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1. INTRODUCTION

In many engineering problems it is important to know how transient
electromagnetic fields diffuse through conducting or permeable bodies.
Such problems include the design of protective shields (for supercon-
ductors or instruments), and of many components in machines, transformers
and magnets. Of interest usually are the transient distribution of
force and heat associated with eddy currents, variations of impedances,
and the transient distributions of magnetic flux and current.

Several methods of analysis have been applied to the transient diffu-
sion problem, ranging from 'classical' analysis to purely numerical
methods of relatively recent origin. The numerical methods are generally
more powerful, but have not been developed to the stage where their use
can be regarded as routine or even efficient. This paper develops the
solution of transient field problems by Fourier transform techniques,
and by means of the digitally calculated fast Fourier transform it
enables solutions to be obtained very efficiently and flexibly.

The method has the important advantage of evaluating at an interme-
diate stage the frequency-response function of the field quantity of
interest. This function is itself of considerable value in understand-
ing and estimating the penetration of the diffusing field, and may be
obtained by any conventional method: analytical, numerical or experi-
mental. The frequency response function entirely characterises the
field quantity of interest in a way which makes the calculation of the
time response a routine and efficient matter using the fast Fourier
transform. The response to almost any transient excitation function
can be computed rapidly and easily.

The paper begins with a review of methods available for solving this
class of problem and discusses the relative advantages of the integral
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transform method,  The analytical methods for obtaining the frequency
response function of interest involve the solution of the complex Poisson
equation, for which powerful methods are already available and are still
developing.

The application of the general method is then explained in relation
to the particular problem of screening a superconducting winding from an
externally applied, transient magnetic field. The example is taken from
the design of a superconducting a.c. generator. It is essential to Timit
the magnitude and the rate of change of magnetic field in the region of
the superconductor, and this is done by interposing a cylindrical screen
(or screens) between the superconducting winding (with which it rotates)
and the machine's armature (transient currents in which would be responsi-
ble for the most troublesome changes in magnetic field). It is necessary
to be able to calculate reliably the way in which flux inside the screen
changes following a sudden change in armature current. The shielding
property of the screen is characterised by the screening ratio frequency
response function S(f), which is the complex ratio between the magnetic
field at a point at frequency f and at zero frequency. The transient
response is then evaluated using the F.F.T. and S(f) for the illustrative
case of a step change of armature current. A brief discussion of screening
properties is given for single and double screens. It has been found that
interactions between concentric screens, and between screens and field
winding, can have a degrading influence on the shielding effectiveness,
and this is discussed briefly.
2. METHODS AVAILABLE FOR TRANSIENT DIFFUSION

The general linear diffusion process is described by the equation

curl curl H = - %%‘,‘cl ()

in which H is the magnetic field strength vector. Three main

methods for solving this equation are: direct analytical solution; direct
numerical solution; and solution by integral transform. The analytical
method6 is restricted to the simplest geometries with a small number of
field components, and produces solutions in the form of an infinite sum
of exponential terms e_t/Tn, which may be slow to converge. The method
is best used with step or impulse excitation functions; more general
excitation functions require Duhamel's integral, which is cumbersome; the
approach is comparatively inflexible, limited and inefficient. Direct
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numerical methods (e.g. Crank & Nico]scn?, Dufort & Franke1g, Alternating
Direction Implicit methods) are much more powerful, in that a larger
number of field components can be dealt with, extending the application
to more complicated geometries. (They are also the only methods capable
at present of dealing with nonlinearities.) However, it is often neces-
sary to solve large numbers of simultaneous equations at every time step,
and convergence problems in both space and time domains are possible.
The entire solution must be repeated for every new excitation function
to which the response is required, and this involves the computation of
the field quantities at all points in the problem even when only local-
ised values are needed.

The transform method escapes from most of the limitations of these
two methods: by dividing the problem into a 'space-dependent' part and
a 'time-dependent' part, which in linear problems can be solved inde-
pendently, it makes possible a 'once for all' space solution which can
subsequently be used in the calculation of the transient response to any
excitation function. The space solution is in the form of a frequency
response function for each point in the field of interest, and this
function is itself often of physical significance and of considerable
value in understanding and characterising the diffusion properties of the
device in question. The set of frequency response functions for all
points in the field are the solution to the complex Poisson equation, for
which powerful analytical and numerical methods are available. The
frequency response functions can also be obtained experimentally. Because
the same functions are used to characterise the spatial variation of the
field in the calculation of transient response for all excitation func-
tions, experimental or analytical work is greatly reduced. A further
reduction in computational effort is possible when the field is of
interest at only a few points, since the transient response at each of
these points can be obtained by the transform from the appropriate
local freguency response functions independently of all other field

points.
Although the integral transform approach is by no means new, its

advantages can be realised only if a reliable and efficient method of
computing inverse transforms is available. In recent years the fast

Fourier transformz’s’4 calculated by the method of Cooley and Tukey has
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greatly advanced the efficiency of the Fourier transform approach, and
whereas this development has been fully exploited in communications and
circuit theory there appear to be few applications to electromagnetic
field transients.
3. BASIS AND FORMULATION OF THE TRANSFORM METHOD

The Fourier transformation of equation 1 replaces the operator 3/3t

by jw to produce the complex Poisson equation:
curl curl H(juw) = - jo E—H(jm) (2)

which is solved for a range of values of w (=2nf). If the phasor solu-
tion is written

H(F) = S(f) Hyed2™Tt (3)

jenft is the excitation function phasor at frequency f, then

memI%e
S(f) is a frequency-response function which characterises the magnetic
field at each point. The physical interpretation of S(f) is usually
important, and examples of this will.be seen below, but its main useful-
ness here is in the determination of transient response. For any
excitation function Hc(t} whose Fourier transform is HO{f), the transient

response of the field is given immediately by

Ht) =F 7 {s(hHg(h} (@)

The inverse transformation is computed efficiently by means of the

F.F.T. algorithm. At this stage the flexibility of the method is clear.
The same function S(f) can be used for all excitation functions HU(f).
Of course the transient response of the entire field can only be obtained
by repeated application of equation (4) for each field point in turn, but
since S(f) is known at all points from the solution of equation (2), this
is a straightforward and routine calculation which, because of the F.F.T.,
is also economical.

The flexibility of the method is further enhanced by the ease with
which, if necessary, the excitation transform Hg{f) can be calculated
from Ho(t) using the F.F.T. This important advantage extends the method
to excitation functions of virtually any waveshape. The essential
characteristics of the field are implicit in S{f) and not locked up in
a particular transient response to a particular excitation function, as
would be the case with an analytical or direct numerical method. At the
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same time, the responses to particular excitation functions can be easily
and quickly obtained.

There remains the difficulty of solving the complex Poisson equation.
Although this is complex, it at least has one independent variable fewer
than equation (1). Powerful methods are available for its solution,
particularly in problems of only one or two space dimensions, and con-
siderable effort is at present directed towards methods for three-
dimensional solutions. Even where direct physical measurement is the
only available means of analysis, frequency response functions Tike S(f)
are the most economical and generally useful quantities to measure.

The F.F.T. algorithm calculates the discrete Fourier transform
(D.F.T.) and/or its inverse, which are given by

N-] .
gglkat) =1 3 Gy(eaf)ed2™HMN - yap,1,0,.. N1
=0
s (5)
By(20f) = I gy(kat)e N og 12, N1
k=0

This relation may be regarded as the digital equivalent of the continuous
Fourier Transform. Several standard paper52’3’4 describe the formation
of the sampled and truncated functions gd(k) and Gd(m) from the corres-
ponding continuous functions g(t) and G(f), and only the briefest
outline is given here. First, the periodic 'aliased' functions

%(t) = 2 g(t + )

m==ew

” (6)
G,(f) = 2_ G(f + nF)

m==-o
are formed by the juxtaposition at intervals of T (or F) of the central
or most significant part of g(t) or G(f), as in Fig 1.  Then one period
of each of the aliased functions is sampled at N equally spaced points:
gq(k) = g (kat), k=0,1,2,...N-1 o
Gd(a) = Ga[mf), £=0,1,2,...N-1
This procedure is illustrated for an example G(f) in Fig 1. F and T are
related by FT = N, so that af = F/N = 1/T and at = T/N = 1/F. The inverse
D.F.T. of Gd(i) is gd{k) which approximates g(t) for t < T/2 just as
Gd(f) approximates G(f) for f < F/2.
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Fig 1 Aliasing and sampling

Two possible sources of error need to be mentioned. First, the
'truncation' of the aliased function, which arises because only a finite
number N of samples are taken, is equivalent to multiplying G(f) by a
rectangular 'data window' so that the resulting transform g(t) is convolved
with a (sin t)/t function. This appears as a ripple on g(t) around t = 0
(Gibbs' phenomenon), and may be avoided by multiplying G(f) by a smoother
data window, such as the Hanning or the Dolph-chebyshev4. Secondly, the
Nyquist frequency F/2 must be chosen to be higher than the highest fre-
quency component present in G(f), so as to avoid aliasing errors.

4, TRANSIENT MAGNETIC FIELDS IN CYLINDRICAL SCREENS
4.1 Application of the Transform Method

The transform method has been applied to the transient screening

problem in the superconducting a.c. generator. Fig 2 is a schematic

diagram showing the positions of the principal components in a 2-dimensior]
model of this. A rotating field configuration has been assumed. The
superconducting winding, of radius res must be protected from magnetic

field transients caused by changes in armature current. For this purpose
a cylindrical screen (or a double screen) is fixed to the rotor, and it
is here assumed to rotate synchronously with the field winding. It is
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necessary to calculate the way in which the magnetic field inside the
screen changes following changes in armature current, and to determine
the way in which the properties of the screen affect these changes.
This study is later extended to include the effect of a short-circuited

field winding.
field (s.c)

winding

S e
| armature
winding

Fig 2 Basic superconducting machine configuration

Frequency response
The first step is to determine the field under harmonic excitation.

With only an axial component of current (and thereafter also of vector
potential) this can be obtained from the solution of equation (2). Assu-
ming a sinusoidal distribution of armature current, equation (2) reduces
to

2 2
d°H _ 1 dH [p . u]
— i + ju=|[H =0 (8)
a2 rar L2 A
The solution of this equation is described in detail in Ref 1 and can be

written

p-1 ;
Hy =—§(’;—a) s(£)e? sin pe (9)

for the tangential component inside the screen. S(f), the screening
ratio frequency response function, is the ratio between the phasor value
of H, at frequency f and at zero frequency. It is a complex expression
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involving Bessel functions (see Ref 1). In simple cases it can be eval-
uated algebraically, but when the number of concentric components exceeds
three the algebra becomes cumbersome and the transfer-matrix method des-
cribed by I-'\r‘eernar'.]0 is useful. Where the full three-dimensional variatim
of the field is necessary numerical methods may be necessary to find S(f).

