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ESTTMATYION OF EDODV-CURNENT LOSSES LY MEANG oF
VARTATEONAL PETHODS
J. Parcsyiiski, W.lopow, N, Silkora, M. Granm

Polybeclhnic of Szezecin, Poland.

ALSTRACT

The papar deals wilth o method Tox estimabion of
caddy~curront lossoes in thin condueting shoeobs having
variaocous shapes. It is assumed Chat thoe muagnetie
field duce to oddye-curronts is negligibln comnpriorogd
with thoe exeiting Llux. The Ritz and TrelTkz varin-
tionnl mothoeds ave applied teo glve an uppor and

a lower bound for the exact valuce of power loanos,

The arethod is demonslirated by cxamples.
1. LNTRODUCTTON

Tn the olectromagrnetic ficld analysis by monns of
variational methods the problem of accuracy nssimes
somce Lwportance, sinece there is ne gencernl moebhod
allowing to determine tho exactnnss of the solulion
obtaincd.

However, il the paramebtors proportional ke the
cnerpy are to bhe determined (u.;;. copneitaune,
inductanenr rosistance) an upper and a lowes haund
Tor the correct value can be calculataed applyims
dunld functionnls mindimization. This maethad have hoeon
used for the estliation of cnpacitzmcna mrd e bnn..
cc!‘.

In thils paper itz and Trefftz variationnl s bkhorls
are appliced to the calculation of power Josmson ene
to cddy-currents induced in thin shects. L in
assumod that the secondary magnetic Cicld pradueaed

by cddy-currents is negligible comparding Lhe excitlap

flux { for the detailed discussion of the validity of
%)

this assumption sce the Rolfeorence In this casc

the current flow function I delfined in Nelferon-

5 !
ceg”? 10,11,12,1% can be introduced and the problem

12

can be described by the Polsson oqu.’.rf;:‘l.un‘

Al = wldy (1}

accompanied by the boundary condibion

I = 0 (Iu.)
r
viiere e denotes an angular Crequency, IF da the
exelting magnetic £lux donsity, d amd ¥y are thich-
ness and conductivity of Ehe sheck, and ' denobes

the boundary of investigated reogion.

2. THEORY

The Dirvichlet boundary preblem {(ia) Tor the Podsson
ecguation (1) is cquivalent fo the problem of winiriza-
tion of the functionnl

f}:{f(graa"’IfLZdeg'I)dD (=)

in the Ritz Ill(.‘!il]]OdG’?'g, or

Fr= {[grad’I dy (3)
[

in thoe Troffiz ::luthoctl 12,8,13 .

Tae fwnctional (3} reachens ibs minirwm fov the
corract valuo le beding the solution of the Dirichlot

problem (1o} for og.n. (1).
Fe= [ grad’z; ap (1)
[

(subseript ¢ donotaes thie correct valueo ) .




Fouo oy other hrind funeciion L we hneo:

Fr 2 e (5)

Tatiicyy into accornt reen’s Tosmuln

{fgradzjc a0+ [[ 10100 = éﬁfc oLe. ap (6)

civ Sune ttonal (") et be writiven in tire Tolloring

Moyt

Fac =~ [[grad’1.ap (7)
Vot ion (f') et (?) Fiol

Fac == F¢ {2}

TE Lo obviouns $had

Fa 2 fac (2)
and Seom the ool (S}

Fe )= Fa (10)

Insgualitices (5] ond (10} pive thoe base for thoe
dobeimioy Tion of an upper aned a Lower hoeund Tow thoe

coreeet value ol Ehe Punctional

'5?\<Fcé‘rr (11)

it in novery elese relation Lobucen the Funcbional
vatwe et i powor loszos dua to oddrr-curitnts.

The pocer Leason ern Be enlenlatod by the Corernls;
=4 2
P—'a—;nfld'-{ dXdy (]r_‘)

2
vhich 0% v nubatidubirg o IJ’ Tiloen she Do

-1 P) _ A
Pwrdfjgradfdﬂ~y§ (13)
o
From $the cogrn ( H '!) AR (1_’}) Phoconudls

RSRELCH (1)

wiv e Vo, da donotoe power Losser onlovnlel sd Lyomcovs

o

of Witz and Trelltz mothod —~espeoti - Ty and L_odn oo

cxaet onlue of power lons.os.

30 BAATIPLES

3.3 declangulas plase.

st ecordduebing, ok
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shown jn he Mg, 1.

Blt}= BT sinest
)
b

7 e s
Y%
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lossua ealeulation in o rectangular plate. Dobh s
s banorovich asnthod pives o lower bouml of Lhe
pover value, Prom the itz meothod, applying ibo

second approximabe, we obbain
Fa= 007025*}—,-5( (1)

whoro ol = (4Gb wB);dJ'

and T1rom the Kantoroviech mothod

Wﬁ'a)

P’f".'za (1 I} (16)

i ordexr o determine an upper bound of the power
valun the Trelfftz method and modificd TrefCtz mothor
are usecd.

The trial current flow function I has beon chosem

in the form
I= wBa'(y[- L(x? g2+ Co (-4

(- 6x )] (17)

After mindmization of the functional (3) we obbnin

the following formula for the power lossos
h 1 4 4
B=35[3 (") - )~ (e b)
4 9 L4
+36,6,(d- )% G (307-0°)(a- 35)

{13}
+ 4 G (@"5)(5a"+ 208 + 58]

1o,z

where

- (&*-B)a’+ 200"+ b')
" Ha BN B v )

C,=- 35a°’
2 24(01“[),)(0‘*0%,*[7‘}

To improve tho acouracy the modified Trefftz mothod
is npplicd15 . This method is somewhat similar to
the Kantorovich method.

The trial function is chosen in the form
I=wBdy(-4x°+CichEycos bx) (19)

which satisfies the Poilsson equation (1} and inclu-
des indefinito cocfficicnts C1 and lk.

Applying the “classical’ Trofftz minimizmation
mothod we evaluate thoe coeflicient C% il we have
the functional mininum value as the function of the

paramcter Ik
Fain = F(K) (20}

Minimizing thoe function Fmin with rospect to the

parametor k ; aceording to the Tormula
aleﬂ 0 ( 21 )

we ohtain

b = 5% (1~ ’2‘7 sinh'(42)

12b

. (kcosk—sfnk);] (=2}
gs(n/](%@ )- sinlk




Tn the Fig. 2 the function I;:;F.‘(n/b) i3 plotted. For the rectangular plate the corzcet valuce of power
losses can be caleulated by wwans of the soparation

ol ~rariables mcthod10 and the orror of the erloulo-

tions by meaus of the methods mentionud above ecan be
deternined. ln the Tig. 3 the erior is plotied

ogaiust the /b ratio.

The shadowed region shows the area in wvhiell tho
03 . ) . .
' maximun of fhe ervor value is contained. Usunly &ho
o4 : avaragoe of the PH andl PT vnluu‘or PK nax PTN value

is taken as the solution.

5
- Q e . ~ g .
+ + } + | - 3.2, Socuver of the circle.
1 2 3 4 5 & b

Pig. 2. The k-paramcter versus dimonsions of As whe sccond oxamplse wo considor o plate of thoe
K . - H —-pa [a s 2IE5US . = i tc]

roctancle ratio shinpe of a scotor of the cirele illustrated in tho

roctansle .

Fig., I,

%

T

in

Fig. #. The seetor of tho cirele.

p

it Dounr losses are caleulated Ly means of +tho

Rits, Hentorovrich, Treffiz and modified Trefltn

..2_ R

. .2
wethiod, Thoe resulls are as Tollows:
o NMyer £ grgapyae - » O Ay 4= 3 - . . .
Fig. 3. The ecrrow of ecaleulalion versus a/b ratio ~ Tfrom the Ritz method, npplying the trial Tunchion
Tor:
H « itz method = 2 a2
no-ow I=oyr(r-R) (9% ) (23)
T - Troefftes mothod
K - Kantorovieh method
Th - wmodlTiod Poeffbs metbhod.




we lhave
o= a)"B’da'/?'g’ (21)
R~ 7501+ 0857 *
= Trom the hantoreviech method
-4 it iz
B =5 BayRp(1- u——ﬁﬁﬁ ) (25)
= from the Trefftz metbod, using the approxiumt..

f:wdgﬁ(}rﬁmrw;gﬂ} {an)

we olbadn
b =}y npf1-§ s8] (*7)

and

= Lrom the modificd Traffis mceihod, applyliy tho
approximation of current (low funotion L in &
Coru

I:wdaﬁ(fr"*mrfcaspga) (n21)

we have

2@ e 1 Sin .
P, =l BayR /:g A (p__L*Z),PﬁJ (29)

wihere po oenn he detorsined Crom the smelabion

1903 _ 2(p+2) (30)
PR 3p+2

- r

The resulis obhfalned axe sboun 0 Ehe @i 3 om0 Blne

Tunections of the angle G . The esnct valuc of e

powel losses is contnined in the shadowed vopion.
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Figr. 5. Pover losscs in the sootor of the eircele
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as the functlion of the angle A aolaulabod

by meoans ol :

R -~ Ritz motlhod

T - Trefftz moethod

K = FKantorovieh mathod

™ - modificd Trefftz mcthod,

I, CONCLUSILONS

In thoe paper a method for ostimation of the pouor
lessas in Lhin condueting platoes is inbroducor.
Application of Both Rilz and Treflis or Wontorovich
nnd modifiod Treffts method gives an upper amd a lo-
vor bownul for the power value. Thoe npproxdmnte valuo
of bhe power Losses con be ealeoulntoed ns the average
of 1., anedl U0 o Y and Lo values. 14 s beewy siwoun
N th i Tl
thal using sioulioncously Sheace Dovse mashads B

Vitcon eets b obieatod anad ndacierined.
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THODIMENSIORAL FINITE ELEMENT ANALYSIS
OF LOW FREQUENCY BLECTROMAGHWETIC FIELDS IN LINEAR MEDIA

P, Janedek
ASEA-KDT, 8-72183 Visteris, Sweden

ABSTRACT

An npplicalbion is presented of the F.E.M, to Lthe solukionar Lhe
equation for bhe vector polential (the "diffusion” equation) in
two space dimensions. The resulbing compuler program RCSTASy
{Eady Current & Skin efPect Twodimensional Analysis Sysbem) is-
ing complex arithmebics con handle problems where maberinl pro-
perbies are bime— and field-independent bub can vary in space.
The boundary conditions can be of Dirichlet or Heumann Lype. App-
lied volkages or total currenlts can be specified For groups of
conducbors in parallel. The mesh is btriangular, Lhe approximakiog
polynomials of up to the 5th degree. An example of the compuber-
generated field ploL for an acbunl application is presented.

1. INTRODUCTION

Eddy currents occur in all btypes of electrical rquipmenk siuhjec-—
ted Lo a bime-varying magnebic field, They can ho puk tn goad use
as in induction furnaces, or, a8 is often Lhe case, one wishes bo
reduce the loss of elfeck caused by them. In order Lo eqiripe the
desipgning engineer with a computational tool which would nnnble
him to calculate the magnetic [ield resulting from his design, a
computer program has been developed at the Deparlment, for Gysbem
Anaolysis and Technical Programming (KDT) of the ASEA Co, Visteris,
Bweden.

The program uses the finike element technique bto solve Lhe equa-
tion for the vector pokential for cases of special symmehvy, i.c.
with translational or rotational invariance, where harmonic depen-
dence of field gquantities on time can be assumed.

