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ApsTRACT

The paper denls with n genernlised presentntion of the finite
element method as a weighted residual (weak) process which as specinl
cages can include the “standard” {inite element method with piecewlse
polynomial approximations, the finite difference method and boundary
integral equation procedures. It is shown how in one formulation Lhe
adventages of each of these sub-classes can be utllised and [urther how
the coupling can be exccuted in a symmetric mode. The paper concludes
with o short discussion of applicatien to magneto-static problems and
throughout the paper the Polsson equation 18 used as an 1ilustrative
example.

1. INTRODUCTION

The finite element method which originated from the needs of
structurnl enginecers is todny ldentified as a very genernl process of
approximation applicable to a variety of problems denling witlh continun.
With some generalisation of the definition the mebhod can be considered
to embrace in addition to the “standard” finite eloment process in which
plecewine polynomial approximations are taken, such clnssical procedures
as the finite difference method and boundary solution methods. A number
of texts written in recent yesrs deal affectively with the mnthematics
and praecticnlities of the appronch. In this paper we try to focus anmd
extend the generality so that a fuller understandipyg 1s nvnilable. (-3

in recent years several developments have trken place in the
fields of atructurnl and fluid mechanies which enlarge the scope of the
method. These are quite generally applicable in other areas and can
therefore be of immediate benefit in the special problem of magneto-
statics. Two of such areas are of particular Importance elscwhere:

(a} the use of reduced (inexact) numerical integration to lmprove the
accuracy of the approximation (viz, ref. 3 Chapter 11)

and

(b) the combination of standard finite element procosses wiih boundary
solution methods (4} which are particularly effective in dealing
with exterior, infinite, domains such pe are typlcal of magneto-
static situations. 1Indeed in this context another development:,
l.e. that of “infinite elements" im = particular possibtlity (5}
{viz. fNef, 3 Chapter 23).

In this paper we shall concentrate on expanding the general
brais of the finite element method and will 1llustrnte some of the
concepts Introduced by the Poisson equation of the form

r
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which 18 typical of many magneto-static problems. Indeed in lIast

section we shall return to this particuler application nand show how
1t arises in the formulation.

2. THE GENERALISED FIHITE ELEMENT DEFINITION

To get the stage we shall concentrate on i{he approximate
solution of a contingum problem invoiving the determination of a
function {Fig. 1) such that

A(gd): o in a domain 1 (2n)
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In the rbove A and £ can be linear or non-linenr
operators of n differentlal or indeed, integral type.

(2b)

The generallsed finite element method will be defined ns
gn approximation in which:

{A) The independent varinble $d is exponded in a finite series

A
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(repeated index implying a summation).

In above,

e = N () "
where 2 are the indopendent coordinates and /Wﬂ: are prescribed
functions known nlternatively as shape, basis or trial functions.

A.; are a get of parameters determining the approximate solution,

(B) The algebratc equations for numorical determination of the
golution parameters nre formed as
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where ”,,‘_, f",, and f?,r etc. are a set ';3/‘” of independent
welghting {or test) functions.




It follows immediately that the algebraic equations can be assembled by
evaluating the various integrals for sub-domains a2 (and /:e ete.)
such that
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and adding the contributions. This iz a corollary of the ginple fact
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and means that the equations of approximation behave s a "atandard
discrete system” and obey its general rules (these indeed are often
identified with simple physical concepts of which the Kirchhoff's
equations for circuits are a particular cose) .

For linear systems equations (5) result in a matrix equation

Ha :f ®
N A

which can be solved in a variety of ways which we do not neced here to
digcusg.

In conventional finite element analysis the parameters
;3 are often identified with the values of at nodes 1 and the
shape functions ¢ have a narrow base being defined separately in
each element, This leads to banded forms of equation (8) and is
particularly useful in solution but by no means eggential.

Fquation (5) can be interpreted ns an exact statement <
equivalent to equation (2) as it 1s true for all functions h&, hQ
and and also for the exact form of . 1t follows therefore
that the process is convergent providing

(a) the set of expansion functlons (3) is complete, i.e. can repregsent
the exmact solution when /2 —= 89

(b) intepgrals of equation (5) can be evaluated at all points
and
{c) sultably independent sets of 4 are taken.
We shall not discuss in detail th; requirements imposed
by above on the choice of shape functions. These can be found else-

where (1-3). It is however, important to note that

(9] order of continuity may he reduced by integration by parts of
the domain integrals.

{ii) tge genernlity of the formulaticn is not reduced 1if fy and
W are taken as arbitrary, non-zero functlons of ﬂ/ . This
ig8 important, redocing the need for separate choicea,

In certain cases it is possible to eliminate some of the
boquary integrals involving the unknown by a suitable cholce of
W . Corresponding boundary conditions are then referred to as

natural,

3. ILLUSTRATION

Consider equations
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The welghted form of equation (5} in this case Recomes
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Integration by parts (Green’s theorem) of the first term gives

e,

and 1f we choose Aﬂ; == A‘f the normal gradient term disappears in
the integral altong /, giving
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This shows that the first boundary conditions here assumed was "natural'.

On substitution of expansion (3) we have n system of linear
equations of the form
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Many cholces can be made for Ai‘ and JG' in solution hut
it is very desirable to obtain symmetric matrices (showing a variationnl
origin of the equation and leading to a cheaper soiution (3)). In the
sbove example this is simply nchieved by the following cholce
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The symmetric form of npproximation which we have obtained is oquivalent
to a certain mixed variational principle (3. 1In mony cogses but by no
mans penerally, it 18 posaible to enforce the seccond boundary condition
explicitly and thus eliminate 1t. Thip in fact 1is generally done Ln

the “standard finite element process”.

1.  NELATIONSHIP WITH OTHER APPROXIMATIONS. FINLITE DIFFENENCE AHD
BOUNDARY SOLUTIONS

It can be shown that the choice
}6. E g(ﬁlj (15

where St;} ;) 1s the Dirac delta function and where sultably locallsed
gshape functions are used the standard finite difference approximation 1=
obtained. Thus thils approximation can rendily be shown to be lncluded in
the general formulation.

On the other hand if we limit our considerations to linenr

Al#) = L P =0

and choose shape functions such that

operators
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(16)
then the domain part of the integral in expression (5) disappears ond

we hinve only now to satisfy the boundary econditions. The general
approximation form 1s now gilven by
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whilclh reduces agnin on approximation to

e ,/ (18)
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Here the coefficients of jﬁl only involve boundary terms. Such form
of mpproximations was first introduced by Trefftz and forms a very
important sub-class, (6)

Illustration

For the special case considered in cquetion (D) the boundary
form of approximation 1is
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where q) is any function satisfying the equation (0a) exanctly and

A
;é 2 é/l/‘; 4, + @ 21



For clarity we shall omit the non- homogeneous term in future derivations
although it can readily be retalned.

To obiain symmetrie approximation forms is now somewhat more
difficult and various alternatives are present, For instance if
Jy and Ly are chosen as
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(22)
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we have an alternative derivation of an approximation previously derived
by the use of a least aguare, varistional, approximation (7).
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However an alternative form is possible and this is obtained

by putting
Y
(23)
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If we observe that for any two functions /Vi and ’1c'which patisfy the
Laplacian equation we can write, using Green's theorem, the following

identity
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then the symmetry becomes evident. Inserting equation (23) into equation
(20n) and adding half of the left-hand-side of above ildentity equantion,
wo have

<&
X
)
NN
S
™
R
A
>
.

(24)

‘ _./(fzw;"””.f"”’”/"f"’
P

E 3

", e En, )ir

Thiz form has again been derived usinpg an energy varlational principle
and Has been used effectively in mony boundary type solutions (7)., VWe
zhall see later that thig form leads more readily to the symmetric

coupling of standard finite element and boundary solution procedures,*

5. SINGULAR FUNCTIONS AND INTEGRAL EQUATION FORMULATIGONS

In the boundary solution methods just described one of the
major difflculties 1s obviously that encountered in penerating "complote™
sets of trial functions /Vg which satisiy the governing equations.

It is however relatively simple to obtain singular Green's type solutions
for the full gpace which do satigfy all the boundary conditions in an
infinite region or even with some simple conditions imposed at inter-
mediate boundaries. If a distribution of such singularities with an
intensity i3 placed on the problem boundary we can write for any
point the function and its derivatives in the form of an integral
equation. Thus for a homogeneouws linear operator such as that of
equation (16) we con write

Sﬁ(sj = -//’ G(.s',f')f/;a’)' (25)

where (; i3 a sultable Green's function Bnd//ﬂ (r/:) ig the intensity
of the singularity distribution.

This represents a Fredholm integral equation of the first
kind when the boundary conditions specify the walues of . By
differentiation of the nbove expression Fredhelm integral eguations
of the second kind arise when mixed boundary conditions are specified.

The solution can now be approached vla a direct discretisation
of the integral equation or by returning to a definition of shape
functions defined in equation (16)}.

Thus 4f we write

(7): Miac 26)

where 4%(2915 an appropriate interpolation of intenslty we can write
the approximation in the form
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This automatically defines the shape function

*It i3 of interest to observe that the choice of welghting functions
is limited fo non-zero values. If for instance the trilal funections

N include constant termg the weighting functions given by equation
(23) will have gsome zero values. This will lead to difficulty of the
determination of the constant parameters. The avoidance of the difficulty
is discussed elsewhere in detail.
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and all the general procedures previously developed are applicable,

We must note however that the definltion of the rormal
derivatives may take a rather apecial form now. For instance If
ey corresponds to source functions in the Laplacian problem we
must write

QNe , (36 p, 45 4 ;,‘-’-M,:
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wherec the last term 1s by no means self-evident but arises due to
integration of the ginpularity.

It appesrs thnt the interpretation of the intepral equatlion
in terms of standard shape functions i3 inconvenient involving ng it
does & complicated integration. This difficulty is however not serious
although n direct weighting of integrrl equations can be nften achioved
and apparently simpler results obtalned.

We cen thus write for instance the welghted form of the
integral operator aleng the boundary as

\/%.[_/GC&P)M" df e - ﬁ]"::o (30}
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Thins agnin leads fto npproximation of the form of equation (1B), 1.e.
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This form will be symmetric providing

G(s. )z G(T, %) o

and 1f the Green's function & 1s aymmetric i.e.

M, ":h{i (33}
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This approximation 1s not identical with that of equatlons {27,28) and
we shall later see 18 not suitable for use in the coupling procedures.

It can be shown that the lntegral equation (25) iIs incomplele
{and does not possess a finite solution) for rll speclfled Govendary
conditions, For such completeness it is desirable to supplement the
source distribution 4 by n distribution of doublets A and now we
can write (for points on a smooth boundary)

2
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After some manipulation we cnn Ldentify
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In thig form the direct identification of shape functions does not
appear simple but the welghting process once ngaln can be applied
to the integral form. Thus for n Dirichliet problem where

g

we have (&1
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Thia again will result in equations similar to Eg. 31
which can be made symmetrie

G. COMBINED “STANDARD" FINITE ELEMENT ANHD “BOUNDARY" SOLUTIOHS

In the "standard" finite element process simple, locally
based polynominl functlions are normally used and their approximation
¢an be endlly written for non-homogenecus and non-linear situntions.
A limitation, however, amrises when infinite domnine are encountered
and in general a large number of unknowns is involved.

In the "boundary™ solutlon technique on the other hand a
smaller number of unknowns i1s generally involved and infinite domainz
are dealt with simply. MNowever thege have to he pgenerally limear and
homopenecus.