In the simple case of a single screen with a field winding (which may
be short circuited), at low frequencies it is possible to obtain an
appropriate expression for S(f) by using asymptotic expressions for the
Bessel functions when these have small arguments. This formula is

S(f) = 1/[1 + j2nf Ty (1 -0)] (10)

where A = (rffr1}2. In this form it applies to the case with the short-
circuited field winding, the armature current being symmetrically disposed
about the direct axis. When the field winding is open, or when the
armature current is symmetrical about the quadrature axis, » = 0. The
time constant TD is given approximately by TD = H]r1h/29. It can be
seen that the effect of a short-circuited field winding is to shorten the
effective time constant of the screen, which weakens the screening effect-
iveness; this effect is discussed in Section 4.2.
Transient response

The transient response to any excitation function can now be cbtained

directly from equation (4). The particular excitation function to be
considered here is a step of armature current from 0 to K (see Appendix).
This type of change is one of the most severe in the machine and corres-
ponds closely to the effective d.c. transient following a sudden terminal
short circuit. The excitation function in terms of HB is

p-1
Hog = = ;.(ég) sin pe u(t) = Hygu(t) (1)

where u(t) is the unit step function. The necessary Fourier transform
of this can be obtained analytically as

-1
Hoo(f) = - ; (:—)p sin pe [me(f) + 32%}.] (12)
d

and equation (4) gives the transient response as
Hy(t) = - - Al sin B‘}-] 6(f) + 1 ]S(f)
] 7 A P {ET jent }

= ha[t)H90

(13)
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ha{t), the normalised transient response, is evaluated by means of the
F.F.T. and is used in presenting results. S(f) is first sampled at
equally spaced frequencies 2af, 2=0,1,2...N-1; then the function S(2af)/
j2nasf is formed sample by sample, and the step response is given in
discrete form by

ho(k t) = 55(0) +%F{ S(eaf)/j2msnf }, k=0,1,2...N-1 (14)

In the Appendix, it is shown that the discrete transform is to be evalu-
ated in the form

3 {320} - 4{Ro + Z rorcoke I (Y) eos o)+ )
k=0,1,2...N-1 (15)
where R(2) = Re[S(Eﬂf)/jZﬂEﬁf], £=0,1,2,..N-1. At and af are, of course,
related by at = 1/Naf.  The principle of causality is needed to obtain
equation (15) (see Appendix). The real and imaginary parts of S(f)/j2nf
may not always both have a 1imit as f = 0. In screening problems it will
usually be possible to formulate S(f) so that as f + 0, S(f)/j2rf tends
to a purely real or purely imaginary number; for example, in the formu-
lation used here for the single screen, as f + 0, S(f) tends to the value
given by equation 10, and
R(e) = Re[S(zaf}/j2waaf]~+ - TD as 2+ 0 (16)

In cases more complicated than the one with a single screen, the first
sample R(0) was formed by backward extrapolation to & =0 (f = 0). The
imaginary part Im[?(anf)/jzwzaf] does not have a Timit as ¢ = 0, which
is why the cosine transform was used rather than the sine transform.

An alternative way of avoiding the problem of the 1imit at f = 0
in this problem would have been to operate with 1 - S(f) and the sine
transform, since Im [{1 - S(kaf)}ijnzaf] has a limit as ¢ = 0. Physi-
cally this implies operating purely on the magnetic 'reaction' field of
the screen currents, as contrasted with S(f) which implies operating on
the total magnetic field (reaction + applied).

The use of the cosine transform halves the computer storage and time
requirements as compared with the full exponential transform.  This
saving is valuable if accurate results are required, particularly when
the transient is oscillatory or varies especially rapidly through time.
In such cases the errors, and particularly the d.c. error, are reduced by
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taking a larger number N/2 of samples, so that the fine structure of both
the frequency response and the time response can be adequately represented
(i.e. af, ot small). The time taken to compute the time response is
proportional to N 1092 N and is otherwise independent of the complexity
of the excitation or frequency response functions. For all the results
presented in this paper N = 512, and this proved adequate for 1% accuracy
without recourse to a data window. The Fortran programme used to compute
the transforms was a standard 1ibrary routine requiring 4 sec execution
time (on an ICL 1906A computer).

It is of interest to compare this time with that required to compute
S(f). Typically for a 'double screen' problem a Fortran programme based
on the transfer-matrix method computed 256 frequency samples of S(f) in
20 sec. In a three-dimensional problem the computation of S(f) would
certainly take much longer, while the time required to evaluate the tran-
sient response would not increase at all (except as a result of any
increase in the complexity of S(f) requiring larger N). This comparison
emphasises the flexibility of the transform approach.

4.2 Results

General The results presented below* describe the screening behaviour
of cylindrical screening systems in terms of both the screening ratio
frequency response function S(f) (Figs 3 and 5) and the transient response
to the step of armature current (Figs 4 and 6) computed by F.F.T. In
all cases the screening system has the nature of a low-pass filter, as
can be seen from the shape of the curves in Figs 3 and 5. Correspond -
ingly the step responses have, broadly, the characteristic 'overdamped'
shape of Figs 4 and 6. So far as S(f) is concerned, the frequencies 2 Hz
(near the natural oscillation frequency of the rotor), 50 Hz (the system
frequency) and 100 Hz (effective negative sequence frequency) are impor-
tant, whereas the important feature of the transient responses is the
maximum rate of change of field. It is difficult to specify precisely
what would be acceptable levels for S(f) and dB/dt at the field winding,
but values of the order of 0.1 at 2 Hz are 0.001 at 50 Hz for S(f), and a
maximum of 1 T/sec for dB/dt, are desirable.

The first pair of graphs (Figs 3 and 4) show the characteristics of a

* A1l results are for the case p = 1 only
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single screen with the field winding open-circuited. The second pair
(Figs 5 and 6) show, first, the screening characteristics of a double
screening system; and secondly, the effect of short-circuiting the
field winding.

Single screens (Figs 3 & 4)

The materials, diameters and thicknesses of the screens are typical
of those receiving attention. The solid Tines denote stainless steel,
and the dotted Tines aluminium alloy screens, with the screen thickness
marked (in mm) on each curve. As would be expected, S(f) decreases
with rising frequency. The transient rise of field strength is shown
in terms of the normalised circumferential component ha because when the
field winding is short-circuited (see below) this is the only component
which exists. The screens with the Tower S(f) curves produce the slowest
rate of rise in Ha' Screening is improved by increasing both the con-
ductivity and the thickness of the screen. The straight 1ine on Fig 4
shows the constant rate of rise in he corresponding to 1 T/sec, and
illustrates that in this particular example, aluminium alloy would be
preferable from screening considerations alone.

|ste)|

014

0014

Fig 3 S(f) - single screens
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Fig 4 Transient response h.(t) - single screens

In the single screen case an approximate formula is possible (equatim
16) and results obtained using this and its inverse transform 1 - e't/TD
are also plotted in Figs 3 and 4. In this simple case the agreement in
S(f) is good up to about 5Hz, and the transient response is quite ade-
quate, making it possible to characterise the screening conveniently in
terms of the parameter TD = pr]hIZp. The diameter of the screen has
little extra effect except through TD (and 1 - %, see Section 4.1 and
below, A(rfh‘.l )2
Double screens, with field-winding open-circuited

The double screen arrangement has been proposed for its mechanical
and thermodynamic advantagess. Figs 5 and 6 show some of the properties
of a double screen in which the inner has a long time constant (T02 =
1 sec) for good screening, while the outer is designed for maximum mech-
anical strength and has a shorter time constant TD? = 0.1 sec). Figs
5 and 6 are plotted for three separations between the screens, altered
by changing the radius of the inner, and it can be seen from the Tower
S(f) curves in Fig 5 that when the field winding is open circuited, the
separation between the screens has 1ittle effect. The lower of the two
straight Tines on Fig 6 corresponds to 1 T/sec when the field winding is
open-circuited and shows that this screening system meets the broad
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Fig 5 S(f) - double screens
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Fig 6 Transient respnse h (t) - double screens t (sec)
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requirement mentioned earlier in terms of dB/dt.
Double screen with field winding short-circuited

The superconductingwinding short c¢ircuited at its terminals, or
closed through a low* resistance, has a long time constant and behaves
effectively in the direct axis as a diamagnetic cylinder or radius ree

The associated change in the form of the magnetic field inside the screens
influences their screening properties, and this can be seen in Figs 5 and
6. Under these conditions the normal field Hr(or Br) is zero at r,
while Ha is increased by a maximum factor of 2. Fig 5 shows that the
effect of short-circuiting the field winding is to force S(f) to higher
values and, correspondingly, to increase the rate of change of field
inside the screen. The effectiveness of the screen is diminished by an
amount which depends mainly on the separation between the inner screen
and the field winding. 1In Figs 5 and 6 as the gap between screens widens
the approach of the inner screen to the field winding worsens the
degradation of screening. In the particular example shown here, Fig 6
shows that the degradation of screening by the field winding causes the
maximum rate of rise of field to considerably exceed the prescribed
1 T/sec, particularly in the case with minimum gap between the field wind-
ing and the inner screen. The screening effectiveness could be recovered
by increasing either the djameter or the time constant TD of the inner
screen. In approximate terms the effect of the closed field winding is
to increase Ty to TD(1-A). It is important to note that the degradation
of screening occurs only 'on the direct axis' (i.e. for armature current
excitation which is symmetrical about the direct axis) and not on the
quadrature axis. This fact is significant in the design of the 'hetero-
pervious' screen described in Reference 1.
CONCLUSION

The flexibility and efficiency of the Fourier Transform method using
the F.F.T. have been illustrated in this paper. The ability of the method
to find the transient response to any excitation function arises from the
independence of the space and time solutions, and this also gives rise to
the intermediate frequency response function whose value in physical terms
is well illustrated in the screening problem.