2. TIE BQUATLION

For electromagnetic field problems wibth Lranslational or volalio-
nal invariance, the calculntions are greably simplificd hy inbro-
duction of the electromagnebic polenbials A and V. The cyslem of
Maxvell equations with bhe displacement current omitLed is

gxll=1i {1}
v x E = —45/3% (2)
vV-h=0 {3}
vV D=9 (h)

for regions with no free charges. The constitutive relalions nre

B=pW=p_n_ ¥ {5)
D=cE=¢ ¢ n {6)
i=o% r o !

where p, £, o are the permeability, permettivity, and conductivity,
respectively. The introduction of the vector potentinl by B = ¢ x A
and of the sealar potential by E +3A/3t= -VV together with the choice
of the Coulomb {or radiation) goupe V- A = 0 yields the equalions

v x (2 9xR) + 0aR/at = o (~WV) ()
v - (Bov) = 0 {9)
In thic gauge, -VV acts ns n source of the A-field and ¥ can be iden-

tified with the applied pobential, If V is known, we do not have Lo
solve eq. (9).

For & problem with translationol invariance along Lhe Cartesian
z-axis, A has only one component, A = A {x,y,t). lg. (B) the re-
duces to 1 =

-7 . (ﬁ YA ) + g AN/IL = o (-9V) (10)

When the material properties p ond o are time-and [ield-independent,
A and V will hage the same bime.ﬂ%pendence. If it is sinusoidal,
A= Ao(x,y)e Wy Vo {(x:¥)e?", then (10) simplifies Lo

- VALY Juhy =0 (S9V0) {11)
This equation it sometimes called the diffusion equaiton. (~9V_} con
be identified for each conductor wilh the voltage {in V/m) npplied
to it. ) )
Similer relations can be worked out for axisymmetric problems.

3. BOUNDARY COMDITLONS

Boundary aonditions for the vecbor potential can be of two Lypes.
Rither can the magnebic "reluctance"o be specified along a boundary

fAxH=hx (% gxA) = a(ﬁP -R) (1)
or bthe vector pokential can be speciflied there
A=h (13)
g N}
where g stands for "given". The special case of condilion {12) with

u=0 corresponds to insulation or symmetry, tve special case of
eondition {13) with Kg = O correnponds to antisymmetry nlong the

boundory

. CONSTRAINIS

Frequenbtly, one knows the tobtal current carried by a group of con-
ductors in parallel rather than the applied voltage.Then the foll-
owing constraint must be satisfied:
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" g (-vv-2A/at) ag; (am)
kB

where Lhe integretion area Q. is a cross -section ol the ifth con-
ductor group. If there is only one such group, the problem can first
be solved for a unit applied voltage and the corresponding total
current J, is determined. The the proper voltage can be determined

by the principle of superposition, by simply computing the ratio

J . /J.. More generally, the principle of superposition may be app—
1858%enta system of conductor groups with specified total currents
is given,leading to the computation of an admittance matrix. The
proper voltages can then be obtained with the aid of this matrix.

Another possible constrainbt can emerge when one has a prohibitively
large number of conductors close to each other, as in a coil, where
the skin-effect is unimportant. In order to bring down Lhe computing
costs, one would like Lo treal all of these conductors together, re-
questing constant current density across the coil.
Rather than eq. (8), one has in this area

I, 1y

v x (E ViR)=1,5 ven (15)

Then, different eqguations ((8) or (15)) apply im different parts of
the demain of computation.

5. THE F.E.M.
Eq. (11) can be written in the form .
DA =b {16)

where the differential operator D= -¥ Ey s Jjwo is not self-adjoint.
An approximation Al te AD is sought of Phe rorm

A= g=1 o ¥ (xr)

vhere thet.: are real polynoimals, a.: s their complex weights and N
is the number of nodes in the F.E. mesh. Al is required to cbey the
Galerkin condition

(¥> DA ~b) =0 k=l n {18)

Thus & system of algebraic equations is obtained, which can be solv-
ed by some standardé method. The hesert of every computer program
using the F.E.M lies of course here and the task of construckting e
fast solver with reasonabie memory requirements is a most challenging
one.

6. ECBTASY

-A FL.E. computer program named ECSTASy (Eddy Currents & Skin efFfect

Twodimensional Analysis System) solving eq. (8) for cases wibh trans-
lational or rotational invariance has been developed at the KDT-
department of the ASEA Company in Visterds, Sweden. It uses triangu-
lar elements and the spproximating polynomial can be of the 1l:st to
the 5:th degree., ECSTASy uses a direct method for solving the equa—
tion system. External memory {(disc) is used during matrix ractoriza-
tion and back-substitubion in order to bring down the memory require-
ments.

ECSTASy consists of 150 FORTRAN subroutines. A separate preprocessor
is used for triangulation. A digitizer can be used for generation of
input data. A posiprocessor named PostRCSTASy analyses the results,
integretes the current, induced current, ohmic losses, reactive
effect, magnetic energy, Maxwell stresses, and plobs the isolines
for ohmic losses and real part of the vector potential for dirrerent
points of time.

ECSTASY requires 35K 36-bit words on z Honeywell Pull G080 computer.
The memory requirements cen be illustrated by a couple of examples:
A problem with 200 elements and polynomial degree 3 having about 1000
complex unknows requires GIK in the core, the program included. A
probler with 800 elemepts and solution degree 2 having 1700 complex
unknows would require about 75K words.

An example of a field plot is shown helow. The device is & continuos
casting mould stirrer. Four coils with applied voltages with & rela-
tive phase shift 90" create a rotating field. The plotted lines re-
present the equipotential lines of the real parl of the vector poten-
tial at the beginning of emch period.

10.2



10,




-

FREDNOLM INTEGRAL EQUATIONS FOR THREE AND TWO-DIMENSLONAL
EDDY CURREHT PROBLEMS

J. N. HcWhirter
WESTINGIOUSE R&D CENTER, PITTSBURGH, PA 15235, U. S. A.

R. C. HacCamy
CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PA 15213

ABSTRACT

This paper is a discussion of the Fredholm integral equations
which govern the induction of current in conductors for the
following types of problems: (1) general three-dimensional,
{2) three-dimenzional with thin conductors, and (3} two-dimen-
sional with current parallel to the z axis. A description

is given of a computer code implementing the two-dimensional
equation with the inclusion of prescribed boundary and inter-
face conditions. DBy limiting aspproximate solutions to those
which have no conductor current normal to the conductor sur—
face and using an inner product procedure (the method of
momenta}, equatfons are provided which do not have a term
involving surface charge.

INTRODUCT 10K

Backpround

Eddy currenS_Broblems have been solved nnalyticnllyl' 2 and
numeyically using the two-dimensional diffusion equation.
Recent w9rkg og the numerical solution of three-dimenslon
problems’* ©° 7 have shown the need for conductor surface

charpes 1n order te obtain mathematical cousistency. In peneral,
these surface charges are also necessary ian problems with Lwo-
dimensional geometry, causing the sclution to not be two-
dimensional .

This paper discusses a Fredholm integral equation formulation
of the three-dimensional eddy current problem. The physical
meaning and importance of the surfaceliharge is discussed.

An inner product or method of moments  procedure (e.p.,
Galerkin's method) is shown to provide an approximation which
does not include surface charge effects. The general three-
dimensionnl equation ig specialized to a problem where the con-
ductor is thin in one dimension, but still three-dimensional.
Also, the two-dimensional equation with z directed currents
is formulated. Thin two-dimensional equation has heen imple-
mented in a computer codeb called FREDDY which also permlts
gseveral types of prescribed boundary and permeability interlace

conditions, as well as fixed sources. The solution of a problem
demonstrates the effectiveness of the code,

This paper (a) contributes to a physical understanding of surface
charge, (b) provides a mathematical ratlenalization for the elimi-
natlon of this surface charge from several two- aud three-dimen-
sional Fredholm integral equations, and {(¢) demonstrates the
application of the two-dimensional equatlion on a problem involving
permeability interfaces and fixed current sources.

Throughout this paper, we deal with the phaser representation of
steady state .quantities which are sinusoidal fn time. We bhave in
mind problems where the frequencles ate about 50-60 llz and problem
dimensions are about 10 meters or less.

BASIC DISCUSSION

Currents in a conducting body are s consequence of an electric
fleld E and Otm's Law, J = oE. The electric field, in an engi-
neering sense, may result Erom (1) a changing magnetic field caused
by current in another body (Fig. 1a), (2) an electric field caused
by external charges (Flg. 1b), or (3) a connected source of
voltage (Fig. 1lc). In general, these currents imply a difference

IEERIR YN

—_—

F T )

yE {3 /e

L X

(a) ) c)

Fig. 1 - Several modes of current induction

in potential between various parts of the conductor surface and an
electric Field external to the conductor. 1IF we apply Gauss's law

(ot ¥-E = nfe} to a thin disk enclosing the surface shown in

Fig. 2a, we equate the surface integral of the outward smormal

component of ¢E to the enclosed charge. (p, 1s volume charge density).

oda = s:(lamJ - EnI}Jag eEmda or

p=cE . (1)
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Inside Conducir

lEnIK«EnOi lln{
+ 4|+ + + 4 #lr + P + +l+ 4+ ++ 1+ +P
lEno l]n0==0
Outside Conductor
{a) Electric Field (b} Currents
Fig. 2 - Boundary conditions on conductor

The surface integral of the outward normal component of current
is equal to the time rate of change of the enclosed charge. This
is the integral form of _g-g_=~30¢ In Fig. 2(b), using phasor
notation, ki

jupda = JnI da or

Jap 7 dwe (2}
Equation 1 shows the need for a surface charge and equation 2 shows
the requirement for a normal component of current at the interior
surface of the conductor. We may think of equation 2 as repre-
senting capacltive or displacement current. In this sense, we have
not yet neglected displacement current.

THREE-DIMENSTONAL INTEGRAL EQUATION

Consider a conducting body with internal currents and surface
charges. Assume the same permeability 3 and dielectric constant
€ everywhere and that ¥ * J = 0 within the conductor. This wodel
is consistent with Maxwell's equations within and outside the con-
ductor and with the required continulties at the surface.

10.

In general, the electric field at a point f§ is
E(E) = —jw ACF) - ¥ #(E) (3
where the vector potential A results from currents and the

scalar potentlal results from charges. In our problem, this
becomes

Jup i
E(f) = -~ — J J(s) G{E,s)dv - — ¥ J p(s)G(f,s)ds + E (£) (&)
4 4rig o
v
where J(s)} is the conduction current density within the conductor,

p(s} is the charge density on the conductor surface,

Eo(f) is the electric field at f due to external
currents and charges,

G(f,s) is (e¢23rlk)/r

r is the distance from current or charge source
podnt s to the field point £,

A is the wavelength at @, in our case, about
5000 kilometers.
Since /A is about 10_6, G can be closely approximated by
e,

We can also wrdte an equation for use in calculating the magnetic
field after the currents have been determined:
BCE) ==-= | J(8) x ¥ G dv + Bo(f) (5
b4n
v

Equations 4 and 5 imvolve basic relationships between the electric
field and the currents and charges. See Strattonlo,for example.

Internal to the conductor, from equation 4 and Ohm's law, the
following equation holds.

Awpo g
J(p)-+ i J(s) G{p,s8)dv + — ¥ 1pn(s)G(p,s)da = OF _(p) (6)
1 4re o

v 5

If the term involving charge were not present, this would be an
Integral equation of the second kind or a Fredholm inktegral
equation. A solution to equation 6 requires the simultaneous
solution of the field equations Inside and outside the conductors.