Clearly the simultanecus use of Loth #ub-classes 1s
desirable and in this sectlon we shall investigate such m coupling
shown disgrammatically in Figure 2. To simplify the presentation we
shnll 1limit ourselves to the 1llustrative problem of equation (9)
(wvith A =/  in boundary domain +2%%. In the notation we shall use
the superscript ™S o denote quantities of the finite element

.region while thosze of the boundary domnin are written without n

guperscript.



Thus for the finite element method domain we can write
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where stands now for the nodal values of . A symmetric
(Galerkin) formulation 1s generally used and we c¢an write (viz.
Bg. 13)
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are fluxes specified on the interface and supplied by the solution of
the boundary domain. We can therefore write
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We can thus wrilte
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If we now turn to the boundary domain we have, following

equations (19-21)
Ae = £ (1 .
s~

[

where agalh considering only prescribed 95 conditlon on the interface

we can write
R el NM
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**Note that in above we have lmplied that all prescribed values of
are automatically situated in the finite element domain and that
prescribed fluxes on its boundary sre included in

42)
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Thus we have in place of equation (41)
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Equations (40) and (44) for the whole system can be written now as
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and in principle can be solved. We note in the anbove thot
(a) the boundary region can be treated just as another element
and

(b) that the matrices ¢4 and ﬁ? do not overlap for interior values of
which give zero contributions at the interface.

As the standard finite element formulation has made uge of
symmetry 1t remains to be seen whether the whole system once again can
be made symmetric., In equations (22) and (23) we have given such
possibilities for the boundary domain but we see now that only the
gecond form of weighting functions will result in a symmetry of the
combined system. This now gilves

fu
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and full symmetry is observed,

Similar results nre clearly evailable 1f the sclution of the
boundary regions stems from the singularity distribution or its
integral equation form. If tle singularity distributions are presented
in terms of final shape functions such as given in eguation (25) then
obviously all the sbove statements are true and symmetrising is done
in precisely the same manner as above.



On the other hand 1f the approximntion process starts from n
direct discretisation of the integral equation in the manner glven
In equations (30-31) then pome difficulties appaar to arise. The
reader can verify now thaot the matrix hns the form

8. s/ . /IZ_ 47
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and gimiinriy that
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To obtoin symmetric equations we must now take
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ns a weighting function. It will be seen that the reault is of a
form identicnl to that used in the more general preceding lorm,

For the Intepgral equation of the form (34) a symmetric
form ls even more difficult to produce and we shall not discuss Lthe
detnils of the procedure here.

GERERAL REMARKS ON THE COUPLING PROCESS

in much of the development of the botwndnry solution process
tnd bn particular in the application of singulnr solutions collocalion
methiods have been uscd to avold the difficulty of double Integration.
This inevitably leads to non-symmetric equation forms ns was shown
previously and comsiderable computntlonal difficulties arise which
hrve to be balanced againgt the cost of symmetry and the possibllities
of combining both methods in one "standard" finite clement package.
Much work has yet to be done on overcoming some of the diffficultics
of such coupling and indeed in streamlining the boundnry integral
equation forme and some of the problems nre discussed claewhere (8).

In the practical application of mnthematical problems 1t Is
most likely that the boundary solution methods will he confined to
the exterior domains snd more standard finite element processes uscd
where non-linearities are encountered. This ig an opinion based on
gsome experience although the possibility of using dlrect boundary
solutions in non-linear domaing has boeen actively investignted and
in gome situations appears economic.

One point of some importance 15 the fact thnt the use of
boundary type elements couples all the parmmcter values of the [inlte
element solution nlong the interface, thus resulting in large band-
widiha for final equntlons, Flgure 3an. If the boundary elcments nre
confined to oxterlor reglons two possible ways of nllevinting this
difficulty arise,

{a) the aumber of paramnters il and hence of the interpolating

gingularity values 18 kept low
or

(b} the exterior reglon is subdivided into a serles of "radial"
strips thus coupling f narrower band of finite element
parameters.

This introduces the problem of fnterfaces between such radial strips
which however can be dealt with by standard process.

The last possibility can be implemented by Lhe use of
"infinite" elements (5) where the trial functions are locally based
and only approximate the solution of the actunl differentinl equations.
Much current work has shown the efficiency od such approximations but
many possibilities yet remain to be explored.

CONCLUDING REMARKS AND NELEVANCE TO MAGNETO-STATIC PROBLEMS

Various methods of approach have been applied to the
formuloation of magneto-static problems which arise from the following

genernl conditiens.,
. 7
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A very thorough survey of the possibilities offered by variocus formulations

is given by Simkin and Trowbridge (9). In that paper various integral
equations or differential relatlonships are presented. With the
gonernl definition of the finite clement process it is claar that

the previous procedures could be applied to the numerical selution

of any such discretisation.

The essentinl three types of formulation are given by

(1) the use of magnetisation vector

rﬁﬂ ,-Qv. -//Nﬁ’

(19)

as the basic variable, MNoting that :?fﬁf?
in the domain exterior to mognetic materials

the problem domain i1s small, This involves however
integral equations which have to be defined over the domnin and
is the basls of the GFUN program. MHere many nlternatives of
welghting are presented nnd the one used in the program has
advantages of simplicity although it involves non-symmetrie
forms. Symmetrie formulatlon im however possible and could well
be explored.
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The use of vector potential :?_defining

r
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this automatically eliminates equation (482) aos ]
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and results in a final equation in a single variable :f which is i

! A = 52
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This general Iofg“needs a subsidiary condition and introduces
many difficulties in formulation for a full three-dimensional
problem. ilowever in two dimensional analysis the use of vector
potential with a single compeonent has now become very widesprend
and falls precisely under the catepory of the illustrative
example discussed throughout this paper.

The final possibility is the use of sealar potentimls to define

the flield
)L} — )l‘l > F ¢ (53)
~ ~ ~,

Here an auxiliary function /7 is introduced in sub-domnins in
which |7 # & so that

cvrl! H = J , (54)
o L

How once again we find that the problem has been defined by

standard Polsson equation which however is now applicable in

three-dimensional as well as two-dimensional domains., As equation

(48h) is 1dentically satisfied the governing equation is now

gimply of the form resulting from equation (48a)

r rooo—-
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Use of the finite elements in a particular form of this solution
has been discussed and applied by Zienkiewicz el al (19} but led,
as shown later, to a numerical inaccursey in mognetic domaina.
A modifieation of the process using a discontinuous defined
function /4 has recently been introduced by Simkin and
Trowbridge (9) and leads to an excellent numeriecal accuracy.

In this formulation we take where

.
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for the part of the whole domain which includes the current carrying
elements and also extends to infinity, In the remaining portiomn
taken over the magnetising region we simply lmpose

# = O (57)

The discontinuilty of ﬁ; is essily accounted for on the interface
in the general forms &% equations derived in this paper and we shall
not discuss this in detail.

It appears that the last form of the procedures utilising
the scalar potential approoch is the most powerful and can be made
very economical for twoe and three-dimensional solution of all
nagneto~static problems.

Although the discussions of this paper have taken as
specific example the Polsson equation in the real domaln it is
simple to extend the generality to other equations pertaining to
magneto-statics and many papers at this symposium will show one or
other forms of such approximations.
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TNE SOLUTION OF 3B MAGNETOSTATIC PROBLEMS USING SCALAR POTENTIALS

A G Armstrong, € J Collie, J Simkin, C W Trowbridpe
Rutherford Laboratory, Chilton, OXON, UK.

ADSTRACT

The three dimensional magnetostatic problem is formulated using a
combination of two scalar potentials. The potential associated
with the total Ffield is used for points interior to current free
iron domains to ensure pood numerical stability. In exterior
regions the reduced potential associated with the induced Cicld
is vsed. Results from computer codes using both differential

and integral operators are presented, and compared with measured
values. Significant improvements over existing codes are
anticipated.

1. INTRODUCYION

In two dimensions magnetostatic Fields can be computed to a very
high accuracy even when the geometry of the problem is
complicated.?»>#y%,% youever in three dimensions computer programs
are expensive to ryn ??dlgnn only pgive accuracies of the order of

1Z in most cases. vl It is convenient to compute the Ciclds
from current sources analytically or by quadrature, thus reducing
the complexity of the mesh needed for differential methods and
allowing the possibility of wsing intepral methods. The remaining
part of the field is produced by induced sources and this can either
be solved for directly by computing the magnetisation vector or by
computing the associated scalar potential. hg formetr approach
feads to an intcgra} ?guntion formulation *+"*° and the latter to
both differential ' 1512 and intepral variants. " OF special

interest for linear problems in this context is the use of

boundary inte§F31 procedures also based on the reduced scalar
potential. 7+1"% fhe advantage of a scalar potential For Lhree
dimensional problems is of course that there is only one unknown
quantity for each mesh point. MNowever it has been shown that the
use of this reduced scalar potential leads te inaccurate [ields
inside ironregions. ® To overcome this difficulty it was proposed

to use a formulaticn based on the total potential iu regions when
thiz is unique (ie current Free) and the reduced potenLial else-
where, This procedure has been tested for a range of two
dimensional pon-linear problems using a differential finite element
formulation. " The choice of whether vo adopt integral or differen—
tial procedures is not easy and there are good arguments ejther way
depending upon context. In this paper the results from both
differential and integral operator formulations are presented using
the combined total and reduced potential procedure extended to three
dimensional linear and nen-linear problems.

i
'

2. FIELD EQUATIONS AND CHGICE OF POTENTIAL

In magnetostatics the curreot density J is known, and occupies a
part of the problem space .. The magnetisation M whether induced
by the current or supplied by permanent magnetic material occupies
a region .; thus if the total Eield 11 is expressed as the sum the
field of tiie sources ES and the induced magnetisation EM

i} 2.1

h=H, o+l

then ES ig known from J

I, =

g [ Jx V(%) an (2.2)

L
1] RJ

v =
or x HS o

which implies ¥ x HM = 0

hence HM can be expressed as the gradient of a scalar §.

T hus HH = = .(2'3)

with ¢ =_;__f M. V(Tl{-} dan
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| is the distawce from the source point r' to the
see Fipure 1).

and  Re= I_x:' -

r
field point r 1

Conductor
<}
b
[wo]

FIG. 1 IOTENTIAL REGIONS AND BASIC GEOMETRY
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The flux demsity B, H and M are further related by the constitutive
equations for magnetic materials:

B=uCju n=p 1+ m (2.4)
M= x(u u
with v- B = 0 (2.5)

and y, is the permeability of free space.

From equations (2.4), (2.3) and (2.1) B o= w(l~v¢). I B, is large
compared with 1, this is clearly " i1l conditioned if the variabie
solved for is #. It is then preferable to solve for the difFference
quantity H directly. Moreover for current free regions this can be

done by solving for a total scalar potential ]

1 = = ¥ (walid when ¥ xt = 0). (2.6)

This leads (by equation (2.5J)tomgﬂ; pair of'aquations:
Ve (—pvip) = (when valid) (2.7)
Ve (-u¥% + 1@5) = 0 (elsewhere) (2.8)

which are non linear PDE's of the Laplace and Poisson type respect—
ively. In addition to the external boundary conditions: $-+0 at
infinity For example, there are interface conditions between a ¢
region (subseript f)and a ¢ region{subscript 2).

T ap/on = uz(—3¢/3n + 1 (2.9)

Sn)

-op/ot =—a4/fot + H

Ho, (2.10)

where n and t denote the normal and tangential components respect-
ively.

