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APPLICATION OF INTERACTIVE GRAPHICS TECHNIQUES TO MAGNET DESIGN
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1. INTRODUCTION

The purpose of this paper is to show how the techniques of interactive
graphics can be used as an effective tool to enable a designer to make
the best use of the power of modern computers. The design process is
analysed to see which functions are suitable for computers and which need

experienced human intervention.

The capabilities of interactive graphics techniques are reviewed, and
areas of the design process where they can be of assistance are identi-
fied. Existing programs for magnet design which use these techniques are
reviewed, and finally, a general purpose computer-aided design system

which is being implemented at the Rutherford Laboratory is described.

2. ANALYSIS OF THE DESIGN PROCESS

The problem of designing a magnet is a particular case of the general
problem of minimising a non-linear function of many variables, subject to
non-linear constraints. Algorithms for solving such general problems are
not known even for local minima, let alone global minima. Unfortunately,
the magnet design problem is even more difficult than this. Figure |
shows a block diagram of a typical optimisation algorithm to find a local
minimum with say linear constraints and where first derivations of the

function are available.

When we attempt to interpret this diagram in terms of magnet design we
see immediately why the problem is difficult. It is usually not too
difficult to specify the constraints and the function to be minimised.
For example the function might be the inhomogeneity of the field strength
over a given volume of space. Typical constraints would be the minimum
central field strength, and the minimum aperture needed to gain access

to the uniform field region. However, the number and form of the
independent variables cannot be specified so easily, and in general may
be said to be unlimited. The experience of the designer is immediately

invoked to 1imit the number of variables and impose further constraints
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which he hopes will result in a solution not too far from the true
minimum. Of course, if he decides not to use iron for concentrating the
flux, and if he limits the complexity of the conductor configuration, he
will be able to solve the problem automatically on a computer using
known algorithms - always providing that he can provide an initial guess

that will lead to a sensible local minimum.

However, for most designs the problem will be approximately as shown in
Figure 2. Having decided on the constraints and the function he wishes
to minimise, the designer makes a guess at a configuration of iron and
conductors and at values for their properties (ie. permeability curve and
current density) which his experience indicates will meet the constraints
and produce a reasonable design. This is the step which we are furthest

from being able to do on a computer.

The next step is to set up a discrete model. As is usual with a
continuum problem such as this, a model must be constructed which approxi
mates the real problem by a finite number of discrete elements. As the
number of elements is increased and their size decreased,the results of
the analysis should converge to a true solution of the continuum problem.
Figure 5 shows an example of such a mesh. The total number of elements
will be limited in practice by the computing power available. It is
therefore important to suit the size of elements to the local nceds of
the geometry. The decision on how to distribute the elements has
normally been taken by the designer, although some progress is being made

towards allowing the program to optimise this choice.

The next step of analysing the model is the only step which can be done

without human intervention.

For a given guess at the geometry and current densities, it will be
necessary to try several models of increasing refinement to get a reliable
measure of the error introduced by the model. The decision as to what
criteria to apply to the results of the analysis in deciding whether

the model is sufficiently refined is certainly alse a long way from

being suitable for an automatic algorithm.
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Similarly, the designer is almost always involved in deciding whether a
particular guess has satisfied his constraints. It is usually much

easier for him to make this decision than it is for him to specify his
constraints to a computer in a general form. Usually his constraints will
not be met until he has refined his guess at the solution several times.
Indeed, sometimes this loop is never left because of time limitation, and
the resulting design is a compromise. When the constraints are satisfied,
he may refine his guess in order to try to reduce the value of the

function he is trying to minimise.

It is clear from this description of the design process, that most of the
decisions are taken by a human. We hope to show that the techniques of
interactive graphics are a valuable tool in making these decision as easy

and as fault-free as possible.

3. REVIEW OF INTERACTIVE GRAPHICS TECHNIQUES

An interactive graphics system consists of the hardware and software
necessary to allow a fluent dialogue between man and computer with input
and output in some graphical form. Systems with a wide range of
sophistication and cost are employed in many applications. The usual
medium for high speed graphical output is some form of cathode-ray tube
(CRT). One convenient way of classifying these is into storage tube
devices and refresh devices. Refresh devices can be either raster scan
or directed beam. Each type of device has advantages and disadvantages

which make them best suited to certain applications.

In a refresh CRT (of which the domestic television set is an example) an
image is sustained by repeatedly reproducing the necessary electron beam
at a rate which is fast compared with the natural persistence of the
phosphor on the screen. A small computer or part of a large computer is
devoted to this task of refreshing. With a raster scan device the infor-
martion is stored in the computer in a line by line digital form. This
data is scanned and reproduced on a TV type monitor. With a directed
beam device, the electron beam can be directed to any part of the screen.

Different parts of the screen can be illuminated in any order.

In a storage tube, each image is produced once and is continuously
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refreshed by the hardware of the device. The picture can be added to
indefinitely and will remain in view. When a different picture is
needed, the whole screen is erased with a bright flash, and a new picture

can be stored. Storage devices all use directed beam techniques.

Various hardware options are available to perform graphics functions more
quickly than with software. The following list gives an indication of

what is available:

1. Character Generation.

. Vector Generation.
Curve Generation.

. Blinking or Flashing.

. Dotted or Dashed Vectors.

2
3
4
3
6. Range of Character Sizes and Fonts.
7. Translation.

8. Scaling.

9. Rotation.

0. 3D Transformations

11. Windowing and Clipping.

12. Multiple Intensity Levels.

The advantages of directed beam refresh devices are that the picture can
be partially or completely changed between refresh cycles thus simulating
dynamically changing data, and hardware transformations can be implemented
comparatively easily. All refresh devices can support a range of inten-
sity levels. The disadvantages are that they are comparatively expensive
(E10K - £40K), and the amount of information which can be displayed is
limited by the onset of an irritating flicker when the time taken to
reconstruct the picture becomes greater than the persistence time of the
phosphor. They also require either an extra independent small computer,
or some fraction of the store and processing power of a large computer.
They are most suitable for applications involving a limited amount of

information which is changing rapidly (eg. monitoring air traffic).
The advantages of raster scan refresh devices is that the information

content can be much greater, and the monitors can be good quality TV

tubes which are comparatively cheap. Several monitors can be attached to
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one controller. Domestic colour TV sets can also be adapted. The cost
is in the region of £10K. They are most suitable where good quality
pictures containing much detail including grey scales are needed and
when the data changes rapidly. They become economical when several
monitors are required all showing the same picture. The disadvantage is
that hardware transformations are more difficult because of the way in

which the information is stored.

The advantages of storage tubes are that they are cheap (£2iK - £51K),
that they never flicker, and that an unlimited amount of information may
be displayed. The disadvantage is that even if only a small part of a
picture is to be changed, the whole screen must be erased (1 sec) and the
whole picture redrawn. The time taken to redraw will depend on the
amount of information and the line speed. Most cannot support a range of
intensity levels. They are most suitable for applications where a large
amount of data is to be displayed and erasure is only necessary at

comparatively infrequent intervals.

One device is available which attempts to obtain the best of both worlds.
This stores the picture on a small storage tube with the facility for
selective erasure, and repeatedly scans this tube to reproduce the picture
on a TV tube. Selective erasure is obtained by switching the device into
erase mode and 'drawing' the vector or character. These devices are not
common in the United Kingdom, and no first-hand experience of their use is

available.

For graphical input, a range of devices is available:

1. Keyboard.
Function switches.

Cursor control device.

£ o N

Light Pen.

For some purposes, such as providing numerical values, the keyboard is
probably the best device. The function switches are really a special
purpose extension of the keyboard. Typically a bank of 16 push buttons
is provided with a choice of metallic overlays which identify the

meaning allocated to each switch for a particular application program.
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However, for many purposes it is more convenient to be able to interact
directly with the picture. The most universal way of doing this is to
provide a small cross on the screen called a cursor, which can be moved
around the screen in a continuous manner by some mechanical device under
manual control of the user. Even storage tubes can have a cursor which
operates in a dynamic refresh mode. The user will move the cursor until
it coincides with the part of the screen he wishes to indicate and then
operate some switch which will cause the two co-ordinates of the cursor
position to be sent to the program. Many devices are available to control
the cursor position. The device which is currently gaining most popular-
ity is called a Mouse. This is a hand-held object which runs on wheels
nver any horizontal surface. Two orthogonal wheels keep track of the
movements. A few finger-operated button switches may be included, thus
adding limited function switch capabilities. Other devices are a tablet
with stylus, a tracker ball, a joystick, or a pair of orthogonal wheels

mounted on the graphics terminal.

The light pen, which is only available on refresh devices, operates by
detecting light on the screen when held next to a part of the picture.

It can inform a program immediately which picture component is being
indicated. Some recent refresh devices allow the light pen to return the
co-ordinates of the screen position within a limited accuracy. The light

pen can also be used as a cursor control device.

The advantages of cursor techniques are that they can be used on both
storage and refresh devices, and that they can indicate positions on the
screen which are not illuminated. The disadvantage is that in order to
find which part of a picture is being indicated, a software search of
the picture co-ordinates must be performed. This may be a slow process

for a large amcunt of data.

The advantages of the light pen are that it can indicate picture parts
without a search and that it is a more natural way for « user to operate.
The disadvantages are that it cannot be used with storage tubes, and that
it cannot indicate positions on the tube which are not illuminated. Some
users of light pens find the arm position tiring over a long period and

object to the arm obscuring part of the screen.
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Connections, between graphics terminals and the computer containing the
application program, can range from intercontinental satellite and tele-
phone lines to short fast dedicated lines. |If a refresh tube is to be
connected over a distance (by telephone line for example] a local small
computer will be needed to refresh it. This should be taken into account

in cost comparisons.

Computers to which such devices are attached range from a small mini-
computer acting as a message switcher in a network, through dedicated

medium-sized computers, to large multiprogramming computers.

Since software is becoming an increasingly expensive component of any
system, portability between different computers and different graphics

devices is becoming of paramount importance. Standardisation amongst

graphics packages is a long way from that obtained by Fortran for example.

To some extent this represents an inherent difference in capabilities

between different types of device.

The choice of a configuration will depend on what equipment is already
available, whether the equipment chosen must also suit other applications
apart from magnet design, and what the demands on the facilities are
likely to be. At the Rutherford Laboratory we have chosen storage tubes
with lTimited cursor control attached to a medium-size. real-time computer
(GEC L4080) with a fast link to a number crunching host computer. The
magnet design application can be programmed in such a way that the dis-
advantages of a storage tube are not serious compared with the advantage
of being able to afford several terminals in simultaneous use to service
a large user population. Experiments are also in progress with a refresh
device to which hardware for three-dimensional rotation, scaling, and
translation, developed at the Laboratorytzz has been added. The value of
dynamic rotation to portray three-dimensional depth is being estimated.

4. AREAS WHERE THESE TECHNIQUES CAN BE APPLIED
The techniques of interactive graphics have five main uses in the design

process.

1. Making subtle errors in the data clearly obvious.
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Allowing these errors to be corrected immediately.
. Displaying the mesh model for evaluation.

Allowing this model to be edited easily.

LU I A VY

Displaying the results of the analysis in graph or contour

map form for rapid evaluation.

Four areas of application will be examined in detail.

4.1 Data Specification. The main functions of interactive graphics in

data preparation are assistance in detection of errors and allowing
immediate correction of errors. There are two types of error. The first
can be detected by the program because of internal inconsistency. (For
example, if two adjacent nodes in apolyhedronare given identical
co-ordinates.) The interactive facility allows the user to be informed
at the time he inputs the faulty data, and he can correct it immediately

while his attention is still focussed on the problem.

The second type of error is more serious because no program can detect
it. A typical example is a mis-typed figure which results in data which
is completely consistent but totally false. |If Figure 3 is compared with
Figure 4, the benefits of graphics should be obvious. A good interactive
graphics program will display each item of data graphically as it is
entered. It will also take every opportunity, subsequently, of displaying
all aspects of the data to the user in the hope that subtle errors will
be detected as soon as possible. |In the batch mode, much computing time
and designer time is wasted on such faulty data. Indeed many subtle
errors are never detected with disasterous consequences for the accuracy
of the results.

Several methods have been used to facilitate the definition of three-
dimensional objects. Sutherland's original Sketchpad(B) system was

This allows the user to

(53

extended to three dimensions by Johnson.
define dimensions on the screen with a light pen. Sutherland has also
developed a teciinique for simultaneously digitising orthogonal views of

a three-dimensional object. The accuracy of such methods is generally
not sufficient for defining details of the geometry of magnets.

Numerical data is best input on a keyboard. Notley devised a
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language for describing the creation of 3D objects. This would need devel-

4D

oping to make it competitive with alternatives. Brai uses a finite
set of unit primitives which can be moved, rotated and scaled to
synthesise a general solid. His work is aimed at producing tapes for

(8,9,10,11)

numerically controlled machines. Newman et al in the original
implementation of the GFUN program used a set of shape codes whose
dimensions were defined using a parameter format. Newman's MOD3D
package (see Section 6) also uses a set of primitives to synthesise a
general solid. His POLLY language forms an efficient way of specifying

the dimensions in a natural way which is easy to use.

L.2 Generation of the Mesh Model.

L.2.1 Two Dimensions. Much work has been done on algorithms for auto-
matically sub-dividing generally shaped two-dimensional regions into
suitably graded finite element meshes. Pathalogical geometries can
usually be found for which any algorithm will either fail, or produce
unsuitably distorted meshes. With a range of algorithms available, it
is generally possible to select one which will solve the problem.
Alternatively details of meshes can be refined by hand using light pen

(12)

regions with included voids consists of superimposing a single equi-

or cursor techniques. Reid's algorithm for triangulating multiple
lateral triangle over the whole domain, and sub-dividing until local
boundary constraints are met. The user can specify local grading of

(13) use a different approach. A general

the mesh size. Beretta et al
polygon is automatically divided into a combination of triangles or
quadrilaterals by joining nodes. Algorithms are available for further
sub-division a;l?wing for all the special case?‘;?ich may arise.

superimpose a regular triangular mesh over a general polygram (optional

Andrews et al( use a version of the Winslow technique. They

arcs for sides) and move nodes near the boundary to lie on the boundary.
Finally, internal nodes are relaxed to remove local distortions by moving
each in turn to the average of its neighbour's co-ordinates. This
algorithm at present only handles single regions and cannot grade the

mesh size within a region. Newmantlﬁ) produced an interactive graphics

version of the TRJH[1?)

mesh generator. This is aimed at producing a
mesh over a rectangular domain including all conductors and air spaces

for a finite difference program. Mesh size can be graded within the

L3g

CAD E1

limitation that the mesh must be topologically uniform. Jones(la},
Zienkiwicz et 31(19)’ Gordon et 31(20)’ and Newman et 31(8,9,10,1}) all
use variations of a common algorithm. A general polygonal region is
mapped on to a unit regular polygon of the same order by a polynomial

(21) is similar and has been extensively

mapping. Butlin's method
developed for interactive use. Libraries of meshed sub-structures can
be created for subsequent use. These methods are simple and inexpensive
to implement and work well provided the polygon is convex and not too
far distorted from the regular polygon. Frederick et aI(ZZ) have yet
another algorithm which synthesises a mesh based on a crude set of

(23) use a combination of

nodes digitised by the user. Martin et al
automatic fitting of a regular mesh to the boundary and use of a light

pen to touch up unsuitable areas.

4.2.2 Three Dimensional. No algorithm is known which will automatically

generate a suitably graded mesh for a generally shaped three-dimensional
domain. |f the problem is 2}D (ie. problem of finite length with uniform
cross-section) the two-dimensional algorithms can be used for generating
a mesh over the cross-section and some simple algorithm used to sub-

divide the length.

For truly three-dimensional problems, most success has been obtained by
extending the two-dimensional method of polynomial mapping to handle
(8,9,10,11)

general polyhedia. tHewman et al have used this technique in
the GFUN magnet design program. Hexahedra are mapped on to a unit cube,
for example. This can be sub-divided by a specified number of planes in
each of the three basis directions. Each sub-cuboid can be further sub-

(24)

Cook(zs) each adopt a similar approach. Grading of the mesh size is not

divided into a specified number of tetrahedra. Kamel et ai , and
automatic. The full power of interactive graphics techniques is needed
to allow the user to display sub-sections of his mesh so that he can
visualise the process, and decide how to distribute his available
elements for maximum efficiency and accuracy. The mesh shown in Figure 5

was obtained from the GFUN program using this technique.

4.3 Refining the Mesh Model. |f hic analysis shows model dependence, the

designer will want to examine his mesh and refine it. He will use his
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judgement to decide which parts of the model need a finer mesh, and which keyboard. Lari{z?) implemented a system using a Tektronix Th012 Storage
parts are possibly unnecessarily refined. This process is highly inter- Tube with cursor on an IBM computer. The cursor is used to specify the
active, and clever use of graphics techniques is needed to highlight the logical co-ordinates and to edit the mesh. The results are displayed
problem area amongst a wealth of data. as tables, graphs, or contour maps. Lari(zaJ also adapted the HAGNET(zg)

program for the same hardware. This program allows a limited variety of

L.4 Evaluating the Results. Sometimes the efficiency of a design can be infinitely permeable iron boundaries.

computed as a single number, or a small table of numbers. More usually,

the designer will require to know the variation of some property (field The next major program to be produced was GFUN(8'9’IU’]1) which was the
uniformity for example) over a one, two or three dimensional domain. He first magnet design program written to make use of interactive graphics.
will want this information displayed as a graph or contour map. His choice The formulation involves an integral equation which has the advantage of
of domain may depend on the results themselves, and so he needs to be able needing a mesh only in the non-linear iron regions. It was also easily

to interact quickly with the results to re-~display them in the best way. extended to three dimensions. All input is by keyboard using a convenient
This is another ideal application of interactive graphics. Figure 6 was parameter format. The hardware is identical to that described for

created by the GFUN program. It shows the position and value of the peak MNEMONIC. The geometry and the mesh are displayed and can be edited.
field experienced by some superconductors. Data defining particular designs can be stored as a named file on a

private data-set. Simple problems can be analysed on-line and also some

5. REVIEW OF MAGNET DESIGN PROGRAMS USING INTERACTIVE GRAPHICS automatic optimisation can be invoked. A harmonic analysis of the

The first reported use of interactive graphics for magnet design was a resulting field can be displayed. Results can be displayed as tables,
conversion of the TRIM b batch program. This is a two-dimensional graphs, or contour maps. GFUN has been implemented on many systems in
program using finite difference methods and including variable permeab- many countries. Work is currently in hand (see Section 6) to improve
ility iron regions. The regions in real space are mapped on to a the interactive graphics facilities and to split the tasks between a
regular triangular mesh in logical space by allocating each real node a minicomputer and the main computer. '

pair of logical co-ordinates. The numerical process invoked simulates

the effect of pinning an infinitely elastic sheet containing the regular Hartin(3n) has written the MAGINT program for conductors only, which is
mesh to the real boundaries at the specified positions. The resulting aimed at plasma containment problems for fusion research. Data input is
shape of the mesh is identical to the minimum energy configuration of the by keyboard, and graphics output is on a Cossor CSD 1000 refresh tube.
elastic sheet. Display of results includes surface plots with removal of hidden lines.
Co1onias(26) has adapted TRIM to use a refresh graphics device with light 6. RUTHERFORD LABORATORY COMPUTER-AIDED DESIGN SYSTEM

pen on a CDC 6600 computer. Logical co-ordinates are picked out using Apart from a few special programs, the operation of the central computer
the light pen and the corresponding real co-ordinates are input on the at the Rutherford Laboratory, an IBM 360/195, is aimed at satisfying a
keyboard. The resulting mesh is displayed and can be edited with the large demand for batch processing. The GFUN interactive graphics magnet
light pen. Contour maps of flux distributions resulting from the finite design program (one of the special programs) occupies 210 Kbytes of
difference analysis are also displayed. Newman(ls) has also written the memory for several hours each day, but only uses the central processor
MNEMONIC program which is a similar adaptation of TRIM. This is imple- for a few per cent of that time. We are in the process of transferring
mented on a Computek 400/15 storage tube attached to an IBM 360/195 the interactive graphics part of the program, which does not need such a
computer. No cursor facility is available, so all input is via the powerful computer, into a medium size computer, a GEC Lo80. The hardware
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and software of this computer is aimed at the interactive environment. When
functions are requested which do need the power of the main frame, a batch
job will be launched via a high speed link, and the output from this job
retrieved along the same route. This method of operation will improve
both the batch efficiency in the main frame and the interactive service.
Several simultaneous users will be allowed without the schedule being
restricted to two hours for a single user as at present. Since it was
necessary to redesign the program for a new environment, we are taking

the opportunity of splitting the program into several well defined
modules. Each of these will take the form of a Fortran package which
could be used for many applications apart from magnet design. With a

view to such future developments, a data-base has been designed so that

a stress analysis program, for example, could use files containing data
for a magnet design and calculate the forces in such a structure. Figure
7 shows the structure of the GFUNMINI system. Five main processes are

incorporated:

GEOM Geometry Definition

MATP Material Properties Definition
FEMG Finite Element Mesh Generation
ANAL Analysis

A2 B i VU

RESU Result Interpretation.

