

r algebra set up. This evidence is

o draw genera)l conclusions from 1t.
icates that this is a fast Implemen-
unt will be given in the future,of
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STIUCTURE OF AN ARRAY-PROCESSOR FOR PARALLEL COMPUTATION OF
MAGNETIC FIELDS

AU Luceio and G.M.Piacentino
Universitd di Pisa and INFN-Frascati, Italy

ABSTRACT

In many conputer codes to calculate three-dimensional mapnebic ficlds
the magnetization of Lhe iron is found by solving non-linecar sysboms
ol algebraic equations. This is accomplished by iterabive methods
{Newbon-Raphson or the like} in which large linecar systems are solved
al cach slbep.

The process is long and costly on sequential elaborators, sinee Lhe
complexity of calculation is high. A very large saving can be obtaine-
ed by suitable partition of the problem, such Gthat bhe caleulacions
can be accomplished by independent microprocessors working ln parall-
el, and connected to independent memories.

This will lead eventually to the construcktion of an inexpensive dedic
ated computer to calculate magnetic [lelds. The aclual sbruetorn of
thls compuler is described, consisting of three processors wilh priv-
ate memories connected ko common memories through a cross-bar swilch
that settles conflicts of access,

1. INTRODUCTION

The calculation of magneltic Tlelds produced by currenb-carvying coils
in magnetic makerials is of the highest interest in Lhe desipn of
clectromagnets. The calculations are classically performed by mnang
ol larpge scquenbial systems on which several codes are run. These
codes have reached nowadays a very high level of sofisticalion, bhry
are however gencrally very cosbly, since they need larpe memory areas
and long computing btimes.

The use ef parallel computation on dedicated systems looks atbractive,
which make use of smaller and cheaper processing units, since at
least the times needed for performing bhe various parls of Lhe calenl
akion should be substantially reduced. Such dedicated compubers conld
become standard equlpment of laboratories.

The idea of performing parallel computabtion is sugpesbed Ly Lhe
intrinsic parallel structure of the caleculalions done wilh sonn of
the most popular codes.

In the presenl work;one of these codes is5 studied, kopelhar with its
porslible implementakion on a parallel compuler. As an exampie, we

have chosen the code SNUWl, written Tor Lhe calculalion of mapnclic
fields wilth cylindrical symmetry. It 1s our aim Lo show thak bthis
code can be convenlently shaped for Lelnp run on an areay-processor
consisting of three GPUs wilh suitablc memories and comnections. 106
is clear thab the jJjob can be done even more convenienbly by sysboms
made of a larger number of units,. and Lhak the presenl discussion

i Lo be considered only as an example of applicabion, more Lhan n
study of a real protobtype of a dedicabed compuber.

The presen!. skress on the parallel rather than on bthe sequential
compulation implies, From the glde of the proprammer, a deeper know-
ledpe of the hardwnre structure of the system, Ft is our fecling
that Lhis is indecd the path towards wider perspectives on the
application of computers to the solution ol specifie problems that
my come ln applied physics.

We believe that the "hardware programmer” will Lake the place of
Lhe classical "sofllware programmer"” more and more,ans Lhe rapid
growing flecld of microprocessors will pub al our disposal cheaper
and cheaper small unilks, that will allow us Lo bulld complex syst-
cs .

2. MATHEMATICAL STRUCTURE OF SNOW

The caleuvlabion ol the mapgnetic Cield penecraled by currenl-carrvying
coils and pieces of magnetic makerinl can be accomplished, ip probl-
ems with cylindrical symmebry, Ly means of Lo code SHOW. We wanl:
Lo discuss the implementalion of this code on a’ parallel computer.