Equation (2.10) can be integrated immediately to give the
contribution by to the total potential

b= v b e g, e @1

It is shown in the next section that knowledge of H_. on the inter—
face is sufficient te determine the problem, so thal equation (2.11)
is more useful than equation (2.10)., The arbitary constant in
equation (2.11) is removed by equating § and ¢at some convenient
interface point.

To ensure that the totzl scalar potential in multiply connected
regions be single valued, suitable cuts are made in the iron.

3. DIFFERENTIAL FORMULATION

The PDE's (2.7) - (2.8) are to be solved simultancously by dividing
the space into finite elements and applying a weighted residual
technique.l3 For the case of region | being non—linear iren and
region 2 free space with cenductors,the residual equations are
respectively:

By

a1

/ g W 9e(-ump) da
|

R, = IQZ Wo-(-v4) dn (since V-ll, = 0)

for any suitably chosen weighting function W. However, to allow the
introduction of local basis functions for 4,¢ without the restriction
of second order continuity across elements, these are transformed

by Green's theorem to:

R, = [o nWievgde - [0 Wvy-ds (3.1)
[

%

R, = I“z VHeTpd = [ WEgeds. (3.2)

2 S2
This requires W to be continuous across the interface and differ—

entiable within ﬂi and 92.

Setting Rl + R2 =  gives:

¢ _ 29
V- . = A _ 3
!ﬂl WO TP + I“z TW-Vhd fslw(" -2 g5

=—I5: Wi dS (3.3)

where the last form follows from the interface condition (2.9}, and
only the common surface between iron and space contributes because
20 at infinity.

A set of basis functions N(x,y,z) is chosen so that in each of the
elements

U= NIU] + NZUZ + N3U3 ..... {3.4)
where U is yor daccording to which region contains the element;
U, is the value of U at the element mode i, and N, is | at node i
aiid 0 at the other nodes of the elemeuts. The Galerkin! procedure
Is to choose a weight function W for each node i which equals the
appropriate N. for each element containing node i and is zero else-
where. Equatlon (3.3) then yields one equation for each node i:
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clements nodes j
containing in such an IS - Ny M d$ } =0 (3.5)
node i element ! "

Since 2 node i in the interface requires two unknowns, Vi ¢y, the
interface condition (2.11} is used to eliminate ¢ ot ¥ For such
nodes. The surface intezgral in equation (3.5) is zero for i wot

in the interface, even if elements containing i meet it, since N;
is zero on an element facet not containing i. For the volume terms
the equations will only have non-zero coefficients for both ¥ and b
if i is in the interface.

Equation (3.5) thus produces a set of n linear equations for the
Ui of the form:

=q,

K,. U, (3.6)
ij ] i

in which K,. is a banded symmetric matrix with elements which are
sums of terms like:

= [ w vNi'VNj dq (1.7)

ki.
J ! element

and the Qi are mostly zero, except for terms of the [orms:
3
Do WMg, dsand kg B (3.8)
0
facets containing i

for i, } in the interface. The k,, ate generally obtained by

. . . 15
quadrature but For certain etements they are simple analytic forms.

4. INTEGRAL FORMULATION

When the iron is a current free region an integral equation can he
set up in the total potential {. From equation (2.1#):

= - th.1)
§r=4 ¥ b~ f ESE dt
in which ﬁs is readily calculated from the prescribed conductors.

The reduced potential ¢ is now eliminated from equation (4.1) by
equation (2.3) together with equations (2.4) and (2.6) to obtain

WO =1 o x(EED) T AR 4 g () th-2)
1] )3

which is the tequired integral equation for ¢. 1t hns.nf course

no boundary conditions, and so can be solved by discretising only
the iron. Once solved, the field Il can be readily obtained anywhere
in space from:

I=-% + !S (4.3)

since the equation (2.3} For the induced field is valid through-
out space. The solution of (4.2) iz thus in effect a complete
solution of the problem.

Before discretising, it is worthwhile to transform equation (4,2)
by Green's theorem and by the identity:

| f 1 inaide
- 2 ¢t = .
4u Iﬂ v (R) e 0 for r outside 4h.4)

wh() = = Yo fo ") vV ds
4n 1
n . [
g !"1 PEVE') VG dr e b {4.5)

To solve equation (4.5) the iron is divided into elements For [incar
problems the volume term vanishes. liven for non-linear problems a
bage function may be chosen for yx which enable the volume term to he
transformed into integrals over the internal surfaces of the elements,
so that only two-dimensional integrals over element surfaces are
requived. The plane kriangular facet is chosen as a standard element,

Base functions for ¥ are choscn to be either linear or quadratic
and are expressed in terms of area coordinates L!, Lz, LJ according
to standard finite element practicelf

First order (linear) elements:

= LI*I + L2$2 + L3¢3

(h.6a}
Second order {quadratic) elements:
$=LI(ZLI"I]¢I + LZ(ZLZ- |}$2 + L3 (2L3 - |)IJJ3
. 4
4&L2L3w4 + 4L3L]w5 + uLIszﬁ (4. 6b)

wvhere nodes 1 to 3 refer Lo vertices

and nodes 4 to 6 refer to mid-side points.

Both schemes of (4.6) have the property that the base funetions are
| at the appropriate node and ¢ at the other nodes, as in the
Galerkin scheme of equation (3.4). Either may be expressed formally

asi

V= N, ¢, (summation convention applies ) (4.7)



Choosing the field point r in equation {4.5) to be each node in turn
vields:

why = Ryl o+ dg gy (4.8)
with
-5 - .
Ky = Eﬁf”" INJ. Ve ds (4.9)

facets containing j

This leads to a set of equations with one equatien for each #..
The matrix K,. is dense and unsymmetric; however its components
can be evaluited analytically using only elementary Eunctions by
the technique of reference (7).

Some comment is necessary on the singularity which occurs in the
integrand of (4.9) when R, = 0, that is, in those facets which
contain the node i. To sliow that this does not invalidate the
procedure consider the form of the base functions N.: These are
linear or quadratic functions of the coordinates, so choosing the
coordinate origin neatr node i:

= _xu
Kij g e ILm Iy

1
lVQE)(Gij + bl x ¥ bzy v..) dS (4.1

where the constant term is 6.. since N. goes to, 0,1 at the nodes;
and b, b, are some constants: All tetms in first or higher orders
in thé Caftesian coordinates x,y go to zexo as r approaches r,.

For the constant term however: !

f v(%)- 45 = [ ('-0R3dS =« (4h.11)

| facet

where o is the solid angle subtended by the facet; while this is
indeterminate for a single facet as the Eield point approaches a
corner, the solid angle subtended by all the facets meeting at
node i is calculated as 4y —(s0lid angle subtended by all other
facets). K, , can therefore be set up, but the algoritbm has te
make speciai ﬂrovision for the solid angle part of the self term.

In evaluating the fields from equation (4.3) after completing the
¢ solution corners and edges must be avoided since the field
expression is singular there. Indeed to obtain sensible values af
the fields at these locations would require the use of curved
facets with smooth joins between them.

The extension of these ideas to non-linear problems presents no
major difficulties. In addition to the iron domain surface

discretisation there has to be a volume discretisation. In the
present work it was decided to use a volume mesh of tetrahedra
within which the permeability is constant. This approximation

?ffers an immediate test of the method since in effect the volume
is replaced by a set of internmal triangular facets over which the
abuYe equation (4.8) can be applied. A simple iteration scheme
te improve the solution was employed which was found to converge
in a few cycles. 1In order to update the permeability from the
B-H curve the fields in the elements were obtained from volume
shape functions using the nodal values of potential.

5. RESULTS

Boundary Integral (constant permeability)

Data Generation

The program requires the surface of each unique iron region
of the problem ko be covered by a continuous triangular mesh,
excluding faces which lie on planes of symmetry. The mesh
triangles are called facets. The scalar potential is calcul-
lated at the mesh nodes for a first—order variatioen, and in
addition at the mid-side positions for a second-order varia-
tion.

llollow Sphere in a constant external Field

This example serves as an analytic check on the computer
program. Because the sphere has three planes of symmelry

it can be represented by an octant. An example of one

of the triangular meshes used is shown in Figure 2. Results
for the field inside the cavity using both first and second
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order eiements are shown in Figure 3, for a range of
discretisations., The quantity actually computed is of the
order [-0.005 T = 0.995 T hence the accuracy cbtained using
gecond order elements is better than 0.1% . Good predictions
were also obtained at all other points.
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FIG. 3 CENTRAT FIELD 1IN A HOLLOW SPHERE

Bending magnet BMIOS

This magnet was chosen as a test case since comprelwensive
measurments in the end region were readily available!7?,

This magnet is of window-frame construction (Figure 4) with
bedstead coils which have 96 turns and give a central [ield of
0.79 Tesla at 1000 Mmps in a gap of 6 inches. Only slight
saturation effects are found at this current and the m.m.f
lost in the yoke is about 0.!1Z. The coils are protected by
iron guard plates which have magnetic connections to the yoke
and which thereby constitute a single iron region.

Because it has three planes of symmetry the yoke of BMIOS is
representable by an octant {as in Figure 4}, the developed
surface of whichk i3 shown in Figure 5. This Figure also
shows a mesh of 392 facets which was sometimes used; it
gives a problem of 204 unknowns {first-order) and 801 un-
knowns (second-otder), since most nodes are shared by
several facets.

The vertical component of magnetic field B_, was calculated
at several of the positions on the Y=0 plahe where it has
been measured.
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The distribution along the line (X=0,Y=0) is shown in the
upper part of Figure 6; to wake the results easier Lo assess,
the dilfervences between the calculations and the measuvement
are shown in the lower part. There was a significant
raduction in the differences in changing from first Lo second
order, but very littie change in the second-order results when
many extra facets were arvanged at the end of the pole [ace
and end face of the yoke. The largest differences occured at
7=36", where the yoke ends and the field changes by about

10% per inch (3.2 Tm™1): they were 0.4% (second-order) and
1.8% (first-order). The caleculations assumed a constant
permeability of 3000, but there was no significant change
when this was veduced to 3000. BSmall changes in the ends of
the coils were unimportant and it seemed that a thivd-order
variation would be needed Lo make Lurther improvements.
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The transverse Field distribution near the end of Lhe yoke
is shown in Tigure 7; the measured results are on the lefr,
the others are calculated. Positions Z=30" and 35" are
under the pole, 38" and 42" between the yoke and the guard
plate, and 46" almost out of the outside of the puard plate.
The biggest digcrepancies occur at 2=38" and 46", amounting
to aboub 5mT at X=6.5" with second-order variation. The
first-order model is obviously too coarse.
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loundary Integral (variable permeability)

Data Generalion

As outlined in section &4 (last pavagraph) in addition Lo rhe
surface discretisation a volume discreltisation is vequiresd
for non-lineatr problems. In the present program this was
achieved by generating a continuous mesh of tetrahedra
within a set of hexahedra which modelled the problem, using
an automatic procedure.

ta



Bending Magnet Type !

For this test a magnet exhibiting considerable non-linear
behaviour was used. The Rutherford Laboratery Type | bending
magnet1d shows 172 departure from linearity of ceotral Field at
1.58T(450A). The magnet is fabricated From two diflerent
steels and is an 'II' configuration (Fipgure 8) with a salient
pole. Resulbs at 450A are shown in Figure 9 together with a
comparison with GFUN3D,S

were computed by Gaussian quadrature. Magnets for sclution
are modelled by a mesh of elements generated by the auto-
matic subdivision of hexahedra. The system of equations
(3.6) were solved by applying the method of incomplete
Choleski Decomposition with Conjupate Gradients (ICCG)Y.1% A
simple itetrative method is used for non-linear problems.