Inner Product Approximation

If the total current demsity 1s large compared to the surface
displacement current densilty, a solution which appreximates the
true solution but does not include the displacement current (or
surface charge) may be sufficient. Since this apptoximate solutlon
is not a solution to equation G, we define the sense in wihich 1t is
an approximation by means of an inner product, Hartlngton‘ calls
this the method of moments and his discussion is valuable. Host,
if not all, numerical solutions to field equotions can be wviewed

as the application of the method of moments.

To order to make the approach clear, consider a specific [inlte
element within the volume. Divide the conducting volume into
tetrahedra. Define an electric’ (or currentl? vector pokential T
which 1s plecewise linear over the volume and zero on Lhe surface.
T is defined such that

¥yxI = 23 %)
A consequence of this definition, by a vector identlity, ls that

¥+-1=0 within V. I1F T 1s zego on the surface, then Jen =0
on the ingide of the surface. J 1s the desired approximation

to J.

How, returning to a more general discussion, define ao inner
produck

< ulp), EIE> = | up)e£(Ia)) dv, ®)
v

where has the properties

u
¥ru =0 within V¥

e

'n=0 on So’ a part of 5 such that § = SU + S+ +5 .

We apply this inner product to equation 6. Let us examine In
detail the term involving charget

?.":“Z ]ﬂ(p" ¥ |o(s)6(p,s)da) dv = o {ulp)+ V4(p) dv (9)

v 5 v

{the surface intepral 1s the potential ¢(p} due to the surface
charge distribution). By the divergence or Gauss's Theorcm

9 «(pu) = |éu rn da. {10)

v

By a vector identity, this is also equal to
u-Fé dv + $Vsu dv. (11)

v v

Then, equation 9 becomes

g | u¥ ddv = 0 jdurnda - o | $¥Vru dv (12}

v 5 v

We assume that ¢ 1s constant at ¢+ over S+ and congtant at ¢F
over § .

Sioce Yeu = O within ¥, the second term is zerc. Since urn = 0
on 5 excepting S+ and 5_, the remaining terms are

g | dundateg furn da =~ g (¢+ Un+ + 4 Un_) {13)

5, 5.
where U“ = - u*n da -
5

Equation 6 becomes
T

" Jun -
E(p)°£(v)d"p -+ ulp)r 1| 3(s)6(p,8)dv ] dvp

v v v

= o(p, U+ U )+o|ulp) E{p) dvp (14)

v
The two terms on the right-hand side respectively represent
the driving force from an applied potentilal and the driving force
induced by charges or currents located elsewhere.

In a numerical solution

Ity =1z (&)= Lo E(s) n=1,H (13)
n k
‘_{(P) = L{m([’) m= 1; M

where f are basis functions derived from the plecewise linear
basin fulictions for

T =T, b (o). (16}
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Using the method described by Harrington, this becomes a matrix
equation

(2,0 [a) = (5] an
where
L= gm(p)-gn (s} dvp and (18)
v
8, = 0 Em(p) -Eo(p)dvp EY c(¢+ Un_{_ +$_ Un_) (19)
v

THIN CONDUCTORS

Consider a conductor which is thin {e.g., sheet aluminum) and
is formed intoc a complex curved shape. Equation 14 can be written
for this pyoblem by considering that points p and s lie on the
surface §  midway between the conductor surfaces. We assume
that the current density does not vary appreciably through the
thickness. We define our approximate solution g_ and the
weighting function u to be constant in the thickness direction.
Then, equation 14 becomes

Jupe bip)

u(p)-1 (pda, + ——— | w()-[ | I(s)C(p,s)da )da,

8! s' s"

=alp, U, =~ ¢ U )+ oh(p) g(p)'Eﬂ(p)dap (20)
S'
where .
I(P) J{p)h(p) {Amperes per unit length)

h(p) 1s the thickness of the conductor at peint p on
the midsurface.

The basis functions for u and J are chosen with the restric-
tion that their normal components at edges be zero and thelr two-
dimensional divergence be zero, We can define a vector functionT

in the plane 8' such that
Ty =T = 0
T = ¥
n
vhere T and T , are the magnitudes of T in the two-orthogonal
directians t an& t, which are tangent to §8'. T = ¢ is the

magnitude of1 T inzthe direction normal to S'.

If

| 1=t
i
|=<a
®
|=

2
i

1'3
t gw
2

>
|

1

If ¢ is zero omn
that the normal
also be defined

10.3

then

and

the conductor edges, there is automatic assurance
component of 1 equal 0. The function u can

as a curl, thus assuring that Veu = 0 and that the

component of u normal to the boundary is zero.

7

Fig. 3

-~ Finite elements and § basis functilon
for thin conductor

1f §' is divided into triangular finite elements as shown in

Fig. 3 and y§ i1s
components I

piecewise linear over each triangle, the current
and will be piecewlse constant. ¢ is a

linear combination of gasis functions each of which is linear over
the triangles having a common vertex and zero over all other

triangles. The
he regarded as

lines in Fig. 3 which resemble a spider's web can
contours of ¢ or as lines of current flow for

one of the basils funmctions.



u
~m m
the solution is by Galerkin's method. If uf{p) = (¢, + EZ)
5(q~p), the solution is by polnt matching where t, Tand Tt
are unit vectors. The Dirac delta function 5}q-p) ia”
defined as
0 qfp

8apd = Y. 4=

6{q-p)da = 1

Sl’

TWO-DIMERSTONAL PROBLEMS

We wish to find approximate solutions é' which have only an
axial or z component and which are invariant in 2z over a
length L. Therefere, we choose welghting functions and selution
functions which have these properties. Then, equation 14
becomes

Ao @
u(p)J(p)dxp dyp + . [ ul{p) [ J(S)Gz(p,s)dxsdyg}dxpdyp =
u(¢+yn+ + ¢_Un_)/L+o u{p) Eo(p)dxp dyp 1
A
where
Gz(p,s) = G(p,8) dzs and

L

u(p) = the =z component of u(p); etc., for other previously defined

vector quantities,

1f L is infinite
GZ(P!S) = - gnr (Pis)'
If we define u(p) as a Dirac delta function &{g-p) where

0 ifpégq
§(q-p) =
= ifpuq

§(g-p)da_ = 1
(q-p) a,

A
equation 21 becomes
@+ 22 i s y dx_d
D+ P) Gyla,p) dx dy
A
olé, - ¢ )/L + oE_(q) (22)

This equation is conslstent with traditional eddy current
analyses., As ® approaches zero, equatlon 22 approaches the
correct direct current equation.

DISCUSSION OF BOUNDARY CONDITIONS

Boundaries with prescribed conditions, such as tangential B
or a discontinuity in normal I, may be replaced by layers of
equivalent sources. These boundary conditions can be formu-
lated as integral equations of the second kind or Fredholm
integral equations. Thege have been worked out in detail for
two-dimensional problemsﬁ and implemented in a computer code.
In the case of petmeability Interface and preseribed value of
tangent{izl B, the equivalent source 1s a layer of z directed
current at the boundary. Other equivalent sources are appto-
priate in three dimensions, but a discussion of this is beyond
the scope of this paper.

EXAMPLE OF TWO-DIMENSIONAL SOLUTICN

There 1s a two-dimensional computer code called FREDDY6 which
incorporates equation 21 and other equations for various
boundary conditions. This code has been used to compute the
magnetic field and the eddy currents for the problem of Fig. 4.
This 1s a conducting channel with a square cgnss—section and
a current dipole with a magnltude of 1. x 10" ampere-cm. at
the center. The relative permeability of the channel is 25
and the resistivity is 59.22 x 10-6 ghm-cm. The outside
dimension of the channel is 28 c¢m, and the wall thickness 1=
4 em or 4 skin depths. The frequency is 60 Hz. The loss
densities as a function of a perimeter distance are plotted
in Fig. 5. This code approximates the z directed currents as
being confined to lines in the c¢ross—sections of Fig. 4.
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Fig. 5 - Loss Distribution in Conducting Channel

at Several Depths into Conductor

PISCUSSION

The use of the inner product to produce an equation not involwing
surface charge may be viewed with suspicion as to its Inter-
pretation by some and regarded as completely unnecessary by
others., Often it has been stated that "we neglect displacement
current.” This quick disposal of the charge problems does mot
provide the wnderstanding,in the view of the writer, that the
foregoing discussion does. It 1g also unsatisfactory te a care-
ful, mathematlcally-oriented analyst. Another possible approach
might be te let the frequency become very small and disregacd
some higher order terms; not so far, however, as to proceed to
the de situation. Setting the dielectric constant of the non-
conducting space to zero should also eliminate the surface
charge from consideration. The writers have not worked out the
mathematics of these last two approaches.
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CATGULATION OF BNUT~-CULRNENTS INDUCGED W
THEN CUNRVED SHEETS

M.Gramz, J.Purczynski, R.3ikorn
Polytechnic of bzczecin, Poland

ADSTRACT

The paper degals with a method for epleoulating of rdily-
currents induced 1ln a thin conducting curved shont
placed in an alternnting mognetic field. Two sealar po~
tentials are infiroduced to formulate rield equalions,
The method is demonstrated by examplez of n spherienl
cap placed in alternating mognetic Tield aml o dink
rotatling in magnotic field. Some numerical rrrulis nre
given to compare the metbod propesed with praviounly
uscd one.

1. INTRODUCTLIOW

1% has been shown in Keference 1 that the Formpisiinn
of the electromagnetic field equations agsumns noma im-
portance when 3-dimensional eddy current problams are
considered and the most Ffamlliar formulation in bkorms
of the magnotic potential A becomes inconvaninnt [ov
thn numerical treatment. The alternative ways in whleh
the eddy current problems cgn be described have boon
discussed in References '1537 where the electric
vector potential T and magnetic scalar potential 52
have been used.

The purpose of the paper is to examine a mobhod orf
Tield equations formulation in the parkiculsr asse when
the conducking region has a form of an infinikasimnl
thin curved sheet. In this ease further simpliricabionn
are possible. A number of different workern J,0,0,7,8
have investignted this problem under the Tollowing
assumptilons:

12 dhe thickness d of the conducting plate in wueh
more smaller than a depth of penatvnlinn of Lha
elecctromngnebic wavae,

20 the sceondary magnetic field due to eddy-our-
renis is negllglble comparing with the nxelblng
flux.

There are however a lol of devices which oftron accur
in electric machlnes and instrumenta where domognal-
izing flux produced by eddy—currents is comparalbile with
the exciting magnatio field and the assumplion 20 ir
not% reasonable. Taking into account the dewmnynalising
flux thn field equations can be Tormulated in Lerms of
current flow function I and magnetlc scalar pobkential
S The formulation proposed ig similar to that in Lerms
of electrio vector potenclal T, but it leads to sluwplnr
aquations and interfnee conditions.

'
L

2. PIET BUUATIQNG

Let congider a thin curved sheet of uniforwm thickness d,
made of a conducling material having the conductivity ¥ .

We assume that the thickness of the sheet is infinitesimal,

d-+0, and the conductivity of tlie conduchor iz infinita,
¥—+00, but lim¥d =<0,

The shecet is placed in an albternating magnetiec riold
H,(t) and eddy ourrents are induced in if. To Tormulate
equations describlng the phanomenon current flow fTunc-—
tion I and mapgnetic secalar pobentinl S ave applied.

Ve chose an appropriate curvilinear coordinate system
{uq,u2,u4} in which the shect under invesiipation can be
describna a5 a surface 5 : ug = const., T{uz,u3)< ¢ with
the boundary M : £{u2,u3) = ¢ /Fig.1/.