SNOW sebs the problem as follows: let us bhink of o syskem made of
coils and some plieces of magnetic material. The mapnclic Ticld in
cach point is glven by the superposition of a Tield B, peneraled by
Lhe currents alone plus a lield B, due to the magnektizakion of the
makerial

B=B_ + 8 . ()

AL each poink P in space,bhe Ficld qﬁ(?) can be expressed in ils
turn as a function of the total fleld B in each poink Q of the mat-
erial,in the lollowing way

Bm(P) xfg([’.f)) x{n) s(Q) 49 ()
where g is a funcbtion of the coordinates only, which represents the

magnetlc coupling betwern each point @ (source) and cach point P
(rield), and X the magnotic susceptiviby ab Q. X is in its turn a
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function of 8 . The integral extends over the volume of the magnelic
material.

An explicil expressicn of the coupling function is the Following

)
oL L (3)
g(P,Q) = - == %[,3]

where T represents the vector P-Q. Eq. (3) is readily derived from
the expression of B asa pradient of a scalar magnetic potential,

Once known the functions g and X , the problem reduces Lo the sol-
ution of the integral equation

BiF) =B (P) + ].g(P,Q) 2(Q) B{Q) dq (4}

obtained by combining egs. (1) and {2),

Lot us now subdivide the magnetic material in small parts, which can
be considered as homogencously magnetized. Eg. (4) can be now
discretized. If we Fimit ourselves teo problems with cylindrical
symnetry, the system of algebraic equations which is equivalent to
Eq.{4) can be written in the following way

F(B)E[I—FX(B)]B -B, =0, (5)

Here, I' is the mabrix of the magnetizing coefficienlts g, which in

the discrete case replace the function g{P,Q}. | is the ﬁﬂit matrix.
X{(B) is the susceptivity matrix, considered as known for the mater-
ial al: hand. B and 8, are vectors.

It is important to note that: i) the problem is solved once the (ield
B is calculated everywhere in the material. To siart with, the
points P coincide with the points Q and the matrix I is square.,

ii} The system (5) is non linear, since X depends on B . We assume
here that the medium is isotropic and hence that X is a lunction of
the modulus of 8 only. iii} The mabrix X is diagonal.

In the present case, the subdivision of the magnetic material is made

of rings with small cross section, ceaxial with the symmetry axis
z, The problem is hence a two-dimensional one and the coelTicients
g, . can be grouped in four categories , according to their coupling
tﬁe z— or r-component of the magnetization of a ring with the z- or
r-component, respectively, of the field in another ring.

Let us proup the elements of the I' matrix four by lour as rollows

rr

Baja,nj-1 T Byj

FAA

Bay,0j =By
b i,j=1, .. n (6)

fai,25-1 7 Bij

" rz

Baica,25 7 B

et us call self-magnetizing coefficients the g's with i=j,
Wikh the followihg notations
R, Z, ? cylindrical coordinales of a source point @,

r, z, ¢ cylindrical coordinates of a field point P,
s=2—-%, p=R+r,q=R~rn,

.explicit expressions for the g coeflicients (6) are found in Tables
I and II.

To solve the non linear algebraic system (5) lgt us use the iterative
Newton-Raphson method, based on the expression

' -1 -
By =B~ F {Bk) F(Bk) ' (7)

where F' is the jacobian matrix of F , built with Lhe derivatives of
the components of F with respect Lo the components of B . the index
k means k-th ifteration, '

Explicitly, if ' are the components of g', it is

D . Axs)
f i = dij & ] [‘“B‘i) + j J (8)
. dB.;
J
Eu.(8) shows thal, with the function X(B), also the Tunction
2= x(a)+sa—z ' {9)
7]

can be considered as known.
Fa.(7) is always converging if the starbting "working point'" is not
toe far from the "true" solution,

3. CODIFYING THE PROBLEM FOR ITS COMPUTER HANDLING

The first prablem is that of computing the coefficients g given in
the Tables I and II, which are functions solely of the geumetry of
the subdivisions ol the magnetic material (rings in this case).



This calculation can be performed sequentially, i.e. by compubing a
coefficient next ko the other, or in parallel,

The parallel compultation can be made by subdividing Lhe inkere job in
smaller tasks, some of which are not in conflict, since Lhey stark
from the some condilions. These tasks are Lhen executoed in parallel
by seversl central units, which access Lo dynamically indepentont
memorles.