Bending Magnet Fype |

To achieve a valid comparison with the intepral method this

B/By= BnyIO,Z)] By‘0,0,0} magnet was also used to test the Differential Finite Element
%% program. The measured and computed results are shown in
p Code  B,(T) Figure 9.
b+
00, —Meos 1580
—e GFUN  1.540 Window-Frame Gradient Mapgnet
--v BIM 1.587 .
501 -x DFE . 581 An example of the use of the boundary integral method is the
high-resolution spectrometer magnet for Oxford University
* * 3 . g
YO . which is cutrently being desipned at Rutherford Laboratory.
T Seeli . The main features of the mapnet are that it will provide a
eclion at Z-0 0 . >7 dipole field from 0.3T te 1.3T over a sector of 100° on a
Dimensions in inghes 100 “em central orbit radius of I.6m. The primary focussing is

achieved by a tapered gap in the dipole which pives a field
gradient. In order Lo minimise the aberrations Lhe input
face of the magnet will be fitted with an extension (“Bay
I[Xperfmenlal Window"), consisting ef an approximately circular sepment
Error %10 of iron projecting from below the ceils. In order to study
how the dipole/gradient field inside the magnet blends with
the 'bell shaped' Eicld under the bay window a model of a
straight magnet has been set up For analysis by the linear
s Kt 7 boundary integral program, sce Figure 10. Tigure 10 also
00 “cm shows the contours of normalised fields in the vicinity of
the bay window, from which the transition Erom the pradient
regime to the bell shape can be clearly seen.

} Plan View
2

FIG. 8  OCTANT oF BENDING FIG. 9 COMPARISON OF VARIOUS

MAGNET TYPE 1t ALGORITHMS WITH 6. CONCLUSION
MEASUREMEHTS FOR :
BENDING HAGHET TYPE | The theory and some preliminary results [rom two new three-
- dimensional (non-linear) computer programs have been presented,
Differential Finite Element (Variable permeability) One progtam uses am integral formutlation (BIM) in which only

iron regiong are discretised — for linear problems this is reduced

Data Generation further to a surface discretisation. The other code is based on a

The theoretica 1 i differential formulation (DEM) and requires a continuous m?sh

the basis ofcaItE::glsgmgsggszzfdpi:g::;ti::_s,::;gt:izd as throughout space. Roth codes use a magnetic scalar potential so
elements of the 'secendipity’ typel?® were sclected and Frat'the;e 1slon1y znet?ntn?wnlatde;chitzzhrpuig:qazﬂaquigﬂigzgre,
element (stiffness) coefficients (3.7) and boundary forces (3.8) the total scalar potential 1z use n ep E L

a numerically stable solution.

The intepral variant caan be seen as a lopical extension ko the
nagnetisation vector iategral equation code (GFUN} with a scalar
function as independent variable and options on the order of

bage functions giving an expected improvement in economy and
accuracy. For linear problems the requirement that surfaces only

1.2
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need subdividing into elements leads to further increases in
efficiency and accuracy. The tesults achieved for the bending
magnet BMIOS confirm this and allow the design of high resolutien
magnels to proceed purely by coemputational methods. Whilst the
non linear version is not yet as highly developed as the
corresponding linear version, ie only first order elements have
heon included so [ar, a dramatic gain in accuracy is te be
expected when the seceond order element is introduced.

The differential variant is an extension to the work discussed in
reference 16 utilizing two scalar potentials. The preliminary
results have demonstrated the viability of this approach for
three dimensions and that the zccuracy on [ield shape will
improve considerably when the level of diseretisation is
increased and higher order clements are introduced. Ib is
interesting to neke that the source field is ounly calenlated at
points on the interface between Lhe two regions, which can be any
convenient surface (not necessarily the irom surface) satisfying

the condition that it spans the reglon of space containing the
irvon and does not conkain currenkts.

TABLE 1

INTEGRAL VERSUS DIFFERENTTAL

FEATURE

INTHECGRAL

DTFFREHENTIAL (FEM)

I DISCRETTSATION

Relatlvely straight-
forward (iron only,
sur face only for
linear problems).

Difficult, Whole of
problem space with contin-
ucus mesh of elements.

2. EXTERNAL

Automatically taken

Requires external houndary

integrals

{INFINITE jinto account by the conditions to be placed
i $PACE) formulatcion. sufFiciently far away or

TOR FIELD the use ol special inlinite

BOUNDARY clements as in Coupled

CORDITION Finite Blement and Bound-
ary Integralszn altern—
atively the use of balloon=
ing [inite clements?l.

3. CALERKIN/ Expensive to apply Easy to apply aad
VARTATIONAT because of multiple intrinsic Lo formulation

4 MATRIX

Fully populated,
expensive to
compule and to make
symme [vic. Solution
time O(n?).

Sparse, symmetric and
cheap to compute.
Solution Lime O(n?).

5. RECOVERY
Or TFIELDS

Accurate but
expensive.

Biflficult Lo achieve smooth
accurate results unless
extra processing employed

N



TABLE 2

COMPUTER STAFLISTICS FOR TYYE 1
BENDER MAGNET IBM (360/195)

CODE TOTAL TIME CORE NUMBER OF MAX. ERROR
MINUTES KILO BYTES EQUATIONS ON SHAPE
GFUN 13 660 540 3z
65 660 1080 27
BIM 23 800 392 47
DEM 6 270 1000 8%
12 310 1900 6%

The development of these two computer programs provide useful tools
for investigating the relative merits of intepral and differential
methods. The intrinsic features of the two formulations are
summarised in Teble 1, and some statistics for the results given in
Figures 7 and 8 are presented in Table 2. It is not possible at
thik stape to arrive at a definitive conclusion as te which is the
most efficient. Ilowever, it is projected that for the type of
problem and accuracies considered here the two methods will he
equally expensive. The problem geometry and accuracy required will
determine which methed is more attractive. It is still difficult
to form a continuous mesh over all space and until this problem is
solved integra! formulations will remain very attractive.
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CALCULATION OF TIE MAGNETIC FIELD OF THE ISOCHROHOUS
CYCLOTRON SECTOR MAGNET BY THE INTEGRAL EQUATION METHOD

P.G,Aklahin, S.B.Vorozhtaov, E.P.Zhldkov

Joint Insatitute for Huclear Ressarch, Dubna, USSR

At the Laboratory of HNuclear Problemsa, JINR, a pos-
albility of the construction of a powerful neutron soypce
wi%% a neugron beam energy of 14 MeV and a flux of 10 =
10 n/lem™, sec) is investigated., The ring isochronous
eyclotron with a 35 MeV deutron energy and a 10-100 mA
baam current will be the maln accelerator facillty for
producing the above-mentioned neutron flux. The radial-
gector structure with a four-fold symmetry is concelved
for the cycloetron.

The calculational results of the magnebtic field of
the cyclotron magnet are glven In the report. Filpure t
shows the upper view of the calculational magnet model
along with the sector current coil. The air gap hefight of
the magnet is 5 em, whereas the ratio of the maximum pole
length to the gap height 13 about 30. The external diame-
ter of the four sector system including the yoke is 8 m,
The magnetle fileld value in the ailr gap i3 about 18 kGs.
The field has been calculated using the computer code
MAGSYS by solving a 3-dimensional vec&or integral equa-
tion Cfor the maghetic fleld inductien® 3. The mapnet bo-
dy volume has been consldered as a set of triangular
prisms or parallelepipeds, The values of the Induction
vector and the magnetic permeability have becen assumed
to be consh7nt inside the above sald reglons, The embed-
ding method” bhas been used to solve the nonlinear alpeb-
raic aystem, which approximated the vector lintegral equa-
tion under above conditlions, The resulting algebraic sys-
tem i3 as follows:

~ p 3 mn.
an’.z /'{—7;)2’-‘} Bic"zkfr/nn (1
it VAL kL I fZ' 32
t.:t‘ f.f
where m® = 1,2,3, ... M, n:z 1,2,3, el G:; g;)is a
magnetlic permeability, 51- ~13 a field inducktion inde-
pendent functlon, 77»@ is ‘a given function of eaordina-
tes.
An abbriviated form of equation (1} is given by
—
< =6
’

where the elements of the matrix A are functions of the
solution vector X , Consider, that the relation

At = L) -1 2 (31

takes place under the conditlon © <t €1, Then the vector X

is a function of the parameter t and the solution of
equation (2) is reduced to thah.gf the Cauchy problem
with the 4initial value Xx (0) = b . The calculaticn has
been made with a constant step of the parameter t and
with the recalculation of the initial ¥ -value for the
t = tnaccording ko the expresslon

)&::/5‘,;,}= 2);_’/’{;;»{) - r/érz-z). (h}

The solution was improved at every £, using the 1iterative
formule

— — ——pn o
X esr = Xe *"J/Amxx“g), (5)
where the o -value is given by
—r —r - -
x':_wfg/ﬁxn Xk -4 ,{?kﬂ[iﬂxn xk - 5)7
”/“an(nmlxx“g)”z

to obtain the maximum convergence rate of the process, In
expression (6) it 1s assumed that

{6}

”Axu,n” ""”” ﬁx,n” . (7}

Condition (7) was provided with the help of the fnctor
4% 0,2, In the calculatlons 1t sometimes occurred that
the magnitude of + tended to zeroc at some values of ¢t

In this case instead of eq. (5) we used the expression‘u

—_ — —
Kot = XK +D" ) {8)
—>
where the vector qu could be defined from the conditions
—p — -r
=0
(Dk-,['qu xM—B]) ’ (91

- —r —_
[ Dg” ’” Ann. Xe -8 “

(10}

From our point of view, the maln advantage of the used

method for solving the algebralc system i3 a possibility
to have a converging process in all calculations performed



by the authors., The convergence takes place even [or the
magnet with a "had"” partition of the magnet volume
into subregions. Other advantages are a pessibility to
keep in the computer core storage only a part of the sys-
tem matrix and central processor execution time which is
comparable with that of the GFUN3D code when running
jobs at the CDC 6500.

The sector magnet was calculated with a varicus num-
ber of the subregions of constant magnetization. The
maximum number was 192 subregions which was equivalent to
the 576 x 576 algebraiec system. The best results obtained
for the trilangular prism partition (Fig. 1) are presented
by dashed lines in Figs. 2-4., The solid lines present the
magnetic field measurement data for the 1 : 7 model of the
magnet. As one can see in Fip. 6 the difference between
the experimental and calculated data is about G.5% for
the azimuthally mean field, 5% for the flutter, 2% rlor
the amplitude of the main harmonic in the radial range
B = 15-28 cm. MNear the minimum and the maximum radial po-
sition of the observation point the deviations of the
calculated curves from experimental ones are largest due
to the strong nonuniformity of the pole field in thae vici-
nity of these regions. The assumption of the pilece-wise
constant magnetization distribution in these partas of the
pole are least valid.

The evaluation of the magnet rfield using an other
method and based on it a magnet model design bas been
made it posaible to obtain the discrepancy between the
measured mean field B, and the required isochronous field
Be in the range of 10% (Fig. 4). As scen [rom Fig, 4 the
application of the described calculatioans could improve
considerably the accuracy of the 3, evaluaticn apart
rom the pole ends.