Fig.1 Thin curved sheet under investigation.
i d "y
Since current density d i8 infinite ln the rogion 3 the
surface current densily XK is used:

¥ o= 1im Jd 0

Let introduce current flow Tunchklien I defincd by the

equation:
Ke-0%pgradl 2

-
where h = 1wy denotes unit veclor normal to the suvr-
face 3. This definitign 1g based on the similar one
#ilven in ReTerences 195057, Current ?low funchion
I is related in a simple way to the current J flowing
bebween two arbifrary points P4 and Po lying on ithe
surface 3:

9-J% B1a1 = - J (% x grad I)14dl = f({.;ratl 1R dl=
BEN nr2 B
= 1{rq) - I(P2)

The above yiclds the boundary condition for the I
function: T = 0 akl.

In order to describe seccondary mapgnetic field gencra-
ting by the eddy-currents, the scalar mapneblic poten—
tinl §2 is introduced:

0= - grad®@ {3)
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which satisfiss Taplace's equation
7R = 0 )

everywhere except on the surface 3, where it is dis-
eontinuous.

The magnetlc field at the surface S is deseribed by the
relations:

x (H, -} = % (5)
A =0 (6)

where ﬁ+ and H. are magnetic intensity vectors on the
upper and lower side of the surface respectively.
Applying (2} and (3) we obtain

) S

-0 x gradd% = -7 x grad I {7)
and taking into account the properties of the I and
Tunctions
a9= 1 (8)

what gives the boundary condition for the eqn.(#).
Trom the FParaday law 1t results

oB
¥ = ot
curl K = —F— (9)
ATter substituting for K and B eqn.(9) fakes the form

uf 29 )
0% onot

which can be written explicity in curvilinear cocordi-
nates system {uq,up,u3} as follows

curln(ﬁ ¥ grad TI) =G}{( {10)

I N i i o B (ha D11] 2 (i 122
]213[3‘32 hp aug) * 3 Uy FB ? UB\ —Gﬂﬁ(l{o_ 1Y) U1) (11
where Iy hoshy are appropriate meiric coefficients and
HO = -ﬁ'IWO

EBquations (4) and (11) accompanied by the boundary
conditions form a system of partial difTerential aqua-—
ions which is to be solved.
It is worth noting that the method proposed is related
in a si%p%e way to the method applied in the refer-
ences J7216,8", ¥t the magnetic field due %o addy
currents is negligible comparing with the exeiting
field, the homogenous Dirichlet problem should be
solved fTor eguation (11) in which the term
1 -

=== is omitted.
By 2 Wy
On the other hanrd the secondary magnetie field may
cancel the execiting field at the sheet surface and the
problem is then to solve Iaplace equation (4) accom-
panied by Neumann boundary condition

)

on Ho (12)
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3. SPHERICAL CAT IN ATLTERNATING MAGNSTIC FIELD

To demonstrate the method proposed let consider an
example of condneting spherical cap placed in an
uniform alternating magnetic field

H(t) = BYZ sinot = In[g7el*!] (13

o0 ! |

TPig.2 Spherical cap in an uniform alternating mognetic
field.

The normal component of the exciting magnetic field
intensity vector is

Hg = H cos 8

In the spherical coordinates eqn. {4) has a solution
in the form

22 ~n-1

_(1_2-1- =Z Bn r Py(cos 8) )R (140
n=0

R - =§OAn " P, (cos 8) r<R ' (Ghw)

whers P, (cos 8) are Legendre polynomials.

dince the normal component of the mapgnetic field must
be continuous for r = R, we have

n 2n4+1
By =~ et B A,
and gg -
R=%,-Q =-Y & 5
Aag=2c, 9_— EO 7 & Py (cos8), r=n (151

After substituting for g%L eqn. {11) becomes

2 2 n-t
1[(1 T ar] . .
+ ctg&——] =jupb | Heos® — E nR  ApPp(cos8)  (16)
72 lae? ael T4 ( ntn(

n=0
Eqn. (16} haz a snlutioqﬂ

I =J“(E§(CUSP ~ ¢oc8) "Egggn(Pn(cmsp)- Pn(cosen) (17



whare A"

n
u.“ay4,512, 3, =

n+1

Taking into aceount the relation hctwcerlﬂg?nnﬂ I
{(rqn.8), we have

o 52 (00 8, B R rosp- Reos6), 6o
E;gnPn(cose) -{

0 02 P fin)
6},n denotes Hronecker's symbol.

In order to nvaluate unknown coefficients ay,y we oxpand
the right hand side of the egqn. {18) into a smervinm or
Lependre functions. After calculations we obfndin an
inlfinite systam of ecquations

0
‘%Qn““ Kinyn ’"5m,n) =j% !UZ‘I Km’»q m=d,dy ... {10)

(2me1) sin P [n (r+1)

1
Myn = 2 (R-nmar ) Lm{m+1) P, (cosp)p, (cosp) - 1, (nosp)-

1
P, {cos p)]
whieh in practical computations must be appraprinbaly

truncatad.
The power losses can be calculaked by the Lovmils

4.2
Y= -é— fl;gi as {0
S

which arter integration by pnrts is of the Toin

| 1. ., %y . "
P =~ = Ro [!l je(d, - —a—n) a5 1)
/nsterisk denotes the complex conjugnte/.

The result of integration is

P i’§ ept, TH Im(a,) (=2

In special caseP=R, the power logses ean he nsprvossod
explicit by a simple formula

2R 2.3 o
P = S op iR — 2 "
. 1+ 0¢ 3

If we assume thal the magnetic field due to wddy-
currents ean be ignored, the power losses ko o spoinyi.-
enl cap arc given by an expression

P o= %—w}{.HERBu (14 - cosp)z ( 2 cos[b) (2h)

Substitubing [P=X we have

P = —3—27" wﬂ,l[EI{ED’- (25
Gomparing the expressions (23) and (25) jf_1g evident
that the assumption made in References J13s is

valld only for o<1,

4. DISY ROTATING IN MAGKETIC FIBLD

Az the second example let counsider a thin econducting
disk of the radius R rotating with conslant angular
veloclity @ in the nonuniform magnefic field. The normal
component of the eweiting magnetic field B__ is known
at the disk surface en

Bg, = DO( r,9) 5 2=0, r¢R

For the sake of simpliclty the exeitiing mapgnetic Tield
is assumed to be constant with tine.

Bgn. {11} In cylindrical coordinate systiem {#,r,w) has
tha form

2
%1 19 1971 (as., 62 )
o—— % =Gt m—— i ———— 26
9r* r 9r Fg??z oy 393261 (26)
Irom the symmetry with respect to the plane z = 0 we
have

@-0 for z=0, r»R (27
and from (8)

28, =1 for z=0, r<R (29)

+?
Conatraint I(r=R} = 0 completes the specification of
boundary condililons required for the cquntions system
(4), (26). However we ghall additionaly introduce the
condition

R0, 71=a, aX» i (29)

in order to simplify mathematical treatment of the
problem,

Mo solve the system of ecqns (4} and {26) with tha
boundary conditions menfioned above the Tollowing
procedure has been applied:

10 Nonhomogeneous Dirichlet problem is solved for the
eqn.(4) in the semi-infinite eylinder r&a, >0 with
funcﬁionS?+(r,@),r<R, z=0, 6till indefinite.

2° Homopgenecous Dirichlet problem for the Poisson
equation {26) iz solved for arbitrary right hnnd side
of equation.
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3° Egnation (28) is usgd for matehing the solutions
obtained in steps 1~ and 27 of the procedure and
evaluating unlknown constants appearing in these
snlubions.

Pinaly the current flow function is given by the

;t‘ormulaoo

o0
I= Z: Z: Jn{r-an)(Ank sinng  + B, cosngﬂ (30
n=1 k=1
where

Uk = ®n,k / a and ®n,k is k—~th root of the

Bessel function of the first kind, n—th order.
Coefficients A and B are solutions of the fol~
lowing infinitg’get of EQEations

o)
Ay B(nyk) = :i: Ban(n,k,p) + F(n,k)

p=1
o
- B, P(m,k) = Z App®(nsksp) = L(nk) 34
p=1
N=142y000e k=1,2,40...
where 5 0
aq_.|J 59.,)
P(n,k) = nk[ n+1( ng]
nwFM R
1
2 a7 [anJJR'qnﬂJn+{R'qnﬂ“qanénqnﬂJn+4R'qné
np nk
Gy ke, = k#£p
Rl;2
?[Jn(n'an) = Tt (Redpgd T q(Bagyd > g P
Fh, k) R 2% fcosng R 2%
1 (JJthf -1 BHo eHo
= r —— dydr-[rd —
ﬂannk\ R 7% ¥ Ard, ) 39
o, k) 0 0 sinng 0 0
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cosneg

dedr

sinng

In practical computations the system ig truncated to a
finite number of equations.
The power losses can be calculated by the formula

a5 uin w v o
B 5 i o] -

n=1 k=1 2 (32)
-~ ;
dn T 2 2 2n o
;Ej EEQK[EH(R) + b (R) + 2R d{ian(r)a —+ b, (x):
n=1 0
0d (x)
S ) o]
where
-an(rf r - q1+n~ 25 [sin ng |
1+n
b ()| puw - 9H, [cos ng
" = Pan e1_n [3500 d?de
cn(rj e gin ny
0 1-n]| O
dn(r) s ] [ cos ny |

To compare the method proposed and the mgtgog based on
the concept of current flow function I 1717 let
congsider a disk rotating in the magnetic field described
by the relation

B,cos ng if R1Sr$R2
BO(T,L?) =
0 if r<R1 or Ry<rgR
The power losses have been calculated by the formula

(32)agd by means of the method proposed in References
1210 | The results shown in Pigs 3 and 4 prove that



the reactlon of the oddy ocurrents on the magnetic Tiecld
is negligible for E=2nwGMR<d, If £>1 the conkributilon
of the pddy currents to the magnetlc field must bn
taken Into account and the method proposcd in Refor-
ences 35,6 becomes useless.

p'= P/x R

f Rige Ra, -
205 0385 1

n=2 7

/
- / |
d ¢

001 002 005 &1 02 ©5 Z 0 20 §0 {00 200 -

o
-

Fig.3 Comparison between the approximate /dotbted 1ing/
and exact values of power losses as a runchion nr
an angular velocity.
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Fig. 4 Comparison bebtween the approximnte /dobted line/
and ecxact values of power losses as a Lunclion
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5. COHGTUSTONS

In this paper the mathiod hos been introduced allowing
o talke into mcecount the secondary maynatic flield

due to eddy currenks induced in z thin curved aheats
rlaced in the marnetic field. The melhod has been
damonstrated by examples and some numercial results
have been provided in order to show the Llimitalions
of the mebhod used previously.
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EQUIVALENT CIRCUITS OF SOLID IRON CORE
FOR TRANSIENT PRODRLEMS

D.C. Ican
Politechnical Institut of Bucharest
Fac.Rlectrotehnica,R-77206 Bucharest

ABSTRACT

The electromagnetic circult element 1w deflned.In
this manner is dellmited the area of the electromngne-
tic field problems which admit electrical and/or mag-
netical equivalent circuits.

The dipolar magnetic eircult element with nrbhi-
trary cross-section and nonlinear B/H relationehilp im
consldered, takilng into account eddy-ecurrents.The lum-
ped squivalent circuite has been determined lor thla
element under small and large signal.The se equivnlent
clrouitd contain dideal elemente, magnetic reluctnncen
and magnetle inductances.

The equivalent electric circulte for colle wilkh
polid faromagnetic cores are determined.One mognetbic
clrcuit end ean electric one,related with two commaon-
ded gources are suggested for this coll.Another elac-
tric equivalent clrcult, dual to the magnetlc aquiva-
lent olrcuit of the core 1s proposed.