As an example, as we will show in more detail in the Collowing, by
making use of three CPUs and of three memories wilh adeguabie connech—
ions ond synchronizalion, ik is possible to calculale al Lhe rome
kime the Cour coeffTiclenta shown in Table I wilkh evidenl saving nf
time.

The optimizakion of this procedure depends on Lthe lenghkh of each
First-level Lask assigned to each unilb. We can think of the strack-
ure of the flow diagram as drawn on several sheets, and this strab-
irfying such Lhat Che execution nof each Lask in paralle] requives
only Lhe use of values ecalculated in parallel on the preceding sheeb.

The sccond problem is thal of Lhe solution by succeszive ilaralions
of the alpgebraic non linear system (5) by the Mewbon-Raphson mekhod,
Using Bqgs.{7) is cquivalenl to linearize Lhe syskem, shep by slep,
since Eqs. {7) are linear. The lteralbion is an inkrinsically sequent-
ial process and il cannob be dealt with in parallel. The enleulation
of (7) al cach step inslead,con be parallelized with large saving,
analogously to whak done for the g coefficients.

In this calculakion, the paralletization applies Lo Lhe evalualion

of the elements of Lhe FY matrix, as well ag bo the inversion of F°,
1t appliecs also Lo the mulbiplication of pr-l by F - In parkioiar,

we will show on an oxample how convenient it is bo inverl a malrix in
parallel.

The third problem is bhak of the caleulation of the matrix I', not
square in the mosl peneral case, that connocbe Lhe poinks inside Ghe
magncellec material fio points in Lhe external field, where we like Lo
know the lield, according Lo Eq.{1). This problem coincides with the
First one.

A. HARDWARE STRUCTURE OF TUE PROPOSED SYSTEHM

It is heyond the purposes of the present paper to discuss Lhie peneral
problems of the design of a multi-processor compuler. We will 1imit
ourselves o the presentalkion ol a possible archilbecture, Thin
struckure is shown in Fig.l. It is composed by three CPlUs, enalled a,
ffv and ¥ 5 Ly a memory subdivided in three independenl areas A, 1,
and €} by three ROMs, denoted by 1, 2, 3, neaded to conbtain the progr

ams for @, fJ, and y, respectively; by a cross-bar swileh (5 which
connecks all the described elements, and which nllows Ehe simullancous
access ol each processor to at leasgt a different memory; and linally
by a clock CK.

The three identical CPUs o, ﬂ, and y are capable ol performing ilopic-
al and arithmetic operakions, other bthan operations as load, shiltk,
retch, ete.

The memories A, B, and C conbain the daba alt the beginning and during
the elaborabion, as well as the results, In A, B, and C there are
threee areas, called work areas, desipgned to allow the conmunicalions
between couples of processors during the elaboralion.

The memories NOKYL, ROM2, and NOK3, In bthe present case, are special-
purpose, read-only.

For our projecl we have chosen the skngle-chip Zilog 7Z-B0 microproc-
esgors, also if other processors could also he considered. The main
reason was thal in our Compuler Science Department in Pigna thore

ware already Lhose processors, bopebther wilh a Zilop developing syste
em uselul for Leskbing, debugging and asscmbling programs. Morcover
the 2-80 are very eflficient and incxpensive, and finally Lhe manufact
urer offers several ancillary equipments, uselul in Lhe desipn of

the remaining parts of our system?

As it is shown by Fig. 1, each ROM is nol dircctly conbecled to Lhe
corresponding processor, bul via the C5. This particular structure is
due to the orpanization ol Lhe Z-83. The bus sbructure on Lhe ©F is
ghown in Flg. 2. There, Ehe capltal lebbers mean 16-bik huses uged
for address Lransfer: L, M, N are outpul buses from S, which felfill
Lhe tosk of seclccting bthe addresses in bthe NOM memories. G, I, 1 are
also oubpulb Luses Crom the CS, which feed Lhe three pgenernl memories
A, B, Cof Fig, 1. D, B, F are instead output buses (rom Lhe process—
ors o, ﬂ, and y and are used to [ced into Lhe ©5 the address of the
chosen word.