As a final remark the authors wish to thank Dr,
M.L.Zaplatin and Mr. N.A,Morozov for providing the mag-~
netic field measurement data of the magnet model.
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INTEGRAL METHODS FOR TIE CALCULATION OF MAGHETIC
FIELDS IN TURBOGENERATORS

R.J. Jackson
Central Electricity Research Laboratories,
Leatherhead, Surrey KT22 75E

ABSTRACT

This paper considers the wse of integral methods for the caleulation
of magnetic fields in turbopenerators. Using an intepral method the
magnetic field is taken to arise ftom a set of field sources vepre-
senting both the generator windings and the non-linear mapnetisation
of the rotor and stator iron.

The solution of Lhe two dimension problem of the calculation ol mag-
netic fields in the active region of the turbogenerator is described.
1t is shown that the number of elements required to vepresent the
complex geometry of the rotor and stator iton can be considorably
reduced by a suitable choice of magnetisation pattern within an
element. The evaluation of the magnetisation of the elements is
further simplified by the representation of the field vector in terms
of a type 1 and type 2 field, which correspond to the spatial har-
monics of mapnetic field rather than the radial aad azimuthal con-
ponents of the magnetic field. Results of 2 computer program hased
on this analysis are given.

The use of this methed for the caleculation of magnetic Fields in
three dimensions is then considered. Preliminary work is described
in which the fields are calculated for the simplified core geometry
of the slotless generator and are compared with Field measurements
taken on a model generator.

1. INTRODUGTLION

An important part of the design of large turbogenerators is the
caleulation of the magnetic fields in the penerator windings and Lhe
stator core. Fipure 1 shows a cross section of a typical two-pole
gencrator. In the centre there is a steel retor with slots in the
outer surface carvying the field windings. The stator core jis con-
structed from silicon steel laminations with slots in the inner sur-
face supporking the armature windings., The rotor revolves at 50 Hz
and the armature winding carries a three-phase a.c. curvent which
produces a rotating dipole field.

Although much of the winding m.m.f. is dropped across the pencrator
airpap the magnetic [lux density in the rotor and stator cores is
figh, and the saturation of the core steel sipnificantly alfects the
overall generator field. The stator core is laminated to limit the
eddy currents due to the main generator flux but near the emls of the
generator the axial mapgnetie fields (normal te the plaune of Lhe
laminations) induce curremts in the stator core. Thus the calcul-
ation of the generator magnetic fieilds requires a threc~dimension,
time~dependent field program which includes the effects of

saturation and eddy currents.

It has been found that general purpose programs arc not able to
represent: the complex geometry of the rotor and stator iron in
sufficient detail. Thus special programs have been developed for
the calculation of the electromagnetic fields in electrical machines.
In such programs approximations are made to reduce the number of
clements required to vepresent the generator, thus allowing a detail
representation of regions of specific interest such as the keeth and
sereen and end wimtings.

The program SLAMEDI uses a boundary value method to calculate the
magnetic fields and eddy currents in the end region of the stator
core. Since the initial formuelation of this program, analysis of
measurements of the magnetic fields in large generators has shown
that the field in the airgap can be conveniently described as the
interaction of a set of sources of mapuetic Field?.

This, together with the known accuracy of integral field programs [or
magnetostatic ptoblemsj, suggests a new approach to the computation
of generator magnelic fields, in which the magnetic fields outside
the stator core and end screen are assumed to depend only on the
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armatuze and field winding currents, and the radial and tangential
magnetisation of the rotor and stator cove. If this is Lhe case Lhen
the caiculation of the fields outside the genevator is a magneto-
static problem and may be solved using a standard integral method.
The effects of the axial magretisation of the rotor tould be included
in this caleulation should ib prove necessavy but Lhis would increase
Lhe size of Lhe problem.

The stator core is laminated and therefore its axial permeability is
almost constant: being limited by the proporticn of iren in the
laminate (the stacking factor}. Thus the axjal fields and eddy
currents in the stator core and end screen can, in principle, be
calculated using a linear boundary value method in which Lhe eddy
currents are represented by a single stream functionl. Although
measurements of the fields outside the stator covre show that the
magnetic Ficids vary little with frequency and thevelfore Lhe eddy
currents induce only low Fields outside the core, this artificial
division of the probliem is a leap of faith which can be tested only
by cemparison of computed and weasured fields.

Ihis paper considevs the first part of the problem, the use of
integral methods Lo calculate the magnetic fields outside the stator
cole.

2. THE FIELDS OUTSIDE THE STATOR CORE

To calcuiate the magnetisation of the rotor and stator, the core
steel is divided into a number of blocks (each with a [ixed magnebi-
sation} and a magnetic interaction matrix is defined to relate the
mapnekisation of ecach block to all other blocks. This matrix can be
expressed in the Corm:

By o= owgly + Ny e @

where B; is the magnetic [lux demsity vector at the centre of the
itk block and ll; is the magnetic field vector at the samne point due
to the penerator windings. Mij is a tensov defining the Llux density
at the centre of the ith element due Lo a unit magnetisation in the
jth element, and mj is the magnicude of the magnetisation in the jth
clement. N.I. The Einstein summation convention is assumed.

As in SLAMEDl, the time varying magnetic fields and permeability ave
represented by the First and third time harmoaics of the rotor
frequency, the corresponding terms for the permeability being the
zeroth and second hatrmonics. In addition, the variation of the
magnebisaktion across a phase band of the armature winding is neg-
lected; all blocks in the same position within the span ef 5 Looth,
therefore, have a related (phase shifted) magnetisation. Thus the
variation of magnetisation within the span of a tooth is represented
in detail, but the variation from tooth to tooth is represented only
by the first and third spatial harmonics.

To simplily the representation of the rotor and stator core the
elements {which sow represent a set of blocks) are sectors of a

cylinder. Each element has t{wo independent magnetisation patterns
for each Gime harmonic which vary across the elewent in a way typical
of the Fields in the generator core. The type 1 nagnetisation (see
figure 2) is characteristic of the tetor core and the type 2 is
characteristic of the stator core. Thus the magnetisation of a
single element is specified by four complex secalars represenkting the
magnitude ¢f the four unit magnetisabion pabterns:

m](l) = exp j(O+ wt) £ + F exp j(8 + wt) ﬁ
- (1) nz : : pz : p
m, =y oexp jO + wk) £ - ] S5 exp jlo +wt) 8 ... (2)
r r
2
51(3} = EE exp Jj(6 +wt) % + ] lE—exp 3i (0 + wt) Q
) o n
N 4 4
m2(3) = Eﬁ exp 37(0 + wi) i -] Eﬁ exp 3j(0 + wt) §
r r

where p is the mean radius of the element, the subscripts denote a
type 1 and type 2 magnetisation patters and the superscripts the time
harmonics.

Using Lhese expressions, the curi of Lhe magnetisation is zevo, so

the magnitude of the [ield source representing a block of iron can be
expressed as an integral of the surface curreunts. Also Lhe diverg-—
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ence of the magnetisation is zero, allowing the use of relatively
large elements in regions of the core where the permeability is
unjform.

To caleulate the magnetisation of the rotor and stator cove a zeroth
and second harmonic permeability vector is defined where:

2nfw
nim, (L))
n.(“) = —————i———~—*—-exp (~jowt) dt .- (3

i o ll(mi )y - 1

Substituting for the flux density vector in equation (1) the
calculation of the magnetisation vector is formulated as a pair of
matrix cquations:

-1
[ (1) (o) _ (D {1 (1)
meg Ao 845 " Meriy Meaig Vo M
| [,m (o) (D (1)
™03 Hg1ij Ay 845 Ha2iil |0 Uaj
and e B
_ -1
(3} (o) ) 3 (3) 2y (1)
mei | 1M S5 T Ml M Mo My AT
= »
(3) ) (o) w3 3 _ (2 (1)
Poi | | Morij Ri™ 8 oaigl  [Mo Maj i Moj

The magnetisation of the nom~linear rotor and stator steel is
evaluated by an iterative procedure in which the permeabiltity vectors
are set and the first and third harmonic magnetisation vectors
calevlated; these values ace then uwsed to update the permeability
vecter and so on.

3. TUHE FIELDS IN THE ACTIVE REGION OF TilE GENERATOR

TFor the first test program a two dimensional problem was consideced:

the calculation of the magnetie fields in the active (central) region
of the gemerator. This problem provides a good test of Lhe approach

to be used for the full three dimensional program.

Because the terms of the interaction matrix are caleulated from sur-
face currents any inaccuracy in their computalion will appear as
additional currents at the boundary of the element., This intreduces
a discontinuity in the magnetic Elux parallel to the boumdary betwocen
adjacent elements if there is a suitable circuit for the rotation of
magnetic flux within the core. For example, if the core back is
divided vadjally into two elements, any additional surface currents
will produce a loop of magnetic flux within the core back. The

effect of these additional surface currents is reduced by the intro-
duction of an additional narrow element (representing the butlb joints
hetween laminations), Since this element has a common boundary with
both elements the only path for circulating magnetic [luxes is a high
reluctance path through all three elements. This empirical approach
hag been found to work well in practice.

To simplify the calculation of the terms of the interaction matrix
(for two dimensional problems) it is convenient te work in terms of
a type 1 and type 2 magnetic field rather than the radial and tan-
pgential magnetic fields, where:
= -1 = 43
B, [ (nr i Bo) and B, H (B +] BB)

Using these field components the type | magnetic field outside an
clement with a unit type 1 magnetisation is zero and comstant (})
inside the element and similarly the type 2 [ield produced by an

element with a Eype 2 magnetisation is zero outside and constaat (})
inside the element.

The two dimensional program converges rapidly (typically in four
steps) to give a stable solution. Figure 3 shows the calculated Elux
density at the inner surface of the stator core demonstrating one
advantage of the integral method, the simple representation of the
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corners of the core. TIn table 1 the calculated fields and generater
voltage are compared with measurements taken on a Lypical G660 MW
generator. Reasonable agreement {within 27) is shown for most
parameters with the exception of the generator load angle. Because
the saliency (lack of gquadrature symmetry) of the votor was neg-~
lected in this test program, the calculated load angle was less than
the measured value, The program has since been reformulated to
include the effect of rotor saliency.

Table 1: The Genecrator Fields

Measured Calc. Measured Cale. Calc.*
Rotor current kA 1.61 1.61 3.3 3.3 3.3
Stator current kA 0 0 15.4 15.4 15.4
Terminal
. 4 5. 4. 5.

voltage kv 23.5 23.4 24.3 24.3 256.5
Phase angle - - 1.0° 1.4° 1.2°
Load angle - - 61° 55° 55°
Radial Elux

density at the 1.271 1.2460 1.290 1.284 1.296
tooth tip

*at the overlap between adjacent phases of the armature windings.

Generally the fields were calculated at the centre of the stator
winding phase band but to estimate the variation of magnetisation
across a phase band the fields were also calculated at the overlap
between adjacent phases. The voltage and flux density dilfered by
about 1% in the two cases. In practice less than half the stator
elements lie at the overlap between phase bands so neglecting the
variation of magnetisation across a phase band should introduce
relatively small ervors in the calculated fields and voltages.

4. TIE TIELDS IN THE GENERATOR END REGION

Analysis of measurements of the axial magmetic ficlds im the airgap
of a 500 MW generator by Minors? showed that the Field can be
represented as the sum of three field vectors. Tigure 4 shows a
section of the generator end region and a vector diagram representing
the axial flux density.