The screening characteristics of single cylindrical screens have been
briefly described. The double screen has been examined and it has been

* 4.e. one which makes the field-winding L/R time constant >> )
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shown that the separation between screens of fixed time constants has
little effect on screening when the field winding is open-circuited.
When the field winding is closed through a low resistance, it can have a

degrading influence on the screening properties. This influence is worse

when the screen is close to the field winding.
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APPENDIX

Since hy is real, from equation (14)

N-1
ho(kat) =1 ég% {R(2)cos ZKE - y()sin ZEKEY 4 )

with R(z) even and X(2) odd in 2. Splitting ha into odd and even parts,
hﬂ = hOd + hEv + 1/2, with hOd <>} and hng—? R. If the system is

causal, i.e., hE(-k} = 0, then it can be shown that ha{k) = ZhEu(k) + 1.

Transient D1

he (k) is evaluated by F.F.T. as

A 2nks,
he (k) = égé R(2) cos Sp— k =0,1,2...N-1

from which equation (15) follows since R(2) is even in &.
Evaluation of Heo with K =1 (step change K of armature current)

If the per-unit synchronous reactance Xq is 0.5 pu and the rated flux-
density at the armature winding BSO is 1.0 Tesla (these may be regarded
as typical values), then 1 per-unit armature current flowing in all three
phase windings will produce a flux-density deso everywhere inside the

armature winding; thus Bao = desoia and HeO = Beﬂxuo'

L)
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Discussions following paper:

(Trowbridge) Will you please comment on the way you solve for

space part of the problem in your program.

(Miller) See comment by Prof Laurenson (co-author)

(Freeman) I should like to congratulate the authors on the elegant
technique they describe in their paper. I would like to comment on

the calculation of the frequency response using the transfer matrix
method. It is now possible to greatly reduce the time required to
calculate the elements of the matrices. Principally, Bessel functions
can be completely avoided. Finally, could the authors comment on the
calculation of the upper end of the frequency spectrum? How high a
frequency is required, and is it possible to use an approximation for the

screening ratio?

(Miller) The use of the transfer matrix method is only a particular
example of a way of calculating the frequency response in a particular

illustrative problem. 1In a more complicated problem, particularly in

three dimensions, the transfer matrix method would not be appropriate with

or without Bessel functions. There is no particular difficulty calcu-
lating the kind of Bessel functions described in the paper (see also Ref
1).

In the case of cylindrical screens it is possible to use an approximation
for the screening ratio of the form 1/(1+juT), or even one with more

than one pole, provided appropriate values of T can be estimated. In
complicated or 3-D problems this often is not possible. It is not
necessary to have information at the high frequency end of the spectrum
because this only affects the early part of the transient. Roughly
speaking, a spectrum truncated at 1KHz will give a corrupt transient
response for t< 1 msec only. The degree of corruption is small in this

example because S is very small at 1KHz .

(Lawrenson) The space-variable part of the problem is reduced
effectively to the solution of the complex Poisson equations and all the

well known and efficient methods can be applied to their solution.

Transient D1

Accordingly the boundary shapes, conditions etc use no more limited
than they are in the static (time—transient) case . The FFT then
provides an extremely efficient means of converting their space-variable

solution over a range of frequencies (frequency response) into whatever

time response is required.

(Steel, CERL) Do the authors anticipate any difficulties in using
their fourier transform method if they apply it to system studies

which include the power system, the turbine and steam generator? The
latter two items have significant non-linearities notably those related
to the governor system and therefore the fourier transform must be used

with great caution.

(Miller) We do not use the FFT itself to solve the 'system equations'
of the governed turbine generator, but only to solve transient magnetic
field problems. We are also working on the'system' problem which
includes electric circuit equations and non linear differential
equations describing the turbine and a.v.r. controls; for this we use
a specially formulated method of the 'state space' type which takes into
account not only non=linearities but also the frequency dependence of the
machine parameters. Incidentally the FFT can be useful here in obtain-
ing frequency-response characteristics from measured time responses on a
model machine. Used in this 'identification' problem, the FFT is being
used for quite a different application from that discribed in the paper,

namely the computation of transient magnetic fields.

(Umstatter, CERN) You mentioned computing times of 20 sec for
evaluating the spectrum and 4 sec for the transform. I confirm this
experience that the time for transformation of the spectrum is often
negligibly short compared to the time required for obtaining it. Could
you comment on the speed referred to other, faster computers? I
remember computing times of 30 ms for transformation compared to 1 sec

for evaluation of the spectrum on a CDC7600.

(Miller) The time taken for the transformation depends on the speed of
the computer and the number of samples in the frequency response (or time

response). We used a 256-point transform (N=512) on an ICL 1906A
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computer, taking 4 sec. I think there are computers capable of doing
this much faster but I am not exactly sure what is the fastest possible
speed. When the transform takes 4 sec compared with a much longer time

for 8(f), one is not generally too worried to reduce this time.

(Yeh, Oak Ridge National Lab)  How many frequencies are needed to get a

good representation for the time-dependent pulse or step funtion?

(Miller) In the particular examples I have used to illustrate the
method, we have smooth frequency response functions and smooth time
responses, and reasonable results can be obtained with as few as 64 or
even 32 points. In general one trades the number of points against
accuracy, even with smooth functions, and I have used 256 points (N=512)
in all the examples. With a complicated frequency or time functions of
course the number of samples must be large enough to reproduce the fine

structure.

Transient D1
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THE CALCULATION OF MAGNETIC FIELDS IN ATR CORED ELECTRIC MACHINES
Turner D.R., Prior D.L., and Rahim Y.H.A.
Department of Electrical Engineering and Electronics, The University of
Liverpool, Liverpool, L69 3BX.

1e Introduction

The work which gave rise to the magnetic field calculations des-
cribed in this paper, is concerned with the transient terminal performance
of air cored alternators, particularly the proposed designs of superconduc-
ting a.c. generators. 2 The prediction of transient performance is ob-
tained by a step by step solution of the electric circuit equations, E)and
thus the role of the field analysis was the determination of inductances,
both self and mutual. This meant that the methods used in the field
analysis did not have to produce accurate values of flux density at all
points in space, rather the requirement was for the integral of the flux
over a surface (bounded by winding) to be reasonably accurate. There was
also the practical requirement that as part of a larger programme the field
analysis had to be economical of time.

These two considerations led to the development of a hybrid analy-
tical numerical technique described in the paper and which has proved very
successful for the model tested.

2e Description of the Laboratory Model

Plate 1 shows the laboratory model which has been used in the work.
It is seen that it has the salient features of the earlier proposals S
for a.c. superconducting generators, an iron-less magnetic circuit and an
outer eddy current environmental screen. Because of the linearity of the
problem considered low flux densities are acceptable, and hence room temp-
erature windings are used and these are supported by wooden structures.
One feature not shown on the plate is the rotor screen, which is required
in the full sized machine to protect the superconducting winding from time
changing fields experienced during faults etc. This screen is a thin
walled aluminium cylinder which is a sliding fit onto the rotor structure.
The latter is comnected to a shunt D.C. machine and is balanced to allow

operation at 3000 r.p.m.
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Zs Calculation of the magnetic field including the environmental
SCreén.

a) Numerical solution
The field due to the stator (or rotor)(g?ddle type windings in air

is calculated using the Biot-Savart equation

4B _w dxr
br®
where dl is the vector current element and r is a unit vector from the
element to the point under consideration. The calculztion is organized
in such a way that the components of flux density at a point due to the
straight portion and the end winding are available separately.
b) Analytical Solution

Because the environment screen, and subsequently the rotor screen,

is expected to play a significant role in modifying the field, a solution
which includes its effects is necessary. An exact numerical solution
would be difficult so a two dimensional analytical solution is obtained

and the results modified as explained in subsequent sections.

Fig. 1.
4 Region 1 Winding interior
2 Air
% PBcreen
4 Exterior (Air)

Neglecting displacement currents and assuming div A = O then Maxwells

equations reduce to

+ = 3 = Q regions 1 2 and 4

i}

-g— g—i— region 3

for the infinitely long system whose cross-section is shown in figure 1.
The current in the rotor winding between regions 1 and 2 (considered to be

the exciting winding) is represented by a Fourier series
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e, w =
k =Re 2 k o~Jn0 e‘wt
z q
where kz is line current density.
Application of the appropriate boundary conditions yields the values
of the constants in the solutions of the differential equations and hence

the radial and tangential flux densities are found using

1 64 gp.
Br =r 5% and B0 el =
c) Modification for finite length

Consider a portion AB of a straight wire. (fig. 2). The flux

density at P due to a current in this wire is given by

P

Tig. 2.
-] I B,
A ~ B
- coaO1 - cosO2
D = 2.

where By field due to infinitely long straight wire. INow the model used
for the amalytical solution may be assumed to have an exciting winding con-
sisting of an infinite number of such current elements, each of which is
thus modified by a factor EEE—ELEZ—EQEEL, which varies around the machine.
Hence the modified, finite length, value of flux density is given by

B cos & - cos P
BBS e 2
where B__ is the modified flux density (either radial or tangential) due to

the straight length of the exciting winding in the presence of the
outer screen,
B o 1is the solution of the analytical method
and (cos @ - cos P) is the average value of the individual element terms
(cos a' - cos B')
The evaluation of this average value showed that it could be obtained by a
rapidly convergent series. This modification of the analytical solution
yields information about the components of flux density due to the straight
portion of the exciting winding, but ignores the end windings which in an
ironless machine are important.

Transient D2

d) Derivation of the effect of the endwindings in the presence of the

environmental screen

Let Bsa be the component of flux density (either radial or tangential)
due to the straight portion of the exciting winding, with no screen
Bss as above but with the environmental screen.
BEa the component of flux density due to the end winding, with no
SCreen.
and Bes the component of flux density due to the endwinding with screen.
The values of Bsa and Bea are derived from the Biot-Savart calculations
and Bss by the method described in 3 c¢). It is assumed that under the
steady state operation considered the eddy current screen has a demag-
netising effect given by

B
S8

B
and hence the value of flux ﬁgnsity due to the endwinding with the screen
present is given by

n )

B =3 58
es ea B
sa

and then the total flux density at a point is

B =B + B
55 [=1s] es

This calculation is performed on the spatial components. Br‘ Bg, Bz in
turn.

From the solution of the field problem the inductances - stator and
rotor self and stator to rotor mutual - are derived by an integration of
the radial component of flux density over appropriate surfaces bounded by

the windings.

4. Comparison of Predicted and Experimental results

Measurements of flux density at various points in the model were
made by search coil techniques under steady state conditions. Some of the
results are presented in graphs 1 and 2 which show the measured and pred-
icted flux densities in the axial centre of the machine and at stator and
screen radii respectively. In graph 2 the predicted and measured radial
flux density were both sensibly zero when the screen was in position.