Small lebters denote 8-bit buses. There are usnd to transler data and
instructions from and to processors and momories: a, b, ¢ arc ono-way
buses from the read-only memories, while d, e, F, g, h, i are Lwo-way
busns connected with Lthe three processors and wilh Lhe poneral memor-
ies.

The €S performs akso other operations, other than bransferring data
and Instruckions. 1t sequentializes bthe requests for access to a mom—
ory in the casec of conflicts, and contains special structures thats
allow Ehe correct order of write-resd access Lo Lhe same unit,



5. A PARALLEL ALGORITHM TFOR THE GENERATION OF THE X -MATRIX.
AN TXAMPLE

A possible algorithm for the generation of the X-matrix by means of
the threc-microprecessor system will be described partially here.
For evident reasons of space, it is not useful to describe the whole
algorithm, We will limit ourselves Lo show how it is possible to
share speciflic tasks to the three CPUs, to perform the calculation
of the arguments in the integrals of Table I, for a given value of
the variables R, r, Z, z. This procedure employs simultaneously each
processor and each memory. The timing is given by the clock CK,

The example is described diagrammatically in Tables IIE, IV and V.
Table I shows the sequence of the instructions assigned by the ROMs
to the three precessors q, ﬂ , and ¥, Table IV shows the content
of the registers of these processors. Since these registers are
twelve in each unit, some over-writing will occur. Table V shows
the content of the work areas in A, B, C at each time.

By reading down through Table I11, it .appears clear that ii is an
explicit parallel program that requires some optimization in the
sharing of Lhe tasks among the units. Here indeed, at variance with
a sequential program, the time used is not directly proportional to
Lhe Ltotal number of instructions.

Special operations encountered are the square roobk and the caleulal-
ien of the elliptic integrals. These are alsce perlormed in parallel
and constitute the longest tasks to be performed by the central units.

Fer the square root, we suggest Yo use an iterative algorithm based
on the lormula

_L . R (10)
“ne1 T 2| "n . '

where r represents the root abk bthe n~th iteratien, and R is the
given radicand. ns a starting value, we suggest Lo take r = R.
[

To evaluate the elliptic integrals of first and second kind K{m} and
E{m) of the modulus m, it is possible to use a polynomial development
with seventeen coefficients ., These coefficients are tabulated as
data inside the ROMs, under the form of "operation between register
and ready value",

6. A PARALLEL ALGORITHM FOR NEWTON-RAPHSON ITERATIONS

The second problem stated above congists in the ilterative solution of
an algebraic non linear system with the Newton-Raphsen formula (7).
At each iteration it is necessary to invert the jaccbian matrix &',
whose components are given by (B). Our problem is hence that of
inverting a matrix by a parallel algorithm.

It can be shown that a square matrix of rank n can be inverted in
parallel, if we express it in Lkerms of partial matrices and operate
on these smaller—-rank matricesa. In parkicular, if the

original matrix is of rank multiple of three, such process can be
made advantageously with a three-microprocessor structure, similar
to the present one. Our prohblem can be solved therefore in bhis way ,
by erdering in the memories A, B, and C the clements of the 'ematrix,
and then of the F'-matrix, as to prepare the labter bo its subdivis—
ion in 3x3 matrices.

The problem of the inversion by blecks can be discussed in the follow
ing way. Lebt us write a nxn matrix as follows

A . (11)
n an+1,n-s-1

where A is also a matrix, U and ¥V are vectors, and a

is
n . . I\] . a4+l,n+l
a scalar quantity. The inverse matrix can be written '

B R
n 1
-1 r
An+£ = ' (12}
-1
a
Qn n+l,n+l
wherea 1 1
R =-A U a
i n 0 n+l,nel
=a v 2ty
an+1,n+l T Tnel,nsl n'n n
(13)
-1 -1
B =A - A
n n n n n
~L -1
R =~V
n n n n+l,n+l

-1 -1
are the elements of A < A is the inverse matrix of A , R and
n+l n n 3]



is a gecalar,
n+l,nel

Actually, Eas.(13) hold also if the components of bhe veelars il of
the matrices and the scalars are replaced by malrix of vrank m. In
parkicular, in cur case, we can chooge m=3.