The &wo vector cowponents which result Erom the magnetisation of the
tokor and stalkor cores are in phase with the radial [lux in the air-
gap and at constant voltage are independent of the generator load
conditions. The third component which results from the magnetisation
of the votor end by the Field windings is in phase with the rotor
axis. Hence the axial £lux density is a simple Function of gencrator
load angle. Tigure 4 shows the expected linear relationship belween
the square of axial flux deosity and the cosine of generator load

STATOR

WINDING

ROTOR
T_END
ROTOR WINDING
AXIAL eND
N
FELQ//”g\\\L ROTOR

FiG.4

STATOR

AXIAL FIELD IN THE AIR GAP

FLUX DENSITY SQUARED, T?
O
Q

O

0.005 -

~

“~o g
# .O?.\w
.
o~

™~

L
LOAD ANGLE DEPENDANCE
OF FLUX DENSITY

| [
Q6 Q7 0.8
COSINE OF LOAD ANGLE COS(8)

SEARCH COIL



oyt e
AShed o fud
.;. &?&E‘:‘E“{\ &

4
awal

5_THE SLOTLESS GENERA RIG

angle. These results supgest that the axial magnetic [iclds in the
generator airgap are due to the magnetisation of the rotor and stator
cores and that these magnetisations could be reprosented by
relatively few, well chosen, elements.

To study the Fields in the generator end region a test program was
written to model the fields in the end region of the slotless gener-
ator® and the results compared with measurements taken on a labora-
tory model of the generator (Eigure 5). The rotor and stator cores
are smooth cylinders and the field winding is a water cooled, saddle
winding clamped on to the rotor surface by a carbon [ibre honps.

The mesh representing the generator is shown im figure 6. For the
calculations the rotor and stator core is divided into ten
cylindrical elements. The preliminary results in figure 7 stow
teasonable apreement with measurements of the radial and axial [lux
density taken in the penerator airgap and over the penerator cnd
windings. These measurements were takenm at a low rotor [requency

(5 Uz} reducing the effects of the eddy curreuts in the stator core.

Thete is some anomolous variatiom of the radial flux density ncar
the end of the stator core. Further work is required to sec if this
is the result of using a coarse mesh or because the axial magnetisa-
tion of the rotor core was neglected.
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5.  CONCLUSIOQNS

$pecialist Field programs can be devised for the calculation of the
magnetic fields in electric machines using integral methods. A care-
ful choice of the shape of the elements and the wagnetisation pattern
within an element should alleow the rotor and stator cores to be re-
presented by velatively few elements. This would simplify both tie
computation of the fields and show more clearly the influence of the
principie design features on the magnetic fields in the generator.
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A COMPARISON OF THO METHODS OF
FIELD SOLUTION FOR SLOTTED LOUMBARY
SHAPES IN THO DIMENSIONS

K.Jd. Binns, P.A. Kahan, G.R. Rees, J. Simkin and C.H. Trowbridge,
University of Southampton, Southampton, U.¥.
and Rutherford Laboratory, Chilton, Oxfordshire, U.K.

1. ABSTRACT

It is fmportant to choose the method of solution most appropriate to
a particular field problem bearing in mind the type of boundary
condition, the field equation and the assumptions which may
reasonably be made. A comparison is made of two methods of solving
the Laplacian field in the air gap of an electrical machine with
slotted boundaries, the two methods under comparison being a numeric-
a1 conformal transfonuatian(]) and a boundary integral method(z).

An example is given showing flux quantities obtained and also the
components of force actfng on the stator and rotor teeth for an
arbitrary displacement of slotted surfaces. Field solutions of this
type are of considerable value in determining the causes of
excessive harmonic Yoss and magnetic noise in induction machines.

2. CONFORMAL TRANSFORMATION

The use of conformal transformation is limited to two-dimensional
problems and the boundary has to be assumed highly permeab!e(})

(v = =}, However, the treatment of sharp corners presents no
difficulty, the numerical evaluation of constants is rapidly
convergent and the quantities of interest whether flux quantities,
densities or forces can be very conveniently determined. Apart from
the possibitity of treating conpiicated boundariesthe appropriate
boundary conditions can be 'sewn together', thereby reducing computer
time,avoiding non essential varfables. Expressionsfor flux densities
are readily developed, and, from these, fntegrals for Haxwel)
stresses can be derived.

To show how sinply flux quantities and forces can be calculated

using conformal transformation, an example is given of the computation
of the flux entering induction machine teeth. The tangential and
normal components of force acting on a typical stator tooth under

load conditions is subsequently determined.

The flux distribution around a complete tooth can be obtained

from a combination of the solution of the fields in the three
regions, each of which §s shown in figure 1. Region 1 contains

two displaced slots. It is important to note that the flux in the
airgap is almost uniform at points AA' and BB' remote from the slot
openings, so that the separate solutions can be combined, Reglon 2
contains one slot. Agafn the flux fn the airgap is almost uniform
at points AN, BB’ remote from the slot openimg. Region 3 contains
no slots and the airgap flux is uniform. Both flux and normal
component of force can be calculated easily provided the afrgap mmf
is known

In Figure 1, the slots are shown as open. Semi-closed slots can

be treated using confermal transformation. However, such stots

can also be treated more conveniently using the open-slot configura-
tion, with a nominal sTot width having a value lying between that
of the slot opening and the actual slot width as determined by
numerical experiments.

The solution of the fields in the two regions, using conformal trans-
fornation, shalt now be considered. Region 2 will be treated First
as it is the simpler.

Singly Slotted Boundary

The singly slotted boundary is shown in Figure 2, located in the
z-plane, with corresponding points in the t-plane. The well known
method of conformal transformation consists of transforming the
real axis of the t-plane into the boundary in the z-plane. Since
flux is conserved by the transformation, the field is solved in
the simpler t-pTane regien.

The Schwarz-Christoffel! transformation equation which transforms
the real axis of the t-plane to the boundary in the z-plane is



given by
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By evaluating the residues at the poles of dz/dt, it can be shown
that
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where 5, is the sTot width and g, the gap width, is taken as unity.

The transformation equation can be integrated to give z, that is

7 = l.f _Eflffliflfii dt (2.1)
T t (t-1)

This integral can be solved analytically. In the range |-co, -¢;|
the integrand in equation (2.1) is complex and has to he rearranged

as Tollows
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This integral can now be solved using the transformation
Cz't
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the solution being
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In atl other ranges, the integrand is real, and using the trans-
formation
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the solution te equation {2.1) is
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Since an induction motor under load conditions is being considered
the correct field in the z-plane, requires in the t-plane a

point current source of value I3 at t=0 and a point current source
of value [, at t=1. The current I, is the instantaneous value of
current flowing in the conductor in the slot and Iy is the instan-
taneous value of the airgap mnmf in the region of the induction motor
where the slot is located. This current represents the effect of
the other slots in the machine. The field in the t-plane is given
by a function of the form

= % (I dogt + I, Tog {t = 1)) {2.5)

To obtain the flux entering or leaving a segment of the boundary,
the t-plane values corresponding to the points in the z-plane are
substituted into the real part of equation (2.5), (Note the
imaginery part of this equatjon gives the potential function).

To obtain the t-plane point corresponding to a point in the z-plane,
an equation of the form

Z-fpy =0 (2.6)

has to be solved, where f(p) is the r.h.s. of either equation (2.2),
(2.3} or {2.4). Eguation (2.6) can be solved by the bisection method.

Using Maxwell stresses, the force components can be evaluated. For
the single and double slot regions this involves integrating

1 J B2dz around a suitable contour, and this can be expressed

u

[+]
in the present problem as
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Further the integration can be expressed as a function of t, Lhat
is

(13(t-1) + I,t)2

1
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The tangential components of force acting on the sTot sides can be
found by integrating between the 1imits (c,, &;, where &, < T} and
(82, €3, where §; > 1). The choice of §; and &, is made by Finding
a point z far enough down the slot so that the flux has become uniform.

The uniform flux is, of course, that associated with the current
source at t=1 and is the slot Teakage flux. It is an easy calcula-
tion to find the force contribution associated with this uniform
flux.

Using the transform p2 = {c, -:t)|(t ~ c3) the solution of equation
(2.8} 1s given by
Iy
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for side B.

The normal compaonenty of force acting on the airgap segments of
the boundary {s obtained using the transformation p? = (t-c,)]
{t-c;} and is given by
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FIGURE T « A TYPICAL SECTION OF THE SLOTTED BOUNDARY OF AN
INDUCTION MOTOR
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Doubly Slotted Boundary

The pair of sTots are shown in Figure 3; +the boundary shape being
located in the z-plane with corresponding pofnts in the t-plane.

The upper slot has a width Sy, the Tower slot width 5, and S5 » Sy,
The gap width 1is agaln assumed to be unity, The transformation
equation for the doubly slotted boundary is given by

d SY{t4ee} (t4ey} (frcz) (Tc3)
Z
a® t{t+h) (t-cy)

vwhere S, ¢, c;5 ¢z, c3 and ¢, are constants of the equation.

To find the six constants it is necessary to establish six equations.
Four of the six equations can be found by evalvating the residues of
the poles of dzldt, and this leads to the following equations

s = (2.9)
Cr_'z = COC1C2C3 (2.10)
S1{1+ey)? = (e -1}(1-c1){cp*)) (catT) (2.17)
and
S2(1+cy)2ey? = (cybe ) (cyhey) (oymca) {€a-cy) (2.12)

These are the only explicit relationships that can be obtained, the
others are obtained as follmws,

One equation can be obtained from the fact that the two surfaces on
either side of the slot are collinear. For the upper slot, in
Figure 3, this condition involves evaluating the integral

dt | =0 (2.13)

p l J-CO S/(t+c°)(t+c1)(t-cz)(t~c3)
=C] t (1) (t-cy)

The other equation invoives the slot displacement d, in figure 3,
this quantity being related to the transformation equation as follows:

d=p JCz Sf(t+cd){t+cl)(t'Cz)(t'Cg)
C t{t+1) (t-cy )

aQ

dt (2.14)

where P denotes that both integrals have as a 1imit a Cauchy
principle value. Neither integral can be solved analytically and a
numerical method has to be used.

Before deseribing the numerical integration technique, a brief
description will be given of the method used in solving the set of
non-1inear equations.

The set of equations have been solved using numerical optimisation
techniques. In particular, direct search methods invelving the
minimisation of a sum of squares function have been employed.
Equations {2.10) - (2.14) are rearranged into the following form

fl = Chz - C0C1C2C3

fa = 5;(T+c,)? - .c°;1)(]—c]}(c2+1)(c3+1)

fy = S3(T+cy)?c,? - (cute ) (cyre, ) {cy=cz) (camcy)
.o J-co S/(t+c0)(t+c1)(t-ca)(t-ca) ot
4 -¢y t{t+1) (tcy)
c;  S/(tee )(tecy ) (t-cy) (t-gq)
fs = "PJ J

-c, t (t+1)(t-c,)

A function SUM is defined as

5

it (fi (Co €1s Cpr €3y Gy, t) )7
The direct search method varies C,» €1+ C2, C3 and ¢, until SUM is
made sufficiently small.

There are a number of direct search methods available for soltving sets
of non-linear equations. The authors have used Peckham's(B) method
because it requires fewer function evaluations which is clearly an



advantage when evaluating functions which contain definite integrals
evaluated numerically. A routine has been written in which the
constants can be found for a range of slot dispiacement.

The sotution of Cauchy principal value integrals is the subject of
another paper written by some of the present authors(“) and 1t 1s
clearly not possible to give full details of this work. Only a
brief outline of one of the methods used in the solution of
equations (2.73) and (2.14) wi1l be given here.