These processes communicate via files on the database. The file
management process FILM handles all GFUNMINI files which are accessed
through the data-base manager DBM process. The DCOD process does syntax
decoding and error diagnostics for messages received from the keyboard.
The DOCU process provides the user with instant up-to-date documentation,
also from the data-base. The JOBS process handles communication with the

main frame.

6.1 Geometry Definition (GEOM). The purpose of this package is to allow

the designer to specify the geometry of iron and conductor regions to the

computer with the minimum amount of information. The package also provides
graphics illustration of the data as it is being specified, so that errors
can be detected and corrected immediately. The keyboard is the main input

device since specific numerical values for dimensions need to be supplied.
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To facilitate data entry, only a limited number of simple shapes can be
defined, and complex general shapes must be synthesised from these. Only
closed surfaces which are convex and homeomorphic to a sphere (ie. genus
zero) may be used. However, surfaces may intersect, and a region may be
defined to be a logical combination of the union or intersection of two
or more surfaces or their negations. The three-dimensional shapes are

based on the following set of two-dimensional shapes:

1. Triangle

. Quadrilateral
. Parallelogram
Polygram
Circle

oy o oW N

Sector

A polygram is a polygon, each side of which may optionally be an arc of

a circle. Three families of three-dimensional shapes are built from these

1. Cone
2. Prism

3. Surface of Revolution

A cone is defined to be the closed surface formed by a line with one end
at a fixed point (vertex) and the other tracing out a closed two-
dimensional curve (directrix). The directrix may be any of the six two-

dimensional shapes.

A prism is defined to be the closed surface formed by joining corresponding
nodes of two similar two-dimensional shapes taken from the same set. The
end faces are planar. Etach other face must be either planar, or part of
the surface of a cylinder or cone. For similarity, both end shapes must
have the same number of nodes, and corresponding sides must have the same
curvature. Each end face of the prism may be optionally inclined to the
axis of the prism which itself may be in any direction. The end faces

may be defined as congruent.

A surface of revolution consists of the closed surface defined by rotating
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one of the two-dimensional shapes about a given axis by a given angle.

The following set of three-dimensional primitives are available at
present. The user specifies a four letter name, and the system under-

stands the symmetry inherent in each figure.

FAMILY 2D SHAPE CONGRUENCE NAME
CONE TRIANGLE - TETRahedron
CONE QUADRILATERAL - PYRAmid
CONE CIRCLE = CONE
PRISM TRIANGLE YES TPRIsm
PRISM TRIANGLE NO WEDGe
PRISM QUADRILATERAL YES QPRIsm
PRISM QUADRILATERAL NO HEXAhedron
PRISM PARALLELOGRAM - YES BRICk
PRISM CIRCLE YES CYLInder
PRISH POLYGRAM YES PPRIsm
REVOL. CIRCLE - SPHEre
REVOL. CIRCLE = TORUs

These primitives are illustrated in Figure 8. The designer first
conceptually divides his general three-dimensional shape into regions
which can be formed from these primitives. Each surface is defined

using the POLLY language which is decoded by the package and stored as a
set of three-dimensional co-ordinates. The co-ordinates of a node can be

specified in four ways.
|. Three numeric values separated by one or more spaces.
2. If only one or two of the co-ordinates differ from the
last node defined, one or two alphanumeric fields in

free format.

3. An incremental version of 2.

L. By the cursor, if it coincides with any previously defined node.

CAD E1

The incremental alphabetic codes are U or D for up or down, L or R {or
left or right, and 0 or | for out or in, each with respect to the screen
basis. For codes to define absolute co-ordinates as opposed to incre-
mental, T is added to these codes. |f the direction of the edge being
defined is not along the screen basis directions, several codes can be
combined on a single line, and a vector sum will be taken. The numeric

value follows immediately after the code letter in free format.

For example, to define an orthogonal block 40 x 20 x 5 units, the commands

would be:

SHAP = BRIC (defines 3D primitive)

g.8.8 (defines co-ordinates of corner)
RL4d (defines the first edge)
us (defines next edge and complete end face, since

opposite edges of a brick are parallel)

020 (defines third basis vector, and the complete brick)

The object is developed on the graphics tube as each item of data is speck
fied. Any error can be immediately erased by typing the privileged code
B
Various display options will be available. The user will be able to scale
move or rotate his objects, and view them with one of the following set
of projections:

1. Cabinet projection (default)

2. View from infinity

3. Perspective view

L. Hidden line perspective
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5. Stereg wire frame perspective pair.

An example of the hidden line perspective view is shown in Figure 4. |If
the object has planes of symmetry, these can be specified to reduce the
amount of data even further. The data can be edited and stored on the

data-base.

6.2 Finite Element Mesh Generatiom This will be a suite of packages, each

of which can take a geometry file and sub-divide it as automatically as
possible into small elements (tetrahedra, or triangular or quadrilateral
prisms). The first to be implemented uses the same technique as the
present GFUN program. A hexahedron,for example, is mapped by a polynomial
mapping on to a unit cube. The user may specify a number of planes in
each of the basis directions to sub-divide this cube. Each smaller cuboid
can be further sub-divided into a specified number of elements in a
regular way. The mapping is inverted to find the co-ordinates of the
elements in the original hexahedron.(See Figure 5.) This method is cheap
to compute and effective, provided the general polyhedron is not too far
distorted from the equivalent regular polyhedron. Other algorithms will be
added in a modular fashion. Mesh files are also stored on the data-base.

The analysis process (ANAL) will collect data from a specified set of
geometry and mesh files and material property files, and submit a batch
job to the main frame. When the result file is available on the data-base,
the RESU process will be used to display the results in a similar fashion
to that employed in the present GFUN program (eg. Figure 6).

Each process is coded in standard ANSI| Fortran to ensure a high degree
of portability between machines. The data-base manager uses the standard
data management software available on all similar computers, the unit of
data being a sequential file. The graphics package is GINO—F.(3]} This
is also almost all in Fortran and provides a high degree of device

independence. It is also available at many centres.
Such a system could form a basis for a network of interactive graphics

computing facilities. A small remote station could consist of a cheap

storage tube (eg. Tektronix Th010) connected by telephone line to a
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remote graphics computer (eg. GEC 4080) containing the CAD system soft-
ware. Users whose demands were greater could have a local graphics

computer serving several terminals.

7. CONCLUSIONS

Magnet design has progressed a long way since 1960 when the beam transport
magnets for the Nimrod Accelerator at the Rutherford Laboratory were
designed. Computers were much less powerful, and experience in even two-
dimensional magnetostatics programs was limited in the United Kingdom.

The design process consisted of building small-scale model magnets (6
months from start of paper design to delivery of model) and constructing
special apparatus to measure the very accurate fields involved. Refine-
ment of the model in the best case consisted of using non-magnetic jacks to
support varying thicknesses of steel shim on the pole-pieces, and experi-
mentally determining the optimum shim size. In the worst case, part or

all of the model had to be machined.

Not only can the whole design be done in a fraction of the time now, but
the resulting design is often closer to the ideal requirement because
experimenting on the computer is a comparatively rapid process. When a
large project is to be designed and built, it is important to keep the
design time within reasonable limits without launching into production
with an inferior design. It is this problem to which the techniques of
intemctive graphics are so well suited. The designer is able to make
full use of the computer while being able to concentrate on the aspects

of the design for which he is best suited.

There is still room for refinement of techniques in several areas.

General three-dimensional mesh generators with automatic grading of the
mesh size will be a major step forward. Several techniques for displaying
three-dimensional objects on a two-dimensional screen need to be experi-

mented with. The possibilities of networks need to be exploited.

Magnet design is a large potential growth area for interactive graphics.
As hardware costs come down; as machine and device-independent code
becomes a reality; and as networking makes powerful facilities available

remotely, it will be surprising if such techniques do not become
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common-place for magnet design within 5 years.
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Discussion following paper:

(Diserens, Rutherford) What is the future of colour displays in inter-

active graphics?

(Newman) The development of colour displays is of less immediate
importance then monochrome techniques for displaying three dimensional
Objects, Dynamic rotation and hardware perspection, hidden lines, and
intensity variation with depth should be exploited first. If colour can
be added independently it would be useful for separating conductors from

iron and for distinguishing iron regions of differing permeabilities.

(Jacobs,CERL)  You mentioned the development of software to assist users
to find mistakes in data input, etc; this must extend to all software
development and program usage in the future as software costs increase
comparatively fast yet hardware costs will decrease. Could we have your

views please?

(Newman) Yes I agree., Fortran, in spite of its lack of flexibility is
already accepted as the first language simply because of the guarantee of
portability. Standards in graphics packages are already showing some
Signs of appearing and this again is encouraged by the demand for portable
software. There will always be applications for which these standards
are in agreement but the vast majority of users will be happy to conform
if this saves on software development time. High level interaction
packages such as those being developed at the Rutherford Laboratory are a

natural extension.

{Luciano, ENEL CRA) I have seen in your review an example of discretiz-
ation of a plane region ("the front of a church") with holes subdivided
into subregions for its discretization, In an improved and more efficient
version of that program (paper is available) the mesh may be obtained
treating the region with its holes like a whole region, without the need

to tear it into subregioms.

This means also that data input is much reduced.

Lks5
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THE INTERACTIVE DESIGN OF MAGNETIC FIELDS FOR CONTROLLED
THERMONUCLEAR RESEARCH

T.J. Martin
Culham Laboratory, Abingdon, Oxon, 0X14 3DB, UK

(Euratom/UKAEA Fusion Association)

1 INTRODUCTION

The controlled release of energy from nuclear fusion depends on the
ability to heat and contain an ionised gas (plasma) of deuterium and
tritium for sufficient lengths of time, which may be of the order of
seconds. Since the particles are charged, a natural choice for the con-
tainment system is one based on magnetic fields. Many such experimental
systems have been proposed and built to contribute to the understanding of

the problems involved in plasma physics.

In the first instance, the magnetic field topology must satisfy cer-
tain constraints and much optimisation must take place before an experi-
ment is eventually built. The cost of these devices demands that extensive
calculations and evaluations are made at the design stage thus providing
the motivation for the development of the computer program MAGINT described

in this paper.

It will be appreciated that many physicists and engineers engaged in
the design of magnetic containment systems are not interested in program-
ming for its own sake and are understandably reticent about using computer
programs which require complex procedures for setting up data and produc-
ing results. A good user image is essential therefore, if manpower (and
computing power) is to be utilised in the most efficient and productive
manner. To this end, the interactive, magnetic field design program
MAGINT offers comprehensive facilities for the optimisation and evaluation
of possible conductor configurations, the results where possible being

presented in readily assimilated graphical form,

The vacuum magnetic field is regarded as a superposition of one or
more elementary, pre-defined analytic fields (e.g. uniform fields) together
with any combination of components produced by the following sets of con-

ductor types:

i. Circular filamentary loops

ii. Rectangular filamentary loops

kg
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iii. Linear filaments
iv. Finite, rectangular cross-section solenoids with constant
current density distribution
and v. General curvilinear filaments represented by sets of spatial

coordinates joined by straight segments.

A whole range of operations are provided to manipulate and calculate these

fields within a versatile and easy-to-use framework.

The program is written almost wholly in standard FORTRAN and runs
on the Culham ICL 4-70 computer operating under the MULTIJOB regime which
provides a fully interactive working environment. Data input to the pro-
gram is primarily through a conventional teletype and on-line graphical
output (generated by the GHOST[ll package) is directed to a COSSOR CSD1000
refresh display. The total store size required by MAGINT is 120 Kbytes

and typical runs consume about a minute of processor time.

Section 2 of this paper introduces the philosophyadopted during the
initial design and development stage of the program while section 3 des-
cribes the facilities in detail. The numerical methods used for field
calculations and for following fieldlines are briefly mentioned and in

section 5 some examples in the uses of MAGINT are given.

2. PROGRAM DESIGN AND STRUCTURED DEVELOPMENT

For this program we prefer the interactive mode of operation, rather
than batch mode, for not only is the user's train of thought uninterrupted,
but he will possess specialised knowledge and/or experience which com-
pletes the 'iteration loop' in a manual optimisation[ 2]. Additional
benefits are that errors in data input and incorrect usage of the program
are picked up immediately, resulting in faster turnround and minimisation
of computer time. Disadvantages with the interactive mode are normally
restrictions on the size of the programand the complexity of the problem
to be analysed, the first being obviated by suitable segmentation of the
program. Again by careful programming and selection of optimal numerical
methods, it is our experience that useful calculations can be performed

on-line for this type of problem. This question is raised again at the

end of this section.

During the initial development stage of the program, the following

precepts were kept firmly in mind :
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i. The program must be easy to use by both inexperienced and expert

computer users.
ii. The data input should be kept to an absolute minimum.

iii. The facilities should reflect current requirements and be easily

extensible to accommodate growing needs.
iv. Good protection must be provided against misuse of the program.

v. Printed output should be minimal unless specifically requested -
immediate graphical output being a more efficient vehicle for

the transmission of information.

The strategy adopted for data input consistent with the first require-
ment is that of a command structure. Every program action is invoked by a
four-letter mnemonic keyword and an associated parameter. Any additional
information required by the program is requested by issuing a prompt at
the terminal. After the action has been carried out, the program returns
to the command mode in readiness for the next task. As an example, the
following command generates sixteen circular loops equispaced around a

given torus (hereinafter, all user-typed information will be underlined):-

CMND? TOR 16

RMAJ , RMIN, CURRENT?

? 1.0 0.15 1.27E6

16 TYPE 1 TOROIDAL COILS ADDED
CMND?

For the user who is familiar with the program, a facility is provided
to switch off the prompts so that faster interaction is made possible. At
present about sixty commands are available and are described in more detail
in section 3. This form of data input has two main advantages; firstly it
is easy to learn and use, and secondly it serves to document particular

runs of the program.

The minimisation of information typed by the user is achieved in
several ways. All program parameters such as contouring matrix size,
accuracy criteria ete. are given sensible default values, commands being
provided to change them if necessary. In the same vein, to avoid identify-
ing the type of conductor each time some geometric manipulation is per-
formed, the program assumes a "Currently Active Conductor" type with

provision for selecting the alternatives. To avoid repeated input of the

CAD E2

same configuration each time the program is executed, sequences are inclu-
ded for storing the geometric details in a magnetic disc file. Finally,
specialised commands have been written to take into account any particular

configuration symmetry.

The third precept implies a modular program structure so that new
facilities can be simply 'plugged in' - an additional advantage being that

selected pieces of code may be easily incorporated into other programs.

The final two points are largely self-explanatory; a comprehensive
set of diagnostic and error messages being provided to guide the unwary

user.

Fig. 1 shows a schematic diagram illustrating the program in its
operating environment, the arrows indicating all possible directions of
information flow between MAGINT and its hardware peripherals and file

storage.

CONDUCTOR
LE P
DEVICE- cmg;ggiggmﬂ "PSEUDO"
INDEPENDENT OFF-LINE
GRAPHICAL ik | COMMAND
STORAGE Y | STORAGE
| e ————
LOW-LEVEL LINE
GRAPHICAL > MAGINT . | PRINTER
STORAGE OUTPUT

TELETYPE
\

.\‘

Fig. 1 : Information routes between MAGINT and peripherals

There are of course some aspects of containment system design which
require complicated and prolonged calculations such as magnetic surface
generation, charged particle and guiding centre trajectory plots. How-
ever, MAGINT can be used to set up and verify the configuration before
embarking on long (and expensive) batch program runs. A subset of the

MAGINT commands that handle conductor manipulation have been incorporated

4hy
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into a separate input package shared by all the Culham magnetic field pro-

grams, thereby creating a completely compatible and uniform user image -

a very desirable feature.

3. PROGRAM FACILITIES

All but one of the commands can be classified into five logical sub-
sets, each of which are described in detail below. The exception is the
'"USER' command. Provision has been made for executing program actions
tailored to suit individual user's requirements. Generally these opera-
tions are only of interest to particular people and therefore do not
warrant a place in the overall command structure - nevertheless they play
an important role in ensuring that the designer can perform precisely the

operation he has in mind. This facility is introduced by the simple

expediency of supplying a FORTRAN subroutine with a pre-defined framework.

3.1 Conductor Manipulation Commands

All of these commands act on the pre-selected conductor type and

form a powerful basis with which to speedily assemble the desired
configuration. Conductors can be introduced into the system by

several means. The 'ADD' command requires a complete geometric

specification - for example, if a single solenoid is required centred

at the origin with its axis at 45° to the x and y axes, the follow-

ing would be used:-

CMND? ADD 1
XS,YS,ZS, AL, AM, AN, RT ,RO, W, CUR?

2 0.0 0.0 0.0 1.0 1.0 0.0 0.5 0.7 0.1 2.75E5
CMND?

Right hand screw conventions are used throughout in defining the

direction of positive current. Taking symmetries into account, co-

axial and toroidal coils can be conveniently distributed by the 'COAX'
and 'TOR' commands. For stellarator experiments, 'THLX' is available

for generating the toroidal helical windings. It is also possible to

interact with the refresh display to draw arbitrarily shaped planar

conductors using a tracker cross and ball.

Having established the basic conductor set, commands are pro-
vided to perform mirror reflections in any of the three principal

planes and to spatially translate and rotate all or specified
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conductors together with the option of retaining the originals.

A group of commands to alter specific geometric properties of
the conductors is also available, thereby saving a user the task of
retyping the complete specification. Centres of coils and their
orientation together with currents and individual points on curvi-

linear conductors may be quickly changed.

Finally, the ability to delete all or selected conductors is
introduced through the 'DEL' command, the conductors being uniquely

identified by a number assigned at generation time.

The use of these commands is demonstrated in sectiom 5 and it
can be seen that a particular construction may be performed in many

different ways, the user choosing the one which is most convenient.

3.2 Parameter Setting Commands

On entry to the program, certain common variables used through-
out the various sections are given sensibly selected values in order
to avoid repeated specification. For example, circular filamentary
loops are assumed to be the currently active conductor type, others
being invoked by use of the commands 'RECT', 'LINE', 'SLND' or 'CURV'.
The user can also set up his own limits for graphs (the default being
automatic limits); he can specify the relative accuracy at which the
solenoid routines operate or select the type of three-dimensional
projection for viewing the conductor configuration. Suppression of
data prompts (for experienced users) and altering the matrix size
containing the magnetic field components are effected through the
'MSG', 'MU' and 'MV' commands.

Commonly used, predefined analytic magnetic fields are selected
by 'ANAL' e.g. an I/R toroidal field being established by the

sequence

CMND? ANAL 4
TOROIDAL CURRENT?
? 2.96E6
CMND?
giving the field
2.96 x 10°® My

Bop = 5T R
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3.3 Graphics Commands

Picture information can be handled at two levels; in low-level
hardware form using the special instructions related to the COSSOR
display or at high, device independent level enabling selected pic-
tures to be processed onto any locally available plotter. 'PSTR'
controls whether picture information is retained in a file on disc or
only shown once and subsequently lost. 1In this way picture files can
be built up that only contain frames of interest. Commands are avail-
able for reshowing, combining and overwriting stored pictures and

converting all or selected frames into the device-independent format.

Before any field calculation takes place, it is reassuring for
the user to 'VIEW' the conductor configuration in some three-dimen-
sional projection to establish its correctness. (see figs. 2, 3, 4, 5,
6, 7 and 8)

After the magnetic field has been evaluated over some plane,
selected quantities can either be contoured (see fig. 10) or three-
dimensional, isometric developments of the surfaces can be plotted by
the command 'PLTM' (see fig. 11). The matrices of field components
are not destroyed, enabling the maximum amount of information to be
derived from the relatively costly field evaluation;. In addition,
the 'BDRN' command plots scaled arrows representing the projected
direction and magnitude of the field at each of the matrix grid points
giving an overall picture of the field without resorting to expensive

fieldline calculations.

3.4 Field Evaluation Commands

This important class of commands uses the Culham magnetic field
subroutine library to perform the various operations. 'FLDP' and
'FLDL' respectively calculate the cartesian components of the field
and its strength at specified points and along an arbitrary line in
space, the latter producing a graph of the four quantities together
with an optional table printout. 'FLDC' allows the field to be
found around a given plotting circle, the results being presented
graphically in either a global or natural local coordinate system
(see fig. 9). Again, detailed printout may be obtained if required.
The user can also specify an arbitrary, rectangular plane over which

the field components are evaluated by the 'FLDM' command, graphical
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interpretation of the results being performed by 'PLTM' as described
in 3.3.