It is seen that the agreement between predicted and measured values
is good, and good correlation of the tangential component at the screen
radius (graph 2) is particularly encouraging.

Further evidence of the accuracy of the technique is afforded by a

comparison of measured and predicted inductances shown in table 1.
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TABLE 1

Parameter Predicted Value Measured Value
o Stator 240 mH 242 uH

self ind
LF field

self ind Ay o 95 mit
MF field to
mutual ind 21:xH 45 all

The agreement between predicted and measured values of flux density
is less accurate near the ends of the screen at radii similar to the screen
radius. This is because the technique ignores the circumferential currents
in the screen. The effect is however localised and acceptable for the

problem considered.

Se Determination of the effect of the rotor screen

Unlike the environmental screen where the steady state performance
is the more important, the rotor screen is primarily concerned with tran-
sient conditions such as faults. For "thin" screens which could be rep-
resented by circuits with cénstant parameters, it was thought that the
steady state parameters would be suitable for the prediction of transient
behaviour. Additionally the calculation of the steady state field distrib-
ution for the different positions of the screen and exciting winding would
be a useful check of the validity of the technique. Some of these field
values are given in graph 3, which shows the measured radial flux density
at two radii between the rotor and the stator, and the distribution cal-
culated by the analytical/numerical technique. It is seen that the agree-
ment is good.

In the prediction of the transient terminal performance of the
machine, the rotor screen is represented by short circuited windings, whose
inductance parameters are determined from the field solution.

To evaluate the resistance as a lumped parameter either the tech-

()

nique of Laithwaite could be used, or the power loss of the screen can
be evaluated and then it be assumed that the screen is replaced by a spec-
ific winding whose resistance is such as to given the appropriate loss.

Using the second technique the power loss in a conducting plate of thick-
ness 2b in a magnetic field is such as to give an effective resistance per

unit surface area of
R - 1 &inh(2b/8) + sin (2b/8)
= 208 cosh(2b/8) - cos (2b/9)

246
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In this instance it was assumed that the winding which replaces the

(6)

screen is the same as the rotor winding at the screen radius, whence

R« _3_% Lt 0® sinn(2v/6) + sin(2b/8)
L % r cosh(2b/d) - cos(2b/B)
where P resistivity
& = skin depth
1t: length of mean turn
N = number of turns
r = mean radius

In addition to calculating the magnetic field by the previously described
technique, the idea of the replacement winding was employed. Once the in-
ductance and resistance parameters of the winding have been determined it
is a simple matter to determine the current in the screen by circuit anal-
ysis (for steady state operation in this instance), and hence the field
distribution can be found using the Biot-Savart equation. The results of
this are also presented on graph 3 (broken line) and whilst it is seen

that the technique is not as accurate as the analytical numerical technique

the results are encouraging.

6) Prediction of Transient Performance

@ and the

Using the step by step technique of Reddy and Jones
values of circuit parameters derived from the field analysis, the short
circuit performance of the machine can be predicted. Graph 4 shows the
experimental and predicted results for a line-line short circuit on the
model machine, the agreement between the measured and the predicted values
is seen to be good. The broken peaks on the graph of field current show
its value when the rotor screen is removed, illustrating the small but def-

inite screening effect of the thin aluminium cylinder.
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(o)

o e
P. DEL VECCHIG( ): G. SACERDOTI and G.M. VEC&( )

Electromagnetic Behaviour of a Rotating Screen for a Superconducting

Inductor of a Synchronous Machine.

1. = INTRODUCTION

The present tendency to increase the specific power of a single
unit has led to the study of generators with a power higher than 1000
MVA. For such a power it was thought convenient (1) , both economi-
cally and technically, to propose the use of units with a supercon-
ducting inductor, in spite of the large number of problems involved

in their operation at cryogenic temperatures.

In these machines, the magnetic fields in the stator are higher
than those of conventional units, with a dissipation in excitation
that is practically equal to zero. The power being equal, this allows
a reduction in size, weight and cost, as well as potential advantages
(4)(6) during operation, thanks to the comparatively low per—unit

synchronous reactance, characteristic of these machines.

The morphology (1)(4)(5)(6) of the synchronous cylindrical
symmetry machines, presently under study in various countries, is
practically only one; a section of an illustrative character is shown

in fig. 1.

The s.c. field winding externally shows, integral with it a
cylindrical conducting screen to which many functions are entrusted;
in the first place, that of magnetic shield for fields at any rate
variable in respect of the superconductive winding; secondarily, that
of damper of the rotor swing oscillations during the little and great
perturbations. Furthermore, with its high thermal diffusivity, it
protects the superconductor from the dangers deriving from overheating.
The last, but not the least function is that of preventing vibrations

and overstresses in a non stationary state (4).

All these numberless functions cannot be effectively performed

(o) of the National Laboratories of CNEN in Frascati.

(°) of the the Electrotechnics Institute of the University of Roma.
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by one single conducting cylinder, as proposed in the early works on
s.c. generators, as some functionms call for characteristics in con-
flict with one another. It thus became apparent ( 5 )  that at
least two concentric shields are required: the outer, at room tempera
ture, performing the function of damper, and the inner at the liquid

He temperature, acting as a magnetic shield.

For the sake of concreteness, the Authors have considered in this
work the screen of a 1300 MVA alternator, with a morphology similar

to that indicated in fig. 1, présently in progress of study at ANSALDO

Fig. 1 - Cross sectional view (mot in scale) of a synchronous machine

with a supercontucting inductor. 1) - Iron magnetic screen

2) - Air gap 3) - Stator windings 4) = Air gap and dewar's
place 5) - Electromagnetic screen 6) Superconducting winding
7) = Rotor
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of Genoa, and have studied, using the potential vectors analytical
method (2)(3)(7), its behaviour at the stationary state proviging

numerical results for a special case.

The method , however, has a more general validity and is used

also in non stationary cases, as summarily described hereunder.

2. Method for the Determination of the Current Induced in the Screen,

and equivalent alternator circuit.

It was pointed out (2)(3)(7), that inside a machine with a
morphology similar to that shown in fig. 1, the principle of the
superimposition of the effects is valid with an optimal approxi-
mation, even if the presence of iron is found outside the stator,
on the condition that its saturation is still distant ; with
regard to the magnetic field computation within the screen, the
additive property was thus applied to the potential vectors deter-—
mined each time as shown hereunder.

Once a reference system in cylindrical coordinates, fig. 2a)
and 2b), is chosen, which is integral with the stator; and if we
neglect the edge effect(n), the Poisson -like equation, developed
in Fouruer's series for the partial harmonics due to the J current

density distribution, will be, as it is well-known, as follows (2)(3):

v 2 K == Iy J,cosn8 (L)

where

Jn- J sen n 90 (m=1; 3, S5500s)

m™n

with "n" being the harmonic order,@b the geometric angle with the

indicative meaning in fig. 2, and J the current density generating

the field, constant along r.

(®) that is, in the assumption of a very long machine in respect of

the diameter.

Transient D3

Fig. 2a)

Cross sectional
view of stator in
which are indica-
ted the geometri-
cal parameters
used in the
formulas.

Fiz. 2b)

Corss sectional
view of electro—
magnetic screen
in which are indi
cated the geo~
metrical para-
meters as well as
some shells.
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From (1), taking into account the fact that physically the magnetic

field has a finite value for r = 0 and 0 for r tending to the infinite,

n_mn

the potential vectors relative to the general harmonic "n" in the various

regions of the machine are given by the following expressions derived

from Ccupland(z):
n
AI,n = JnAi,n r cos nf
A..,n = J (K 2 + a ™+ oa r_n) cos nb
11’ nr 2,n 3,n
n -n
AIII,n = Jn (aa’n rtag T ) cos né
n -1
AIV,n = Jn (a6 a X 37,n r ) cos nb
Ay = J a r * cos né
,0 n 7,n
where
Yo
K= ~—
4-n

and the indices I, II, III, IV, V indicate the following regions of the

machine, respectively:

(I): ¢ < Tin (I1): T,

at ST < Tyl (I11) rfe,in <r<r

out

(1) :xg <r =< om:

Tz .05 > r
e,out fe,in’ fe,out

where by T and T, there were indicated, respectively, the internal

ut
and external radius of the cylindrical symmetry winding involved by
the current generating field, and the other radiuses have the meaning

indicated in fig. 2.

The coefficients a.s @y see.8g are derived from relations 2

n
bearing in mind that in correspondence of the separation surfaces of
; . ey i e !
the various regions, components Brin +"Gg and Hﬁin B ey for
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i=1,I1,I11,IV, V, are continuous. These coefficients are a function
of the geometric parameters alone, and are practically independent from
the relative permeability of the iron of stator's outer screen, on

condition that m.g > 20 (2) (3); they are of the following type:

a ==K B2 r2—n = r?_“) + K

n-2 . n+2 _ rn+2
1,n 2n “Tout in

2n (rout in ) .
2 2n 2n
( rf D (rfe,out B rfe,in)

2n 2 2 2n
rfe,in [Iu’f+1) Tfe,out ~ (urf_l) rfe,ir;I

The relations mentioned above and obtained for a case of current
density distribution constant over a period of time, can be generalised,
for application to the case of rotating machines with a geometry similar
to that indicated in fig. 1, taking into account the fact that the I
density of current will be expressible by means of an analytical law of

the following type:

)

i(nf - w

Jn (£,0) = Jne nt

characteristic of the rotating magnetic field, consequent to the presence
of three windings, of the type shown in fig. 2a), suitably placed in the
space, through which there circulate sinusoidal currents dephased in
time. In the case in which the three currents form a balanced system,
they give birth to a field synchronous with the rotor, without inter-
acting, therefore, with the screen. If we consider instead the presence
of the space and time harmonics of an order higher than the first one,
and the presence of a dissymmetry in the values of the currents
circulating in the three phases owing to a dissymmetrical load, are
generated which fields of pulsations w =- Eil-m not synchronous with the
rotor. Therefore, in these assumptions, the magnetic fields that will
interact with the screen, will be derived from potential vectors of the
type:

A (£,0) = A g o1 Une)

n n n

If the screen is divided into "M" shells, as shown in fig. 2b),
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the potential vectors due to the stator, calculated in the mid point
of the m-nth shell and havine a relative movement in respect to it,

are given by:

20 = g g0 O =) (o a 1,2,

n,m l,n m y 1

where r; is the mean . radius of the m—nth shell. and 'o' is the index

used for denominating the stator.