1. IRTRODUCTION

Together with the numerical and analyticael methode
for the solution of the electromagnetlc fleld problems
it is possible to apply the semi-analytical methode
aleo 1] . The most importsnt example for the ceml-
analytical method ie the equivalent circuit technlque.
The main purpose of this technique 1le to replace tran-
slent analysls of the electromegnetic field oyntemo by
the analysis of an electric circuit.In this mannor may
be approach the networks which contaln nonldenl elements
with fleld-effects such es eddy-currents,skin-effectm.

The linear equlvalent circuits for the bus-bars
with skin-effect [2,3]) and for the coils with solld
coren [4,5,6] are known.Both devices have dipolar equi-
valent circuites with an infinit number of linonr cir-
cult elements R L, For the equivalent circuit synthesin,
the classicnl Foster and Cauer's techniques hne bheen
applied from the impedance Z{s)=U(s)/I(a)=1/Y(s)}.

Usin, the concept of megnetlc impednnce .
Zm(a)=Um%B)/¢P(s)=1/¥m(3), early defined by Bkalsr [ 7],

1e poesible to synthesize equivalent magnetic clreniteo
for the dipolar magnetie devlces.These oircuits contain
magnetic reluctances Rm and magnatic inductances Lm[B,ﬂ.

The clageicel synthesle technlques are no longer
valld for nonlinear systeme.For thls reason much work
is to be done In the theory of nonlinear squivalent
clreulis,

The purposs of this paper is to determine the equi-
valent magnetic eircults for thoe faromagnetic cores and
the equivalent electric circuite of the colle with such
coreg. In fact, the obtained circuite are not strict
equivalent to the field systems, but they approximate
these systems. For all that the results which has been
obtalned are more accurate than previously reported[10],

Not all electromsgnetic field problems aliow of
equivalent circults.A field problem may have an equi-
valent oircult,only if the boundry oconditions make
possible the conectlon with an external network. In
this respect it 18 necessary to exist, on the boundary
surfacey,some squipotential sldes (the terminals) and
that the electirical current to penetrate in the demain
through these sides only [11]. ’

In thie paper a more general concept -the equlvalent
magnetic circuit element- is defined.it has slectrical
snd/oxr magnetical terminale and 1t can be conscted to
an electrical and/or magnetical externa}) network. This
definition permits to delimit the area of field pro-
blems which may have equivalent circuits,

2. STATEMANT OF THE PROBLEM

2.1. Electromagnotic clreuit element

It ie considered a conducting domain D bounded by X,
Neglecting the displacement current, the eleotromagnetic
Tlaeld equatlone are glven by:

2B

curl E & ~ (1)
- ot
curl H = F (2)
div B = 0 (3)
with the following material relations :
B = B(I) (4)
T = J(E) (5)

Puther down some upeful definitlons are presented,

Let D. be a simply conected domain with reguler
boundary 3~ ,whose E 1z partitioned in n' + n" simp}
conscted,compact,mutually disjolnt sldes Sk(k-l,n’ ,

8y (k=1,n") and an external part S  so that EnSOUSLUSE.

The domain Dy i an electromagnetic ecircult ele-
ment 1f are satisfled the following conditions @

fi . curl E(M,t) = 0 , Mes U s}: (6)



T - curl Hi(M,t) = 0, MeS U s{{’ (1)
AxEB(M,t} = 0 ' Mres;c (8}
I H(M,t) = 0 » MeSy . (9}

The sides SL are reffered ap electrical terminalse

and the sldes S; are reffered ae magnetical terminsls,

On the surface S a set of slite UTiIJTﬁ have to be

done ,B0 that S0 inte simply conected surface Sr to
traneform.

Fig.l. The electromegnetic circuilt element

If an electromagnetic circuit element has only electri-
ecal terminals (n=0) then 1t is defined as mn electric

cireuit element and if 1t hes only magnetical terminals
{n'=0) then 1t is defined as a magnetic circuit element.

The conditions (6)-(9) show that the electric
current penetrates in Dy only through the electrical
terminals (eqn.7)},the time-varying magnetic flux pene-
trates in Dy only through the magnetical terminals
{equn. 6),the electrical terminals have an electric
equipotential character (eqn.B) and the magnetical
terminals have a magnetlc equipotential charmcter{eqn.9)

The concept of elactromagnetic cirenit element
allows to define the fdllowing quantities,

The electric current through the terminal S&:
1, = S ,curl H-da (10)

S

The electric potential of the terminal S;

vy = S , E-dr (11)

Cp€ S,
where Cé ie a curve whoee atart is on S; and whose stop
is on the reference temminal [, .

The derivative of magnetic flux through the ter-
minal Sp

‘ df —
Py = —£ . S . curl E.dA {12)
, dt S
The magnetic potential of the terminal S;
v, - &c" a5 (13)

€5
Xk r
where C; is a curve whose start is on S; and whoee stop
ies on the reference terminal S;..

The relations (6)}-(9) gusrantee the independence
of the definitions (11),(13) by the choice of the
curves Cé.CQ.

As 8 result of (6)-(13),the defined quantities
satiefy the following restrictive conditions:

n n ,
Vpr=0, V=0, E 1,20 , k:;cpk:«o.(m
e =1

The quantities (10)-(13) permit to caleulate the
electromagnetic power influx in the domain Dy
r Us

— —— el n ’

“R = S;E X H)-dA = E;_:“,L vl + ;%‘1 Yok Pk (15)
therefore these quantitiee determine the glectromagna-~
tic power linkage of electromagnetic cirecuit element
with the exterior.

2.2, Associmte system and egquivalent circuits

The uniqueness theorem for the solution of the
equations (1}-(9) allows to associate to any electro-
magnetic circult element one input-output system{12] .
This system is & nonlinear pasive one and it has the
vector v as the irput description:

v o= [vl’v2'"anl’vml""vm,nhl]t (16)
and the vector i as the output description:
t
1= [ig0d,.edp, ), Proees Eqlt .QAT)

The state variable of the system is the magnetic flux
deneity B(M,t),Me Dy .

10.5



Despite of finite number of the input-otput vari-
ables, the pystem is an infinlite one because Lhe astnte
apace 1s Infinite dimensional.

Let conslider the synthesls of an equivalent multi-
pol.This multipol must contain ideal c¢ilrcuit clementn:
resistances B , inductances L , reluctances Rm, mag-

netle inductancesn Lm and it must be equivalent,ln on

input~output meaning.,with the electromagnetic circuit
element or at leasst 1% muet be the beni approximation
of the Dy behaviour.

The explanation of the infinlte character of the
equivalent circults le related to the dimension of Dy
state space,.In order that,the infinite equivalent cir-
culte,to become useful,they must be approxlmnte by
other finlte circulits.Since a Tinite cirenit is finally
desired,it le normal to determine directly the ampproxi-
mate clrcuit instead of the equivalent circuit,eopa-
cially for nonlinear camell2] ,

The equivalent circults,in fant the beet npproximate
circulte,are obtained using emnll ang large signnl
techniquesn,

In emall eignal technique, the input is separated
a8 v = vo+v' ,where v, 1s the gquasi-static component
and v" ,the small eignal component,is bounded [[vV[[ < M
withiﬂ ag;ficiently small.The output is spproximnted by
i=15+1",

The statle nonlinear problem (2)-(9),with

curl E = 0 (18)

instend of (1},1s solved first, considering ¥o an the
input,The solution of this problem,Eqy,Hg,dg,B,, pormite
to determine the component i, and the dinamic mnterial
characteristiques given by:

,1 ﬁ‘@ G"ﬂi@ .

d g H, 4" a5 lg

Then,the dinamic linearproblem (1)~(8).(6)—(9) wlth
B = pH v J = oiE (19)

18 solved,considering v* as the imput.The solution of
this problem determine the component 1% .

The maln disavantege of thlas technique coneist in
the existence of two circults, one for the quasi-static
components v,,1, and other for the small eignsl com-
ponents v, 1~ fhis dlsaventage ie eliminated in the
large signal technique without a growth of the approxi-
mats error.

In the large mignal technique the quasi-static pro-
blem (18),(2}-(9) under the input v is oolved firet,
obtaining the fields EotHo,dy,Bo,undor the eddy-current
neglecting assumption,

10.

Then,the nonlinear dinamie problem (1}-(3),(6}-(9})
18 solved,considering the material relations given by:

B= pd(H—Ho)HJ0 y J= a‘d(EulBOHJ0 . (20)
The solution determines an approximate of the output 1.
If the relations {4),(5) ere linear,then the large
slpnel squivalent clircuit coincides with the smmll
slgnal dynamic clrecuit,both being egquivalent to the
electromegnetic circuit element Dy .
© If the materiamal relations of D; sre nonlinear,then -
1% ims necessary that

| B(R) = py(l-Hy)- B | <€ (21)

in oxrder to 1imit the approximats error.

The inequality (21) 1ls satisfied in the weak satu-~
rated ferromagnetic materimls or for sufficlently slow
time~varying fields,

2.3, Dipolar magnetic circult element

A conducting eylinder of length I and of arbitrary
shape crosg-section 5,wlth area A,having the elegtrical
conductivity s&nd nonlinear B/H relastionship Bs«B(H)

1o considered (Fig.2) . The megnetlic fleld is oonei-

2

Y,
Oy
(7]
N 3™
il \.»)
ey
Can |~
T **aj -—Z'-J}U.{,w(-
Jz%\,,

Fig.2. The dipolar magoetic clrcult element

dered two-dimensional H = & H{x,y,%).Under these assum-
ptions the conditions (6)-(9) invoive the oonstancy of
the magnetic field strength on the lateral surface ).
Therefore the domain Dz ig a dipolar magnetic eircult



element with the magnetic terminals Si,Sz,whoae input
varieble is magnetomotive force:

um(t) = Sc Hdr = HéL
and whose output variable is the megnetic flux:
{t) = B dA
¢ 1y

through any cross-section S.
The electromagnetic field problem has the equations

eurl H =7 (22)
curl E = - 2B (23)

- - at
B = B(H) (25)

with the initial condition:
B{M,0) = O s MeS (26)

and the boundary condition:
(M, t) = k-H (t) , MeT |, t20, (27)

For the dipolar magnetic circuit element,thus defi-
ned,1s required the small and large signal equivalent
e¢ircuite,which will be determined in what follows.

3. SMALL SIGNAL MAGNETIC CIRCUITS

The magnetomotive force of dipolar magnetic element
Dy is separated as:

-

u,(t) = Upno *+ 0y (%) (28)
with bounded uff (t): |ut(t)|¢¥ and the magnetic flux ie
written also:um l m ‘ "

L
feE) = o+ pr) . (29)
If Mu ls sufficiently small,then the domain Dy can

be characterized by two equivalent circuits those pra-
sented in Pig.3.

The nonlinear equivalent circuit (Fig.3a) 1s va-
1lid for the quasi-static quantities Umo and

P, = & By, /1)

the eddy-currents being neglected,
The linear equivalent circuit shown in Fig.2b is
valid for the dynamic quantities ur(t) ?f(t and

it is described in the following theorem.