Detailed information about the fieldline structure is obtained
from 'FLIN'. The ordinary differential equations of the fieldline

dr B

ds " Te[
are integrated from a given starting point in both directions until
certain stopping criteria operate, the points so obtained being pro-
jected onto a given plane and displayed. These pictures can be
superimposed on [E| plots to give a comprehensive idea of the field

characteristics (see fig. 10).

Fieldlines for the axisymmetric experiments such as the super-
conducting Levitron are cheaply generated by the 'RAFI' facility
where contours of the quantity R.Ao (where Ag is the azimuthal

component of the vector potential) can be plotted.

3.5 Housekeeping Commands

All or part of the conductor configuration geometry can be
directed to the teletype or display by using 'LIST' while the con-
tents of the field component matrices and associated quantities can
be sent to an output file which is processed on a line-printer at

job termination.

Conductors can be stored and retrieved from a disc file using
the 'FILE' and 'READ' options. This facility not only reduces the
data input when analysing the same configuration over several runs of
the program but also offers additional security against possible

system/program failures.

The normal input channel to MAGINT is a teletype, but it is
possible, through the 'OBEY' command, to redirect this channel to
read commands from a disc file. If any errors are encountered, the
program immediately returns to interactive mode for corrective
action. In its simplest application, the user might require the

same sequence of commands for several different runs of the program.

Finally, provisions are made for adding titles to graphs,

obtaining summaries of the assembled configuration and parameter

Lho
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values and for correctly terminating the program.

4. NUMERICAL METHODS

Closed, algebraic forms derived from the Biot-Savart law for the
field due to linear and circular filamentary conductors (the latter involv-
ing elliptic integrals of the first and second kind) are well known and
are not reproduced here. The rectangular loops and general curvilinear
conductors both use the linear segment approximation. Fields due to
finite, rectangular cross-section solenoids are calculated from a method
by SnowlB]. Essentially, an infinite series representation of the field
is generated for a solid, semi-infinite cylinder, four of which are super-
imposed to form the solenoid, the current directions being arranged in
such a manner as to cancel except in the region of interest.

The method used for integrating the fieldline equations is an eighth
order hybrid multistep/Runge-Kutta process described by Butcherlal. To
advance the integration from one point to the next, derivatives and func-
tion values are used from the previous three steps together with inter-
mediate values calculated within the new step. Large steps can be taken
with this method whilst maintaining a high degree of accuracy - in fact
the step can prove too coarse for some plotting purposes. This is over-
come by fitting a seventh order Hermite polynomial to the last four
function values and associated derivatives enabling accurate interpolation

within the current integration interval.

55 EXAMPLES OF USE

To illustrate the use of MAGINT, we reproduce below the commands which
could be used to construct and view the superconducting Levitron configura-

tion shown in fig. 2.

PROGRAM RESPONSES COMMENTARY
CMND? COAX 3 Input 3 circular loops coaxial with the
AXIS 1,2 OR 37 }z~axis
2.3
HT,RAD, CUR?

? 0.0 0.3 0.5E5
?0.23 0.158 -0.4E5

Superconducting ring

Inner vertical field coil

k50

CAD E2

PROGRAM RESPONSES
(continued)

COMMENTARY
(continued)

? 0.237 0.6 -0.125E5 Outer vertical field coil
3 TYPE 1 COAXIAL COILS ADDED
CMND? TRAN -2 }.Generates remaining Bv coils in upper
COND NO,DX,DY,DZ?

7 2 0.0 0.0 0.048

COND NO,DX,DY,DZ?

? 30.00.0 -0.044

CMND? RFLT 3

4 TYPE 1 CONDUCTORS REFLECTED

Confirmatory message

plane by the save and translate method

Create 2nd inner BV coil

Create 2nd outer Bv coil
Reflect the four coils in the x-yplane
(N.B. Coils in the reflection plane

are not duplicated)

CMND? RECT 1 Select rectangular, filamentary loops
CMND? TOR 12 Generate 12 toroidal B coils
RMAJ,A,B,C? '

? 0.5325 1.2 0.935 0.83333E5
12 TYPE 2 TOROIDAL COILS ADDED
CMND? PROJ 2

CMND? VIEW 6

XC,YC,2C,XE, YE,ZE,RL?

?7 0.0 0,0 0.0 90.0 100.0 100.0 1.5|y Specify centre of interest, position

Confirmatory message
Select conical projection

Look at complete configuration (fig.2)

of eye and the radius of the sphere

of interest

CMND?

A further example demonstrating the power of MAGINT is in the design
of a poloidal field coil assembly for the proposed Joint European Torus
experiment (JET)., We sought to quantify the magnitude of the perturb-
ations in the field caused by the physical connections to the windings and
to find the optimum positions such that the perturbations were minimized.
Each connection was represented by a five point general conductor and the
final distribution is shown in fig. 8 and the corresponding field perturb-
ations around a plotting circle in fig. 9. This calculation would have
been prohibitively tedious to perform without the sophisticated conductor

manipulations provided by the program.
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6. CONCLUSIONS

The computer program described in this paper was developed in collab-
oration with those people most closely associated with the design of
magnetic containment systems and forms the foundation on which future

computational aids will be built.

It was pointed out in the introduction that the program is extensible
and new facilities are being added all the time as the need arises. Cur-

rently, sections to calculate forces on conductors are being implemented

and in the future it is hoped to include the effects of magnetic materials.
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Discussions following paper:

(Wind, CERN) Does your program take into account the current flowing

in the plasma?
(Martin ) Not explicitly- however the modular structure of

the program makes it very easy to add such a facility. The plasma could

of course be modelled by existing filamentary conductors.
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Fig.2 The Culham Superconducting Levitron assembly.
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Fig.3 The Culham Dite tokamak experiment with divertor.
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Fig.4 A proposed, toroidally-linked mirror experiment using Yin-Yang coils.
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Fig.5 A proposed, toroidally-linked mirror experiment using tennis ball
seam conductors.
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V82T ‘
THE CULHAM CLEQ SFELLARNTOR/TOCAMAK EGFERIHENT COMECTIONS T0 TME JET POLOIDAL FIELD COIL ASSEMBLY

CULHAN LABCRATIRY T MAGIHT FIELD CESICH PROGRAR 1ha%h 38 T WABTIN EXT. 301 CULIAR LABORATORT. RAGINT PIELD CESION PROGRA TR T MARTDN EXT. 341
VISV CF COMUCTORS VIEY OF CONOUCTORS

Fig.6 The Culham Cleo Stellarator/ Tokamak experiment (general view). Fig.8 Connections to the poloidal field coils of the proposed JET experiment.

CULHAN LABORATOHY 90sTe MASINT FILLD OESICN PROGRAA 1540445 T RARTIN EXT. 340 CULMAN LABOSATORY
THE CULMAM CLED STELLARATOR/ TORAMAK EXPERTMENT

WIEV OF CONILCTORS

L.0010
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o.7ie8

0786

T

0 50 100 1ShcoRSC 0 300 380 O s 100 ISouMeE 350 300 350

Fig.7 The Culham Cleo Stellarator/Tokamak experiment (plan view). Fig.9 Perturbations in field caused by coil connections (see above).
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Fig.10 Field lines and |B| contours for a simple 2 coil system.
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Fig.11 |Bsurface for a simple 2 coil system.
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DESIGN METHODS FOR TOKAMAK
OHMIC HEATING WINDINGS

A. J. Federowicz, Lois C. Lintner & J. H. McWhirter

Westinghouse Research Laboratories
Pittsburgh, PA 15235
U.S.A.
SUMMARY
The Tokamak Fusion Test Reactor (TFTR) is a device proposed to

be completed by 1981 at the Princeton University Plasma Physics Laboratory
[1,2]. The device (Figure 1) is planned to achieve a "breakeven" fusion
reaction with the assistance of high energy beams of neutral deuterium

particles injected into a plasma containing tritium.

T *81a

The plasma of a Tokamak device is also heated by an electrical
current which is electro-magnetically induced by a changing flux generated
by an ohmic heating (OH) winding.

The initiation of the plasma is controlled by a hexapole null.

A winding to generate this null could be separate but it has been pro-
posed that both the ohmic heating and the formation of a hexapole null be
accomplished by means of the same winding. At this reported stage of
development the winding to accomplish the hexapole has been considered as
a perturbation on the ohmic heating winding and this perturbation is de-
signed in a separate process., However, it is anticipated that, eventually,
both design processes should be combined into one. The techniques which

103089y 1S9 uoTsng YEWEMOL

have been used in the conceptual design of the OH winding and the hexapole

0o N N B W R -

null are the subject of this paper. % ; ; iy 6 4

mppImMOTOR

The main intent in this paper is to describe mathematical and 5 a E m g E % 3 a

computational design processes rather than Tokamak technology or design s 5 8 g E E T 2 E

results. The basis of the design method has been the formulation of the E § E i E s % % E

design problem in terms of linear expressions and the optimal solution of " 2 A % E E 2 E E

the design problem by means of linear programming computer codes. % E E E E g

Other approaches to similar design problems are reported in 5 E me 3
references 3-5, -
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DESIGN CONSIDERATIONS

The design description is facilitated by considering the device
in a right-hand (R, 6, Z) cylindrical coordinate system. The fields have
rotational symmetry about the Z axis and are symmetrical with respect to
positive and negative Z. The field parameters which vary only with R and
7Z are termed poloidal and the winding currents which have only a 8 compo-
nent are called toroidal.

The OH field winding provides a large magnetic flux linking the
toroidal plasma current. A rapid change in this flux induces a toroidal
current in the plasma. Considering this function alone it is desirable
that the flux density in the plasma be very small as compared to other
fields. It is also desirable that the mechanical intersection of the OH
field with the currents that produce a toroidal field (TF) be small.
Although the subject device will have TF coils at higher than room
temperatures, later devices are expected to have superconducting TF coils.
It will be important to limit the pulsed flux in these superconducting
coils in order to preserve their superconductivity.

The initiation of plasma ionization will tend to occur at points
of zero magnetic field intensities. A multipole null will have a definite
point null (in the R-Z plane) and the field strength will increase rapidly
away from this null point. The region of plasma formation is thus accur-
ately controlled.

The OH winding is one of several sources of poloidal fields.
Other sources are equilibrium field (EF) coils [2] and the plasma. The OH
and EF coils compete with each other and with other functional devices for
the same space. A rational resolution of this conflict is an important
part of the design problem. Mechanical design considerations favor the
use of a fewer number of turns and a higher current (preserving the prod-
uct), This accentuates the design problem associated with the resolution

of integer turns.

LINEAR PROGRAMMING

Linear programming computer codes will solve problems of the

type

ksg
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n
Minimize L aojx.
=i

Subject to constraints

x, > 0.0 and

]

<
L aijxj 5 bi i=1,M

[ =]

where the aij and bi are known numerical constants, and the xj are the
unknown optimal values of the variables. The symbol E indicates a choice
for each expression i of the relationmships £, =, or Z.

The codes which solve such problems are mathematically well
founded and are essentially guaranteed to produce an optimum solution if
a feasible solution exists or to indicate without excessive computation
that there is no feasible solution if such is the case.

The output information from a problem solution contains addi-
tional numbers which provide insight into the problem economics. For
example, there are sensitivity constants which disclose the way in which
the minimized function is affected by changes in the constants.

MATHEMATICAL, PROGRAMMING - AN ENGINEERING TOOL

Mathematical programming, which to these authors includes
geometric programming and linear programming, has been found to be a very
powerful design tool. In contrast to other design methods we see the
following advantages:

1. The engineering design problem can usually be literally and
precisely stated so as to lead to a unique optimum solution.

2. The technique requires the designer to focus on, and think
clearly about, the tradeoffs among the cost and various performance char-
acteristics. This also permits a systematic and logical compromise among

these considerations.
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3. If a solution exists, the code is essentially guaranteed to
find it. If several solutions exist the best of these will be found. If

no solution is possible the code will determine this without excessive

{3
o
]

I T O T
a7

searching. A problem with no feasible solution can be viewed as having a
solution of infinite cost.
4, A solution yields by-products in the form of partial deriva-

tives of cost with respect to the many constraint parameters. Through

=
(=]

these sensitivity parameters it may be found, for example, that a small

Z-Meters

change of one unit of performance parameter A is worth the same amount of

money as 10 units of performance parameter B. If the present value of

5.4

Illlﬂ'lllllI|r|l1lTIi!|[l||||l|!||1ﬁ'l||

0.0 1.0 2.0 3.0 4.0
DESIGN RESULTS R-Meters

parameter B is marginal and the value of A more than is needed, we can

o
o

S I 8 1 O 8 O O 0 0 T A 0

trade evenly a large improvement in B for a small worsening in A.

The fields resulting from the design processes are shown in the Fig. 2 Lines of Flux From Ohmic Heating Winding
form of lines of flux in Figures 2 and 3. The final design result would
be to superimpose the ampere turn distributions of these two windings to

produce the design of an OH winding yielding a hexapole null. 0.2 L Lttt b L L it it
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APPENDIX A
DESIGN OF OH WINDING
Model

The design variables are filamentary currents of unknown magni-
tude, x(j). These are assumed at a large number of locations, e.g. 98, in
the upper half plane; the linear programming (LP) solution typically con-
tains a smaller set of non-zero values and thus selects these winding
locations from the larger set. A symmetrical set of solution values is
assumed in the lower half plane. Each turn should carry the same current
and thus feasible x(j) must be integral multiples of the same current.
This discrete constraint is somewhat difficult to meet without degrading
the performance with respect to other constraints. The technique developed
for dealing with discrete (integer) variables is described in Appendix B
and would be useful here. Because linear programming variables can only

take on positive values, x(j) is represented as the difference between its

positive and negative components, xp(j) and xm(j).

x(j) = xp(j) —xm(j)
Minimization of Cost

The cost of the winding is assumed to be proportional to its
volume., If we assume a constant winding current density throughout the
winding, the volume is also proportional to ohmic loss. As a consequence

of this same assumption, the number of turns at any location is proportional
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to the absolute value of x(j) which is given by

|x(3) [= xp(3) +xm(3)

The length of a turn at location j is proportional to the radial
position R(j). Therefore the total volume is proportional to

jz R(§) (xp(§) + zm(]))

which is to be minimized.
Magnetic Flux Constraint

The magnetic flux linking the plasma is a linear combination of

the x(j) and must be at least equal to a specified value ¢. That is,
§¢ojx(j) S
¢oj is the flux linking the plasma due to a unit positive value

of x(j) [7] and involves the computation of elliptic integrals [8]-
Field Strength Constraints

At points i within“the plasma cross-section (or wherever we may

wish to place them), we require that the absolute values of both BZ and

BR be less than a given maximum value. This is imposed by the constraints
derived as follows. The Z component of B at location i is defined by the
equality
EBZijx(j} - B, =0
i
This is subject to a constraint that

-B < BZi =B
where BZij is a constant involving an elliptic integral.
Bzi is a variable, the Z component of B at field point i,

B is the maximum magnitude of B,y-
The difficulty with these constraints is that Bzi should be free
to take on positive and negative values. We introduce the auxiliary
variable

* = B
BZi BZi + B
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and our constraints become

. =R d
zBZijx(j) 321 -B an
3

* B -
Bzi < 2B E 1,NI.
In a similar manner we can arrive at the constraints
B ) = BX. = =B
I Rijx(J) BY, B and
3
BY < 2B i = 1,NI.

It may be desirable and necessary to constrain components of B
at points within the toroidal field coils. The constrained components of
B may be in the direction either perpendicular or parallel to the toroidal
field current or both.

At field points k we require that the component of B in the
direction of a unit vector Ek with R and Z components (ak, bk) be limited
to EV‘ If the component of B in the direction of Ekis BVR’ this is defined

as

a zBRij(j) +b Eszjx(j) - By =0

and the constraint is
_BV < BVk s BV
By defining the variable

% = B
ka ka + BV

we arrive at the constraints
z(a BRkj + kaij)x(j) - B{}k = -B; and B;}k < ZBV
We have a set of constraints specifying that the maximum value
|x(3) | may have is %(§). That is
x(3) = xp(d) + xm(§) < x(3)

In working toward an engineering solution we fipnd useful a set of

constraints

CAD E3

x(3) = x'(4).
That is, x(j) must be equal to a given value x'(j).

APPENDIX B
DESIGN OF HEXAPOLE NULL

Model

The model for the hexapole null winding is much the same as that
for the OH winding.

The field from the OH winding is known and this known field plus
the field from the winding to be designed are to form a hexapole null,
In the discussion to follow, the effect of the OH winding is neglected
for the sake of simplicity and clarity.

The minimization of cost is identical to that of the OH winding.

Null

The Z component of B must be within given tolerances from zero
at the null point. The field at the null is defined by

j B, jx(J) =0

and the constraint is

-B, <B, 2B

Zo = "Zo Zo"

In order to eliminate variables which take on negative values we

define

% = + B
BZo BZo BZo

and our constraints become

* = _R
j ZOJx(J) + B = P20
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Hexapole Lobes

The contours of 1£| for an ideal hexapole are circles concentric
about the null point. We define the hexapole in terms of a small circle
with radius g having the null point as its center and radius vectors i
from the null point making an angle ei with the R axis. We also consider
that |B| will ideally go as the inverse square of the distance from the
null point.

The hexapole is to be controlled at values for Bi, of 0, 30, 60,
90, 120, 150, 180 degrees and on the small circle with radius a; sym-
metry about the R axis will take care of the field in the lower half
plane. At g, = 30° and 150°, B should ideally be radially outward
from the null and at Bi = 90%, B should be radially inward. At Bi = 0°
and 120° B should be perpendicular to the radius vectors in a counter-
clockwise sense and at ei = 60% and 180°, B should be perpendicular to
the radius vectors in a clockwise sense. v

The definition of the radial and tangential components of B

which are to be constrained are

§(BRij cos 6, + BZij sin Bi)x(j} - Bi =0 i=2and 6
;:(BRij cos ei + BZij sin ei)x(j} + Bi =0 1i=4

E(BRij sin ei - BZij cos Bi)x(j) - Bi =0 i=1and5
;:(BRij sin g, - BZij cos Bi)x(j) +B, =0 1i=3and7

OQur requirement is that the Bi should have positive values at
least equal to some minimim field strength ﬁaz and less than some value

(1+K}Ea.2. This is expressed as

=2 = 2

Ba"s By < (14K)Ba™.
This bounding of a variable is often handled by a specialized

feature of a linear programming code. If this is not available it is

handled as a double set of ordinary comstraints. If K is made zero, the

CAD E3

hexapole will be quite regular. Non-zero values of K permit a distortion
of the hexapole.

The hexapole winding should not provide flux linking the
plasma. This requires a constraint.

B X = 0

Integer Turns
The constraint of integer turns is restrictive in the case of a

null. Rounding of a non-integer solution is not sufficient. An integer
programming code was investigated but appeared to be awkward, costly, and
a more powerful tool than was required. The following technique was
developed. The candidate currenf locations were divided into groups k
and the following constraints are imposed.

?kX(j) -8, =0

Sk1 = S < Spp

TR skl and 8, correspond to integer turns. If one of

the constraints is active, the sum of the turns is an integer. If the
upper and lower bounds are the same, the sum must be an integer. If the
bounds correspond to one turn, the sum must be one turn. By successive
solutions, each increasing the number of groups, it is possible to reach
an integer turn solution with very tight tolerances on the design
performance.

If the location of a turn can be judged to lie within bounds in
R and Z, the four corners of the bounding squaré can be proposed as loca-
tions. The solution will be fractional turns at two or more of these
four locations.

An average of the coordinates of these points weighted with
their partial turn solution value provides an estimate of the location of

one turn.
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Discussions following paper:

(Moses, University of Wisconsin) I would like to comment that a very
similar problem was solved for the shield in the FERMILAB pulsed energy
storage device. This was published at the Applied Superconductivity
Conference, Oakbrook, Illinois (1974) by Moses and Ballou.

(McWhirter, Pittsburgh) I believe that the problem solution which

Mr Moses has mentioned is obtained by a method other than linear
programming, of course we did not intend to infer that we were the first
to solve this type of problem. Our contribution is thought to be the

use of linear programming with the advantage mentioned in the paper,

CAD E3
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MAGNETIC FIELD COMPUTATION AND STRESS ANALYSIS IN TOROIDAL CIRCULAR
AND DEE SHAPED COILS FOR TOKAMAK FUSION EXPERIMENTS

N J Diserens
Rutherford Laboratory, Chilton, Didcot, Oxon, O0X11 00X

ABSTRACT

Data preparation for stress analysis of windings for Tokamak fusion
reactors can be a very time-consuming process. A program 'TOK' is
described in which simple data input can be used to compute fields and
forces in toroidal systems of circular and Dee shaped coils. In
addition a complete data deck can be output for use as input to a special

version of the 'FINESSE' stress analysis program.