Since the screen is divided into M shells, of any Am thickness
(the smaller Am the better the approximation made by assuming
density Jm o 38 being constant along r), the potential vector of m-nth
Ll

shell will be given by the sum of the following M3l terms:

o =F (x*)y J ej(n e _tunt)
o,n°m “o,n

A owp a3 GEETGLsa, D

A? =F (rz) J eJ(n By~ Uht +'uZ,n)
L]

........ PrssrasseaRsE s s E N EaE AR E LB

" jlne-wt+a, )
A. FM’n{r;) JM,n e n M,n

where, by Fl 5 (ﬁ;) we intended to indicate the analytical expression
of the geometrical parameters relative to the i-nth shell, that con-
tributes in the formation of the field, an expression calculated for

r = r;, the medium radius of the shell in which the field is considéred.

For example, for the first shell

*y =
Fﬂ,n (rl) e ri

2
Fl,n {1*1) kr®+

_ n -n
FM,n (rﬁ) = a ™ o+ oa ¥

where 3.7 89 o0 as,n, 8, n* 35, are calculated as previously indi-
cated.
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P s R el an copaniion .
From the expression E = - b written in cylindrical coordi-
nates, taking into account the situation under examination and re-

calling that E;_=93;, we obtain:

y M AL
n’ =3 _____;_(m =1,2...M) (3)

Qi(n 8 —w tra -
i=0

m m,n

)

where by Py we indicated the resistivity of the m—nth shell® .

If we neglect in (3) the dependence on time and angle, we obtain:

H

ja T -3 Jog 1200
) p n Jm,ne m,n fio juw Fi’n(fz) Ji,ne i,n (m=1,2...M)

it being a system of equations in the unknowns J 5 el%n,n with
3
known terms equal to juw F (r%) J , that admits univocal solutioms,
no,n m “o,n

and the greater the fractioning of the screen, the more accurate such

solutions will be.

J

Being thus made known for each shell the Jm o & mn distribution

of the current density, the determination of the magnetic field within
all the points of the machine is immediate, because, the additive

property being valid, we will have:

i
Mo, M A (r,t,8)
= R i 1 39 ™nm
Br’n(r,t,e) =z Br,n I S =
i=0 iz0 ’
(5) i
B ¥ Mo 3 An{r,t,e}
Be’n(r,t,e) =z BB,n =L ar
i=0 i=0

where the analytical expression of each A; is known, and where all

its numeric coefficients are also known.

The effectiveness the screen is thus idetermined by means

of the attenuation coefficient as defined by the following ratio:

(°) This resistivity may change with the index "m" as a result of the
disuniform distribution of temperature in the screen, and also
and chiefly if we consider a multi-shield configuration of the

screen, such shields being made of different materials.
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fﬁ;,n(rin’t’e)[

T 1
r t,8
1 r,n( out? ? H
where r‘in and r‘out are the inner and outer radiuses of the screen,

respectively.

It is further possible to determine the Joule power dissipated
in the screen as a result of the induced currents, through the follow-

ing expression:

B 1 8 2 2 2
Py 5 Fa™72 5 lJml (rm,out - m,1n)
m=1 m=1
where r and r . _ are the outer and inner radius of the m-nth shélL
m, out m,in
respectively.

Again, it is also possible to determine the equivalent impedance
of a phase of the stator, when the alternator works in a steady con-
dition.

If we indicate by rt the value of the radius which identifies the

mean circumference of the stator, the potential vecter A:"o{t) calcu-
lated in r§ is given by the sum of its own field plus the summatory of
the fields due to the M shells plus the potential due to the field
winding:
M . .
() = a0 () + DAL (6) + Af:ild
i=1
Therefore, the electric field in rg will be due to the field of

the currents circulating in the stator plus that due to the derivative
made in respect of the time of the total potential vector:

BA*
— - — n 0 o ¥ L~ .m ] —
En pstator JO,I‘I L4 a t ( pstator .+ e )‘Io,n & n L JO,U

where by P£' we indicated an equivalent fictitious resistivity to be
summed up to that of stator, which does not represent anything but the

sum of the all the contributions in phase with 3; o of the summatory
L]
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8 Ao
*—, while L' is the imaginary part.

The equivalent impedance of a stator phase results, therefore,

from the following expression:

(p +p') + 3 w L'
z eq,n = stator. o3 R

o
P stator

where R0 is the resistance of the winding of a stator phase.

As it is obvious, to calculate Zeq,n with a higher degree of approxi-
mation, one should not confine oneself to the calculation of the poten-—
tial vector A:;o(t) on the - mean radius rﬁ, but it would be necessary
to calculate both the potential vector and the electric field, turn by

turn, with reference to the actual winding distribution.

Finally, if we want to consider the more general case of currents
at any rate variable throughout time and with no relation between the
phases and the amplitudes flowing through the three stator wingings,
for the determination of the field generated by the stator, the three
distinct contributions of the single windings will have to be con-
sidered in order to determine both the current distribution in the M
shélls of the screen and the mutual couplings of the three phases.
Theréfore, the total field in any point of the machine shall be calcu-

lated by an expression of the following type:

M
= + +
(6)  At) = A  ;(t) + A, H(£) + Ay 4(£) + A, (1) ImilAm
whére A s A and A are the potential vectors due to the three
s,1” Us,2 s,3

stator phases, AS £ is the potential due to the field winding, and the
?
summatory indicates the contributions offered by the M shells.

Assuming to be able to express, by first approximation, for each
stator winding, the distribution of the turns with the following

formulae:

Ns,l= Nlcos G+N2cos(2 o+ 82)+N3cos(3 6+ 3)+. .Nkcos(k B+ Bk)
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. 2
NS,2 = N1 cos( B8 + §4|)+ .......
4
N =N, cos( @ + =T )+.......

5,3 1 3

where Bk is the angle which takes into account the pitch of the wind-
ing, the current density for each phase and for a given harmonic will

be given by:

I, ()

= — N
Jn,s,k. r0 Ar de sk

(k = 1,2,3)
where rﬁ is the value of the radius which identifies the mean circum—

ference of the stator whose thickness is j r.

On the other hand, the voltage induced, by length unit, on each
stator winding will be given by:
2
2
- _ 1 %A =
Ek e o (t) Nsk d 8 k=1,2,3

where the potential wvector A(t) will be expressible with relatiom

(6).

Using the above mentioned expressions it will be thus possible to
solve all the problems considered for the case in a steady
state and also for the unsteady state , even though

in the latter instance computations will be more laborious.
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Conclusive considerations

For the sake of brevity, the Authors have shown a diagram giving
the Joulepeyer dissipated in the screen in the case of one single
shield and considering one single amplitude shell proportional to the

penetration depth of the frequency field (fig. 3).

The metod may attain an accuracy at any rate high, by reducing
thé thickness of the shells into which the screen and the stator are
divided. This clearly occurs with a marked proliferation of the equa-
tions required for the determination of the necessary quantities; the
basic value of the method is its intuitiveness and simplicity if a
fair compromise is maintained with the desired accuracy. This method
also allows to identify a mathematical model, very close to the aetual

one, that simulates its dynamic behaviour.

100

20 ™~

kW,

//

5 wa‘\;
™~
1 a

1002 5 10°2 5 102 5 10

Fig. 3 - Diagram giving the Joule power dissipated in the
screen in the case of one single shield and considering
one single amplitude shell proportional to the penetration
depth of the frequency field. rfe 0ut=l'550 M,
=0.9 =0. | d

Pte,in 0.950 M, r_ .=0.900 M,

=0. y !
Tin=0s275 My 25

0.169 A/mm”~ backward density current due to an unsymmetri-
cal load.

=0.510 M, r! =0.500 M
in
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COMPUTER AIDED STEADY-STATE AND TRANSIENT SOLUTIONS OF

QUASI-ONE DIMENSIONAL FIELD PROBLEMS IN INDUGCTION DEVICES

by Dr. E.M. Freeman
Department of Electrical Engineering, Imperial College, London.

1.1 Intreduction

Many induction devices can be represented, in cross-section, by
multi-region models, as depicted in Figs. 1 and 2. The excitation is
provided by an infinitesimally thin current sheet, which can be
sinusoidally distributed in space. The problem is to solve the field
equations for the various field components so that the complex power
flow and the forces, if any, can be determined. The object of the
paper is to show how, by suitable formulation of the problem, a computer
may be used to advantage. Initially, the method of solution was purely
algebraic and the coming of computers simply saved calculation time.
Over the years, computers have been employed at earlier and earlier
stages in the solution. MNow the point has been reached where very
little preliminary algebra is required before the computer can take over
both the steady state and transient solutions of the problem.

This is done using two methods based on transmission line
analogues. In the first, the transmission line model is represented by
strings of micro-T-circuits, each one of which models a short section of
line. Then by using a circuit analysis package, such as ECAP or SPICE,
the steady state and transient behaviour may be determined. In the
second, a scalar Riccati equation is derived for the wave impedance of
the model. This method is suitable for sinusoidal steady state

problems only.

To illustrate the historical development, reference will be made
to two problems. The first is the planar problem with a travelling
wave of excitation, Fig. 1, and the second is that of a rotating

magnetic field, as in a rotary induction motor, Fig. 2.

The term "“guasi-one dimensional is used in the title. This is
because cisoidal variations of the field in one direction can be

included in the analysis. Under certain conditions devices with
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cisoidal variation in two directions can be modelled, but great care is

regquired.

1.2 Historical development

Purely algebraic approaches to the planar and cylindrical problems
can be found frequently in the literature, e.g. references 1, 2 and 3.
Separation of variable theory was used to produce a solution in each
region. Enclosed regions required two arbitrary constants and unbounded
regions, one constant. Using the appropriate boundary conditions,
algebraic expressions were derived and hence, algebraic expressions
obtained for the field variables. Lengthy algebra was often required to
obtain closed expressions for power and forces. The advent of computers
initially made little difference. The computer was used simply to
calculate numerical values from the algebraically derived expressions.
The number of regions was limited by the vast amount of algebraic mani-
pulation required. As a first step in introducing the computer to the
problem, as other than a calculator, some authors solved numerically for
the arbitrary constants, e.g. ref. 4. For an N-region problem, there
are (2N - 2) arbitrary constants. It was thus necessary to invert a
(2N -2) x (2N-2) matrix with complex coefficients. This is time
consuming and could require a large computer.

It was possibly Pipes5, who first showed, in a machines context,
that a transfer matrix could be used to simplify the problem, by linking
a pair of unknown quantities on either side of a region. The technique
was used later for the travelling and rotating wave problemsé’?. The
transfer matrix can be derived algebraically, or numerically, with the
aid of a computer. The use of a transfer matrix completely removes the

limitation on the number of regions.