B are vectors, while a
n

By bordering iterablvely a rank-3 mabrix, it is possible Lo bnild Lhe
inverse of a matrix of whatever rank n multiple ol 3, il we perlorm
at each iteration only products and sumz of 33 malrices plius a
single iwersion of a 3x3 matrix.

It ig therefore imporlant Lo show the alporithm for Lhe parallel inv-
ergion of a 3 X3 matrix,

Lebt us consider bthe matrix of numbers

A = a a a . (14}

31 P32 Pa3

The explicil algorithm to inverl this malrix, the registor conlepls
in the processors and bthe work areas in Lhe memories A, 11, @ are
shown in the Tables VI, VII, VII1I.

The bordering algorithm Lo invert a matrix,starting from simpler maby
ices,is much fasbter than the classic alporithms to he performed on
aenuenkial ﬁgstems. An analysis of the computational complexily Is
made in Mef.

To perform matcix multiplications, finally, an algocithm similar to
the Winograd's can be cmployed, if we ecbserve thal cach elemenk ol
the produck malrix C = A+D can be writhen as follows
3
= a_ b = (a__+b a  +b, J-a b, b bt b

°ij E/-:1 1% = Pty Pt P e 0
This Tormuela is justified by the fact that sums are much fasber oper—
ations Lhan products, and here are there less producks and merre sumn
than in eclassical sequential algorithms,
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Table I. Magnetizing mutual coefficients for rings

1
g M/ds ofc Esc,(K-E)|R ar

z%
1

B = an[dsfo{css-rca(}{—lﬂ)}n dR
1

2. = dsfo{cSEmﬁ(i{—E}}R dr

1
B = d5f0{07E+08(K—E)}R dr

e, = pz/(pa*-sgl -2 52/(q2452) , o= 52/(p2+32) )

1 2
2 2 2 2 2 2
c3 = -s{p/(p +8 )} + 2 qf(q +s )}, cd = ﬁ Apg-s )/ (p +32} s
2 2 2 2 2 2
ey = s{p/(p 48 ) - 2 q/lq +s )} oy = i ApassT)/(p .,.52) ,
2 2 2 2 2 2 2 2 ~ 2
c,=p/lp ) -24q/(gssT) , g = [q +p (qz-rsp)/(p -rsg)]ﬂpz—qz)-

2 23,2 2 -
p=Rir, quR-r, s=7l-z, 0= (q +8 ) (p +8 | 1/2

’

2 2 2 2
K and E are elliptic integrals with modulus m = {p -q )/(p +s )}

Table II. Magnetizing sell coeflicients lor rings

r+a
2b 2 2,-1/2 2 2,-1
gz = - Ffr‘—a {(Rn-) +D } {(R—P) +h } E{m) R dr
zb a _ 2 _ 2R 2.8
e, = = a2 [(m—a)(l— r) 110 + {r-a)(1+ r) Ill a{r'+a) (g r) 120

® 2 a
+ a(r—a} (1 r) 121]

2.2
m = dlh‘/{(ihr') +b } + where a and b are the minor dimensions, radial
and axial, of %he ring.
T2 (L)
Y 2 .2 . -a/2 2.2 -3/2
(1+k sin @ ) de , T = (1+k sin"p ) dg
o [} . 11 o 1

i

I
0

e 2
2 .2 .-3/2 2 2 2 -3/2
I (1+k sin'gp ) / singdp, I_ =] (l+k sin @) 3/‘Dsin;zep dp,
20 o o 21 0 1

2 2 2 2,
!co = Ar{r+a)/a” , Ir.l = Ar‘(r‘—a)/ap

Table III. Parallel algorithm to calculate the arguments for the
integrals of Table I. Instructions given to the three CPUs.