1. INTRODUCTION

The future generation of fusion experiments will require very large
TOKAMAK devices. These machines will contain toroidal field windings
which will produce a very high magnetic field. In addition there will be

poloidal windings which are used to shape and excite the plasma.
Because of the high magnetic fields and high currents involved in the
superconducting toroidal windings, the forces on these coils will be very

large, and careful design is required to minimise the shear stresses.

A dee shaped toroidal coil will avoid large in-plane shear stresses but it

will still be necessary to know what the maximum stresses are likely to be.

Poloidal coil fields will exert a twisting force on the toroidal coils

and so the designer must know what stresses are produced by these.

This paper describes a suite of computer programs which have been written
at the Rutherford Laboratory to handle this work. Results are given for
one possible experiment and details of future developments are also out-

lined.

ké2
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2. THE TOK PROGRAM
2.1 General Description. The computer program TOK

(1)

simple data input, consisting of a command followed by a string of sub-

will accept a

parameters, similar to that used in the on-line magnetostatic program
arun. (2:3)

parameters of a toroidal coil system, such as the number of coils, cross

Figure 2.1 shows a sample data deck. Starting with the basic

section of coils, major radius of torus and outer radius of torus, the
command DOPT will produce an optimisation of the shape of the dee to
give zero in-plane shear along a specified filament of the coil. This

optimisation process has been described by Collie.(S)

Alternatively, the full geometry of the coil could be read in.

Poloidal coils of rectangular cross section can be described and also
the plasma is treated as a coil which has a curvilinear polygon for its

cross section and also has varying radial current.

Commands DISP and PRINT produce a graphical display of the coils (Figures
2.2 and 2.3) and also a print out of the coil parameters (Figure 2.4).

Command GETB will enable magnetic fields to be plotted along any given

line.

The GETF command will produce a mesh of points at which fields and body
forces are computed over the toroidal coil. Failure conditions can be

reproduced by 'switching off' any of the desired coils.

The CODA command will enable a complete data deck to be assembled for
input to the Swansea University stress analysis program FINESSE.(h'S]
At the same time a cladding of a suitable supporting material can be

added to the inside. outside or ends of coils.

2.2 Field Computations. Three types of conductor element are used in

the TOK program, these are:

1. Circular coils
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2. Arc elements of rectangular cross section.
3. Straight elements of rectangular cross section.

Fields due to circular coils are computed by regarding the coil as an
array of thin current carrying cylinders, the numerical integration is
done radially. This enables coils of varying cross sectional thicknesses
to be handled, and with radially varying current density. The method has

been previously described.

Arc elements are computed by regarding the element as an array of
infinitesima! wedges, the numerical integration being done in the
azimuthal direction. It is possible to handle elements with varying
thicknesses in the radial direction or in the transverse (Z) direction,
and this will be shortly included in the program. This method has been
described by Hansfield-(?)

Straight elements are calculated analytically by a subroutine written by
Ch. Iselin.(al At present the elements must have rectangular cross

section but it is intended to include trapezoidal elements shortly.

3. FINESSE

The Swansea Stress Analysis program FINESSE has been modified at the
Rutherford Laboratory to handle coil body force data. A special
version of the output routines enables the stresses to be output as
radial or tangential components. Graphical output is available for
the three components of tensile stress and three components of shear

stress, plotted along a coil filament.

Anisotropic elastic properties can be input to FINESSE, such that one
set of properties hold in a given direction and a second set hold in any
plane transverse to this direction. The program is being modified to
allow the properties to rotate around with the coil elements so as to
maintain their correct orientation. A short treatise by Collie(g) has
shown that two values of elasticity E, two of Poisson's ratio V and one
value of shear modulus G should be adequate to describe the elastic

behaviour of a layered superconducting coil.

CAD E4

Before entering the data into FINESSE, after output from the TOK program,
it is possible to add additional elements or to change the data as

required.

4, RESULTS
Preliminary results(lll have been described by the author.

Further work is in progress. A proposal for a European superconducting
TOKAMAK known as 'Tritium Burning Experiment' (TBX) is at present being
investigated. This has a torus comprising 20 Dee shaped coils, each

having an axial length of 0.44 metres and a radial thickness of 0.66 metres.

The shape has been optimised to give pure tension on a filament one third
of the radial thickness in distance from the inside of the coil, and on
the mid plane. This is the line of mean body force in the coil. Figures
4.1 to 4.3 show the tangential stresses due to the toroidal field, in the
mid plane of the TBX Dee coils, for the inner radius, the central filament,
and the outer radius, respectively. The stresses are plotted along a
filament, in the direction of the current, over 180 degrees of the coil.
The coils are assumed to be clamped such that the outer surface of the
straight section, facing the centre of the torus, cannot move radially,
but can expand along its length. |In order to resist the poloidal field
forces, it will, of course, be necessary to support the sides of the coil,

but these supports are not allowed for at this stage.

Figure 4.h shows the shear stress in the plane of the coil, along a
filament which is radially in the centre of the winding and half way
between the mid plane and the end of the coil. It can be seen that the
values are quite low, only a few hundreds of pounds per square inch.
(Compare this with the typical results for a Dee coil which is not
optimised for shape (Figure 4.5) which has a maximum shear stress of

about 7000 PS! in the plane of the coil.)

it can be seen from Figure 4.6 that the shear stress in a plane transverse
to the direction of current is not insignificant. This is due to the
finite axial length of the coil and the field 'leakage' in between the

individual windings.
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Graphical plotting of fields is available. Figures 4.7 to 4.9 show the
three components of field due to the poloidal coils in Figure 2.2 along
radial lines at Z =0, Z = 3.0 Mand Z = 6.0 M.

The poloidal coils shown are a typical example rather than the actual

design which might be used.

5. FUTURE DEVELOPMENTS
A number of points of development have already been mentioned in previous

sections of this paper.

In addition it is intended to develop a version of the program to

handle iron cored systems. The TOK program has been designed in such

a way that many of the routines are shared with the on-line GFUN program,
and thus facilities which are in one program need little or no adaptation

for use in the other.

Cooldown stresses have not yet been taken into account in these compu-

tations, but a facility exists in FINESSE and will need to be used in a

complete evaluation of a working system.

Plotting of magnetic field vectors upon the geometry display diagram is a
facility which would be useful and, as it exists already in GFUN, would

be very easy to implement.
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Discussions following paper:

L. FINESSE Abstract. CNME/AS/18. National Research and Development (Turner, Argonne Nat, Lab) Jim, you mentiomed that when you used the
Corporation. wrong shape for the dee coil, the shear stress changed from a few

hundred psi to a few thousand psi. How much did that shape differ

5. FINESSE - Rutherford Laboratory Version User's Guide. RL-75-144(1975) from the correct shape?
6. C J Collie, N J Diserens, M J newman, C W Trowbridge. Progress in (Diserens) The coil was quite a long way out of shape. The straight
the Development of an Interactive Computer Program for Magnetic section was lengthened from 4M to 6M which increased the height of the
Field Design and Analysis in Two and Three Dimensions. coil by about 307.
RL-73-077 (1973).
' (Leloup, Euratom—-CEA) You mentioned that your calculation is not
7. P Mansfield. Magnetic Fields of Curved Conductors. RL-75-184(1975). completely general because you can only represent plasma current

distributions varying with R. You can make it general provided that
8. Ch Iselin. Private communication. you do not need to compute the magnetic field inside the plasma:
in such a case, any plasma current distribution can be represented by
9. C J Collie. The Optimisation of Dee Shaped Coils. Rutherford surface currents determined using the "virtual casing artifice".
Laboratory CAG/75-7 (1975).

k71




Compumag Oxford, 31 March to 2 April 1976

R Levyraz

Iterative Generation of Optimal Triangular Grids for the Solution of 2-
Dimensional Field Problems
1. Principle and Applications

Engineers who apply the Finite Element Method need computer programs
which solve with a minimum of input data problems with very complex and
widely different geometries whereby the calculating effort must remain
reasonable.A fundamental problem is the subdivision of the region into
elements, i.e. the grid generation. The algorithm given here generates
2-dimensional optimal grids for maty classes of applicationsand leads to
quantitative information about the discretisation error. The optimisation
principle is to minimise the total discretisation error, which means to
get best information about the whole considered system. Triangular elements
of first order are chosen, because they can easily be treated and allow a
good representation of the geometry.

For the construction of such an optimal element subdivision the potential
distribution must be known at least approximately,but a potential distri-
bution can only be calculated within a grid. From this it is clear that
more than oregrid must be used and therefore the grid generation is an
iterative process. Since the calculation effort increases with the number
of gridpoints, the transient grids should be as coarse as possible. By
this consideration the principle of the flow diagram in fig. 1 is obvious.

Block 1 Generation of the coarsest possible grid from the input
data (boundary and contour polygones).
h 4 -
Block 2 Iteration of the potentials and if necessary of the
a3 reluctivities, about 4....20 iteration cycles.
Block 3 yes rid fine enough? A

(given number of
oints reached)

Approximative determination of a spatial distribution
Block 4 of local discretisation errors and selective refinement (-
at the positions with the biggest errors.

L_ Evaluation such as field plots, potentials and fields
at discrete points, inductivities, forces, etc.

'The above process is very advantagecus if few or nothing is known about
the potential distribution and the optimal grid and the behaviour of

the total system is the principal objective. Nevertheless the algorithm
may easily be adapted to other situations, particularly to the following
ones:

Block 5

Fig. 1

472
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- The optimal grid density distribution is approximately known: refinement
to a given density in block 1.

- There is a special interest in the potential of a partial region: A
modified block 1 is used which eliminates from a former grid the elements
outside the new boundary and defines the potentials taken from the former
calculation as fixed on the new boundary.

- As above, but with a simultanecus change of the geometry: A new grid is
built up from the beginning and at block 1 boundary values from the
former potential distribution are interpolated.

- A generated grid turns out to be too coarse: Entry at block 4 with the
tormer final grid.

- A present grid is used to calculate a new potential distribution, for
instance to determine a nonlinear characteristic: Only blocks 2, 3 and
5 are used.

2. Mathematical Optimisation Objetive and General Procedure

The definition of an optimal grid depends first of all on the field equa-
tion, but also on material properties, boundary conditions, coordinate
system etc.. The selection presented here is given by the practice and the
mathematical difficulties. The following field equationsare considered:

div ( & (-grad V))= Q, (capacitive electrostatic field)
curl ( ¥ curl B) = J,, (magnetostatic field)
curl ( VWV curl &) =4wsk + J,(harmonic eddy current field)

where A= (0, 0, A), ¥ = (0, 0, J) :

The first equation includes the electrostatic conductance field and the
thermostatic field. The problems are treated in 2 dimensions, i.e. cartesian
%, ¥ — or axisymmetric r, z-coordinates. The material properties V , £,etd.-
are considered as constant over partial regions or scalar functions of the
square of the field strength. The first two equations are equivalent to the
minimisation of the total energy W in the given region. For the eddy current
equation the corresponding principle is not so simple.

In order to get a very general grid optimisation we must choose a dis-
cretisation error definition which represents the behavior of the total
system and does not degenerate in any case. It is obvious to take the
energy difference aWbetween the energy W calculated within a grid of N
points and the real energy W of the system. This value is Z O,#<cand app-
roaches O if the grid is made infinitely fine under very general conditions.
We may therefore declare a grid to be optimal if for a given number N of
grid points the energy difference AW, is minimum.

Unfortunataly, a direct numerical optimisation with the well-known
methods is practically excluded due to the great number (=2N) of unknown
coordinates and the almost infinite number of possible topologies ¢y, tie
other side , the primary objective is the potential distribution, and
practice has shown that with the successive application of very simple
grid changes it is possible to reach awN by a factor of about 1.2. Further—
more it is not necessary to generate a grid of exactly N points. By these
reason the successive grid refinement given in fig. 1 is justified. The
intermediate grids should be optimal as soon as possible in order to reduce
the calculation effort.

As elementary grid changes we choose a minimal set of simple operations,
because changes in m irregular grid are not easy to pregram and because

the effect of each operation on AWN must be estimated.
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The most simple but fully sufficient operation to increase the number of
grid points is the segment halving (see fig. 2 ). Thereby the starting
potential of the new point is interpolated according to the potential
distribution in the adjacent elements. For the selection of the segments
to be halved, there mustbe a halving index related to each segment which
represents the discretisation error in the neighbourhocd of a segment and/
or the effect of the segment halving on this error. The segmenit with the
greatest indices are halved, which leads as fast as possible to an optimal
grid.

As mentioned above it is very important how the grid points are inter-
comected. The most simple topological change is the diagonal transposition
(see fig. 3 ) which changes two triangles into two different ones. A
simple example (fig. 6) shows that after a segment halving all useful
transpositions becoming possible by this halving must be executed imme-
diately. This complicates the program but avoids grid degenerations and
restricts the possible transpositions to a neighbourhood of the new gridpoint.

To consider the effect of a segment halving it is assumed that in
the grid before the execution of the halving the potentials are the exact
solution of the corresponding system of equations. The situation after the
halving is as follows:

- There is a new equation for the new point which is in general not

fulfilled by the starting value of the new potential.

- The equations of the immediately neighboured points Py, P 4
in general changed and not further fulfilled.
- The sum of the equations of PlPEP P before the halving is identical

with the sum including the ned Point after the halving if the latter lies

inside the calculated region or on a Neumann boundary.
- The total energy remains unchanged.

21 P3, P, are

From this it may be concluded that:

- By the halving a part of the disctretisation error aW is changed to
residual error which is eliminated by the following iterations.

= The residues in the new system of equations are bounded to a close
neighbourhood of the new point and mostly add to zero.

— If the system is linear, the difference between the new and the old
field may be seen as the field produced by the residues. It diminishes
with the distance from the new point atleast as much as a dipole field.

Therefore the total effect of the halving, which practically cannot be
calculated exactly, may be approximated as the effect on the immediate
neighbourhood of the halved segment. A further reason of the approximation
is thet the exact determination of all potentials before each refinement
would take too much time. The estimation must be chosen such that in

doubt halving indices get rather too big. Because of all these approxima-
tionsit is not necessary to sort halving indices explicitly. A rough
logarithmic classification and a scanning is complettly sufficient.

To find a diagonal transposition criterion there are similar considera-
tions. As a starting point we checose the energy in the concerned quadrang-
le to decide if the existing or the other diagonal is better, but alsc in
this case it must be considered that the exact potential distribution is
not known. Different from the effect of the halvings, most of the energy
gain by the transpositions is realised immediately in the refinement stage.

Experience has shown that after a grid change all new segments should
get new halving indices in order to quarantee a principally unlimited
refinement. The other possibility, namely to allow only the segments
present at the start of the refinement stage to be halved restricts very
much the number of new points and therefore needs much more refinement
stages.

CAS E5

Diagonal transposition
—— == gliminated segment
Fig. 3

Segment halving
seeseens new segment
Fig. 2

3. Determination of the Halving Indices, Remainder Potential

Since the effect of a segment halving is mainly local it is obvicus to try
to define the halving index as the energy which can be gained by the change
of the potential of the new point with all other potentials fixed.In the
following it is shown that this definition may be used with some necessary
modifications.

Firstly it is assumed that the potential A is real and the system of
equations is linear. The energy gain by the introduction of the new point
i then is

2
Hi =k, L2 % AAiJ (3.1)

where ki is the diagonal element of the coefficient matrix and AA, the
potential difference between the starting value given by the discréte
potential and the value which fulfills equation i. If the system is non-
linear, particularly if the relutivity is field strength dependent, there
must be taken the total differential for ki which is the 2nd derivative of
the energy with respect to A;. If the potential is complex i.e. for eddy
current problems, the problem cannot be taken as a minimisation of an
energy, but an interpretation of the factors in (3.1) leads to reasonable
grids. It is clear that

2 2 2
(aA;) — (Regd)” + (Im ah) ; (3.2)
For x; there are the following two possibilities:
kg > | Re k_ij + |Im k! {3.3)
¥ — lkil (3.4)

For grids with a fairly small discretisation error there is anyway
JIm k.| << |Re k;

The maximuﬁ difference between (3.3) and (3.4) is a factor of JEﬂ which is
tolerable with respect to all other simplifications.

Unfortunately there are some types of situations in which (3.1) together
with the above definitions fails; these are mainly the following cases:
- The energy gain is mainly or wholly realised only by the diagonal trans—

positions becoming possible by the halving.
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—~ There is only a considerable energy gain if several neighboured new
points are generated (see example fig. 4)
In the first case it would be possible to consider the effect as an addi-
tional energy in (3.1) but in the second case,the effort would be too big.
Since all these problems arise because (AﬁiJ is too small an approxima-
tion must be found which represents the behaviour of A in the neighbour-
hood of the new point and by this the local discretisation error.
The real potential A may be split into the discrete potential A, and
the remainder potential A':

A = A - A, B =FE-F . (3.5)
For first order elements A_ is a linear or similar function. To get an
approximation for the discretisation error it is in general sufficient
to define A' as a guadratic function of the coordinates with the new point
i as origin. (3.1) then leads to
. 2
Hi - ki /2 . A (P? ) (3.6)
where P, is one of the end points of the halved segment. The assumption
is that the potentials of all points are correct and only the potential
between the points is subject to discretisation error. The use of A!
mainly eliminates degenerations of the secend type.
The remainder potential in its most general form is
Al = c1x2 +Cyxy + 53y2 (347)
—
I = - -
B' = (c2x + 2c3y, 2c1x czy) (3.8)

Since (3.7) is only valuable in a small neighbourhood of its origin
considerationsabout A' may be performed in cartesian coordinates even if
the whole system is defined in cylindrical coordinates.

A' can be transformed to its main axes x', y':

At = cl'x'2 + c3'y'2, B o= 2(c3‘y'l,— cl*x') (3.9)
If the sighs of c.' and c¢,' are different the equipotentials of A' are
hyperbolae with asymptotes of wvalue zero. The fact that in a region with
existing discretisation error there may be segments of any length with
zero halving indices makes a reasonable grid generation impossible. As
an example all boundary segments with fixed constant potential belong to
this class which represents the first type of degeneration. A simple
modification from A' to A'' eliminates the degeneration but keeps the main
information about the local discretisation error:

A'Y = Ic{[ x'2 + ]c;] y'z,'g" = 2f Ic'3|y', - |cl|x‘) (3.10)
A'' is positive definite, leads to the same halving indices as A' for
segments lying in the directions of the main axes and enlarges halving
indices for all other segments if A' is hyperbolic. A'' only vanishes out~
side the origin if at least one main axis coefficient is zero. It is
interesting that

B2 = pn? (3.11)
and therefore the fictitiocls field energy of A' remains unchanged by the
modification to A''. It may be said that the modification leaves the same
local discretisation error but increases the part which will probably pe
eliminated. Instead of (3.6), the modified definition

tl2
Hy = ki_/z.A (P,‘. ) (3.12)

will be used.

7k
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The coefficients C., c,, ¢, are intercamected by the differential

equation. As shown i% th% foilowing the relation

'+ gy =0 (3.13)
is systematically true for certain classes of problems. Then

A= de e? ay?) (3.14)

This isotropic A'' leads under fairly general conditions to an isotropic
grid, i.e. a grid consisting of approximately equilateral triangles.
In the most general case the equipotentials of A" are ellipses with

the axes in the main axis directions and an axis relation of

da = Iy /e (3.15)

The relation and the direction of the axes varies over the regionj
therefore an optimal grid has a location dependent anisotropy which is
mainly influenced by the spatial distribution of c., c., c.. The axis
relation q, can systematically get values of 10...§o i% practical
appligations. Hence it is not possible to avoid the local vanishing of
c,'orec,' by a limitation of qq-

If thé potential is complex it jg most natural to modify real.and
imaginary part separately. By this the equipotentials of (ReA''< + Im&"z}
ar no more ellipses but have in general a sligthly different shape. This
more general shape can be replaced by an ellipse with good approximation
which facilitates the programming of segment halving and transposition.

In the following the relation between €13y €,y €, is determined
starting from ) 2 3

curl (vB) = J [aiv (s.‘ﬁ)]= Q (3.16)

When "curl" or a vector product is used as a scalar, the 2 component of
X,¥,2 or the ¥ component of ¢, 3, ¥ is meant.
If v, &is regionwise constant, with the aid of (3.5) and (3.8) we get

curl B = =2(c; + ¢) =R [aiv D - 2(cy + c5) = R] (3.17)

R = —curl B + J/v [R = -div E_ + /] (3.18)
Under the further assumptions

TR0 [a=0] (3.19)

and curl 'B"o =0 [divE =o] (3.20)

weget curl B =0 [divE =o0] (3.21)

which means that (3.13) is valid and that the optimal grid is isotropic.