The transfer matrix form of solution suggests a transmission line.
Indeed, a search of the literature showed that Cullen and Bar‘l:on8 had
already appreciated this point in a 1958 paper. They took the problem
one step further, msking use of the concept of “wave impedance" in =z
machine. This idea was extended in ref. 9 to develop an equivalent
circuit, as seen from the terminals, using circuital rather than field

quantities. The equivalent T-circuit for a single enclosed region can
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be called a macro-T-Circuit. This is to distinguish it from a micro-T-
circuitlo, which can represent a very thin or elemental region. The
advantages of a macro-T eguivalent circuit are obvious, but there are
also advantages in sub-dividing conducting regions down into a large
number of micro-T-circuits. If this is done, then the device can be
represented by a long string of such circuits, in cascade. On most
computers some form of circuit analysis package is available. Thus the
behaviour of the equivalent circuit can be studied, under both steady
state and transient conditions. The transient solution for a multi-
region model might otherwise be extremely difficult to obtaintl-13, The
use of higher transcendental functions can be avoided completely, for
both transient and steady state operation.

An alternative method has also been developed based on the scalar
Riccati equation. This is suitable for sinusoidal steady state
solutions only. The custom, in the past, has been to obtain values for
the field variables in a device. If,instead one thinks in terms of
wave impedance, then the Riccati form of equation may be employed. In
its generalised form, it links the wave impedance to the rate of change
of wave impedance, with respect to the direction of interest. It was
found that the Riccati method was much faster, easier to program and
easier to understand, than many of the other methods. Higher transcen-
dental functions are completely avoided, one only needs Maxwell's

equations and a suitable integration sub-routine.

In the following sections the two new methods are described in
detail.

2.1 Theory of the transmission line for the planar model

The excitation is of the form Ky = Re K exp(jlwt-ky)). Hence
only E,, Hy and H, exist; Ly, E, and Hy are all zero. Furthermore,
there is no variation of the field in the x-direction. It follows that
By and Hy are linked by the equationsa:'

an aHy > W
FZ— = _lej,H_y, and —é;- = _Ex(o‘+k/3mu) 1

where 1 is the permeability of the region under consideration

o is the conductivity
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k = 2n/A , A = wavelength

The "transmission line'" equations are:

av a1
5z = - I and = = -V (2)

where Z and Y are the impedance and admittance per unit length

of line.
Hence, comparing coefficients:
Z = jwp and Y = cr-l-ke/ju:u (3)

Thus a short section of line, of length g, can be modelled by the
circuit shown in Fig. 3.

By joining a number of these micro-T-circuits in cascade, a
complete circuit can be assembled, which represents a multi-layer model.
The steady state sinusoidal behaviour can then easily be established.
The transient behaviour, for any applied E or H waveform, can be found
by using a circuit analysis package. At present the author is using
ECAP and SPICE. It should not be overlooked that it is unnecessary to
feed the details of the circuit into the computer directly. It is
usually possible to feed the basic model parameters into the computer,
and let the program generate the circuit parameters for the circuit
analysis package.

As a check on the method, a simple problem was tried. This was
the problem of a conducting semi-infinite half space with a step E or H
waveform applied at the surface. This problem is discussed in many
text-books, either in the field form, or as an infinite length trans-

mission line.

To model it, as described above, the wavelength is set to zero,
and the circuit parameters calculated using equations (3). The transient
E and H waveforms were everywhere found to agree very closely with the
exact analytical results. Of course, it is necessary to do a certain
amount of experimenting in order to find the optimum thickness of a sub-
region and the number of such regions. Much depends on the shape of
the applied”transient and the degree of accuracy required.
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2.2 Theory of the transmission line for the cylindrical model

The excitation takes the form K, = Re K exp(jlot-a8)). Hence,
only E_, He and H, exist. Tt follows that E, and Hg are linked by the

relationships:
oE, a(rHe} >
5 = j(mp./r)(rﬂe) and — s Ez(c'r + o firep) (L)
Hence 2 = jup/r and Y = or + az/ﬁrwu (5)

Thus a short section of line, of length g, can be modelled by the
circuit shown in Fig. 4. Note the change of variable from Hg to rHg.
Students of Kron's wcrqu will appreciate that such transformations are

necessary, once one gets away from the cartesian coordinate system.

The range of devices which can be modelled using this technique
is wide?. It includes not only rotary induction devices, but also the
transverse screening problem (where o = 1) and the plated conductor
problem (where o = 0).

The transmission line impedances are a function of radius. The
line is thus a non-uniform transmission linelD, closely related to the

Heaviside-Bessel linels.

3.1 The Riccati method

The book by Watsanl?

Riccati equation. It was named after Count Riccati, who was one of

provides a most useful introduction to the

several people interested in a certain form of linear differential
equation in the early part of the eighteenth century. In ref. 18 can
be found a list of basic references, which the present author has found

extremely useful in studying the Riccati equation.

- : I &
The general form of the scalar Riccati equation 7 iss
%=P+QZ+RZE (6)

where P, Q and R are given functions of r.

In a transmission line context, this equation relates the rate of

change of wave impedance (or admittance) to the wave impedance (or
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admittance)ls. Normally, the solution to a transmission line problem
implies that the voltage and current distributions along the line are to
be established. However, very often distributions are of no use at all,
one simply requires to know the input impedance to the line. The object
is then to derive an equation of the form shown above. Then, instead
of seeking an analytical solution, which could involve higher transcen-
dental functions, the equation is solved by numerical integration.

3.2 The planar model Riccati equation

Looking in the positive z direction, the wave impedance is :
4 = Ex/Hy. Substituting this in equations (1), and solving for Z,
results in the following:

j—g = - jop + Z(o- K/op) (7
To solve numerically, start at z]$>z? and with Z set to almost

any arbitrary value, integrate towards =z = z); .  Simply remember to

change the material parameters at region boundaries and avoid large

changes in 2, if necessary by reducing the step length.

This method was tried successfully against the analytical
solution for a wide range of planar models. The exercise can be re-
peated looking downwards, and hence the input wave impedance can be
determined at the current sheet, together with the power and forces.
Some experimenting is required to get.the optimum integration step
length. Tt is usually fairly safe to start with a step length less
than 5% of the skin depth of a region.

The method can be extended to determine the macro-equivalent
circuit model. This involves three integrations across each region,

two in one direction and one in the other direction.

3.2 The cylindrical meodel Riccati eguation

Repeating the exercise for the cylindrical model, looking

outwards, one obtains:
a

= = - jou+ 2P - §o fop o) + o/r &)
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Note the extra term Z/r, but otherwise the equation is of the same

basic form.

The advantages of using the Riccati equation are greater here than
for the planar model. No Bessel functions are required, and in the case
of anisotropic regions, one is spared the problem of dealing with Bessels

of non-integer argumentlg.

Again the numerical solution was checked against the analytical
solution for a wide range of models, very close agreement was obtained.

3.4 General comments

A Riccati type equation can also be cbtained for eylindrical
induction devices having axially travelling wavesl?. The extension to

include simple anisotropy is straightforward and is described in ref. 18.

It is worth noting the following fact. The wave impedance at a
point, is purely inductive if, up to that point, no conducting material
has been encountered in the integration. The wave 'inductance' can thus

be obtained, so saving time, if another frequency is to be considered.

4.  Conclusions

Two methods for solving field problems in multi-region induction
devices have been described. In the first, it was shown that an
equivalent circuit, consisting of micro-T-circuits, could be obtained,
which could then be analysed using a circuit analysis package. The
method is only limited by the number of nodes that can be accommodated by
the package. Any E or H waveform can be applied, and one avoids
completely the mathematical difficulties inherent in some of the

alternative methods.

In the second method, suitable only for the steady state problem,
it has been shown that a Riccati type equation could be easily derived,

thus avoiding the use of higher transcendental functions.

Both methods require only the basic field equations and some
elementary knowledge of field theory. They are also within, or almost

within, the capacity of existing programmable calculators. Bearing the
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various advantages in mind, it would appear that these techniques could

be taught at a much lower level in undergraduate courses than is possible

using conventional analytical techniques.
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Discussions following paper:

(Miller) I would like to know how the field values at more general
field points than at the interfaces can be extracted when using this
method. I would also like to know if Dr Freeman can see any way in
which the principle of splitting up solid conductors into multiple

layers can be extended to deal with fully three dimensional problems?

(Freeman) The field quantities at any point may easily be obtained by

introducing an artificial boundary at that point.

The method can only accommodate material variations in one direction.
The so called three dimensional multi-layer treatments are really only
one-dimensional, with sinusoidal variation of the exciting field in two

dimensions.
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THE INTEGRAL EQUATION METHOD APPLIED TO EDDY CURRENTS

C S Biddlecombe, C J Collie, J Simkin, C W Trowbridge
*Rutherford Laboratory, Chilton, Didcot, Oxon. 0X11 0QX

ABSTRACT

An algorithm for the numerical solution of eddy current problems is
described, based on the direct solution of the integral equation for the
potentials. In this method only the conducting and iron regions need to

be divided into elements, and there are no boundary conditions.

Results from two computer programs using this method for iron free
problems for various two-dimensional geometries are presented and

compared with analytic solutions.

1. INTRODUCTION

In this paper the general eddy current problem is formulated as an
integral equation for the potentials and an algorithm for its solution
is presented. Results from two programs dealing with two-dimensional
limits to the iron free problem are described. The method is an

(1)

extension of the technique used in the GFUN magnetostatics program.

Formulations of the eddy current problems have been classified by

(2)

Carpenter'™", who points out that in the integral formulation the scalar
potential @ has to be included somehow to ensure that the current cannot
flow normal to the surface of the conductor. The formulation in A devel-
oped here seems the simplest for the general problem, though a formula-
tion in H is also possible for linear problems. A direct solution in
terms of J was also considered but in that case the direct imposition of
a boundary condition seemed unaveidable, thus nullifying the main advan-

tage of the integral equation method.