Consider equation {2.13) again in the following form:

-c_ S/Ttac Yty )
P” ® R F(t)t | =0
t
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where F(t) is that part of the integrand that is well-behaved in the
range (—co, -¢;). The range of integration can be transformed to the
range (-1, 1) by the linear transformation

t =-12 [-e, = €1 + % (e1-¢ )]

Equation {2.13) then becomes

T kOx) (1)
P J —_—  Gx) | =0 {2.15)
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vhere XK = ———~ |, A =
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and G(x) is the transformed function F(t). Since G(x) is a well-
behaved function in (-1, 1) it can be expanded as a Taylor serles
sbout the point x=A to give

600 = G(A) + 6" (M) (x-h) + & AZ'X-A -

If a function M{x} is now defined as

M(x) = G{x) - G(A)

X~ A

it can be seen that

K(x) = G'(A)+_U_i_-lﬁ"A2|""‘ b

which s also a well-behaved function in (-1, 1). Returning to
equation {2.15) this can be rearranged as

1
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The first term on the r.h.s is a principal value and can be evalua-
ted analytically. Using the transformation x = coso, it can he
shown that the integral is equal to -KAWG{A). Again using the
transform x = coso, the second integral on the ».h.s. can be sim-
plified and then solved by any standard numerical technique availa-
ble for solving proper integrals. Equation (2.14) can be treated
in a similar manner.

To obtain the correct figld in the z-plane, 1t 1s necessary to have
in the t-plane a current of value I; at t=0, I, at t=c, and [, at
=-1.  Again I3 is the local airgap m.m.f. and I, and I, the instan-
taneous values of current following in the respective conductors of
the sTots. The field in the t-plane is given by a function of the
form

w o= 1115 109t 4 1y Tog(t+1) + 1, Tog(t-cy) (2.16)

The flux entering or leaving any segment of the boundary may be
cbtained by evaluating the real part of eguation (2.16), suhstituting
the t-plane points corresponding to the points in the z-plane. The
value of the t-plane points are found as before by solving the
impHcit equation

i-f'(p) = 0
except that f' is, of course, an integral.

Both tangential and normal components of force can be found by
1 . .
[ing the integral B2dz ov suitabie contour.
evaluating the integra Tre over a suitable



Using equation (2.7), the force integral becomes

Fow ot I AT3(e1) {(tcy) 4 Iit(t-cy) + IpE(441))2 dt
2nZpgS Lt} {t-cy) J{ErcqJ{Erc JE-€2) (Fcg)
The same consideration as to the Timits of integration apply in

this case as in the singly~-siotted boundary. Also the same

method of integration is used as that for solving equations (13)
and (14).
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3. BOUNDARY INTEGRAL METHOD (B/M)

Introduction

A mumber of standard procedures for the solution of magneto-static
problems invoive discretising the domain of interest into elements
and applying the method of finite differences or fininte elements
to effect solutions of the appropriate differential or integral
equations.

The task of generating a mesh of elements for models having
complicated boundaries can lead to difficult data preparation
problems and Targe systems of equations which result in high
computational cost. The attraction of conformal transformation is
that only the boundaries are specified and also that semi-analytical
techniques are used to generate rapid solutions. However, with

the develepment of the boundary integral method, certain constraints
necessary to conformal transformation can be removed. For example,
problemswithfinite permeability and distributed conductors can

be soived by subdividing the boundaries into line elements. By

this method, quite complex boundary shapes can be handled
relatively economically. The boundary integral method depends upon
a direct application of Greens Theorem and has been used for a
variety of harmonic problems, (3) including those arising in
magnetostatic 2).

Formulation

The general equations for magnetostatics are as follows:

euri H = 4 {3.1)
div 8 = 0 (3.2)
B o= uH (3.3)

Where B and H are the magnetic flux density and magnetic field
intensity respectively. J is the current density and u the
peraeability. If a scalar potential 4 is introduced such that

H = v +lis (3.4}
with curl Hs = J {3.5)



then v24 = 0 {3.6)

provided p is a constant. Hs is the known excitation field.
By application of Greens second theorem to this potential the
following boundary integral equation holds.

In two dimensions

¢ = %,, JS (log r %% - %ﬁ {tog r} ¢) ds (3.7}

when r is the distance from the source to the field point. Further
more, at the interface between tworegionsthe axial continuity
conditions hold,

Ll R

i 1
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2

(3.8)
LT 2

The boundary integral equation (3.7) can be solved by point
collocation 1f either ¢ or %% is known on the boundary. In Fact
for a well posed problem at Teast one of these variables must be
known. At an interface neither is known, but the continuity
equations (3.8) supply the necessary extra information. The
algortthm for obtaining the solution requires each boundary and
interface to be discretised and the unknown functions {4 or %% }
are then found by selving a set of linear equations. The
coefficients arc determined by amalytic quadrature over each
boundary facet)see reference 2.

Application to air gap geometry

The problems shown in figures 4 and 5 were solved by this method
using 70, 110 and 135 boundary eTements. The source fields from the
conductors situated at the bottom of the slots were determined
analytically. The permeability was conveniently set at 1000 for
purposes of comparison with the alternative method. The
comparisonof the results for the these levels of discretisation used
jndicated that the errors for the last model (135 elements} is of
the order of 1%.
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4. DISCUSSION

The comparison of the two methods reveals interesting aspects
regarding assumptions and sources of inaccuracy. hen applied to
the same boundary shape and conditions, the solutions vary because
of the differing sources of inaccuracy. The conformal
transformation method does not suffer from discretisation error and
the quadrature procedure can be made as accurate as is needed.

The technique of treating the boundary in parts can give rise to
error but this can be made negliigible in all cases by taking two
pairs of slots on each side. The assumption of high permeability
is,of course, inherent in the method.

By contrast, the boundary integral method can treat finite
permeability and can be used in a 3-dimensional problem. Hovwever,
it is considerably more time constmingand involves a discretisation
error,

Results have been obtained by both methods for two slotted
configurations with different current levels and boundary
displacements. VYalues of the total flux entering the teeth and the
normal and tangential components of forces are computed using both
methods. Figures 4 and 5 show typical regions of the air gap field
and force components for parts of the air gap periphery.

The differences in flux and force gquantities though small are of
interest. The use of conformal transformation results in Targer
toath Fluxes because of the neglect of core retuctance. The
boundary integral method is bounded so that core back reluctance
and tooth depth could be significant. The boundary integral method
inherently involves discretisation and tooth fluxes are computed
by integration of field strength. On the other hand the assumption
of infinite permeability in the conformal transformation method
involves a neglect of core reluctance but gives a very nrecise
representation of the boundary. Discretisation errors in the
boundary integral method have to be weighed against the

economy of producing a rapid solution. On the other hand the
conformal transformation method involves very low inherent error



Within the assumption of high permeability. A typical ratio of
time for computing a preblem of the kind discussed here would be
100 : 1 in favour of conformal transformation. It must be borne
in mind, however, that the boundary integral method hias wider SCOpE.
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ABSTRACT

A Monte Carlo method for the solution of Laplace's equation in
complicated geometries is outlined. The method relies on the wse of
"Eloating' random walks. These are random walks deFfined and
constructed independently of any particular grid or co-ordinate
system. Applications to the calculation of electrostatic potentials
and fields are described. A modified method, appropriate to the
calculation of fields at boundary surEaces, is presented. Finally,
reference is made to the use of the floating random walk approach for
the solution of other partial differential equations.

1. INTRODUCTION - THE FLOATING RANDOM WALK METIOD

It has loog been known that the solution of some partial dilfereatial
equations can be translated into Monte Carlo problems concerning the
motion of random walks. ‘The earliest, and best known example, is the
method of Courant et al.! for the solution of Laplace’s equation.
Consider a potential ¢ specified on the boundary B of some region R
and satisfying Laplace's equation within it. Suppose that a [inite
difference grid is superimposed con R and that it is desired to
evaluate 4 at some grid point £y = (X5,¥0,29)- Then §(ry) can be
estimated from the properties of a Eamily of random walks which start
at r, and move randomly from grid point to grid peoint until Lhey
reach the boundary. The Laplacian property of the potential 4, a=
expressed on a grid of spacing h,

$0,y,2) = ¢ (0xth,y,2) + $(x-h,y,2) + $(x,y+h,2) +

¢(x|Y"hQZ) + d{x,y,zth) + @(st!z_h)]

transtates, as Facr as the behaviour of the random walks is concerned,
into the equal probabilities of 1/6 for the allowed steps

(x,¥,2) + (xth,y,z), (x,yth,z), (x,y,zth). It is found that with a
family of n random waiks, vhich reach the boundary, where ¢ is known,
at points ry ,....,Eq

1 Vet
$ry = iLMEi ) ()

The accuracy of the estimate of ${rg) increases with the number of
tandom walks n,

This approach, though interesting, turns out to be rather impractical,
because of the very large computational effort needed for the

construction of the random walks. Conventional methods for the
solution of the original Laplace problem are far more efficient®. A
more effective random walk method is obtained if one disposes of the
supetEluous notion of the grid. The Laplacian property of the
potential can be expressed more fundamentally by the mean value
theorem of potential theery. If r is a point within R, and 5 a sphere
centred at r, of radius a, which lies wholly within R

#e) =ty J #(c') 95 (2)
S

N 4wa

The potential at the centre of the sphere is equal to the averape of
the potentials $(z'} taken over its surface. Translated inte the
random walk approach3’&, the mean value theorem allows a walk which
has reached (x,y,z) & r to travel in one step From [ to a point chosen
randomly on the sutface of the sphere 5. § may in particular be
chosen to be the sphere centred at r which just touches the boundary
B; the step length from £ is thus equal to the distance frem ¢ Lo the
unearest point on B. Walks proceed by a succession of such steps, as
shown in Fig. 1, terminating when they are sufficientiy close to the
boundary. The potential at their starting peint ro is estimated as
before, by averagiung over random walks as in equation (1). The
computational advantage of these 'fleating' random walks, as they are
called, is that they reach the boundary and terminate in fcwer steps
than the grid—~based 'fixed' random walks.