The condition (3.19) says that isotropy may only be awaited in current
-free(charge-free) regions. Equ. (3.20) is always fulfilled for linear A
in cartesian coordinates, but not in cylindriecal coordinates: i

2 .
curl B = A/ F°, [aivE =€ /r] (3.23)

which means an unfavorable anisotropy even in current-free regions and
in general a significant increase in discretisation error. It can be
avoided by using

2 -
-] + IE r- =+ §3z, BO = {§3/{2'ITI" Ve = EE/T) (3.24)

o

=M
[Vo =V, + Vylnr + Voz, ﬂ; = ~grad V_ ] (3.25)
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Besides the much better discretisation error behaviour (3.24) and {3-25)have grid is getting finer.
disadvantages, i.e. there is no continuity of potential on the element - If some triangles differ extremly from the optimal sham a determination
boundaries and the discrete field strengths become infinite on the ‘'of H using optimal triangles results in a better estimation of the
rotation axis. When using & the definition (3.7) is slightly different if discretisation error than a calculation with the real triangles as is
(3.8) is kept: shown in the example of fig. 4.
2 2 - The application of normalised triangle shapes leads to simpler formulae
' =2 ( H (3-7') &

T SR Gl Y Guff bod for k,; in most cases even to an approximate indepency on the segment's
for | we can put in most cases the radius of the new point. In case of angle. The influence of several factors on the mesh size of an optimal
the eddy current field most quantities are complex and equ (3.18) is re- grid can better be seen.
placed by In a iteratively generated grid the optimal triangles shape is not

= necessarily the same as in a static grid. If for instance a segment of a
- 3.18!
R = —curl Eo + (/a.wG 4 + v, ¢ : regular triangular grid is halved the grid looses its regularity. A
In case of a field strength dependent material value the relation between reasonable definition for the dynamically optimal triangles shape is as
Cys» Cpy Gy is more complicated. The procedure to get it is shown for the follows: In a parallelogram composed by two optimal triangles both
eXample . possible diagonals have the same halving index. Fyom (3.12) it follgws
. i he
Foi. 'E = 7 . 32 3.26) that all corners must have the same Wtralue of A" For a fixed A''"" t
of & A » R ( area of the parallelogram must be maximum.
in cartesian coordinates. In the following for each spatial dependent If A'' is isotropic the optimal triangle is rectangular and equilateral.
factor the value at the position of the new point is put. Equ. (3.26) A rotation of the concerned segment with respet to the new point changes the
can be transformed into value of few or not at all if the material value Yetc. is constant.
VGl 2 - D-a"’ grad V o (3.27) If A'' is anlso\“::lropic the diagonalsof the parallglog{:am are.conjugate
and Yeurl B — [F, gradv] =J (3.28) with respect to A''. If the segment to be halved lies in a main axis
o’ Y direction the triangles are equilateral but not rectangular. For constant
material value the maximum change due to the different positiors of the
Replaci rady in (3.28) we get segment to be halved is 5/4 which may be neglected.
plocing g y ‘; g > The factrrki for optimal triangles can be partitioned with good approx-—
yeurl B' = Oy/ OB -['é'o, grad B°] =0, (3.30) imation:
2 1 -
_ Veurl B - 29/ 08% [B, grad (B BT =3, (3.31) ki ™ ko ok ek vk, (3.35)
Putting (3.8) into (3.31) we get where:

klcl + k2c2 + k3c3 =J IcmF= material property factor

. . 9 or constant material valuem ( =y AT yees)

ki=-2v= 485, Ov/OB (3.32) wErdy

Y 032' kX = 2m (3.36)
Koy = ‘J"Box'goy'c}?/ ) m o )
: o EEL J/ng (if on both sides of the segment different galueg ml, mz, then k,= m1+m2).
kg ='-2V—"-.~"90x Wy For field dependent material property ¥Y(B"),
or transformed to main axes km =2(p +k, 282 O v/O Bz)' (3.37)

' ' ] t = J
k‘11_ s k3 €3 5 where O € ky € 1, ky 1is dependent on the main axis relation and the

1 . i i i
kf =—0y - qBG‘;“' .Jy/JBzz (3.33) relative directions of -go and the main axes.

2 =

k;l=_2v —_Z/Boxl'JV/JB-- k. radius factor.

Usually J is zero; then A' is hyperbolic. In general A'' is anisotropic, For cartesian coordinates;

the main axis relation depends on Ho . The anisotropy is maximum when 'ﬁc kp =1. (3.38)
lies in a main axis dire;:tion; t;e = _t:.he relation 18 For cylindrical coordinates r, z and for scalar potential V or vector
a =V + 2820%/0 85/ (3.34) potential A:

with the minor axis (shorter segments) in the Eo direction. For common kp=2Try, (3.39)
magnetisation curyes values of g = 4...5 can be reached. If Bo lies in -
an asymptotic direction of A' there is a local isotropy.

Also for the factor k; a modification should be made for the following kp = 1/mTrs). (3.40)

reasons:

- k__L depends on the grid topolegy in the region of the point, but this
topology i$ in general changed after the halving by diagonal trans-—
positions.

-~ The triangles' shapes approach automatically an optimal shape as the

for the flux function ®

For segments on the rotation axis the mean radius of the adjacent triangle
can be put for F; , in all other cases the radius of the new point.

ks
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k.a = amisotropy factor

ka &~ q + 1/qa (3.41)
For isotropic A'', gz = 1 and
k=2 (3.42)
a
ke = eddy current factor
For real potential
k =0, (3.43)
e
for eddy current problems
s
k=g WwWis,; +s,) (3.44)

where s is the area of the optimal triangle and G.l’G;E the electrical
conductivities in the adjacent triangles.

Some general conclusions about optimal grids can be drawn. The assumption

is that the halving indices of all segments are equal.

In the most simple case where all k. in the whole grid are identical
all segment end points must have the Same A'' value. For an isotropic A''
the length £ of a segment is by (3.14)

£ ~1/ 1]jc'lf' (2.45)

where [c.'f may be called "local potential curvature". In the anistropic
case this "curvature" is dependent on the direction.

On the other side it is interesting to consider the influence of other
effects on # when the “curvature" is given. Equ. (3.13) leads to

W ki‘* (3.46)

The influence is only significant if the coefficients of equ. (3.35) vary
very much. The material value can change ¢ by factors 5...10 in the

case of v or the thermal conductivity A . The direct effect of
cylindrical symmetry is only significant near the axis. The anisotropy
does not matter very much; with a geometrical relation of 1:32 the
segment become shorter by a factor of 2. The eddy current factor is sig-
nificant only for very coarse grids.

The following example shows a degeneration of the second type and how
it 1{s remcyed by the modification of A' and k.. It alsc makes clear that
in some cases the halving indices of boundary and conimur segments must be
adapted.

The grid of fig. 4a in taken as a starting point, where all points have
fixed potentials according to the assumptions

A 3w yz, AT = x4 y2, v=1; (3.47)
which leads to
2
A(Pl, P2, PS’ PG) =1=-¢, A(PB’ PS} =-1, W, = 4 (2.48)
An additional condition is that the segments P.P_ and PP, cannot be

transposed because they are contour segments. %ig. 4b a%d44c show optimal

grids with one and two additional points.
The use of A'' and of ki for optimal triangles leads to

kopt. =4, At'== 1, H& = Hg= 2 (3.49)
which is in the same order of magnitude as
- .
We= 2, aW, o 2 (3.50)

L6

If the halving indices are determined by an attempted introduction of
one of the points we get
kReal =~ 1/(2E), aA

7
w?as 4 - 4¢, a.ws._?

The halving indices are much too small because the estimation of the
final potential of the new points in this way is much worse than by A''.
On the other side the use of A'' and kReal leads to

H? = HS ~ 1/ ¢
which is much too big

The arrangement given in fig. 4a shows another. difficulty. The segment
P2P gets a slightly higher halving index than P.P_ and P2P , but a
halving of P.P. would be very unfavourable because” the smal% distance 2&
between some points would be reduced to g€ due to the impossibility of
transposition of P1P5 and P P4. The difficulty is removed if P P_ or
P2P is halved first and PEE eliminated by transposition. L8

The generalproblem can be aescﬁlnd as follows:

A new point besides a boundary (or contour) is generated which has a
smaller value of A'' than the end points of a boundary segment with the
origin of A'' on the segments center. This degeneration can be eliminated
by an eventual enlargement of boundary segment halving indices such that
these are greater than the indices of segments which can produce such
near-boundary points.

== 4 €

~-48 , H =H . (3.51)

~ 4¢

8

(3.52)

AY B)

HmE
[N

>
Y

A)

o0

Fig. 4

CAS E5



Compumag Oxford, 31 March to 2 April 1976

4. Diagonal Transposition

Transposition Criterion

The transposition has to lead to the segment distribution with the least
energy for a given gridpoint distribution. Here too itis not possible to
determine the exact effect of a transposition. To get & reasonable appro-
ximation only the energy in the concerned quadrangle is considered and
the potentials of the corners are taken as fixed.

The analysis is firstly made for an isotropic case, i.e. Laplace's
equation in cartesian coordinates with constant reluctivity Y. At the
points Pj....P, of fig. 3 the potential values A;...A4 are assumed, leading
to a field strength'g in the respective triangles. The potential A can be
divided into

A=A +A BB +E with
A (Pl, Py Py, 94) = A5, Ay =k, Ay Ay -k, (4.1)
Ap (P, Py, Py, P)) =0, k, O, Kk,
ki Resa. =N
where Apsg, are the potential values in the intersection point for the

respective diagonal. The quadrangles energy is
wq = y/2 . fgzda = V/2-[f-§ida + 2 fﬁi‘;, "";p) da + f?p-zda] (4.2)

The first integrand is the same for both diagonalsjthe second integral

is zero for each diagonal. In case of nonzero k the evaluation of the third
integral leads to the result that the diagonal with greater product of
heights on it is better. An identical condition is that this diagonal is
better for which the cirenmscribed circles of the triangles do not include
the respective fourth point of the guadrangle. The diagonals are equivalent
if all four points lie on a circle.

If k is equal to zero the energy criterion leads to the obviocusly wrong
conclusion that both diagonals are of equal value irrespective of the
shape of the quadrangle. The geometrical criteria are better because they
do not degenerate in this way and are less subject to rounding errors.

It is remarkable that the above criteria are invariant with respect to
rotation, even the energy criterion with the degeneration excluded. This
fact further justifies the transition from A' to A''. 1Indeed a colla-
boration of an extremely position dependent halving index with a rotation-
invariant transposition criterion seems not to be possible.

In an anisotropic optimal grid the above criteria are no more correct.
Similar derivations starting with the energy of the quadrangle could be
made, but the formulae replacing (4.2) are substantially more complicate
and degenerate in more cases than (4.2). It is therefore better to
introduce the modified potential A'' which also represents the anisotropy
but contains security against degeneration. The geometrical criteria of
the isotropic case can be brought into the following formulation which
is also applicable to the anisotropic grids:

- The origin of A'' is put such that all comers of one partial triangle

get the same values of A''. '

- If the fourth point of the quadrangle has a greater/equal/ smaller value
of A'', the existing diagonal is better/equal /worse.

For complex potential there are the following two possibilities: If A'! is
adapted such that |A''| is quadratic as mentioned in chapter 3, the above
criterion may be used with |att]. If this has not been done, the origins
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of real and imaginary part may be determined separately and the comparison
is then applicated to (Re A'')2+ (Im A'')2,

An important property of the criterion is that in parallelograms the
diagonal with the smaller halving index is considered to be better. Since
all pairs of optimal triangles foarm parallelograms the transposition in
general reduces the sum of the halving indices significantly.

There are some cases of the linear Poisson equation in cartesian
coordinates in which also for an anisotropic A'' the A''-criterion may
easily be compared with the energy criterion. The assumption is that the
four grid point potentials coincide with A''. If A' is elliplic the
energy criterion leads to an identical condition as the A''-criterion
for equivalent diagonals, since A. and B, are zero. For hyperbolic A' and
anisotropic A'' both criteria differ; for instance for a rhombus with
diagonals in the main axes of A' the length relation for equivalent
diagonals may differ by a factor /3 between both criteria.

Sequence of Transpositions and Transposition Tests

As mentioned in chapter2 the grid is optimized by transpositions immediat-

ely after each halving. It is assumed that for given gridpoints there

is only one energy minimum and that any sequence of transpositions in

which every worse diagonal is transposed reaches that minimum. A simple

algorithm which organises this sequence is the following:

1) Put all possibly worse diagonals .into a qu=ue

2) Test the last diagonal in the quette, reduce the number of diagonals by
l.

3) If the result of the transpositicn test is negative, test if the
number of diagonals in the queue is O. If true, the optimal grid is
reached. If not, pass to point 2.

4) If the result of the transposition test is positive, perform the trans-—
position. Put all segments inte the queue which have possibly become
worse diagonals by the preceding transposition. Pass to point 2.

Due to the optimality of the grid before the halving the initial content

of the queys consists of a very restricted set of segments. These are

the radial segments PyPq, PyPoy PyP3, PyP4 and the peripheral segments

P1P2, PpP3, PPy, PyPy in fig. 5. For all other segments the adjacent

triangles are the same as before the halving. A short analysis shows that

all radial segments must be optimalj PyPp, PyP3, PP, for purely geometri-
cal reasons and PNP due to the optimality of the grid before the halving

(if PpP, is better %han PP, then it is also better than PP e

Thus the queue contains only the four peripheral segments at t%e beginning.

If the transposition test on a segment, for Instance on P,P3 is positive,
the effect is:

- P2P3 is.replac by pNPS'

- There is a new radial segment PNPS.

-~ A peripheral segment is removed by two different ones.

Principally the radial segments PyPz, PNP3 and the peripheral segments

P,Pg, PcP, may have become worse diagonals, but for the radial sedments it

may be shown that this assumption is contradictionary to the optimality of

the grid before the halving. Thus it may be said that the transposition

process after a halving is restricted to the connection of the new point N

with additional neighbour points. For n transpositions the algorithm needs

2n + 4 transposition tests. In a statically optimal infinitely fine

grid each point has got 6 neighbours; therefore we couldexpecta mean

bz
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value of 2 transpositions and 8 transposition tests per new point, which
is in fairly good agreement with practice. In starting g;ids there may
be much more transpositions per new point as can be seen in the example of
fig. 6. For both.examples lsotropy was assumed.

If A'' is anisotropic a segment arrangement may be shifted out of
optimality by iteration and subsequent recalculation of A''. Theoretically
in this case there should be an additional transposition run for the whole’
grid with the new A'' before the first halving of the new refinement stage.
In practice this is omitted because during the normal process Unfavorable
diagonals are transposed or halved.

Since for the optimisation of the starting grid A'' is in general not
known, isotropy is assumed. If the grid generation is started at the coar-
seet possible grid, all N points lie an boundaries or congfurs. The
maximum possible number of transpositions then is about -N/4.

Py qh F5

Fig. 5

Fig. 6
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5. Methods for the Numerical Determination of the Remainder Potential

The calculation must be simple and stable with respect to bad grids and
residual errors, but represent significant changes within few elements.
In practice the following method has proved to be good:
- The coefficients ¢y, cp, c3 of the remainder potential are attributed to
the triangles, mainly from reasons of programming technique.
- The numerical condition is formulated in terms of E.A neighbourhood is
selected, which contairs the reference triangle and the adjacent triangles
with the same material properties ( v, J) as the reference triangle. For
each triangle i the discrete field strength'ﬁ is determined. The
condition is that the energy of the difference field'ﬁ; + B =B,
withhin the neighbourhood is minimum. The equation (3.17) or (3.9%) is
used, such that at least 3 triangles are needei.
- By positioning the origin of B'into or nearby the centre of gravity of
the neighbourhooqathe minimisation can be partitioned into two separate
calculations = of By and B'. After the calculation of B the field dependent
cguantities in (3.32) or if present in (3.17) can b= numerically determined.
- The subsequent calculation of c,,c, leads to two linear equations in

case of (3.32); for (3.17) their ccoefficients matrix is even diagonal.

cy then is determined by (3.17) or (3.32).

The discretisation to ﬁbi and the use of the relation between c,, cp,

Cq gives a great numerical stability. The algorithm yields reasonable
values even if all grid points lie on boundaries. In some rare cases there
can be degenerations, particularly if locally A'' vanishes in a main axis
direction. To avoid this it is the best to enlarge the coefficients if
necessary such that they reach at least a certain fraction of the
coefficients in the adjacent triangles with the same material properties.

6. Effect of the Refinement on the Distribution of Halving Indices,

Criterion to Stop the Refinement Step

The effects of the refinement process are best described with the frequency
distribution of the halving indices n(H), the related distribution
Hen(H) and its integral ZH. In order to get reasonable plots of the
distributions the H-axis must have a logarithmic scale.

Fig. 7 shows the selective refinement in a simple arrangement,
namely the detemmination of the carter factor with the analytical value
of W = 2.277437 in this case. The strong refinement near the singular point
is obvious, Fig. 9 gives the distributions n(H) and H.n(H) for the
different refinement steps at the beginning of each refinement . In the
end phase the distributions approach standard forms with relatively small
deviations, whereas at the beginning the deviation is much greater. The
selective refinement compresses the distributions from the right to a
certain broadness; later they are more or less shifted, which means a
uniform refinement.
To halve all segments in a grid multiplies the number of grid peints by 4.
Under the assumption of an invariant A'' which is fulfilled for fine grids
and arrangements with no singularities, we get the following equations:

. . o g 6.1
n{new)(Hfla) d(H/16) = 4 n(old)(H)dH) (6.1)
(new) = ¥ THg1q) . (6.2)
This means, that for uniform refinement
AW R TH ~ Nt ; (6.3)
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which is a well-known relation for first order elements. The real error
for the arrangement of fig. 7, which is shown in fig. g 1is in good
agreement for the last refinement steps, if the refinement is done
starting from the coarsest possible grid (curve A). The rule (6.3) may be
used to estimate the discretisation error of the energy and other results,
ametimes even to extrapolate more accurate values. At the beginning the
decrease of the total error is much faster because the refinement process
is selective. The agreement between AW, and IH(curve Dyis fairly good
inpite of the many simplifications.

The deviation of the distributions in theend phase cannot be avolded
since the refinement process is discontinuons. A single halving changes a
segment with a halving index H into two segments with indices H/16
each; because of some additional effects the deviation is in general
sligthly greater, but such a grid is by no means as bad as it seems. Under
the very optimistic assumption that we may apply (6.1) in a continuous
way to any position of the distribution we get

an(H/ et ) » d(H/e ) = = [& + An(H) « dH . (6.4)

Theoretically, from a grid with the distribution n(H) a grid with uniform
indices He could be built up, for which

N(H,) = SNH / S ER (6.5)

If the number of gridpoints is the same as in the original grid, 3H reduces
by a quality factor

6 = (SyC/MLTH . (6.6)

G is shown in fig. 8 for each grid; the first value is calculated before
the iteration and the second after the recalculation of the halving indices.
For the last grids values of 0.85 are reached, which means that by an
optimal distortion of the grid the error could be reduced Dy about 15%.
But even for the grids with higher number of points there is a consi@erable
change by the iteration in the quality factor due to the singular point
which causes a dispersion of the distributions. Fig. 1o shows this disper-
sion at a coarse and fine grid.

Curve B of fig. 8 shows energy error, quality factor and 3 H for a
different way of refinement, namely a uniform refinement at the beginning
which is obviaoisly much worse than the selective refinement. By some
selective refinement stages this bad quality may be removed if there are
not too many points in the uniform grid. The proceeding B sometimes needs
less calculation effort than A. The quality factor G for the first grid of
B is very small; the least possible error for a grid with the same number
of points is in good agreement with the real values of A. Point C also
represents a uniform grid and shows that uniform refinement in general is
worse than (6.3) if singularities are present.

Knowledge about the distributions may be used to stop the refinement
step and to start the iteration. It is clear that the refinement step
must be stopped if the halving indices are no more significant. On the
other side refinement and iteration steps should not interchange too
often because of the effort to determine the halving indices and the
equations. In chapter 8 it is shown that the total effort for a grid
with N points is about N/(l-g_.), where q,. is the quotient of the point-
numbers of two subsequent grias. It may be concluded that an enlargement
of g, beyond 4+ is not of great use, which means that a duplica?ion of
the point number at each refinement stage should be attempred if the
distribution of the indices allows it. From (6.3) there is in this case
also a halving of the energy error and of ZH.

L
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Obviously for very bad grids a duplication of the number of points is far
from optimal. On the other side the refinement process in these cases gets
very slow if each refinement stage 1is stopped when ZH is halved. It is
a fairly good compromise to stop the refinement if

N-N (TH)
o o 2 .