Theorem 1 The dipolar megnetic circuit element Dy
has an equivelent small aignal clrcuit R,L which is
paralel Foster's type with the paramsters:

L L _
Ry = el Lok = 2. k=1,2,.. {30)
a8 PaPx k
where Pa= ’ }k are the eigen values cores-
dH HZUmo/L

ponding to nogpaliz%9 eigen funcotions wik of the ope-
retor - =~ —x -

ox -]
dary conditionsz and bk is given by:

b, = SS VT U

g L0

@q ﬁﬁg ——— ﬁkk_"

ilg under homogeneus Dirichlet boun-
¥

? bpr 3lpe T Jlpe—=-
o ——

) é:)
Flg.3 The small signal equivalent circults

Proof In the small signal technique,the problem
(22Y={27) becames :

JH
o— = AH (31)

Pa 70
with the initlal and the boundary conditions glven by:
H{M,t) = 0 y MES , t20 (32)

HM,t) = w /T =H, , MeT, t20. (33)
Because 5 is 8 bounded surface,the eingen values pro-

blem:
-AY =%y v Pl 0

has a countable get of solutions and the eingen func-
tions nyk form an orthogonal,complete system.Therefore

the solutions of the problem (2%)—(33) can be written
ast
HOGE) = Hy(8) + 2 ay(8)- 9,00 (34)

k=1

whoge ak(t) coefficients eatisfy the equations:
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I3 A s
g {t) = - — ak(t) - by I{B(t) . (35)

" Pq
The small signal mapgnetic flux is t 00
5 bklk t
gt) = g Pd" dA = - E p oy dt = E:: fk-
5 k=1 o k=1
Using (35),for each ‘fk,wa have:
2
a4 A by A
k k Kk
T T T TR Tkt ED e (37

which does represent an squation of the gerles I, L
circuit.The identification permlts to obtalne the
parameters (30) .

4. LARGE SIGHNAL MAGNETIC CIRCUITS

Let consider the dlpolar magnetle clrcuilt elemont
Dy and let suppose that the ilnequality (21) ie satin-
fied with & sufflciently omaell.Applylng the large
signal technique,the equivalent circuit shown in Fig.4
is otained,whose parametere sre

Do I’_.fé?‘_d . S ..g._. , k=1,2.. (38)
bRy by g
4B w 2 .
mhere Pa T Heu /L ' Pe ™ 'y H=u_/L
’
o ()
Klem) A Ao (vnf—~ Aer((cmn) — ——
¥ .
.
Lpylom) 3 Lpafom-—— A Lpi(em) = —
| .

Fig.4 Large slgnal equivalent circuit

The following theorem allows to distingulsh n ge-
neral method for the large signal eguivelent circult
gonstruction.

Theorem 2 If all the parameters Rk'Lk of the gmal)

slgnal linear equivalent elrcult coresponding to the
dipolar magnetic cilrcuit slement Dy are multiplied by

10.5

ot(t) = Fd(t)/Ps(t) (where g 8nd p are the dynamical

end atatlcal permeanbllities coresponding to the boun-
dary field i = um(t)/L ),then the modified circuit

is also ae large signal equivalent cilrcuit for the same
domain Dy .

Proof In the large signal technique,the problem
(22)-{27) hecomes:
t

g AH At = ¢ B
0

HOLE) = w (6)/L = 1 (8) , Mel (39}
P
where B = B(H) = B_ + Pd( H - H_)., The solution of this
problem can be expandaed in a eigen function series

HOHLE) = Ho(8) + 2, o () ) (40)
where the coefflcients a, satisfy:
t - '
)k-go ak(F)dt + G‘Fdak(t) +.¢ka(lIB) =0
The magnetic flux through Dy im given by:

g B dA ilkbk St (t) \?ﬂ‘? (42)
r = e a dt = /7 __ (42
1 g k=1 & Jo K ka1 X

Eaoh of ka la the solution of differentlal equation:

2
d ¢, A Ay b (t)
k k 3 + k kPB um (
S .4 - 41)
qt Pgr Tk * Pa L

The equation (43) allows to determine ths relations
(38),1identifying it with a meries R,IL eclrcuit equation,.
~ It 19 simply to observe thet the relations (3B) can

be obtained,multiplaying the relations {30) by Pd/Pg .

Thergfore ths following lemma allowe to finleh thie
proof.

Lemma 1, The transformation of e linear paseive
dipolar RyL clrcuit by multiplying all parameters with
the same function ot(t) has the property to preaserve
equivalence olasses in the input-output meaning.,

The estate varisbles squations are used to prove
thie lemma.

In conclugion,the dipolar magnetic oircuit slement
has a large Bignnl magnetlic equivalent eircuit oon-
taining megnetic reluctences nk and magnetic induo-

tances Lk (for eddy-currents modeling) defined by the
relations:
dT}

u () = R (u ) -0 (t), () = 1, =K o (44}
mk kM) P Yk K




Therefere the equivalent circuilt has nonlinear
input-controlled paramsters L(um),R(um).For ell that,

if the input variable um(t) is known,then the equi-
valent clrcult is a linear parametric one.

5. EQUIVALENT CIRCUITS OF COLS WITH SOLID CORES

Let consider a coll conatructing of n-turns wound
on the dipolar magnetic cirouit element Dy, a8 & golid
core,The cross-sectlon area of the nonmagnetio madia
between the magneiic core and the winding is denoted
byAc

®The electric equivelent circuit of this coil ie
to determine,

Applying the electromugnetic induction law it

resulia:
"t dt
where: up is the electrical temsion along the coil

wire , u ia the terminal voltage of the coil, 1 is
the coll current s ¢ is the core flux and :

A
Le - Po a n2

L
is the leskage inductance.

o= ECW

~1

o e 2d

Flg.5 Equivalent network of coil

The relation (45) allows to synthesizs an equiva-
lent network (Fig.5) which 1s built by a magnetic and
an electric circuits.The linkage between these cir-
culte is made by using commanded mources. The dipol
ECW denotes the equivalent circuilt for the internal
domain of wire{d.c. resistance v if the skin-effect
is neglected) and ECC denotes the megnetic equivalent
circult for the core domain.This kind of network with
commanded sources has the advantage to offer the

~ua~-p 8,49 (45

poseibility of intricate devices analyeis,e.g. the
three-phase iransformers transient anslysie.

The following theorem allows to obtain an electric
equivalent R,I circult end to distinguish the duality
between the electric equivalent circuits of coil and
the magnetlc equivalent circuilts of core.

Theorsm % If the core domain D; has planar-graph
equivalent olrcuit with megnetic reluctances Rmk and

magnetic inductances Lmk » then a lerge aignal equi-

valent circult of the coil wound on D, can be obtained
by applying the following procedure.
8.The circuit with the duel graph is constructed,
b.The megnetic reluctances Rmk are replaced by

2
inductances L, =n /Rmk'
¢.The magnetic inductances Lmk are replaced by
raglstances Rk = nzlek.

d.To the circult obtained as sbove the leakage
inductance Le and the dipolar sguivalent circuit

of the internal wire domain are serially connsc-

ted,
Kay L5z Pox
Fa ~ Le ’ i ‘ l
O~ J—rrr ‘ZD'{': . /y‘g —— I ;!i!‘___
[J‘/ ZJ'Q ZS‘Jt:

«/

Fig.6 Equivalent circuit of coil

Applying this theorem is obtained the equivalent
circuit shown in Fig.6. The circult paramseters ave
given by:

2 2 2
1" M byig 0ty Rg
Rsk = N LBk = k=1,2,.
a L Pa L (4
Proof According to (45) the terminal voltmge is:
21002 panl
dai
u(t) = r-i(t) + L, E: +-§E: u (47)

di k=1
where u, = n—= ,Taking into account egn.(44) and the

equality w,(t) = nd it resulte:
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2
A t 2o bin
(b)) = = —X u () dt n2 ke e,
UPd U‘L}ld
Identifying the relation (48) with the parallel Rsk'

L k circuit equation,wa obtain the relations (46),

8 Observing that the trensformation which 1s intro-
duced by procedure from theorem 3,has the properiy to
pressrve squivalence olaspes,thls theorem hns been
proved

6. APPLICATIONS

Coneidering the dipolar magnetic element ns a
circular oylinder,it reoults the following oigen
valuea %k and values of integrals bk:

72
A = k b = 2a VIt
k 2 ¢ k
a Zy
where a 1ls the redius of the cylinder and zZ, ore the
roots of the Besssl's funotlion Jo(zk)ao.
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CONVERGENT ALGORITHM FOR UNBOUNDED,
TWO-DIMENSIONAL, LINEAR EDDY CURRENT PRODLEMS

Charles W. Steele
Ampex Corporation, 401 Broadway, Redwood City, CA 81063

ABSTRACT

This paper presents an iterative algorithm for computing a steady-stato
magnetic lield with eddy currents in an unbounded region in which (he medium
is non-uniform in both conductivity and permeability.  An analysis is presented
that shows that circumstances under which convergence of this algorithm is
assured. A computer program that uses this algorithm was written, and certain
ol its computed results are shown,

INTRODUCTION
This paper is concerned with the problem of compuling fields in an

unbounded reglon, in the geometry shown in Fig. 1. !n this geomotry we have

only the current carrying conductors and a magnetic core surrounded by Iree
space.

"y

CORt

CURRENT-CARRYING
CONDUTTOR

T CURRENT CARRYING
GCONDUCTOR

Fig. 1 Two-Dimensionat Configuration

There are straightlorward ways to compute ficlds numerically in a
bounded region that contains a non-unilorm medium, as well as ways 10 comnute
figlds in an unbounded region that has a wnilorm medium. However, neither ol
the approaches is applicable by itself to the problem at hand, which combines a
non-uniform medium with an unbounded region. 1t is, as & result, a difficult
problem. This problem warrants considerable effort, however, since it arises quite
often in science and engineering.

Roughly, one can categorize the methods used on this problem as “simul-
tangous’ and “iterative’. In a  simultaneous methed, correct and final field values
are computed simultaneously at all points ol interest in the ragion. Several papers
pnpnrs1-2-3r have reported simultaneous methods based upon using integral equa-
tions. In these algorithms, the non-uniformities in the medium are represented by
equivalent source distributions that have the same effect upon the flields. Other
papur54'5 use the finite element method and handle non-uniformities by placing
element boundaries along tines of discontinuity.

In an iterative methad, one arbitrarily establishes o boundary {such as surface
54, Fig. 1). All medium non-uniformities and all generators are contained within
this boundary; outsicde this boundary there is only free space. The iterative me-
thod in general starts by putting approximate field values on an arbitrary boundary,
51. Then the following sequence of steps is taken repeatedly:

{1} Cempute the fields inside Sy, 25 one would in any bounded
region problem.

{2} Using the results of Step (1), compute new field values on Sy.

Sand\,; and Sage,6 and Cermak and Svaes!erT, have reported the development and
use of iterative methods,

In this paper the development and use of another iterative method is
reported, This method differs from the methods mentioned above by the algorithm
used in Step (2). This method is applied to the computation of fields in and sround
a magnetic core that is permeable and conductive. Specifically the magnetic vector
potential, A, is computed throughout the Fig, 1 configuration. It is proven that
this method converges to the right answer from any starting values. Finally, test
resuits are shown and discussed.

CONFIGURATION AND FIELDS

The configuration, shown in Fig. 1 consists of a magnetic core and two
conductors, surrounded by free space. The conductors carry currents equal in mag-
nitude and opposite in direction. The core is highly permeable and conductive, and
the permesbility and conductivity are uniform inside it. This is a two-dimensional
configuration in which there sre no variations in the z direction {into the paper).

A and J, [the magnetic vector potential and the current density) have only 2
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compaonents, and H, the magnetic field, has only x and v components. By physi-
cal reasoning, these assumptions can be shown to apply to this configuration.