Transient D5

2. FORMULATION FOR IRON FREE REGIONS
2.1 The integral equation for the potentials. The basic field equations

for eddy currents are(3) in S1 units.
¥ x E=-3B/st (2.1.1) Vv x H=J (2.1.2)
V.B=0 (2.1.3) ¥ .J=0 (2.1.4)
J = oE (2.1.5) B=pH (2.1.6)

that is,displacement currents are neglected, free charges are only
present on surfaces, and Ohms Law applies. Also the vector potential A,
whose existence follows from (2.1.3),is defined in the Coulomb gauge, so:

B=V xA (2.9.7) v.A=0 (2.1.8)

The integral equation is to be set up for the potentials so first
eliminate B between (2.1.1) and (2.1.7):

v x (E + dA/at) =0 (2.1.9)

There is therefore a scalar potential @ satisfying from (2.1.5) and
(2.1.9):

J = of = -g(3A/at + V@) (2.1.10)

For a region of constant conductivity (2.1.4) implies that @ is harmonic
within the region (V2@ = 0).

The eddy currents are to be calculated in some (multiply connected)

conducting region under the influence of a known driving field. That is:

u i
n@=%@+ﬁf%%Tw (2.1.11)

in which Ao(i) represents the driving field and the 2nd term is the vector
potential at r due to the eddy currents in terms of the current produced
at the source point r'. The integration is over the conducting regions of
interest. It is only in the Coulomb gauge that (2.1.11) gives the

solution of (2.1.2) for the vector potential due to a current. So in the
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integral equation formulation nothing is gained by eliminating @ from
(2.1.10) by using a different gauge as can be done for differential
formulations(Z), since @ would have to be reintroduced into (2.1.11)

to give the equation the right divergence.

Substituting (2.1.10) into (2.1.11) yields the integral equation for
3A/at:

olr') aa(r)

BT For v@(r'))dv (2.1.12)

A(r) = A {F) H— I
The equation for @ is obtained by taking the divergence of (2.1.12) and
applying (2.1.8) and Gauss's theorem:

I o(s') aA(s')

- bna(r)@(r) = r 5. o +o(s")B(s")v (T————T)} .ds

- [ Vo). o 2 3‘“’ )+ g(r )V(-l—l-)}d\f

rr

(2.1.13)

Where s' is a point on the surface of the conductor and the Ist integral
is over the surface S of the conductor. Physically this expresses the

condition that no charge can leave the conductor surface, as can be seen
immediately in the constant conductivity, harmonic § situation by taking

(4)

(0A/8t + V@) . dS = 0, which by (2.1.10) stipulates that no current leaves

Green's theorem for a harmonic function and inserting the condition
the conductor. (2.1.13) shows the condition to be imposed at the
internal boundary if the conductor contains more than one material, but
most commonly the 2nd term in (2.1.13) is zero, which is assumed in what
follows. The treatment of the scalar potential is then similar to the

integral boundary method formulation for magnetostatics used in(SJ.

2.2 Discretisation. To solve (2.1.12) and (2.1.13) for 3A/at and @ the
conductor is divided into N elementary volumes: L facets of these
elements form the surface of the conductor (see Figure 2.2.1). To
evaluate the integrals some functional form for the variation of 3A/3t

and V@ within each element must be assumed. For the existing programs,
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FIGURE 2.2.1 - MESH IMPOSED ON THE CONDUCTING REGION

results from which are described in Section 3, the simplest scheme of
constant values for each component of 3A/3t and for @ was adopted. Thus
(2.1.12) (2.1.13) are approximated by:

A(r) = A (F) + = R, 4R (v0) ) (2.2.1)
- i N elementsj J -8t i J i
g(r) = z (T, (9), +u (22 n) } (2.2.2)
- L facets K ¥ k k*at’ k
A
vo(r)= - P {Uk(ﬂ)k Tk(ﬁf' g)k] (2.2.3)
acets,

where n is the unit vector normal to surface facet k, and (2.2.3) is
obtained by differentiating (2.1.13) wrt the coordinates of the field

point r.

The coupling coefficients (R, T, U, V) are simple integrals over the

volume or surface of the elements, for example:
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R dv
1 l -
J T elementsj LS

(6)

Expressions for these integrals are given in

By setting the field point r to the centre of each element in turn a
matrix is constructed acting on 3N components of 3A/dt and L surface

values of §:

;] (2.2.4)
|

Note that the equations for the components of 3A/dt are coupled through
the scalar potential @#. This formulation in terms of a constant value
for 3A/3t and @ within each element accepts a certain mismatch between
the facet centre value in (2.2.3) and the element centre values needed
when the coupled equations are formed by substituting the V@ values from
(2.2.3) into (2.2.1). This disadvantage would not apply to a higher

order variation based on nodal values as the parameters.

Note also that the formulation can be readily adapted to employing a

driving electric field ﬂo instead of the magnetic field Ao‘

2.3 Computational procedure. Direct solution of (2.2.4):

yields 3A/3t values in terms of the unknown values of A. To complete the

solution this set of 3N first order differential equations has to be

solved in terms of the initial conditions. Less expensively, the steady
state solution for sinusoidal drive fields can be solved by replacing

3A/3t in (2.3.1) by jw and obtaining the amplitude and phase lag at each
element from the real and imaginary parts of the solution. For the general
transient case the numerical solution can be obtained with the following

procedure:

Transient D5

(a) Divide the conductor into elements.

(b) Construct G matrix

]
o

(c¢) Set the initial conditions, that is A = Ao at t

(d) Solve for 3A/3t and 0.

(e) Advance the solution of 3N differential equations through some time

increment.
(f) Update A, = Ao(t).

(g) Iterate steps (d) - (f) until the required time interval is covered.

Currents,fields and forces may then be obtained at any space time point
by using J = - ¢(3A/0t + V@) and B =V x A, with V@ from (2.2.3) and

V x A obtained analagously to (2.2.3) by differentiating (2.1.12) so
that no numerical differentiation is required.

3. RESULTS FROM EXISTING PROGRAMS

3.1 The scope of the programs. Two special cases of the general iron

free problem formulated above have been coded in order to assess the
practicability of the method. Both are two-dimensional in the sense
that no variation in the Z direction is allowed either for field
variables or conductor cross-sections and the conductors extend to

+ @ in the Z direction.
The first program, called EDDY ONE,allows for only one component of A
and J, parallel to the Z axis. For this case there is no @ since the

electric field is everywhere parallel to the surface. Therefore

(2.2.4) reduces to:

6, BA/0f] = [A,-Al

There is also no mismatch problem (Section 2.2) for this case.
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The second program, called EDDY TWO, allows for Ax’ Ay, Jx‘ Jy, but

no Z components. For this case the eddy current field is zero outside

the conductors.

(7)

Results from both programs are compared with analytic
solutions calculated by applying the Laplace transform method for

simple geometries and a uniform step function driving field of 1 Tesla.

FIELD MAP AT TIME= 2.000 secs
25.0—
NO. VALUE
1 9.100€+00
22.5 2 9.200E+00
3 9.300E+400
4 9.400E+00
20.0] 5 9.500E+00
6 9.600E+00
7 9.700e+00
17.5 8 9.800E+00
9 9.900E+00

10 1.000E+01
1 1.010e+01
12 1.020€E+01
13 1.030e+01
14 1.040€E+01
15 1.050€E+01

0.0 I [

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

EDDY CURRENT PROGRAMCIEM)

FIGURE 3.2.1 - ELEMENT STRUCTURE AND FIELD LINES IN HOLLOW CYLINDER

3.2 Results from EDDY ONE.
hollow cylinder.

Here the analytic comparison is with a

The cross-section and element structure used by
EDDY ONE for one quadrant are shown in Figure 3.2.1, symmetry being
exploited to imply the other three quadrants. Figures 3.2.2 to
3.2.4 show the error as a function of time for varying numbers of
elements at 3 points: respectively inside the hollow, in the
conductor and outside. In all cases the elements were of roughly

uniform size including those near the surface so
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ERROR IN PERCENT

EDDY ONE

EDDY CURRENTS INDUCED
IN A HOLLOW CYLNDR

MAGNETIC FIELD ERROR
AS A FUNCTION OF TIME

CURVE 1: 8 ELEMENTS
CURVE 2: 16 ELEMENTS
CURVE 3: 32 ELEMENTS
POINT: X=0.0,Y=6.0

N.B. THE ERROR IN THE
TOTAL FIELD IS PLOTTED

FIGURE 3.2.2

ERROR IN PERCENT

EDDY ONE

EDDY CURRENTS INDUCED
IN A HOLLOW CYLNDR

MAGNETIC FIELD ERROR
AS A FUNCTION OF TIME

CURVE 1: 8 ELEMENTS
CURVE 2: 16 ELEMENTS
CURVE 3: 32 ELEMENTS
POINT: x=0.0,¥=16.0

N.B. THE ERROR IN THE
TOTAL FIELD IS PLOTTED

FIGURE 3.2.3
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ERROR IN PERCENT
EDDY ONE

EDDY CURRENTS INDUCED
IN A HOLLOW CYLNDR

MAGNETIC FIELD ERROR 3.2
AS A FUNCTION OF TIME

CURVE 1: 8 ELEMENTS
CURVE 2: 16 ELEMENTS
CURVE 3: 32 ELEMENTS
POINT: x%=0.0,Y=26.0 2.4

N.B. THE ERROR IN THE
TOTAL FIELD IS PLOTTED

0.8
FIGURE 3.2.4

0. = = ) e
8.0 0.5 1.0 1.5 2.0
TIME IN SECONDS
HOLLOW CLNDR R1=10CM,R2=20CM EXCITED BY STEP FNCTN O TO 1 TESLA

that the element structure is not exploiting knowledge of the skin
effect. Convergence for increasing numbers of elements is apparent
and the rather greater error for the point within the conductor is to
be expected since the further away from the elements the field point

is, the less the error introduced by the assumption of constant 3A/3t
and @.

Figure 3.2.5 shows another configuration, with the driving field
provided by a 50 Hz current ( for t > 0) in the 4 outer. bars and the
penetration of flux into the rectangular tube is illustrated at
different times in Figures 3.2.5 to 3.2.7, the latter showing the flux
of the eddy currents alone as the driving field crosses the zero axis.

The transient eddy current response in one element is shown in Figure
3.2.8.