N . ST k, (6.7)
where the values at the beginning of the refinement step are signed by
indices 0. For uniform refinement, i.e. ( LH)o /3H = N/l , (6.7)
leads to

(N - N)/N, = P (yT+ax’ -1, (6.8)

which leads to a duplication of the number of gridpoints if k = 2 and to
the simple rule

eliminated error & remaining error (6.9)
In very bad grids, the number of points may be increased by only 10%, but
in this case I H diminishes by a factor of 20 according to (6.7).
Naturally it is not necessary to check with (6.7) after each halving; it
is sufficient to apply the rule after each scanning cycle.

7. Effects of the Grid Refinement on the Iteration

The convergence of a normal iteration process is given in fig. 11, curves
A and B. They represent a complete iteration process in the final grid of
fig. 7; no overrelaxation was applied. At the beginning the residues have
a rather random distribution and in general different signs, which makes
the convergence fast. Later there is a transition to a situation with equal
signs for all residuals and an error distribution which diminishes uni-
formly; the convergence is significantly slower.

A grid refinement step changes a part of the discretisation error into
resudual error, i.e. new residues are introduced. As mentioned in chapter
3 the signs. of these new residues are well intermixed. That is why the
convergence after a refinement step is in general similar to the starting
phase of a normal iteration, as may be seen from the part of curve C which
concerns the final grid. For the coarsr grids the slower convergence is
not reached at all. Curve D shows the total energy error, whereby the
generation and elimination of residual error is cbvious . A part of the
discretisation error is eliminated directly by the diagonal transpositions,
particularly in the starting grids. It is interesting that sometimes an
iterative grid generation needs not only fewer iterations of single poten—
tials but also fewer iteration cycles to reach the same accuracy as in the
present case. The reason is that convergence in cosrser grids is in general
faster. Experience shows that in few cases of slow convergence even the
total effort of refinement and iteration may be smaller than that of a
complete iteration in the rinal grid.

The consideration of the different energy errors allows to establish a
reasonable criterion to stop the iteration. In order to ensure a good esti-
mation of the halving indices for the following refinement step the resi-
dual error should be an order of magnitude less than the discretisation
error. On the other side a very small residual error does not contribute
much to the overall accuracy. As a rough approximation it is assumed that
the total energy error is proportional to the square of the mean potential
error (which is exact if the potential error diminishes uniformly). In
order to get a relation of 1:5....10 between the residual and the
discretisation error in the potential which allows a reasonable estimation
there must be an energy relation of 1:25...100.
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Detail of Final Grid
Fig. 7 (continued)
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n,H'n The discretisation error contained in a grid is determined only at the
| [~ subsequent refirement step, i.e. too late to be used to stop the iteration.
40% m f It is much easier to use the relation (6.9) which equals the remaining
n I discretisation error to the eliminated discretisation error. It must be
20%|__8PDINTS | noticed that (6.9) is only valid for uniform refinement, but in case of
N n — -ilEir- selective refinement all other estimations of the remaining discretisation
09 l I ™/ | = error are also quite uncertain. In general a great part of the eliminated
! discretisation error ischanged to residual error and usually the resi-
dual error remaining from the former iterations is much smaller. Thus it
§ may be concluded that the iterations can be stopped when the probable re-—
20% r_‘ maining residual error is 1/25...1/100 of the eliminated or total
TADINTS 1 ] =~ residual error.
09 ] —d = ] = In the following it is assumed that the convergence speed is uniform,
r which means that the relation of two subsequent energy reductions is
I constant:
20% L |
16 POINTS T 1 AV L /AW, = A £7a1)
0% I D . = Swr =5, AW, (7.2)
where 5 __is the remaining error after N iterations . From (7.1)
20%) - NT .
_r— —— -+ 25PQINTS Sxe / Sor = M. V7.3
0 T The relation
2
- r Sy 7 Sgp ey (7.4)
= —i_ 21 POINTS is reached when
0% e i Na21lng, /1n X\, (7.5)
- The following table shows the necessitated number of iterations for the
209, ] realistic value 1In q; = -2 (gy= 0.1353) and for different convergence
— F - 68POINTS speeds:
0 S i - N | 4 6 |10 |15 |20
20% 1 x |9,37 (0,51 |0,67| 0,77 | 0,82
e = 134 ROINTS 20 iterations correspond to a quite slow convergence,namely a diminuation
0% ---__‘ o . J = of a potential error of about 10% by each iteration cycle.
10_5 10_5 10_4 10_3 10_2 101 1 10 “H® There is a certain contradiction between the assumption of a constant
convergence speed and the fact that the convergence is getting slower
Pig. 9 during the iteration, but the variable convergence speed is a quite
general problem for the estimation of the remaining residual error. A
tn, Hn ) more accurate estimation for the error relation in case of a variable )ﬁ
40°% _1 consists in :
. 11POINTS Hn Syp ™ ANye AW/ (1=X0), Sor =%AW£ 8 . (7.6)
20% _ =
— — %1 = E | In case of slow convergence (N> 0,8) convergence speed should be
0% :é_ e L =] = ) = accelerated. The knowledge about A\ can be used to optimize the over-
= H™ relaxation factor. If this is not sufficient, additive block relaxation
o = = . 134 POINTS -FH:" can be applied. For automated grid generation the selection of the block
9 = = boundaries must also be automated because the grids are not known when
il 1 ) r-J —L the input data are prepared. It is a certain advantage of the automated
0% = == 1 i grid generation that it tends to decrease bad convergence outcoming from
. e the grid definition.
==~ BEFORE ITERATION AFTER ITERATION (7.4) and (7.5) are based on stable relations between the different
Fig. 10 energy errors in the whole process. These assumption are sometimes not

fulfilled, particularly at the beginning or if only a part of the whole

kg
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process is performed. It is obvious that when the refinement passes from
selective to uniform the residual errors pass very quickly to the stable
relations mentioned above. For the cases in which these relations are not
reached one could add special convergence criteria for the final grid.

8. Calculation Effort

In general most effort is used in blocks 2 and 4 of the flow diagram in

fig. 1. Experience has shown that the partial efforts for the algorithms
performed there are with a good approximation proportional to the number

of gridpoints if a fixed number of iteration cycles is assumed. Therefore
the effort for a refinement step and the following iterations (a refinement

loop) is

thhi N . (tR + tIt) ’ (8.1)

where N is the number of points in the finer grid and tR’ t_, the effort
per point for refinement and iterations. For a computer Igﬁ 370/158 the

following CPU times have been measured:

tR = 0.015 sec.

tIt“ 0.010...0.200 sec. (8.2)

While the time needed for refinement is fairly constant, the time for the
iteration depends strongly on the type of the equations,the number of
iteration cycles and the application of block relaxation.

In case of uniform refinement the efforts for the different refinement
loops form a geometrical progression. If the ratio g, between the point
number of two successive grids is # and the starting grid has a negligible
number of points the total time is

tropay % 2 o Np o (b + £, (8.3)

where N is the number of points in the final grid. For selective refine-
ment the sum factor is greater than 2. The total effort for reasonable
final grids of 300 - 1000 points lies between the extreme walues of 15
and 400 sec. For uniform refinement a simple relation between the total
effort and the overall accuracy can be established by (6.3) and (8.,3):

-1
ttotal ~ AWN . (8.4)

A comparison between the efforts of iterative grid generation and the
input of the final grid can be done. It shows that for the same calculation
time in the final grid 60 - 100 iteration cycles could be performed, where
the higheér value holds for good convergence. In this case the input of an
optimal final grid would need less calculation time, but the absolute
values are relatively small. If medium or bad convergence is present, there
is in general no advantage to perform all iterations in the final grid.
However, 1f a very good starting potential distribution is known, the
use of a given final optimal grid needs less time,which can be usedfor the
determination of nonlinear charateristics.

Lg2
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9. Practical Examples

Static Field of a Magnet

The main parts of the Magnet shown in fig. 12. have a rotational
symmetry. For the calculation the yoke has been modified to rotational
symmetry with unchanged cross section. The r-axis represents a symmetry
plane. The m.m.f. is 32'000 ampere-turns per coil, the magnetic
characteristig of the iron is g%ven by the following V-values %n A/m for
equidistant B -valq;s with A B® = 0.25; the first value is at B = 0, the
last at B = 4,75 T%;

150, 150, 150, 155, 170, 205, 285, 440, 750, 1250, 2100, 3300, 450C0,
6700, 8800, 116C0, 15000, 20900, 35500, 55000.

For 52 Z 4.75, OH/JB = 1/#, is assumed.
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Fig. 13 contains the final grid with 925 points. There is a considerable Number of ﬁzconductar voltage | Conducto i=current in a Power
grid density at the criterial points on the pole. In general the grid in Grid /ml power quarter of the loss in
regions with V=V, is much finer than in the iron due to the influence of Points N [Real R loss tank, [kal a + tank

V on the discretisation error. In the coil a varying grid anisotropy can [kw/m]
be observed which is principally independent on the field strength direction.
At some regions in the iron, particularly at the corners where the flux 18 0.710 1.310 1.205 =7.53 -2.13 4.51
lines are nearly concentrical circles there is an anisotropy wheose direction

is dependent on the direction of B. The following table shows the refinement 27 9333 2:120 1:362 ~.18 R 2T Ssdd
steps and some characteristical results for the different grids. The 41 1.029 2.185 1.283 ~-8.58 -2.63 5.78

program takes 200 sec for the whole process. It may be concluded that the

Real Imaginary | [kw/m]

energies in the final grid have relative discretisation errors of approx- 63 1.029 2,324 1,195 ~8.64 273 2]
imately 0.2%, whereas the accuracy of the force on the coil is about 1% 116 1.029 2.391 1.212 -8.71 -2.75 5.95
and of the B-values about 2-5%. To know very accurately near the origin
a separate refinement of a partial grid in this region is appropriate. 209 1.013 2.418 1.193 =8.67 =2.76 3.94
Number of |Field Coil Total F,=Force (B, at B, at 10. References
i E; E =0 =0
gg;its N e?gj??HdB }frggv ey gzithe i=6 f=&gZM 1. G.E. Forsythe, W.R. Wascw: Finite-Difference Methods for partial
[71 Ll [ [kN] [T} [T] Differential Equations. J. Wiley and Sons, N.Y., 1965
2. R. Courant, K. Friedrichs und H. Lewy: Ueber die partiellen Differenzen-

23 371.8 -656.4 [=2B4.6 3.04 0.182 0.181 gleichungen in der math. Physik. Math. Ann. 100, 1928, 32-74

26 383.5 -667.1 |=-282.6 3.15 0.342 0.192 3. L. Collatz: The Numerical Treatment of Differential Equations.

36 539.4 -1063.9 |-524.5 2.47 1.125 1.048 Springer Verlag, Berlin 1960

44 473.9 -1009.0 |-535.1 2.05 0.915 0.990 4. S. Gerschgo;in: Feh}erabsch%tzung?n fiir das Differenzenverfahren zur

Lésung partieller Differentialgleichungen. Zeitschr. fur angew. Math.

68 496.3 -1062.0 =565.7 2.45 1.187 1.527 und Mech., Band 10, Heft 4 August 1930, S, 373...382.

124 484.4 -1063.6 [-579.2 2.39 1.373 1.526 5. R. Leyvraz: Losses in the internal Parallel Bus-Bars in Transformers
298 485.8 -1069.1 |-583.3 2.40 1.346 1.555 ?gggthe Adjacent Tank Material. Bulletin Oerlikon, Nr. 389/390, June

. - - -585. . «37 .582
453 2257 10058 385.9 2:41 La378 L:98 6. R. Leyvraz: Field Calculation by an Automatic and Iterative Grid
925 483.7 -1070.6 |-586.9 2.42 1.442 1.577 Generation with Minimum Discretisation Error. International High
Voltage Symposium 1975, Bulletin of Swiss Electrotechnical Institution.

Eddy Current Losses in a Conductor-Tank-Arrangement

Fig. 14 shows a quarter of the arrangement. On the y-axis the potential
is 0 (inverse current signs for x<0), the x-axis is a Neumann boundary
(equal current signs for y<0). The tank is made of ferromagnetic steel
with an electrical conductivity of 7.1050 —lm'l; it is considered as a
nonlinear complex boundary condition [5] which takes into account the
eddy currents and the field dgpend?nt reluctivity. The conductor is of
copper with conductivity 5.10° 0~ m"l, its total current is I = (14.14,
0.) kA,Fig. 14 and 15 show the flux lines in the poments o©of maximum and
zero conductor current. The entrance of the flux lines into the tank is far
from perpendicular because of the considerable eddy currents. The grid
shown in Fig. 16 is concentrated on#e conductor where a systematic
anisotropy can be seen. The smaller grid density in the conductors centre
coincides withthe smaller current density. Some results are given in the
following table for different grids; the calculation took 60 sec. on an IBM
370/158 computer. The calculation is made for a frequency of SOHz.
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Discussions following paper: is applied. In some other cases the éo = value of the fluxless zone is
not known, but there is a condition of zero total current in the iron.

(Newman) 1) You do not include algorithms to remove mesh points. In this case the function must be taken at |§f§0I and_éo must be adapted

Did you not find this to be necessary such thatf#‘E dl = 0 over the iron conductor.

2)  Could you comment on the feasibility of extending this method to The use of a boundary condition is based on the fact that the flux lines

three dimensions. inside the solid iron are practically parallel to the boundary.

(Leyvraz, Zurich) 1l.An algorithm to remove grid points is in general not
necessary for the complete generation of a grid from the coarsest possible
starting grid. However, it would be very useful in some other situations
for instance if an existing grid has to be adapted to a different
Potential distribution. The grid density change would then be quasi-
reversible. Additional rules for the grid change sequence (selection of
segments) would be needed, because the frequency distribution of the
halving indices is not only compressed from the right, but also from the

left.

2. The automated generation of optimal grids in 3 dimensions is even more
useful tham in 2 dimensions. I can not see any principal obstacles, but
there are several detail problems, as the construction of the first grid,
selection of elementary operations for topology optimisation, ete.

There will be also considerable problems in programming the algorithms.

(McWhirter) You mentioned solving for the eddy currents in the non-
linear transformer tank wall. Could you say more about this method.
Does it assume that the fields and currents resulting from the iron will

not be sinusoidal.

(Leyvraz) The boundary condition used there is described in reference (5)
Firgt, the transient eddy current equation is solved in 1 dimension for

the given magnetisation curve and a siniusoidal tangential H. Then the
harmonies of the total flux {, which are fairly small, are neglected.

The result can be expressed as a non linear complex boundary condition
H=£ (] § !2) . £: The assumption is that everywhere in the tank there
is a prac;ically fluxless zone outside, where A can be normalised to 0
which leads to A (inside) =land H (tangential, inside) =f (]A.I’z) X A
(inside). By this function the equations for the inside boudary nodes

can be completed, for instance bychoosing the way in which Stokes' theorem



Compumag Oxford, 31 March to 2 April 1976

STRESSES COMPUTATION PRODUCED BY A SUPERCONDUCTING NORMAL SINGLE COIL TRAN
SITION, IN A TOROIDAL MAGNET FOR FUSION RESEARCH TOKAMAK

by M. Caciotta and G. Sacerdoti

Summary

One discuss a procedure to evaluate the bending moments that might
arise for the collapse of a s.c. coil, without the neighborough transition
in the toroidal magnet.

ALL the computing programs are not reported but are available if re

quest.

1. - INTRODUCTION

As known the large dimension Tokamak, if realized with cheap crite-
ria need to utilize s.c. toroidal magnet.

The magnet is realized with narrow radial coils. In the exemple the
number is of 36. If one of the coils collapse from s.c. to normal state, for
some fault, in the neighborough winding over currents are induced.

The calculation is conceptually easy, if the coils are short-circui-
ted. The magnetic field on the coils is changed with regard to the normal
excitation of the magnet. The extra stresses are due both to the change of
magnetic field shape and to the overcurrent. The normal excitated D-shaped
coils should be stressed only by traction. Bending stresses arise with the
fault condictions currents distribution. To protect the coils form mechani-
cal overstresses, we might try to discharge the magnetic energy on external
loads or, otherwise to locked copper rings all around the coils shape able
to "absorbe" the overcurrents during the transition time.

Both the sistems present some limits and difficulties.

The toroidal magnet energy for Tokamak is between 1010 and 10! jou
le. The magnet protection with fast discharge in external loads needs a high
voltage electrical insulation of the windings of the magnet.

If conductors current is 10"A, the insulation voltage about 2-103V
with N the number of coils, we may get, the magnitude order of discharge ti

me by the formula:
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N(2.103) - (10%) = 6.10!0

with: 6.1010 magnetic energy in joule
2,103 insulating voltage in volt

1.10" current in Ampere

If N = 36, we obtain T = 66 sec. There are researches, in some labo—
ratories, to xealize few tens KV electrical insulation. The copper rings
protection needs of a mechanical structure able to resist to the bending
moments of the magnitude order of that should be requested in the s.c.
coils without protection.

The relation between ring thickness s and the time t in wich the rings

might to screen the coils, in approximally given by relation

P is the electrical resistivity of copper.

The rings presancé produces approximally a delay T in the perturba-
tion passing from one coil to the next. With a N coils magnet, the propaga-
tion time of collapsé effect shall be:

N s? g 4w

S
5 Ny 7P

Lf

= __-J'...._ - -6 . =
P g5 107° fixm; s 0,20m

N = 36 ; T = 40 +45 sec

This time should be increased because of the ring self-inductance.

In the present work the stresses evaluation in the worst conditions
is done; this is the case in wich there are no protection at all and the
magnetic flux in each coil will remain constant (naturally escluded the col
lapsed one).

For more realistic evaluation, we should have done hypothesises on
the reasons and on the causes that give arise to the coils collape and from
these to evaluate the fenomenon intrinsic constant time.

We have done some hypothesises that make a more pessimistic evalua-

tion; they are:
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a) the very fast collapse of the coil

b) the neighborough coils should be enough strong to succeded to support

the raised overcurrent, without other transictions;
c) no external protection limits the currents values.

For a best explanation we apply the proposed procedure to a Tokamak
fusion reactor studied at Frascati Laboratories in the 1974 (FINTOR) |[1].

The different steps are:

1) the mutual inductance measurements between the magnet coils on the lit-

tle size model

2) the coils overcurrents calculationwhen one of the coils quenches;this cal-
culation is done with the mutual inductances measured values. If the
coils are many, the mutual inductances measurements must be very precise
to avoid some overcurrents oscillations with the azimut. So it is neces-
sary to correct some little, the mutual inductances value to get a not

oscillating behaviour.

3) By the measurement on the model, one obtains the magnetic field compo-
nent perpendicular to the coil plane value, versus linear development of
the coil, in all the azimutal possible positions.

The field has been measured along the four corner-edges of the winding.
From the measurements data that are abaut two thousends and five hund-
reds relieved by an Hall probe gaussmeter, we carry out a magnetic field
analytical expression function of the azimut and the linear development

of the coil.

4) By using the just obtained formula and the overcurrents values, one cal-
culate by a computer, the bending moments and the mechanical overstres-
ses in the more excited coil with the following hypothesises:

a) the magnet with the coils supported by a central cylinder;
b) the magnet coils supported in a point of an ideal central circum

ference.

5) One discuss the possibility to compute both the mutual inductances and

the magnetic field instead to measure its.

CAD E6

2. - MUTUAL INDUCTANCES MEASUREMENTS OF TOROIDAL MAGNET COILS

The calculation of the mutual inductance of the D-shaped coils, pro-
bably needs the magnetic field computation. Very good programs for the ma-
gnetic field calculation in every geometry of windings are available (see
bibliography | 2| for an example). We for this work have considered easier

and quicker to measure on the model the mutual inductances. Its will be:

where:

L: mutual or self-inductance of the magnet coils of Tokamak
1: mutual or self-inductance measured on the model

S: scale factor

N_: number of coils of winding

t
Nm: number of coils of model

We have Nt = 700 Nm = 554 s = 50

The model is realized by two copper wires on plexiglass support fixed on
the compass arms.

The machine inner diameter (in scale) is equal to the compass arm
lenght to reproduce easily the all possible reciprocal coils positions.

In fig.l is reproduced the apparatus photos.
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To measure the different angles mutual inductances a volt-amperome-—
tric method has been used.

To be sure that the model metallic parts do not have influence we ha
ve accomplished the measurements at 50 Hz and at 1 KMz.

In fig.2 there are reported the experimental relieves and the two dif

ferent frequencies curves are sufficiently overlapped.

S
Ve +«50 Hz-calculated
= ° 1K Hgz
1 '
L :
“—I s
.05 .
L
: 1
¥
.01+ L

20 40 60 80 100 120 140 160 180
Degrees

= FIG.2 -

The instruments errors are: 27 at the mutual inductances high values
and 7% at the low values.

We have added to the instruments errors the azimutal position errors
that are, viceversa, bigger for mutual inductance higher values than the
lower values varying from 67 to 1Z.

The average errors can be evaluated better than 7%

3. - OVERCURRENTS CALCULATION

With the measured coefficients the overcurrents that are induced in
the Tokamak coils when one or more collapse it is possible to compute.