CK times ) .3 ¥ .
t, ot p=R+r-»A q=R-r—B S=d—— O
1 2 2
ta, td p —A q =1 5 — C
l.',r B—q C =y g A — p
> 2 2 2
I:6 B —q C-—a A —rp

2
t,? [ ] AN —p B - g
2 2 2 2 2 2
l:a, l;g p +s — A q +8 — B p-q —C
2 22 2 22 2 22
tlo’ tll p /{prs }—=A a /{gss )—8B q /{p~g )=t
22 22 22
.1? Baqis C—>p— A = pis
B 2. 22 2, 22 2 2@
F — e - > =8 ¢
13" Ya s /{qts )—B p /lp=g }=C <, HHpis Y=t
t15 P qs p3
22 22 22
15" F1y pq/{p+s J=2n qs/{grs )= D pe/{pis )—C
2 22 22 22
ts' Fig q flpss )—B qs/{p-q )—¢C ps/(p-q )=
’ 2 22 2 22 22
t;?o B—q /{q+s )} Aop flp+s ) C —qs/{p-q)
- 22 22 27
by B—as/{q+s ) C—ps/(pss ) A—pg/{p+s’ )
2 22 22
- 25 flqis ) 2qs/(q¥s ) s/(p+q)
1123. cl — B <y = C s/(p-q}
2 22
t {pa-s )/(pis )
24 2 22
1:25, 2q /flqes) cy — A e, B
26, 2,22 2 22
ey c, — B C—=q /{p= } (pa+s ) /{prs")
. ) m_— C_ | T=p /(pasc)e1 —p
’ = 7
28 P Aipes ‘6
20 " % ., 22
A—p Use p/{p-q ) | A — pis”
30 2
22 22
...... B — q V:Ttﬁ(p_q ) B — qts
...... p+q c82U+V — C
L R=(p+q)/2—A
24 p+ql/

iterations

K(m)

El(m)




Table I1I. Continuation.
CK Limes o # Y
iterations K{m) — A E{m)— B a :((|E5p )-‘lf:;fn?]_'(;
A—R
TR 3 A
tl n — E(m) G — —c3 A ——9cﬁ
t‘.2 Kwl —-calf: 3T
t3 Keli — A B~ c1 cﬁE
tﬂ, LJ A — c2 CIE — C "bE —3 R
l'.G r_:z(l(-li) A — K-E 0 — e,
t7 C — CLE oD — c4 At K=
bﬂ CIE+CE(K—E) cd(Khﬁ) nyﬁ
l;9 A— ol cﬂ(K—E)-maE C—v
hlG Arg(gzz) — ¢ cB(K-E)

1 -——3A7 11 ——)CSE c7ﬁcnn(K—E)
t]2 C—+c3E4cd(K-E) B ——+cG Arn(ﬂtgi“__
l;13 Ar‘g(p;zr) cG(K-F:) —3 A

14 —3C 05E+CG{K—E)
t15 A—oR
‘16 Arg(grz)
by —38

Table 1IV. Parallel algorithm to cnleulate the arguments for lhe
integrals of Table 1. Register content of the threc processors.

N

oY

10

11

12

a
22
n pa/i{p+s )
22
r q?(p+s )
2, 22
p ~aftars )
2 22
P as/(q+s "}
22
q ?.S%((]-l-s )
2 [+
a 1
2 22
s 2(15((”5 )
22
pis c

22
p?(p-ts ) m
22
q+5 p

22
s?((ns } q

na Pt ...

22
r s/ (qes )
22
R qs/{p-q }
2, 22
q p/{p+a’)
2 22
q ps/iprs’)
22
s 2qs/{qis )
2
8 -
3
2
2] e
22 2 22
Qg a/{p-q )
22
q?(q-ws } T
22 c
p-q -
2 2
p?(p—q ) u
]3] v .