Over the current carrying conductors,
vl A= g (1)
where .Jg is the current density in the conductors. Inside the core material,
viAz=}wpUAz (2}

where I and o are the permeability and conductivity, and in the free-space por-
tion of the configuration,

v A, =0 (3}

All of space is divided into Regions Ry, Rp and R3. Ry and Rp are separated by
surface 5q, and Ry and R are separated by surface 92. Surface 82 is a circular
cytinder of radius Ro whose axis passes through the origin,

ALGORITHM

The first step of the algorithm is to place approximate values of the
computed field, A,., on Sq- Following this, a number M, of computation cycles
are taken, each cycle consisting of the following steps:

(a) Compute A, throughout Ry and Ry

This is done so as to satisfy Equations (1}, {2}, and (3) to make A, continu-
ous across the core surfaces and 1o match whatever boundary values have

been most recently placed on $q. A successive over-relaxation method is used
over a square grid of points. The finite difference formulation used is essentially
that given by Stoll®  This step comprises a certain number, N, of sweeps and
each sweep covers R4 and Ra.

{b} Fram the results of (al, find A, on 8, |

{c}  From the results of [b), compute A, throughout Ry and Ry. i
I
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Note that Ry and Ry comprise all of space outside Sg. Thus, the exterior solu-
tion of Equation (3} in cylindrical coordinates holds, namely,”

>
1
I b o

C; sin (i 0 + o) Aor e ra (4}

2c i

i=1
where n is some large integer. From Equation (4] and the results of {b), we
can compute C; for

1<i<n
{d) Using {4), compute new values of A, on S

The algorithm comprises an inner loop and the outer loop. The inner loop is con-
tained wtihin Step {a). s cycle is a successive over-relaxalion sweep across Ry
and R, which is executed N times. A cycle of the outer loop comprises Steps a,
b, ¢ and d; and this cycle is executed M times. No provisions were built into the
computer program for terminating either the inner loop or the outer loop auto-
matically, since there are no simple and adequate criterfa for these terminations.
The values of M and N were input to the computer at the beginning of each run.

CONVERGENCE PROCF
A. Error Field

For the proof, the computed field, A,e is separated into two components,
A, the actual, correct field, and A, the error field so that

Age = Ay — Azy (5}

Equations (6} through {9} below give expressions for w? Agcandw? A, over the
current-carrying conductors, over the core material and throughout free space. In
these equations, the expressions for v 7 A, are dictated by the physics of the
problem. On the other hand, the expressions for v 2 A, are prescribed by the
algorithm.

"Note that the net current inside S5 in the z direction is zero. From this fact,
one can show that the term log r (which is a part of the general exterior solution
of Equation (3] cylindrical coordinates} cannot be present in Equation (4).



Over the current-carrying conductor, we have

v? tf\m=x71'.'ﬂ\zc=—nJQ , {{:3]
Throughout R4, Ry and the free-space part of Rg, we have
vtA, =viA,.=0 {7

za

Within the core material, we have

V'Az;,:iUH"Aza ih
vEIAL=jw o Ay {9
From (5} through (9), we see that
v2ALTiwn e Ay, [m
over the magnetic core and that
v2A,.=0 an

over the current carrying conductor and over free space.

As required in the proof below, an eguation is now derived lor the
Laplacian of | A B, that applies to every point in this conliguration except on
the core-to-free-space interface.  (This Laplacian cannot be defined on that inter-
face.) By vector analysis identities we have

v 1AZE [ A?.Ev, KZC+KZEV1 AZB+ 21 VAZE 17 (2

where A, donotes the complex conjugate of Ay, At any puint al which
gither Equation {10) or Equation {11} holds, Equation {12) necomes

e? la, 1P=2ivAa|? =20 113}
ze 7o

Thus, tnequality {13} holds at every polnt in Fig.  except points on the core..
to-free-space interface.

B. Error Field at End of Step {a) of Algorithm

We proceed 1o show that at the end of Step {a) of the algorithm, the
values of | A,, | at points inside S¢ are less than the maximum of A, {on 5.

First, we deal separately with points on the core-free-space interface,
since Inequality {13) does not apply to the interface. By contradiction, sunpose
that there were a maximum of 1 A, Land 1A, 17, on the interface at point
P, as shown in Fig. 2. Then there would have 1o be a closed path G, surround-
ing P, over which the vector outllow of

1 1
v g...ﬁ...v | Aze l
is negative.  But by Inequality {13}, and the divergence theorem, this vector out-
flow is non-negative. Thus, IAze 1 cannol have a maximum at P,

Inequality (13) preciudes the possibility of @ local maximum occurring in:
side 5¢, al points not on the interface. Thus, at no point inside 5 can mze | ox-
ceed the maximum on 5¢. Since that would require 2 global maximum {which is
also a local maximum) Inside S¢. Further, al no points inside 5q can 1A, Ie_qLal
its maximum on Sy, if those points would lorm local maxima. Thus, the only
way that Mze | at points inside 54 could equal the maximum on 51 would be if a max-
imum contained both points on 54 and adjacent points inside 5¢. But again, we can
use Inequality (13) to show that sicch a maximum is not possible.

Therefore, the values of IAm | at all points inside 54 at the end of
Step fa) are less the maximum an Sy.

C. Error Ficld at End of Step (¢) of Algorithm

We proceed to show that the error field at the end of Step (c) of the
algorithm is less outside Sy than its maximum on S5, Let r be the distance from
any point outside 55 to the center of circle 55. Since we know that

lim 1A 1= 0

r -+ oo

then there is a number. ¢ such that if r > ¢ then | Aze | is fess than its maximum
valug on 82.

Then we have an annuius that is bounded by S on the inside and a
circle of radius ¢ on the outside. We need only show that 1 Aze I at alf points
within this annulus is less than its maximum value in Sy That prool follows
along the tines given above.
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D. Convergence

Part B above shows that field values on Sq at the end of Step (b) of the i
algorithm have a smaller maximum error than the maximum error on S; during the
preceding Step {a}. Part C shows that field values on S computed by Step (d}
of the algorithm have a smaller maximum error than the maximum error on S, at
the end of the preceding Step (b). Thus, the algorithrn converges to the right
answer provided that Sy is totally oulside S,

E.  Application of Convergence Proof to the Computer Program

The algorithm that is used to compute the results shown in the next
section differs somewhat from the algorithm presumed for the convergence proof
above. For one thing, the convergence proof presumes that fields are computed
at all points on Sy, Sy, and over Rq and Rg, while the computer program, of
course, computes the field over a finite number of points, distributed over these
surfaces and regions. This is an insignificant difference, however, since, in prac-
tice, we choose our spacing between points to be small enough that the descreti-
zation error is within acceptable bounds.

A more significant difference relates Lo the computation of field through-
out Ry and Ry in Step {al, The convergence proaof presumes that this computa-
tion is exact, subject to the boundary cenditions on S1. In this computer pro-
gram, this is an iterative computation and is therefore not exact.

The accuracy depends upon N, the number of sweeps used. M N is too
small, we can find that the algorithm either converges slowly or not at all. If N
it too large, we can be wasting computer time. A value of N = 10 was found to
be about optimum.

COMPUTED RESULTS

The author wrote and tested a computer program that uses the algorithm
described above. Early in these tests, the algorithm was found to converge to the
correct boundary conditions on Sy, much more rapidly using a coarse mesh of
computation points than using a fine mesh. For this reason, the program was i
refined to include the following stages:

Stage 1 - Compute the field using a coarse grid until convergence
is achieved in terms of the field, both on 51 and insice S1.

10,5

Stage 2 - By interpolation, create a finer grid that covers the
same area but uses a point-to-point spacing that is hail the |
previous value.

Stage 3 - Again compute the field using the fine grid untit
convergence is achieved,

This computer program was tested for two configurations. The first of
these configurations comprises the two current-carrying conductors in Fig. 1 but
without the magnetic core. This configuration was chosen because its field can be
computed analytically, and this provides a means for testing the accuracy of the
algorithm,  Although badly erroneous starting values were used on Sy (intention-
ally} the program converged quickly and smoothly to the correct field values.

The second configuration is just that of Fig. 1. Figs. 3, 4 and 5 show
contour plots of IAZ | {at levels chosen by the fourth power) for one half of
the Fig. 1 configuration. Fig. 3 is plotted before the algorithm is used and Fig.
4 is plotted after it has been executed 40 times. The arrows on these figures
point to the same level of IAz | and illustrate how much the boundary values on
S have changed. Fig. 5 is a close-up of the core at the end of the computation,
after the algorithm has been executed 20 more times.
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GENERAL DISCRETE EQUATIONS FOR LAMINATED CORFS

T.G. Phemister
N.E.1. Parsons Lkd, Newcastle upon Tyne, NEG 2¥L, Lngland
ABSTRACT
To investigate the effect of paps between laminations on axial

Flux and eddy currents near the end of a stator core, general
discrete equations have been developed. The equations are obtained
by integrating Maxwell's equations ocross the thickness of a
lamination and then simplified by the assumption that the mean value
of each component of the magnetic field across a lamination is equal
to the average of its values on eithar side. In their simplified
form, the equations are well auited to solution by an iterative

me thod,

1. INTRODUCTION

There'is one gsimplification which is forced on anyone who secks
to calculate the three-dimensional electromagnetic fields in a

generator stator: a smoothed or homogeneous!

repregentation of the
laminar structure must be used. The number of layers of laminations
in the first half metre from the end is of the order of a thousand,
and the number of individual laminations of the order of ten thousand;
it is not possible to model each separately. llowever, the gaps
between laminations must change the pattern of the eddy currents

in comparison with a similar core which had ne such electrical
discontinuwities in the circumferential direction. Work on the effect

of the gaps in an jdealised core?

showed it to be significant,
changing the axial flux by 20% and the total eddy current loss by
mora than 30%; that suggested the need to investigate the effect of

the gaps near the core end, where the idealised model was inappropriate.

Near the end of the stator core, the circumferential. component
of eddy curreut is more widely spread over the radial width of the
core than it is further in, where the phenomenon of skin-depth
concentrates it near the teeth and slots and near the outer surfarce.
The effect of gaps between laminations will, therefore, he greater
near the end of the core, because the gaps can inhibit widely spread

currents more than constricted currents. Since the elfect is already

of prder 207 Further in, it will certainly be significant at the end.
Work has been undertsken to quantify ik, with the aim of correcting
the larger-scale three—dimensional calculations, based on a smoothed
model of the core, to allow for discrete effects of separate
laminations near the core end. The scope of the present papet is

wore limited. It will be shown how an assumption which is unlikely to
cauge significant error permits the development of a convenient sect of

equations, and a method of solving them will be indicated.
2. GENERAL ASSUMPTIONS

The following general assumptions are made: that only power
frequencies are of interest amd that the displacement current can be
neglected; that the material of the core-plate is perfectly uniform
{though not necessarily isotropic) in its properties, its micro-
structure being neglected; that the faces of the laminations are all
perfectly parallel and perpendicular to the axis of the machine;
that the electrical resistivity of the core-plate material is constant

throughout each lamination.
3. PRELIMINARY NOTATION

The following notation will be used in the development of the
equations and is intended to make the algebra easy to follow.
Some of it will, however, be abandoned later, to simplify the

equations.

Cartesian coordinates x, ¥, 2z will be used, the directions
of the x and ¥ axes being parallel to the lamipations, and the
direction of the 7 axis perpendicular to them. =z, ¥ and z will be

used as suffices to denote the compenents of vectors.

The uzual notation of 3, H and I for the vectors of Elux density,

magnetising force, and current density will be employed.

§Similarly, o and My will be used for the resistivity of the

core-plate material and the fundamental constant of permeability.