We do the hypothesis (see introduction) that the magnetic flux in all
the s.c. coils shall remain constant.

So we can get the 35 equations in the 35 unknown currents.
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The coefficients matrix is carried out by the mutual inductances measured

values, and it results

%? Ml .

K.,l=). K AT, K = =]

! 23 L3 1, M 4

M 5= Moy s 0,5 = 10°[1 - § (3.1)
l1=1,2,...35

Similarly when two coils collapse we may write the 34 equations in

the 34 unknown currents

K, , +K =7, K AT,

1,17 71,2 7 45 L,

The over currents obtained resolving the sistem (3.1) are effected
by oscillations (see fig.3) increasing the azimut that, we believe, are due

to the mutual inductances measurements errors on the model

100
« 19 calec.
\ o definitive
10+ ) calculation
% \
14 \\
01- : g
R o
: e
lli'l_[éiléll‘llzTT"lsj_l_‘Ia

Coil Number

- FIG.3 -

The experimental values have been modified to eliminate oscilla-
tions by the following on the computer procedure.
From the overcurrents versus the azimut graphic, we connect the mi

nimum with the firsts neighborough, with two segments then connecting with
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a straigh-line the average points of the segments. At the minimum ascissa,
we evaluate the corrected overcurrent. Easy geometrical considerations al-
low us to write:

1
' = o
AIB A (AI! + ZAIB * ﬂIC)

By this method (see fig.4) we take off all the minimum points.

A%

Coil Number
- FIG.4 -

We recalculate the mutual inductances new values to get the modified over-
current distribution.

We may write

36
K = )., K L.AIL.
1,1 g] 1,777
36
K + AK =), (R, . + AK, .)(AL, + GAI.
1,1 1,1 EJ ( 1,3 111)( J J)
36
AR = Y, K, ., 8AI,
1,1 EJ L,j ]

These relations constitue a system to evaluate the mutual inductan-—
ces corrections. With the new values set we recalculate the over currents

not having oscillations; otherwise we repeat the procedure.

CAD E6

We have controlled that always the mutual inductances values should
be in the experimental errors field; otherwise, one reduces all the values
by an equal coefficient to arrange the values into the experimental errors
range. The coefficients set that eliminates the oscillations in surely pre-—
cise better than 77%.

The mutual inductances graphic so evaluated is coincident with the
fig.2 (50Hz).

L L
K=—EI~— K= —m—
Degrees | 50 Hz Calculated | Degrees| 50 Hgz Calculated
0 1.00 1.00 100 .018 .019
10 .46 45 110 .014 .015
20 .28 .24 120 .012 .012
30 .17 .18 130 .010 .010
40 .11 .12 140 .0088 .0090
50 075 .081 150 .0080 .0081
60 .052 .056 160 0074 0074
70 .039 042 170 0070 0071
80 .029 .031 180 .0069 .0069
90 022 024
- TABLE I -

The Table I shows the initial and final mutual inductances.

In fig.3 is reported the overcurrents evaluations.|3|

4.1 - MAGNETIC FIELD CALCULATION |4|

On the above described model the azimutal magnetic field has been
relieved. One of the two model coils has been excited by a 1A, D.C. current
and the azimutal magnetic field has been relieved along the four corner—ed-
ges of the other coil by an Hall gaussmeter (model Booton ind. 3265).

Because of the magnetic field low value the measurement has been
replaced changing the current from 1 A to-1 A to eliminate the earth magne
tic field influence.

The bigger errors was principally done in the self-field measurements

and in the more far coils the errors were due:

a) to the strumental causes

LBg
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b) to the Hall probe positioning

¢) to the Hall probe physical dimensions

The strumental errors are of the 27 order.

The Hall probe physical dimensions were of abaut 6 mm x 6 mm.

The field measurements consists in about 2500 relieves (15 for each
corner—edge; 4 corner-edges, 18 coils, 2 relieves for the earth magnetic
field eliminations).

To wutilize the data for the mechanical stresses computation we have
to get an analitical magnetic field expression by a best-fit method. We ha-

ve the aim to get the formula of the botton tipe.
B. . =1£%.(s,%
Tyl J{ )
where j is the coil corner-edge; Bf j is the perpendicular to the coils pla
ne magnetic field component; s is the corner—edge linear development,9 is

the azimut.

- Winding
| /" Gaussmeter
- Hall Probe
o | _._,_!'T1
3 [ ] 2
= L —
H
[ T— Plexiglass
Support

- FIG.5 -

L9o

CAD E6

4.2 - THE MAGNETIC FIELD EXPERIMENTAL DATA ELABORATIONS AND THE MAGNETIC
INDUCTION ANALYTICAL EXPRESSION

We describe the followed procedure. For simmetry considerations the
Br i for s = 0 and s = Sy (the half perimeter of the coil j corner-edge)
may have the first derivation equal to zero.

dB - . dB
—2

r B r,j =0
ds ds
§=0 5=8
m
Varying 9we can write:
) m

B .(s) = A .+2.A. . cosi—>
Ty 043 11 1. s

for every 9 value.

In our computation N is equal 5 for all the angles.

The computed values of ai,j give a magnetic field in the range of ex
perimental errors.

The coefficients get lower when index i arise and your behaviour is
strongly sharp for lower angles.

We have rapresented with an high degree of accurancy the coefficients
behaviour versus angles by two functions the first taking the sharp beha-
viour into account and the second the great angles behaviour.

The functions are reported below:

2 3 4
Ai,j exp(bo + bl% + bza + b3a ) - 20
for § < 0
— K
=4, B
Aij 2 + 52 for & 390

Where A and B are completely determinated by the junctions condi-
tidns and where @O is the junction angle.

We obtain, for each coil corner-edge, a 6 x 5 matrix, which raws are
constituted by the four A. . coefficients with & < 90 and the fifth element

is the junction angle.
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o e e e
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(°)

Corner-edge 1(°)
b, By b,
1.1660 33.747 -72.032
2.8599 4.6023 -9.7299
2.9102 1.2804 -2.0755
2.8826 «19753 -1.0725
2.9843 -1.0357 2.9100
2.9842 -.42325 .11695

Corner-edge 2
L By Pa
4.2507 .0 -64.882
2.9026 14.781 -60,810
2.9162 97724 -1.5672
2.9512 2.,1311 -23.651

Corner-edge 3
b0 bl b2
4.2514 .0 -126.16
3.0497 6.9380 —22.315
2.9056 59675 -21.255
2.9333 .0 8.2799
2.9559 .0 4.8434
2.09596 2.0302 ~-7.1288

Corner-edge 4
by 0y ®y
1.1613 92.706 -330.74
2.8581 1.9272 -3.1459
2.9087 1.0035 -1.6593
2.8810 1.1608 -1,9262
2.9831 87159 -3.0789
2.9831 46941 -1.4200
See fig. 5

- TABLE II -

b3

41,631
5454 34
. 91609
.39813
-2.0023
—-.77607

L)

142.21
-20.644
68.545
.68109
49.857
-.70984

By

310.47
15.449
20.511

. =20.499

-11.271
6.7337

by

319.94
1.4026
+75309
. 87844
2.9249
1.1247

O
40
40
50
60

30

30

16
18
18
50
18
20

16
18
20
16
16
20.

6

20
50
50
50
20
30

The four matrixes are reported in tab.Il

In tab.III is reported the magnetic field versus the
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linear development of

winding both for the normal and collapsed conditionms.

Linear

SectorT#féector Co-ordinates
Number| % Y | Developnent
0 | 6.16 .0 .0
1 6.16 Ll 1.11
2 6.16 2.22 2.22
3 .21 3.29 3.30
4 | 6.52 4.20 4.27
5 "T85 542 ! 5.86
6 9.05 _ 6.14 : Te54
T 9.19 | 6.18 T.69
8 10,51 | 6.26 9.02
9 12.73 i 5.45 [ 11.37
10 14.20 4,16 i 13.36
Ik 15.10 2.73 f 15.07
12 15.63 .92 l 16.95
- Meters | Meters | Meters _
- TABLE III -

lormal
| Field
3.96
4.01
4.15
4.13
3.94
3.45
3.04
3.03
2.89
2.81
2.66
2.61
2.70

Teslas

5.1 - BENDING MOMENTS CALCULATION WHEN A COIL COLLAPSED 15]

Collap.

Field
4.20
4.28
4.42
4.44
4.25
3.77
3.31
3.29
3415
3.04
2.89
2.84
2.95

Teslas

We consider an half coil determined by the single simmetry axis,

fig.6.

-----
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Through the section A a force Fa and a bending moment Ma is transmi
ted. For simmetry reasons we think the half coil fitted in A and we can
say that:

1) the section B cannot rotate

2) the section B displacement can be only along the simmetry axis.

With the above conditions we can compute Fa and Ma' We divide the

half coil in segments fig.7

= FIG.7 -

We can write:

9, = E.J.1.M.
] 11113

If Ej and Jj are constant varying j the condition 1) can be write as:

N
8. =Y.1M =}.98. =0 (5.1)
1

where

Mj = Ma+Fa‘na;j+ FTbT,j + 1i Fibi,j (5.2)

bi jis the force Fi—beam referred to the segment center,

£l
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b, . and b_ . are the F_ and F_ beams referred to the point in wich the
T,] a,j T a

moment is calculated.
The force F, in fig.6 is the half-strengh reaction that opposes the

displacement toward the inside. The F,, is computed adding the components

T
along the simmetry axis of all, the Fi acting on the non constrained partof
the half coil.

The (5.1) condition using the (5.2) becomes

N N N N
M ). 1.+F ). b .1 +F ).b .1, +),. )} F.b, .1. =0 5.3
a ;:J j a %J 13 T %J 1,373 %J 1t 11,31 2:3)

In the fig.8 it is possible to observe that the generical displace-

ment is computed from the segment (AjB) rotation.

Ay

Ay

- -
-~

- FIG.8 -

We can write:

from above we have

s. = (A.B 9.
] ¢ il )x J

Where (A.B)x is the geometrical projection on the simmetry axis of the seg-

ment (AjB) we can so obtain the second equation:
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N N N
M ). 1.(AB) +F_ }. 1 AB) +F ). 1.b .(AB) +
a %J e EJ iPa,i4Px * T b 15 45
Ni (5.4)
+ Ej Li iPy, ;BB = 0

Where Fi - Bi Ii li' and Bi is the magnetic induction in the segment 1ij;
li is the length of segment i; Ii is the current on the segment 1i.

A variation to the above calculation to evaluate the bending moments
behaviour when the coils have the straightrib supported.

In this case the moments on the supported rib are zero, because the
constrain reaction balance the electromagnetic forces.

The support can give only oriented reactions, and we might evaluate
as far from A the constrain supports the rib.

For this evaluation we make a constrain displacement along the sup-
port surface with F equal to the projection on the simmetry axis of elec-
tromagnetic forces and from section A to section B.

Fa and Ma can be calculated from(5.3). In the table V are reported
the results for thecase with central rib support and in table VI the case

with supported rib both in the collapse and in the normal conditions.

Sector Normal Bending | Collapsed Bending
__ Number| _ Moment |  Moment
0 -43.7 -59.8
l ""35 (] 6 "\4 8- 8
2 -23.8 ~32.6
3 -9.3 ~12.6
4 3.3 4.7
5 20.2 27.8
6 30.5 41.9
i 31el 42,6
8 32.2 44.1
9 20.9 28.6
10 | 4.6 6.3
A =12.8 =17.4
12 -33.6 -46.1
*“ KTons x Meter : KTons x lieter

i

Note: positive moments are clockwise (fig. 7)

- TABLE V -
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Sector| Normal Bending Collapcsed DBending
Number loment lioment o
0 | .0 .0
L 4 .0 .0
2 | 7 1.0
3 4.5 6.0
4 ‘ 7.4 9.9
5 10.3 13.7
6 10.7 14.2
7 10.6 14.1
8 8.7 1155
9 1.6 2.2
10 -4.3 -5.5
11 -8.8 -11.3
12 | -12.6 -16.0
— — |7 " K2ons x Meter KTons x Meter

Note: positive moments are clockwise (fig. 7)

~ TABLE VI -

From table VI the support both in the collapse and in the normalca~—
se, is equally far from section A.

If we interpolate the results by the displaces support ones we ob-

tain a difference of about 3 cm.

We foresee a better calculation with a shorter segments structure
subdivision.

One can see that the bending moments in the normal conditions are
not zero as it should be for a D-shaped coil.

This result is given to the causes below reported:

1) the zero bending moment shape 1is in the continuous toroidal solenoid

hypothesis: in the radiate coils realization the bending moment arise;

2) the internal-external ratio influences the residual bending moment: in

creases with the ratio;
3) in our realization the D-shaped is the internal coils perimeter;

4) in the calculation we have placed the currents in the windings center,

displaced of .5 m from the D-shape;

5) our caleculation consider the coil divided in linear segments instead

of a continuous curve;
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6) we consider that magnetic field sh;uld be evaluate in the winding center
by a linear interpolation of the four corner-edges values.

The bending moment that arise in the normal action one think to be
of the acceptable magnitude for the above reasons.

We think correct the problem resolution. In these conditions because
of the stresses increase in the case of one coil collapse, is mainly due to
the overcurrent than to a change of the magnetic field shape as it should
be if the bending moment should be zero in normal excitation.

We intend to develop a computer program to evalutate the bending mo-

ments considering the current distribution in the space.

6. — CONCLUSIONS

To evaluate the bending strains in a s.c. Tokamak with the D-shaped
coil we have resolved some problems.

We have evaluate the mutual inductances to compute the overcurrents
in the collapse case.

We have preferred a measurements serie on the model because of the
complex coils shape, instead of the resolution by a computer calculation.

The computer evaluation needs a program optimization that requires
more time than the model realization and the measurements execution.

With the overcurrent we have evaluated the collapsed magnetic field.

Even in this case the experimental relieves have been preferred with
a great loss of time.

In the future this procedure is not advisable because of the availa=
bility of very good programs for the magnetic field calculation . Our atten
tion have been pointed to the bending moments evaluation.

We have carried out a computer program for the bending moments evalua
tion in the complex structure proposed.

The program input is the magnetic field and the currents distribu-
tion. We have carried out in a reasonable time the unknown moments distri-
bution, but the procedure cannot easily iterate because a new model needs
for the mutual inductances evaluation. We are working to replace the measu-

rements on the model with a computer program.

gl
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MECHANICAL AND THERMAL STRESSES IN

DOUBLER DIPOLE.'MAGNETS

5.C. Snowdon
October 1975

Summary

An analytical solution for stresses has been found for a
structural composite that models the Doubler dipole. Structural
cylinders represent the material inside and outside of the ex-
citation current which is represented by two cosine theta sheet
current distributions. A pretensioned structural cylinder sur-
rounds the aforementioned materials. Thermal stresses are
represented only in so far as a uniform temperature differing
from rocm temperature alters the stress-strain relation. Temp-
erature gradients are not considered. The mechanical energy
stored in the elastic field is calculated. Numerical results
are given.

Thermo Elasticity

The effect of a temperature change in elasticity is obtalned

by considering the elastic energy density to have the I‘orm:1
W= Cpie s + 5C, 10 o€asE (1)
171 2 1jke7ij ke 2
where the summation convention for repeated indices is used. The
stress tensor is related to the strain tensor using
- 9w _
Pyq 3ey; " Cig ¥ Cigxetre (2)
For homogeneous isotrople materials
= - . (3)
Cy; k(3x+2u) 85
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and
= i
cijkl Aaijskz + ”(51k531*51a5Jk3 3 %)
where k is the thermal expansion coefficient integrated from
4,2°K to room temperature, A and y are the Lamé constants which
are related to the more familiar constants ¥ (Young's modulus)
and v(Poisson's ratio) as follows.
A= Y Y ¥ i ¥ (5)
(T+v) (1=2v) > LY G B o) SR
Under these restrictions Hooke's Law becomes
2 v 1 o KY 6)
%3 = (2w ¥ Yscie Y I Y %13 - 195w Sy ¢ ¢
The condition of equilibrium is then
Boi
5__1 +f, =0, (7)
xi i
where fj is the body force which in our case will be the Lorentz
force JxB. Finally, since some of the boundary conditions relate
to the material displacement ﬁ, one needs the connection between
strain and displacement
au Ju
I i
€3.% 7 |5x, ¥ 5%, (8)
3 i
For the problem at hand the body force is handled by a surface
traction and, therefore, the equilibrium condition Eq. (7) may be
satisfied identically through the use of the Airy stress function
e
2
N Ll (9)
O3y = 835 V0 7, 3%,

Los
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The equation satisfied by the Alry stress function is determined
from the equations of compatibility which are imposed on strains
since the six strains in Eq. (8) must be interrelated in order to
be derivable from three displacements. If Hooke's Law, Eq. (6),

is used the equations of compatibility for stresses may be found

2
g
2 1. kk _
v %3 BT ﬁxiaxJ =0 .

By introducing the approximation known as generalized plane
strain2 one reduces the problem to manageable propertions. In
this approximation one neglects the shear strains connected with
the longitudinal or axial direction but permits a free expansion

characterized by a uniform strain. For.the normal stresses Eq. (4)

glves
0y, = 1(ell+s22+533) + 2u511 - k(3x+2p)
Oyy = 1(511+522+s333 + 2ue,, = k(31+2u)
o33 = l(sll+caz+s33) + 2u533 - k(3x+2u) .

Suppose that the index 3 represents the longitudinal direction.

Then, from Egs. (5, 11, 12, 13) one has

o33 = v(cll+022) + Ys33 - kY.
Since 533 is considered constant in this approximation, Eq. (10)
becomes
2
2 3 =
Wity ¥ 3%, 9% (9y3%952) = 0 »

or, using Eq. (9) this becomes
7

2 .
1 2 2 3 2. 2.\ _
815 V0 - axpawy V0 awgaw (V0T 20

k96

(10)

(11)
(12)
(13)

(%)

(15)

(16)

CAD E7

Hence the Alry stress function satisfies the biharmonic equation

Ve =0. (17)
Virial Theorem

One might expect that the boundary conditions which provide
for continuity of displacement and discontinuity of normal and
shear stresses according to known surface tractions would be
sufficient to specify all the unknowns in solving Eq. (17).
However, in this plane strain approximation, information relative
to the longitudinal ends is lost and must be supplied by some

integral condition. For this problem it is sufficient to invoke

‘the virial theorem which may be found as follows3. Let TiJ be

the Maxwell stress tensor for the magnetic field introduced by

the current sheet. The body force rJ in Eq. (7) is then given

by
9T
p &
rj:ﬁ‘i-. (18}
To form the virial multiply Eq. (7) by xs and utilize Eq. (18).
Thus, after integrating over a volume
£l
f Xy 5;; {01J+Tij)d?x =0 . (19)
Integrate by parts using
D (x,8,.) = 6,.8 e (20)
— = + Xx 20)
axi i 13715 J 3xi
to give
3 =
é xJ(GiJ+TiJ)dSi - fﬁij(aiJ+TiJ)d x=0. (21)

Notice that the integrand in the volume integral is just the trace

of the tensor. But the trace of the Maxwell stress tensor is the
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. 4
negative of the energy density . Hence

J X = =Wy, (22)

GiJTij d
the magnetic energy. 3Since, in the problem considered GiJ is

zero on the boundary but tiJ exists on the iron shield, one has

as, + Wy . (23)

=
Isijuij d“x = g_x‘jti_j B

It should be noted that T is taken to be zero on the end walls.

ij
Hence one visualizes that the magnet structure has terminating ends.
Equation (23) indicates that, since the right hand side is posi-
tive, a net tensile structure is required to contain magnetic

forces 1n static equilibrium.

Pretensioned Band

A method of characterizing a pretensioned member may be found

by utilizing the concept of rotational dislocation5

whereby dis-
continuity in rotational displacement is permitted. Thus ue(zu) -
ua(O) 1s given a preassigned value. This condition will be used
in the outer band rather than the customary continuity of dis-
placement.
Magnetic Field

Since a continuously distributed body force as given by the
Lorentz force JxB is more difficult to handle in the eguations
of elasticity, the region of conduction current in the dipole
will be approximated by two current sheets, one at the inner edge
‘of the region and one at.the outer edge of the region. Thus the
model to be considered consists of two eylindrical current sheets

each carrying an axial current density of

CAD E7

o

i-= cosb at (2]‘)
1 r=c¢ .

See Fig. 1 for geometrical details. From the current density as
given and an iron shield located at r = r,, one finds the fol-

lowing magnetic field components.