Y

Z ;)s/(p;l!—SQ)

22

# pssip=q }

o qs/(p—ﬂp)

s©  pa/ipis’)

P 8/ (p1q}

2

P s/(p-q)
2 2 22
q {pa-s }/(pis’)

22
p-g c,

q?(nng) (pqrse)/(pasp)

22

+8 c

n 6
22

c? p+s
22

ps [ FE =T




Table V. Parallel alporithm to calculate the argoments for the
integrals of Table 1. Work area content of the three memories.

CK

t
11

&
13

t
14

L
17

&

2
P

22
p+s
22
pa(p+s )
[o4
2
22
pa/{p+s )

22
ps/{p-q )

Arglg )
A

Arplg_ )
rr

qﬁ(QESg)
S?(qgsa)
QS/(q%se)

qa(pgsg)

Arglg )
rz

5

2
=]

22
p-q
qa(png)
p7(p2a")
DS/(DESZ)
QS/(PEQZ)

-~C

3

(K-E)+c _E
°, )%c3

Arg(gzr)

Table VI. Parallel algorithm to invert the 33 malrix of Eq.(14).

Sequence of instructions given to the three CPUs by the ROMs.

CK times

t
20
23

26

t t
27’ 28

t
31

t
az

L
33

t
34

o B Y
¢ — — B s
3 A a1 Han
A—a B ~—3a C—na
21 32 13
— A a — 0 a_,a _~*C
a1 21732 F32™14
— ¢ — PR—
B 12 B3 Fa31
C — A > B —
B3 31 842
a — A E B a_a _—0C
#2723 B e T
— B —s € — ;
A M1 B B
B—a C—-—a A— a
22 33 11
— h — [} o a :
allagz A 122333 ﬁ33qil
a . — — i a. _—
a1p% A #2373 M ©
a.a _— A a_a _—Bb a_ a - Q
13 22 21 33 32 11
A — a__s ;
1% 2aaq) TP Y352 O
a1 1% | Pe1Pae 2% | "1a%a2 "3
B—sa_* C—aa * —s a__*
F3p 713 A A1
bt = a — a - 4 a
Bo%n 5% | Pap®aa™23%32 | Tar® 121
A —> *® B —3 * c ¥
31 Yo ? %oy
a a —-a & - £ f i —F £\
17227 %12%1 | f2a"s 21%an | e M
C—sa* A—sa * B .
833 a1 7 R
Fay PN A
a . a - a Z a - a 7 i -4 &
117207 10%1 | Paz®a ea%ee | P11ayTMarM1a
A Pl Py
21 21 g
=a — { =a — A =7 -3 B
33 11 22
a 3 et a ES E - £ a = k2
127237 %3%2 | Paa"sMei%aa| P12
iy Fay Py
-1 ) -1
=a — A =a et [ =8 — C
31 12 23
a a - a a a -7 & a -8
13721 "31%23 21732 20" P13 1%
Ay
e b o N
32 13 21

(%)

(5

(§)
(4}




Table VII.

Parallel algorithm to invert the 3X3 makrix ol Lqg.(14),

Register contenl of the Lhree processors.

o ﬂ ¥
Yl it fa®3%e%n | Y i e
2 1% vy "33 "3 M3 8
T s "12%5%1a%2 | P13 M22™aT e | a2tz MMt
P T 23 2Ty By s B
S 1f2a "®E™ea | "a f2a%2Mas | M2 M im s
B 1%2%s %33 Y2373 Pu A Me M
7 a5, N 250 A’ Ars A (%)
8 A A“l 23 AN 1 a, A ] (k)
R RITLPe “331 P22%33 %1 3™y Mo
e a1 , "23"32 algi 731713 "?;:
e, Y173 M3 T 1)
12 1a,,0,, Ta2%a1 332
{§) * means: mulliply by the preceding value.
(#) The determinant A is calculated in two steps.

Table VIIL. Parallel algorithm to inverlt Lhe 3% 3 malrix of Eg.{14).
Worlk arca content of the Lhree memorics.

CK

L
30

t
32

t
34
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Fig.2 - Bus stiructure of the cross-bar switch €5 for the three processor computer of Fig, 1.
Cepital letters denote 16-bit buses; small letters S-bit buses,
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