The superfices -, #+, and m will be used to denote the value of
any quantity on either face of a lamination or its mean value dcross

the lamination. Thus, for example,
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Hy" is the value of Ay on the face of the lamination for which

the coordinate z is lesser,

+ . - s
fz is the value of Hp on the face of the lamination for which

the coordinate z is greater,
fx" is the mean value of Hy across the lamiantion.
The width of the lamination is 2a.
4. EQUATIONS WITHIN A LAMINATION

Integrating the equation div J = @ across the lamination gives

g, A"

ax Ay o

since Jz = 0 on both faces of the lamination. Hence, a mean stream

function, T say, exists, such that

m _ af
I e venss (1)
m o o _
and Jy e vounws (2)

Integrating the z and ¥ components of the equation’ curl H=27

across the lamination gives

m
+ - -= aﬁz - m
Hy Hy 2&[ Em o ] vanas (3)
and Z. * - Hy = 2a EﬁaT_+ 7,7 (%)
fird @ am y - 08 R

Since 4, = 0 on both faces of the laminatien, it must be possible to

. o+ + - -
derive both fiy , Hy and H; , H, from scalar potentials. Consequently

Y
a scalar potential, &, can be defined such that
+ ") = - 28
¥(Hy Hy ) = Y anene (5)
+ - 35
and %(Hy -~ Hy ) =~ ET N ()]

If equations 1, 2, 5 and 6 are substituted in equations 3 and 4 and

the latter equations are integrated, then

T=%+5’zm+f{t), cears (D)
where f{t) is a function of time only, but may take different values

for different laminations even in the same layer.

Integrating the equation div B = 0 across the lamination gives
3By | 38 "l +
SE oy SR » - - B. ). ..
2a [ 3 £ (Bg By ) veees (8)

Integrating the 2  compenent of the equation p curl J
=-%% across the lamination and substituting from equations | and 2
gives

nt
va,lp_agg , veeas (9)

vhere V¢ is the two-dimensional Laplacian operator.
5. A SIMPLIFICATION

Apart from the general assumptions of Section 2, no gimplification
has yet been made. However, the equations which link one lamination
with another can contain only the values of the fields on the faces
of the laminations, whereas Equations 7, 8 and 9 contain also average
valueg of the fields across the laminations. There is little that
can be done with the equations without introducing a simplification:
that the mean value across the lamination of any component of H or B
is equal to the average of its values on the two faces of the
lamination, i.e. Hmr =%(Hx+ + By}, etc. This is the crucial
simplification which makes possible the setting up of a convenient

set of equations; its validity will be investigated in Section 9.

Since the laminations are thin, the simplification effectively
implies that the variation in permeability across the lamination 1is
negligible. Alternatively, this can be regarded as an independent
simplification. It cannot be far from the truth because the
constraint on the fields to minimise the magnetic enerpgy would
preclude significant variations in the degree of saturation across
a thin lamination. This simplification implies that the permeability
depends oaly on'gm (and its history, if hysteresis is included in the

calculations) ox on_gﬁ (and its history).
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6., TFURTHER NOTATION

With the simplification of Section 5, it ia possible to
define a scalar potential, .3, axial flux deunsities, B and b, and

components of permeability, wu,, Hys Wy auch that

m + - 35
By 4y ) = - 2,
A" et en) a2
p ¥( Yt ”y ) W

m + -
an-‘;rﬂz +BHJ=-B,
¥(By -8 ) =b,

m m ., ) m m . m

{Bys By s’ )= (1, -'"y"f; s WH T

7. FINAL EQUATIONS WITHIN LAMINATIONS IH
LAYER ¥0. n

The notation of Section 6 will be employed te simplifly
Equations 7, B8 and 9. At the same time, in preparation for the
equations which link laminations, the suffix n will be introdvced,
to indicate that the equations rvefer to the layer of laminations

numbersd n. Eguations 7, 8 and 9 become:

1 1
Tn i nt ',I-Bn +f"(ﬁ)_, ..... Q)
n b4
AL s, 3 Ayl 1
DmElm v + M [uy ay] a bﬂ s aeaea N
vip L1 3B,
Ih m, OF cewes (I2)

Serictly, g, Wjs Wy should have been given the suffix n, but ne

confuaion will arise from its omission.

f%ft) disappears if the vight-hand side of Equation 10 is
substituted for Tn in Equation 12. Any convenient value can therefore

be assigned to it at each instant of time.
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8. EQUATIONS BETWEEN LAMINATIONS

The non-magnetic, non-counducting region between adjacent layers
of laminations is very thin, usually between 15 and 40 ym, and it is
disproportionately affected by any irregularities in the surface of
the core~plate. Any refinement in the mathematical treatment of the
magnetic field in such a tregion would be ridiculous; it will be
assumed that the axial componeant of flux density does not vary across

these regions, i.e.

B +b, =B . =b. e (13)

With the same assumption, integration of the # and y componcants of
curl 1 = 0 gives

Yo
Bt bn' E (Su *e. -8

n w1 * Bu+1) * g"(tl,

where @l iz the width of the non-magnetic region between layer n
and layer n + 1 of the laminations and g (%) is a function of time
only,

There is a difficulty, however. 1E, as im Section 5, it had
been assumed that the mean value of the Field across the region
between layers was equal to the average of its values on either side,
Equation 14 would have been unchanged, but Equation 13 would have
been replaced by

- - - - 2 -
B b B1 bn ugh,v (Sn+1 g,

n+] n+l ¥ +5, + ﬁz;’ vever (15)

+1
obtained by integrating div B = 0 across the region, The presence
of the very small hn in the numerator of the right-hand side of
Equation 15, as compared with its position in the denominator in
Equation 14, indicates that Equation 13 is a very good approximation
indeed. At the same time, the omission of the right-hand side of
Equation 15 means that some magnetic £lux is unaccounted for, which
is always uowise when calculations are required for ferromagnetic

materials.



The flux unaccounted for is small and would not justify the
complication of replacing Equation 13 by Equation 15, but there is a
simple way of accommodating it without making the equations generally
less tractable. If there are ¥ layers of laminations in all, summing

the right hand side of Equation I5 from 1 to ¥-1 gives

N-1
E 2 -
fuov [hI(SI to) iy (5 gy By (b + R ) Sn].

This suggests that there would be little error in making the divergence
equation (11) cover half the non-magnetic region on either side of

the core-plate, to give

3 35, ] ] 957
2 i 4 P hzlca I
Bx[?anux * dnyo)am ] * ay[nanuy * dnuo) ay] bn’ veeee 16

where d1 = }hl,

dN = }hN—l’

dn = l(hn_l + hn), n fz, N-1. o
Replacing Equation !l by Equatiom 16 means that the only Elux
unaccounted for in dropping the right-hand side of equation 15 is
in the two terms with 8y and 8y However, stn is much smaller
than VZSH where the lamination is saturated and is negligible where
the lamination is not saturated, and so the replacement of
Equaticen 11 by Equation 16 is an accurate way of compensating the
ervor in reducing Equation 15 to Equation 13. The greatest
advantage in moving from Equation 1| to Equation 16 is that it
allows the analysis to be applied to radial cooling ducts with
little error.

9. ASSESSMENT OF SIMPLIFLCATIONS

Apart from the general assumptions of Section 2, three
simplifications have been made. The assumption that B; does nat
vary across the non— magnetic region between laminations has been
discussed in Section 8, where it was shown how the small error could
‘be compensated elsewhere, The assumption that the permeability does
not vary across the width of a lamination should cause negligible

error. Only the remaining simplification, that the mean value of

the magnetic field across a lamination is equal to the average of

its values on either side, requires further investigationm.

m mo. - + - +
if Hx and Hy differ from %{Hm + H& ) and %(Hy * Hy )
significantly, then it must be because of eddy-currents; a one=
dimensional linear analysis can quantify the pessible ervor. If the

relative permeability is U,, & constant,i is the circular frequency,

and @ = a’upzity/ p, the relative error is

2
Z%E + 0¢o4) in modulus, and % + 0fu?) radians in phase,

For 0.5mm core-plate at a frequency of 60 Hz, this means a relative
error of approximately 3 x IOmluu%,in modulus, and 2 x IO‘Sur radians

in phase.

These are extreme wvalues, since the error in the solutions will
be less than the error in the approximation. For completely
unsaturated core-plate this can mean a relative error up to 20% in
modulus and 309 in phase, but even slight saturation makes the error
negligible. A relative permeability of 6000, for example, would

imply a relative error less than 1% in modulus and 7° in phase.

The high relative error in the magnetising force in unsaturated
regions is negligible for the solution as a whole, because the
absolute value of the magnetising force is se¢ swall that the error
does not matter. As so often in caleulatious of fields in
ferromagnetic material, it is only in the saturated regions that it
is necessary to calculate the magnetising force accurately, and in
these reglons the error of the simplification is very small. The

x« and ¥ components of B do not enter the calculation directly.

The other part of the simplification, that ng = %(B?+ +- Bz—),
can be investigated by supposing that

=g z 22
B Bz * {a}le * (a) Bzz’

m
1]

m A
B, rEJBxI’

o
=]
=
e~
"

g™+ (Z)p
¥y oy @ 41,
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2 being measured from the centre of the lamination., Then the

equation div B = 0 gives

L CLTE 2 .
e |y %2

Thus, in 0-5 mm core-plate the cumulative effect of B, = 10 ol over a
length of 6 mm would be to cause the huge differsnce of IT between
the two faces of the core-plate in the flux density parallel to the
lamination, B,, of any size can, therefore, exist only locally, and
setting B, = ¥(By" + D_”) can cause little error in the solution as

a whole,

To sum up, the simplifications will produce a negligible error in
the solution as a whole, though they may cause local ervors in

unsaturated regiouns.
10, THE COMPLETE SET OF EQUATIONS

The equations will be rearranged and one of them will be
eliminated. The first is Equation 13, the second comes from
eliminating o, and 8, between Equations 10 and l4,and the third

and fourth are Equations (6 and 12, respectively.

bn + bn.{.l = Bﬂ+1 ~ By, 1 = 1, N-1. vaees (17)
hybn Ty  an
Ty * anetlne1 = o = Spez — Sn * [ﬁg + g;;‘ﬂn
Tyt et
A M n =1, N1, ceee. (IR)
Wz, n+l

2 2], 2 30 o b w1 A
3;{(aﬂu$ + dn“ﬂj“gél] + sg[(a"uy + dyug) y bys n= 1, ¥

i (19
% - p"vzfm n=1, N aees (200

fu(t) and gu(t) have been set to zero.

This can always be done by adjusting the boundary conditions. 1In 2

heteropolar field, gn(tJ is necessarily zero.
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11, A METHOD OF SOLUTION

Equations |7 to 20 are well suited to an iterative method of
golution. First, starting values of B" and Sn are set up for each
point in space and time, Then the foilowing four steps are repeatad

until convergence is obtained.

I. Equations 17 and 18, supplemented by the two boundary conditions
at the ends, ave solved for bn and @1 for each point in the

x, y plane and each point of time.

2, PRound the boundary of each lamination, gtis set to a congtank

for each point in time.

3. A single Newton-Raphson step is taken in solviug Equation 19

for 5, For each layer of laminations at each point in time.
4. Equation 20 is solved for Bn for sach point in space.

This method of solution is aimilar to the way In which quasi-
steady fields become established during tramsient conditions in an
actual machine and instability should be easily avoided. Convergence
should be quicker than by a straightforward relaxation since, during
a single iterative cycle, all interior points are dirvectly influenced
by #11 the boundary conditions. Equations 17 and 18 bring in the
boundaxy conditions at the axial ends, Equation 19 the boundary
conditions at surfaces paraliel to the axis, and Equation 20 the

condition that the fields are periodie in time.
12,  CONCLUSION

A simplification which introduces little error permits the
development of a convenient set of equations for the electromagnetic
fields in laminated cores and makes possible the calculation of

discrete effects of the lamimar structure.
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