2., -2 -2
io(1+b Ty ) o+ il(1+c 2y )]
2= 2 - i
Hr = - 27 io(b r “+b ry ) 1 11{1+c2rs 2) sind ,
-2,,2 2 -2, 2, =2
io(b +b T ) + 11(c r “4e . ) (25)
2, -2 2. =2
1,(14b%r 7%) # 4 (L4er 77)
Ha = - 27 iO( —b2p~ 2+b2r ) + i (1+02r5_2) cosf
2 -2 2.-2,2 =2
i,(-p°r +b° P ) +1,(=cr e r 7)), (26)
where the top entry refers to o<r<b, the middle entry to b<r<c
and the bottom entry to c<r<r5. In order to calculate the forces
one needs the average field at the current sheets.
1_ (142, 72) + 1. (1+cr ")
o s 1 s
<%r> i - B et il
Av 1,0 b r 7)) + 4, (14e®r ) (27)
10b2r3“2 + il(J+c2r$*2)
<hq> el I 2, -2 weme
Av 10(~b e b )+ ilc r (28)

Lorentz Force on Current Sheets

The force on a current sheet is given by

-

dF = 1ids kx(i < > + 1 )
Av e/.n.v (29)

where 1 is given by Eq. (24) and

Lg7
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b
ds = dae . (30) the corresponding stress in Eq. (6) becomes
a ;
. Gy = (A+2u)srr + Aegg + Ae,, - k(3142u) (37)
If f denotes the force per unit area on the current sheet, then
Ugp = Aep. + (l+2u)sae + e, - k(3x+2p) (38)
2,2 -2 2 =2
107Tg T+ 11y (Aher ™) 0., = A+ Aegg + (A+2u)e - k(3A+2p) . (39)
£ = rr 6e ZZ
o L (1+cos28) ,
272,02, -2y , 42,2, -2 G ocom B )
1011(-b c r, ) 18T (31) g = 2MELg . (Lo)

244512, -2 2., -2 Inversion gives
15(140°r 7%) + 1 1, (14er 7%)

f.o = sin26

8 - 1 ;
1011(b2c 2+b2rs 2) + i§(1+c2rs—2) (32) Eppr 2u(3a+2y) [2(l+u)crr = l(°&8+azz)] *+k (¥1)
& 1 .
Maxwell Stress Tensor BBB T 2u(3arE) [2(A+u)uaa = l(crr+uzz}] + k (t2)
The Maxwell stress tensor is found by noting that the Lorentz i 1 "
. A e [2(k+u}czz = A(arr+cea)] + k (43)
force may be written as the divergence of a tensor. Thus
& i
.. = €ro = 2p%re - e
JxB = V.7 , (33)
) Utilizing Eq. (5) one has
where, in cartesian components
1
2 1.2 €pp = Y[urr-uaea-vazz] + k (45)
. Bx - §B Bx By Bx Bz
= . ] 2 1.2
T = B B B - —B B B - 1
T x Ty y ~ 2 L% €op = FL-V0ppt0ge-v0,, ] + k (46)
B, B, B, B, B,“ - 3B . (34)
€,y = %[«vorr—vcaa+azz] + k (47)
From this it may be seen that the trace of the Maxwell stress
tensor 1s _ 14y
Ero = Y Pro ° (48)
trT=- g8, (35)
Since e, is taken to be constant in this approximation, Eq. (u7)
the negative of the energy density. may be used to éliminate L Thus
Application to Doubler Dipole Magnet 14
£ = —TE'[(I—V)U - vo a]-vs + (1+v)k (49)
Since generalized plane strain is characterized by re rr 8 z%
0 = Gonstank (36) Cop = 2V o +(1-v)o,,] - ve__ + (1+v)k . (50)
Ehz = Cgz ™ » E,, = constant , 06 Y rr 08 %%

498
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The relation between the stresses and the Airy stress

function, Eq. (9), becomes in cylindrical coordinates

2
_13¢ ., 1 3%
o, == +
rr T ;7 202
2
%p = - 2
ar
= - 8,13
9o ar(r ae)

For the problem under conslderation one may take in each annular

region functions of the form

2 B

¢ = Atnr + Grégnr + Br2 + (Cr2+Dr

The constant G is related to a multivalued azimuthal displacement

and is set equal to zero except in the outer band where it is

used to characterize pretension.

Stresses, Strains and Displacements

+Er~24F) cos28

One finds that Eqs. (52-55) gives

o__ =4 A.r +232—(202+6E2r

g o 2

Ar~242G,1nr+G +253-(2c3+65

3 3 3
-A p? +2B, +(2C, +12D r2+6E r“u}cosza
1 1 1 1 1
- -2
UBB = wﬁer
-2
- + +3G.,42B,+(2C,+12D
AgrT42651nr+364+28 ( 3

2 -l
(2c1+601r -6E,T

2 -4
% = (2c2+602r -GEEr

3 3 3

(2¢4+6D 265 r"-2F_r~?)sin20

-2
+2Bl—(201+6E1r +4F r"")cos28

+HF2r_23cos2E

2 -4
+252+(ZC2+1292r +6E2r Jeos20

—EFlr”2)31n23

-2F2r“2)sinea

(51)

(52)

(53)

(54)

(55)

(56)

(57)
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where the top entry is the bore tube region a<r<b; the middle
entry is the reglon of conductors b<r<e; and the last entry re-
presents the pretensioned band c<r<d.

Substituting Egs. (55-57) into Eqs. (48-50) gives for tHe

strains

X
yeTry [err+vczz—(1+v)k] =

-2

A . ]! +2(1-2v,)B;
~[26,+12v,D, 2+ 6By x4 (1-v, )Py "% Jeos20
-2
A2r +2(l-2v2)32

2 -4 -2
—[EC2+12v2D2r +—632r +H(l—u2)F2r Jeos26

-2
A3r +2(l-2v3)G3£nr+(l—Nu3)83+2(1—2v3}B3

_—[203+12v3D3r24-6E3r‘u+ﬂ(1~u3)F3r_2]cosea (58)

¥ -
T?U'[EBB+“€ZZ_(1+v)k] =

-2
Ajr +2(1-2v; )By
t[ch+12(l—vi)Dlr2+GElr'"+ﬂulF1r—2}c0328
-2
-Arr +2(1—2\;2)B2

2 -4
+ [202+12(l—u2)D2r +6E2r

+Hv2F2r”21c0523
-2

- — —] I - -

ﬂsr +2(1 2u3)G3£nr+(3 Iv3)F3+2(1 EUjJB3

“+uu3F3r‘23cosza (59)

+[2c3+12(1_u3}n3r2+653g‘
)

il

[(201+601r2~651r_ #EFlr_g)sinEG

¥ 5 2 T
F9Epo =\ (2C,*6D,r =6E,r™ '-2F,r“)sin20

=1 -
r2-6E v~ "-2F.r"2)sin20 } . (60)

(2c3+6D3 3 3

k99
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Boundary Conditions

The relation between strain and displacement given in Eg. (8) At r=a no traction is transmitted. Hence
expressed in cylindrical coordinates becomes - -
g Opr = %pg @y (67)
Ju
T or
Eprp ar (61) <
: i Aja™  + 2B, =0 (68)
S0 * = *'5 7% (62) -4 2
o 20, + 6Eja”" + WFja™" = 0 (69)
1,3 Y 1 M,
€rg = 3¢ ar T "1 an) ' (63) 2c, + 6Dla2 - 6Ela““ = ZFla'2 =0 . (70)
Utilizing Eqs. (58-60) one finds by partial integration At r=b the equilibrium condition 1is
Y = (+) (-) "
I;ﬁtur+vezzr_(l+“}kr] = Gu’ = O + fr o, ) 7L}
- and
-apr7t +2(1-2v,)B,r
(+) (=)
; - w a - + f, =0 2
—[2clr+1|vlnlr3-zzlr 3-14(1—\)1317‘11' 1ycos20 re. ~ %ro 0 s (72)
-nzr"l ) -!-2(1-2\:2)321- where f and f, are glven by Eqs. (31-32). Thus
~[2C jr+1v,D,r3-2E,r 34 (1-v,)F,r " 1cos2s & 30 .08 £ b
(Aa—Al)b + E(Ba—Blj = -nio[iob 2 +11(1+c Ty )] (73)

<1
-n3r +2(1—2u3)G3r&m~-ﬂ+(1-!&v3)c3r+2(1-2v3)53r- i _ " 5 J
-2(C,~C,)~6(E,-E,)b —M(Fz-—Fl)b = -n1 [1i br +11(14er 7)) (7h)

3 -3 -1
- + -2E =§(1-v,)F 20 64
(2C r+hy Dar~~2E,r (1-v3) 3* leos (64) . q
: )b 2
2(02~Cl]+5(D2—DJ)b ~6(E2-E1)b —2(F2—!~‘1)h
3 -3 =1
03 T -(1-2v,)F sin20 0 %
2[Cyr#(3-2v1)D, r 4E r "= (1-2v) JFyr " Jsin w1 L1 (1% 241 (14e3r_"2)) (75)
- S 20C,r+(3-2v, D r +E, w3+ (1-2v,) F,or~  Jsin2e
v = Also at r=b the displacements are continuous.
§(1-v.,)G.r8+2[Cr+(3-2v, ) D r+E, r 3-(1-2v_)F.r 11sin20 | (65)
3 3 SN 373 S0 IO O T €5 U O NN 76)
r = My Fl —Xe = Y
= 66
Uy T 8p% (66) From Eqs. (64-65) one obtains
The unknown functions in the partial integration are set to zero 1+v2 -1 l+u1 31
¥ [-nzb +2(1-2v2)82b] - Y—-[—Alb' +2(1~2ul)Blb]
in order not to introduce rigid body rotations. 2 1
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" (vz—vl}azzb = (l+v2}k2b+(1+ul)klb

14w
P

2

: ;T T
[-2L2b~ﬂv2D2b +2L2h #4(1 \?2)1 2b 1

1-v
Y

1

e ela
r [—2Clb—UUlle +2le +4(1 ul}Flb ] 0

l+v2
¥,

' 3 =3 2 1L
[202b+2(3—2u2)D2b +2E2b -2(1—2v2)32b ]

Wy 3
- ~———{2Clb+2{3—2v1)D1h +2E

b'3—2(1—2vl}Flb_1] =0 .
£y,

1

At r=c¢ the equilibrium condition is

(+)_ (=) . » _ (+) _ _(+} ; _
Opp = Opp” * L, =0, Ou 9.9 * Lo 0.

(55) and (57)

Hence, using Egs.

(a3-A2)c'2 + (20nc+1)G542(By-B,) = - w14 (-bPe 242

-4 -2 .
-2(03—02) - E(EB_EE)C - R(FB—FE}C

2 =22 =2, 2
- miy[3 (-p% e Ho TN+ e

. 2 -4 -2
2(03_02) + 6(D3-D2)c - 6(E3-Ey)e" - 2tF3~F2)c

2

152

. D - -2 5
= +
Wil[lo(b c rg }+ll(1 ¢

At r=c¢ u, is continuous or

T _2)+i~c
s 1

-2
Ts

-
Ts

]

)1

(77

(78

(79)

(80)

zrgzj
(81)

(82)

(83)

(84)

The pretension condition in the band is formulated by utilizing

CAD E7

5

the notion of rotational dislocation” whercby 2 small angle «

is removed from the band. Subsequently this angle is closed up
and held by welding, slippage between the band and region 2

being permitted. Thus, for region 3 and r=c

ua(En) - u(0) = ca . (85)
After removal of the term responsible for pretensioning, sub-
sequent slippage is not allowed and then for r=c
ué+) minus term prop. to 6 = uép). (86)
The conditions of Egs. (84-86) yield
1+V3 -1 )y
PRI J - - J - 4 -~
i [ A3c +2(1 2v3)G3c(Enc 13+(1 u3)G3c42(1 2v3}83c]
Tty o1
C —fg—[hﬁac +2(1-2v,)B,e] = (v3=v,)e, ¢ = = (14vg)kget(l+v,dee  (8T7)
1+v
1 T 34oF. =34l (1v_)F. "L
!3 [ 203u 4v393c +2E30 +1(1 v3)F3c 1
- l+\J:Q[-:ec ¢=v,D,e342E,¢" 344 (1-v,)F. 011 = 0 (88)
Y? e e s 2 272
(1-v32)
ﬂ—-?—~*—03c2ﬂ = ca (89)
3
1+v
3 I i e
Y3 [03c+(3~2v3)030 +L3c (1 2v3)P35 ]
1+v
2 By o8 pe SR,
- Y [C2c+(3-2u2)92c tEye = {1-2v,)F, ¢ 1=6 (90)

At r=d no traction is transmitted. Hence

=01
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Opr = %rg 0
or
2 _

A3d + (2£nd+1)G3 =0

-l oy
- 203 6E3d - ﬁﬁ3d 0

2 ] -2 _

203 + 6D3d - 6E3d —2F3d =0 .

Note that Eqs. (68-70, 73-75, 77-79, 81-83, 87-90, 92-9U)
provide 19 conditions among the 20 variables Al B1 Cl Dl E1 Fl

A2 32 02 D2 ba F2 A3 G3 B3 33 D3 E3 F3 'Ezz'
Use of Virial Theorem

The virial theorem in Eg. (23) may.be expressed as

-
= - a7 =
Ivtrodv = Isr T-ndS + WB %

But the traction on the surface 136

—
T.n = EF[H(H'H} - §H nj .

It is assumed that the magnet 1s of finite length and that the end
surfaces used to speecify 5 are suffieciently far removed so that no

fields are present. On the cylindriecal iron surface r=r.

-—
i | 2 2
reTon = EF(Hr -Hy )rs "

Using Eg. (25-26) for the fields

y 2
fpeTonds = gi%r(iob2+1102]2

s
The magnctic energy is given by Fas. (25-26) and (35)

5

- g 2o @52y 22 2,2 =2
wB =8 {Jc b +¢1011b +11 e+ ( ob +11c ) I 3 4

which, together with Eg. (98), gives

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

CAD E7

st w gwlft 242 By B2 2,5 o242, -2
fytroav = i [10 b +21 ib +1, % +3(i°b +e ) 5 q % (100)

Then, using Eq. (14) to eliminate g,, one has after cancelling the

effective length 2
I![(1+u)(crr+cae)+Y(czz—k)]rdrde =
20y 2.2 2,4 2 -
w21 %P2t 1 b2l c2+3(10b2+1lc2)2rs 2y . (101)
Using Egs. (55-56) this gives the condition

Hﬂ(1+ul}{b2—a2]Bl + hﬁ(1+v2)(c2—b2382

2 2 2 2
+2w(1+v3}[d (24nd+1)+ec (2£nc+l)](}3 + ﬂn(1+v3)(d -c )B3
+I[Yl(b2—a2)+Y2(ca—b2}+Y3(d2«c2}}szz

= wlk)¥; (b%-a?)+k, ¥, (202 ) 4ky¥,(a%-c?) ]

2[102b2+21 1 p241. 2
(o]

+r 1 1

2 2 2,2 =2
¢ +3(10b +11c )] o 1, (102)

which provides the last condition necessary for determining all

of the unknowns. The current densities io and il can be chosen

in many ways. The following choice comes from equating respectively
the current and radial moment of the current in the two sheet dipoles
to the same quantities in the thick cosine theta dipole and ex-
pressing the result in terms of the central magnetic field Ho' Thus
Eq. (24) becomes

cb'1+2 H_cosé

1= . ° . (103}
12 12w[1+%{b2+bc+c2)rs‘2]
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Intcrnal Energy 12;3 = g; Hra = W(1°b2+jjp2]2 1’3_!I (1-cos20)
The expression for the internal energy in Eq. (1) may be obtained Hence
using the strains in cylindrical coordinates by partially integrat- > 5 B s o
ing Eq. (2) using Eqs. (37 - 40). Thus Ry~ ¥ab s
W= %(l+2u)(€§r+€gﬁ+eiz) * J‘(':r-r'sel(i"";:liﬁE:zz.*'ezzcx'r:' e SETS_H - "Frs_z ) ﬂ(icb2+ilc2)2 rs—“
5 2¢ + 6pr,? - 6Er "M - 2rr 2= 0.
+tope g = k(3M2u) (e tegete, ) . (104)
At rERs the boundary conditions are
After rearrangement and use of Egs. (37-40), the strain energy
may be written in terms of stresses and strains: A Onp = 0 .
W= 54 Lo,~k(32m) ey, + [og,-k(30+21) Jegq Hence
AR "2 + 2B = 0
+ [o,,-k(3r+21m)]e,, + 0,4 cra-}‘ (105) 8
Stress Distribution in Iron Shield 2¢ + 6ER,™" + 4FR 2 = 0
In the reglon of the iron shield between =D and r=Rs the 2 _n _2
2C + GDHS - GERs - 2FRS = 0 .

Airy stress function may be taken as

Note that Egs. (113-115, 117-119) provide six equations for de-

] -
¢ = Anr + Br2 + (Cr2+Dr|+Er 2+F) cos20 . (106)
termining the six unknowns (A-F).
Equations (51-50) then give As in the previous problem the generalized plane strain
o, = Ar_z +oop - (20+6Er"u+ﬂFr_2) cos20 (207) approximation will be used. Since this introduces one more un-
X 5 s - known, the longitudinal strain, the virial thecrem will be used to
0., = = Ar~° 4 2B + (2C+12Dr“+6Er”") cos28 (108) '
69 provide the last condition. Thus using Eq. (95) and (97) with an
~ 2 N -2
Opg = (2C+6Dr®-6Er -2Fr™“) sin20 (109) inwardly directed normal gives
The boundary conditions at rsr_ are (o) = (F) o 0) 2 2 DS up
e boundary "Ly rr rr I1(o, togot0, Jrdrds. = - 2u (16741, 6%)% r g .
olt)_ (=)= 0 (110)
X Equation (47) may be used to eliminate Gy In this case szince
()
Oprg ~ 9 (111) the iron shield remains at room temperature k=0. Thus

where, from Eqs. (96) and (25)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

20%
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ST (o, #0gq)+¥e, , Irdrde = - 2ﬂ2{1°b2+1102)2 p® g (121)

Integrating after using Egs. (107-108) for the stresses gives
2 2 e Dips 2. 2D oD
n(Rs Ty )[u(1+v)5+ygzzJ - 27 (iob +,e9)° » 7C . (122)

Thus the longitudinal strain is determined.

Numerical Calculations

The stresses and strains that exist in the three nested hollow
cylinders have been calculated as a Tunction of the central mag-
netic field. Twenty algebraic relations in Egs. (68, 69, 70, 73,
74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 92, 93, g4, 102)
among the nineteen coefficients in the Airy stress functions
(Ay By €y Dy Ey Fy Ay By C, D, E, F, Ay G3 By C3 D3 Eg F3) and
the longitudinal strain B have been solved. Thus the stress and
strain of any point in the dipole model structure may be found.

For simplicity in the presentation of numerical results, however,
only the values un the median plane are given. It 1s usually eclear
whether a quantity is stress or strain. Otherwise, R is radilal,

T is theta or azimuthal, Z is axial or longitudinal. With repard

tc position A, B, C, D are the points c¢n the median plane at the
cylindrical boundaries between the various media. To indicate fhe
side of the point, P is used for positive and M for negative. Thus,
for example, RTBP indicates the (r, ©) component at the positive
side of point B.

The boundary between eclastic and plastie isotrople media is a
function of the invariants of the tensor representing the deviation

of stress from the mean stress. A generally accepted simplification

CAD E7

of this condition regards the onset of plastic flow as being

determined only by the second invariant of this tensor6

_ 1 2 2 2 2
Iy = gll0,,-0g9) “+(ogg-0,,) (0, ~0 )] + 6, . (123)
Since the condition may be stated as
2
3J2 = Yt 5 (1zh)

where Y. is the yield stress in tension, the Jﬁf; has been
tabulated for ready comparison of the state of stress with the
yield point. Note that for 45 kG the band stress slightly exceeds
the elastic limit.

A comment relative to the appearance of negative elastic
energles 1s in order. Equation (1) is aetually an expression for
the density of free energy (u-Tn) where u is the internal energy
and n is the entropy densityT. However, the term in Tn that
depcnds only on the temperature has been dropped since it does
not affect the state of stress. Hence, negative values of the
free energy are caused by positive values of the entropy density.

For completeness the effect of the distortions caused by banding,
cooldown, and magnetic excitation are indicated by their multipole
contributiona to an otherwise pure dipole field. At the reference
radius let

AB = AB) + AB, (125)

where ﬂBl is the change in the dipole component and ﬁB3 is the

change in the sextupole component of the resulting field. Further,



let

ABl = ABlc + ABls A83 = AB3C + AB3S ) (126) 1.
where the subscript ¢ refers to the contribution due to the
conductor alone and the subscript s refers to the contribution
from the shield. Also let

AR AB
= _ 1 = _3 2

By = 5 B3 =5 - (127) 3.
where B is the original magnetic field for zero mechanical dis-
placement field. Thus, the output lists ABlC, ABlS, Rl and ABBc’
ABBS’ R3 for the displacement field that results from each state
of strain.

No calculations have been made for the stresses in the iron
since the inner iron surface field is modest.
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