Monte Carlo calculations with floating random walks are,
accordingly, much quicker, but there remains the apparent difficulty
that a separate set of random wallis is veeded to calculate the
potential of each point r, of interest in the region Rg. Again,
improvement is possible. The information contained, not only in the
potential #(r;*) of the point where a walk terminates, but in its
path from r, to rj , must be exploited. In particular, the direction
of its First step, from g, to some point gy; on the surface of the
sphere 8g in Fig. 1, contains useful information?. Trom the
potential theory point of view, if Ip is a general point within §,,

3G £t
(Epo_ )

Y ds’ (3)

#z) = L BLh)

]

where G{r,r') is the Green's Ffunction for the sphere defined so that
G(r,x’) = 0 when g or t' lies on §,. In terms of random walks,
equation leads ko the estimate of the potential @(Ep)

1 ¥ *
¢(£P) = ;‘I’ iglw(zpigo’zti) ¢(Ei ) (f!)

where the weighting factors H(EP’EQ’Eti) are determined from the
Creen's funection., 1If S, has radius ag,
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Equation (1) has been generalised to a weighted averape representation
which, with weights specified by equation {(5), estimates the potential
at all points In within the sphere 5,. Istimates of [ields, -Vd(r,),
follow from a direct analytical differentiation:

1 n
“n

~V¢(r ) =
P i=l

*
vw(fvaDcEli) *(Ei } (H)

2.  APPLICATION TO ELEGTROSTATIC PROBLEMS

The procedure described above has been made the basis of a general
purpose computer program for solving Laplace’s equation in high
voltage electrostatic applicatiens., TFer the purposes of calculation
and data input a modular representation of the boundary is adopted.
It is regarded as builk up, by juxtaposition and superpesition, of
combinations of suitable elementary surfaces (rod, box, sphere, torus,
cte.}.  Them the distance from any point r to each of the elementary
surfaces (e.g. a box) can be expressed as an analytic function {c.g.
of ¢ and the co-ordinates of Lhe corners of the box). Tor a random
walk which has reached a point r, the appropriate cxpressions for the
distances to each of the elemenltary sutfaces are evaluated, Che
smalliest such distance determining the length of the next step. Tn
this way the cffects on electric ficlds of the complicated poometeies
of, say, transmission towers or transformers, are measured by their
influence on the paths of the random walks; they do not nuced to be
explicitly 'thought out'. Electric fields accurate to within 2-3%
can readily be obtained in practice. For example, the catculation of
potentials and Fields along the line of the sphere-plane gap CD in
Fig. 2 required 1200 random walks and a c.p.u. time of 19.5 & on an
IBM 370168 computer. Betails (including an account of the use of a
crude initial approximation te increase Curther the efficiency of the
Moute Carlo calculation) are given in Reference 5.

3. SURFACE FICLD CALCULATIONS

One of the weaknesses of the floating random walk method described in
Section 1 is that it is difficult to estimate fields at points on Ehe
boundary, for example on the sphere surface € of Fig. 2. This is a
serious weakness because surface fields are often of particuiar
physical interest. The veason For the difficulty can be seen by going
back to equation {(3). This is valid only for points r, within the
sphere 853 for the point rg where S, touches the boundary B, it is,
so to speak, only marginally valid. Tt is found that in consequence
the weiphts W(tg,tosLy;} and VW(ry,Ig,ry;) in the estimates (4) and
{6) become very large kor random walks with rj; close to r,. In
particular, the statistical sampling variance of the Monte Carioe
estimate (6) for V4(p,) diverges. The difficulty occurs, clearly,

whatever the choice of r,, the centre of the sphere 85s So that no
valid estimate of the surface Field =¥§{ry) can be obtained.

The physical meaning of this mathematical difficulty is illustrated

in Figs. 3a and 3b. The mathematics of equation (3) is quite general,
and no distinction is made between casc (a), when the field has a
singularity at rg, and case (b), when it does not. To get
satisfactory estimates of surface fields, some cxplicit statement
tegarding the smoothness of the boundary must be introduced. One way
in which this can be done ig to specify a distance d, as shown in

Fig. 3b, over which the potential may be approximated as varying
linearly. d contains the physical information implicit in the choice
of the prid size in a Finite difference calculation.

This requirement en the smoothness of the potential must now he
translated into an equivalent rule governing the behaviour of the
random walks. Consider a random walk which after its Eirst step
reaches a point ) close Lo B. Let the nearest point on B be glﬁ.
with |r; - £1? less than the 'smoothing distance’ d. The assumed
linearity of the potential near the boundary can then be exploited by
requiring that the walk moves on its second step to a point

before resuming its usual random motion. The bias introduced by this
'compulsory' step is now compensated For by re—writing the estimate
of the potential (equation (4)) as

n
$(r ) = #(g,) + L i?—:-l V(gp.go,gli) x

P n
fE]_i - EliBl * EE]_{ = E]_iul )
e () =4 )Y (e e (b (e D - A ()

The field is estimated by differentiation as before:

13
) = g iél ey iEgery ) X

legs - £, -
{%r—l—‘- g - aig,)) + - T L P —ms)§

(e

In equation (7) the Factors tgli - Eliu!/d and [%(glin) - #(g)} are
small for walks with £y; close to r,, and so help te smooth their
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large and erratic contributions te the estimated surface field

“h(c, )

It burns out, unfortunately, that the field estimate of equatiom (7)
is not yet wholly satisfactory. The divergence in the sampling
variance for V¢(rg), though weaker than Eor equation (6), remains.
Further smoothing is needed, and may be provided by the Monte Carloe
technique of importance samplings., The idea is to direct a greater
proportion of random walks, with a correspondingly reduced statistical
weight, towards the regionm near tg which is responsible for the
divergence. The dependence of the estimate V${rg) on any individual
walk is weakened, and its reliability increased. The eptimum
distribution of random walks for this purpose is found by minimising
the expected sampling variance for the surface field, which, computed
by standard probability theory, is

L ]' (W(zs,zo,zl))z
5

2
2 =-1
° Ev¢(£s):i ) GEW’(ES)] ' ara ° ava ® p(x))
a,n a” plx)
|£1 - Elnl * lfl - Elnl B 2
g el ) - )+ e (g ) e e D) ds

(8)

In equation (8) p(gy) is the probability density for the selection of
a walk with a first step r, -+ ry, and satisfies the constraint

plr;} ds = 1

If the boundaty near rg is approximated by a planar surface at a
constant potential, the expression (8) becomes analytically tractable
and the optimum p{ri) may be found by an application of the calculus
of variationsb. Thus

1 2 !
. Q
plry) = a = {(x, ~r )k, ~r)/a ®

&né;oz ° "1 e

Potential and field estimates, appropriate to the use of a family of

random walks whose Eirst steps are biased according to equation (9),

can now be obtained. The specific expression for the estimated field
is



L1 % VH(r 9 + ) x
“v¢(5p) - Y na 2 by L1i
!Eli - Elini * IEli - iB[
— g (*(51 ) - #(Es)) + {1 - -————a~———-9(¢(r - ¢(£S))

(1m

Fqnatlon (10) applied to the calculation of the surface licld V¢(r )
gives satisfactory results with a finite sampling variance.

The Field estimate of equation (10) requires only the construction of
the random walks and the evaluation of analytical expressions For the
factors Vw(rp,ro,rl),p(rl), and f Iy - Iy |ld. Like equation (6}, it
is well suited to computer cateculatioms. 'Two practical tests have
been carried ott. The first is for the case of a parallel plate
condenser, where, of course, the field is kmown to be uniform. The
simplicity of the geomectry allows sampling variances to be calculated
a2 priori and used to check those found by numervicat experiment.
Figure 4 shows both 'theoretical' and 'experimental' sampling
vaviances for the fields calculated by the standard floating random
walk method (equation (6)} and the smoothed method (equation (10)).
The superiority of the smoothed method at the bLoundary is ctearly
shown. The second test is for the more realistic geometry of Fig. 2.
In Ref, 5, fields along the sphere-plane gap CD were calculated and
the surface Field at the sphere C estimated by extrapolation. llere,
the smoothed method was employed, with a smoothing distance d of one
tenth of the radius of the sphere. Results for the fields at and
near the surface were obtained, which were comparable in speed and
accuracy with the previous estimates of the fields elsewhere in the
gap. 300 random walks and 4.6 5 c.p.u. time were needed. Some
representative results are given in Table L.

&4, TURTNER APPLICATIONS

The random walk methods described here have been developed with
electroastatic applications in mind. It would be misleading to sugpest
that they could be directly applied, without any adaptation, to
magnetic problems. Rather, they are presented as examples of what
seems generally to be a promising line of study. Tt may be useful to
conclude by listing applications of Eleating random walk methods which
have been supggested for problems beyond the Laplace-equation/
Dirichlet-boundary-condition considered here. Some of these are
discussed in Ref. 7. For example, Neumann boundary conditions can be
handled by the use of boundaries which reflect rather than absorb the
random walks. TIn a similar way materials of diFferent permittivily
(or permeability) could be allowed for hy imposing the approprinte
balance between reflection and transmission of random walks acroas the
dielectric interfaces. Applications to the solution of Poisson's
equation seem to be straightforward, The random walks can lere be
geometrically identical to those used for solving Laplace's equation;

i0

™~y
<

—
=]

r.m.s. SAMPLING ERROR O [V@{a, 0. 2]

1 1 ! i | 1 I ]
0 (BOUNDARY SURFACE) 0.5 (CENTRE OF SPHERE $p}

Z, DISTANCE FROM BOUNDARY

EIG, 4 EXPERIMENTAL AND THEORETICAL ESTIMATES
OF SAMPLING ERROR

DENOTES THEQORETICAL SAMPLING ERROR OF STANDARD METHOD
= =~ w— DENOTES EXPERIMENTAL SAMPLING ERROR OF STANDARD METHOD
ososcassos [ENOTES EXPERIMENTAL SAMPLING ERROR OF MODIFIED METHOD

~+—— DENOTES THEORETICAL LIMITING VALUE AT Z = 0 OF SAMPLING
ERROR OF MODIFIED METHOD



Modified method Reference 5
(equation (10)) {equation (6))
using 300 using 1200
random walks random walks
Distance Estimated r.m.s. Estimated F.M. .
Lzranc field -¥¢ sampling field ~V¢ sampling
. he:: c (arbitrary error {arbitrary error
P units) in Vé units) in V¢
g 842 20 - -
0.01 638 13 629 17
0.02 51 6.1 518 9.0
0.05 322 6.3 313 6.1
0.10 203 1.9
0.15 152 1.0
0.20 123 0.9
0.3¢ 90.1 a.7
0.50 58.9 0.6
0.75 42.7 0.4
1.00 37.7 -
(ground
at D)

Table 1. Field Calculation for the Sphere Plane Gap CD of Fig. 2
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only the scoring system in the estimation of potentials needs to be
changed, to allow for the inclusion of a charge density term in
equations (2) and (3). Time dependent diffusion or heat conduction
problems are treated, again with the same vandom walks, by
associating a time increment with each step of a random walk. TFor
these and similar probiems the random walk approach could prove useful
in tackling geometrically complex problems.

5. ACKNOWLEDGEMENT

The work described here was carried out at the Central Electricity
Research Laboratories and is published by permission of the Central
Electricity Generating Board.

6., REFERENCES

1. Courant, R, Friedrichs, K and Lewy, H. Uber die partiellen
Differenzengleichungen der Mathematischen Physik. Math. Ann. 100
32-74, 1928.

2. HNammersley, J M and Handscomb, D C,'Monte Carlo Methods' (Methuen
1964},

3, Brown, G W. 'Monte Carlo Methods' in Beckenbach, E F. (Ed.}
'#odern Mathematics for the Engineer'., (MeGraw-ilill, 1958).

4, Muller, M E. "Some continuous Monte Carle methods for the
Dirichlet problem'. Ann, Math. Stat. 27 569-583, 1956.

5, Pickles, J H. 'Monte Carlo Field caleulations'. Prec. LEE, 124
1271~1276, 1977

6. Pickles, J Il. 'Monte Carlo caleulations of potential gradients
near boundary surfaces'. Central Electricity Research Laborateries
Report, RD/L/N 202/76, 1976

7. laji-Sheikh, A and Sparrow, E M. 'The solution of heat conduction
problems by probability methods'. Trans. ASME, C-89, 121-131, 1967.



	Article 1.1_Compumag1978_01_Magnetostatics.pdf
	Article 1.2_Compumag1978_01_Magnetostatics.pdf
	Article 1.3_Compumag1978_01_Magnetostatics.pdf
	Article 1.4_Compumag1978_01_Magnetostatics.pdf
	Article 1.5_Compumag1978_01_Magnetostatics.pdf
	Article 1.6_Compumag1978_01_Magnetostatics.pdf