Transient D5

FIELD MAP AT TIME= 0.002 sSECS

10.0 NO. VALUE
1 -8.000e+00
m 1 ] 2 -7.000e+00
8.4 3 -6.000€+00
: 4 =5.000€+00
5 -4.000e+00
6.0 6 -3.000e+00
i} 7 -2.000e+00
8 -1.000€+00

4.0 9 0.0

10 1.000€e+00
1" 2.000E+00
12 3.000e+00
13 4 .000E+00
14 5.000E+00
15 6.000E+00
16 7.000E+00
17 8.000e+00

—
4

Q)
IR R RN\ =S

Ak
=10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FIGURE 3.2.5 - FLUX PENETRATION INTO RECTANGULAR TUBE,AFTER 0.002 SECS
FIELD MAP AT TIME= 0.008 SECS

NO. VALUE
10. L 5 797 -1.200£+01
1% 15 12 111 ?  -1.100E+01
3 =1.000E+01
8. 4 -9.000£+00
5 -8.000£+00
6 -7.000E+00
6. 7 =6.000E+00
8  -5.000E+00
9  -4.0006+00
b [ O [ 10 -3.000E+00
I 1% 11 -2.000E+00
| ] 12 -1.000E+00
2. 13 0.0
L 14 1.000£+00
15 2.000€+00
0. i 16 3.000E+00
17 4.000c+00
18 5.000E+00
-2. i 19 6.000E+00
[ 17 20 7.000E+00
I M7 21 8.000E +00
4. 22 9.000£+00
23 1.000€+01
2h 1.100€e+01
-6. 25 1.200€+01
-8.0
i
. A 1 )3

40.0 -8.0 =-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FIGURE 3.2.6 - FLUX PENETRATION INTO RECTANGULAR TUBE,AFTER 0.008 SECS.
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FIELD MAP A

10.0— N 10
Te———
.t
8.0 \ \

T TIME= 0.010 SECS
VALUE
-4 .000E+00
-3.5S00e+00
-3.000€+00
-2.500€+00
-2.000E +00
-1.500€+00
-1.000E+00
-5.000e-01
2.325E-06
5.000E-01
1.000£+00
1.500E+00
2.000e+00
2.500E+00
3.000E+00
3.500E+00
4 .000E+00

P Qo e X =
NPV PWN SO0 E NN SO

—1D;q

F1GURE
CURRENT DENSI

200.0

160.0]

0.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

3.2.7 - FLUX MAP AT ZERO OF DRIVING FIELD
TY AS FUNCTION OF TIME IN ELEMENT 6

_CURRENT DENSITY AMP/CM2 TIME

120.0—

80.0

-80.0

=120.0

-160.0

. ¢+ 1 1 1 1 |

-EUDDG'

FIGUR
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0 0.004 0.008 0.012 0.014 0.020 0.024 0.028 0.032 0.036 0.040
TIME IN SECS

E 3.2.8 - TRANSIENT EDDY CURRENT RESPONSE TO SINUSOIDAL DRIVE

Transient D5

3.3 Results from EDDY TWO. Here the analytic comparison is with a

rectangular bar. The calculated response is illustrated by Figure

3.3.1 the arrows indicating both direction and magnitude of the current.
The errors are shown graphically at 3 different points on the diagonal

of the rectangle in Figures 3.3.2 to 3.3.4. The convergence with
increasing numbers of elements is less happy than with EDDY ONE. The
effect of the position of the field relative to the element mesh is
probably responsible. Thus at the centre, Figure 3.3.2, in the 96
element model the point is common to 8 elements but to 4 elements in
both the other cases. In Figure 3.3.3 the point is in all 8 cases at
the centre of an element boundary so the observed convergence to a wrong

answer is not unreasonable. The best point, Figure 3.3.4, is within an

element.
X-¥ PLANE o
FIELD MAP AT LIME= 20.000 SECS NO. VALUE
1 4.D0D0E+00
2 5.000E+00
a.ol— 3 6.000F+00
4 7.000E+00
5 8.000E+00
520 6  9.000E+00
. / 7 1.000¢+01
50l S S IS TS ZTSTEl N?
— — < e E
e ——:
1.0 = ~ |
— — T
N 7 =
0.0 | AR {41
T I < [l ;
— — -~ Y
-1.0 = B |
s
- -— — p
-e.0 5 e ) e |
Py e P T B e i
-3.0/— \-

oL 1 L1 1 1 1 1 1 1 |

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

FIGURE 3.3.1 - ELEMENT STRUCTURE, FIELD LINES AND ARROWS REPRESENT NG
EDDY CURRENTS IN RECTANGULAR BAR



ERROR IN PERCENT

EDDY TWO

EDDY CURRENTS INDUCED
IN A RECTANGULAR BAR

MAGNETIC FIELD ERROR
AS A FUNCTION OF TIME

CURVE 1: 60 ELEMENTS
CURVE 2: 96 ELEMENTS
CURVE 3:140 ELEMENTS
POINT: ¥=0.0,¥=0.0

N.B. THE ERROR IN THE
TOTAL FIELD IS PLOTTED

FIGURE 3.3.2

10CM.X5CM. RTGLR BAR
ERROR IN PERCENT

EDDY TWO

EDDY CURRENTS INDUCED
IN A RECTANGULAR BAR

MAGNETIC FIELD ERROR
AS A FUNCTION OF TIME

CURVE 1: 60 ELEMENTS
CURVE 2: 96 ELEMENTS
CURVE 3:140 ELEMENTS
POINT: X=2.5,Y=1.25

N.B. THE ERROR IN THE
TOTAL FIELD IS PLOTTED

FIGURE 3.3.3
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ERROR IN PERCENT

EDDY TWO 0. 11—
EDDY CURRENTS INDUCED I
IN A RECTANGULAR BAR
MAGNETIC FIELD ERROR T
AS A FUNCTION OF TIME
-0.5—
CURVE "1: 60 ELEMENTS
CURVE 2: 96 ELEMENTS =
CURVE 3:140 ELEMENTS
POINT: X=4.5,Y=2.25
-1.1—
N.B., THE ERROR IN THE
TOTAL FIELD IS PLOTTED =
=-1.7—
FIGURE 3.3.4 T
=23
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0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

TIME IN SECONDS
10CM.X5CM. RTGLR BAR EXCITED BY STEP FUNCTION O TO 1 TESLA

Though the field contours follow the boundary almost perfectly for the
case of a rectangle, the final illustration, Figures 3.3.5 and 3.3.6,
show the breakdown of this for a more complex shape, and the current

direction in the corner is clearly wrong. Hopefully this is due to

mismatch error.

L. INCLUSION OF IRON REGIONS

The method could be extended to include regions of magnetically permeable
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80— materials by adding a term for the vector potential due to the magnet-
b b— ised region to the integral equation (2.1.12) which becomes (for
S N constant o) :
“.8—
il
_ _ o o aA(r') i
3,2— A(r) = Ao{f_} I’?IW ( 3t +9@(r')) dv
| 1 iy |
W 3] !
-0.0— =
- \ = e j where M(r) is the magnetisation at r' and the second integral is over
] l the volume of the iron. The @ equation (2.1.13) remains unchanged, and
-3 the constitution equation is obtained by taking the curl of (4.1):
~4.8——
M(r) Yo o 3A(r')
i P —_— - it
- Sl . Mo v x HO(L) '[;';J' {|r'-r| Ux =T JdV
-6.4— ] =
S T O Y (O O A (O Mo o oAl |
-3'.0 -6.4 -4.8 =3.2 =1.6 -0.0 1.6 3.2 4.8 6.4 B.0 9.6 11.2 12.8 + -ﬁf {_L'_‘_LT Tl ve(s')} x dS
FIGURE 3.3.5 - EDDY CURRENTS IN BAR WITH CROSS SECTION SHOWN u .
o !
+ge [ (). V) V) v (4.2)
FIELD MAP AT TIME= 20.000 SECS |
=" It is certainly not practicable to discretise the iron into M elements
3 K?' 3.;352500 and solve the resulting set of 3N + 3M + L equations simultaneously.
&, . .
&yl ; 5_338::33 Some predictor - corrector approach seems feasible in which (4.2) is
& o 5 ¥
- 5 3,3335:33 solved for M(r) using the predicted values of 3A/3t and V@, the same
’ ? 2;3332:33 problem which is solved by the magnetostatic program“]. The solutions
T 1 ; " 2
il — 8 000k for M(r) could then be substitued in (4.1) to find the corrected values
of 3A/3t and V0.
-D.U|_
-1.6— It might be preferable to use a magnetostatic potential for the effect
of the iron, as formulated(a) by lIselin.
=3.2—
-4 . 8— 5. CONCLUSIONS AND FUTURE WORK.
Having established that this formulation leads to a useful program there
=6.4— . A ¥
© are some extensions which could be made. The exploitation of symmetry
-8.0 i | I I | | | | ‘ I | [ I would considerably increase thd detail in which symmetrical geometries

-8.0 -6.4 -4.8 -3.2 -1.6 -0.0 1.6 3.2 4.8 6.4 B.0 9.6 11.2 12.8 .
could be mapped. Improved accuracies can be hoped for by using a higher

FIGURE 3.3.6 - FIELD LINES IN BAR WITH CROSS SECTION SHOWN
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order basis for the variation within elements, and also by using a more
suitably distributed element mesh within the conductors. The coupling
coefficients in (2.2.1) to (2.2.3) can be evaluated in a general three-
(6)

dimensional element Collectively this should result in a general

three-dimensional program for iron free problems.

The major task is to bring the induced current and magnetisation
formulations of the Integral Equation Method together and to compare

the result with the Finite Element Method, or with a Boundary Integral
Method. Any very general program along these lines may be prohibitively
expensive and thefe is clearly a place for steady state versions or, for

linear problems, a Fourier transform version.
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Discussions following paper:

(Becker, University of Texas) 1. Experience with boundary integral
equation methods in stress analysis problems has shown that the use of
linear (or higher) variation within elements can increase the accuracy
per unit of computing cost tremendously. Have you considered the use of

higher order elements in GFUN?

2. In our finite element method for transient field problems we have
included interfaces between a) different materials.
b) moving and stationary media

Would these present difficulties in the integral formulation?

(Collie) 1. We certainly intend to put in linear variation as soon
as possible; the present constant variation technique was adopted
simply for speed of implementation, given the existing GFUN coding and is

not recommended.

There are problems in introducing higher order variations into the
magnetisation routines in GFUN because of singularities on the element

corners, these do not occur in the eddy current problem.

2. a) Different materials present no problem, though we should need
surface elements over the interfaces between regions.
b) We have not given moving media serious thought. If the media is
providing the driving field it should be OK, otherwise we need to do

some thinking.

(Yeh) Would you please comment on the amount of computer time needed

for solving the transient?

{Collie) Most of the pictures shown took about 1 minute on a 360/195.
The present version of EDDY TWO makes no use of symmetry, and when we

put this in it should take a few seconds only.

(Newman) To people familiar with finite difference techniques you appear
to achieve impressive results with elements whose size is comparable with
the dimension of irregularities in the boundary. 1Is this a feature of

the integral equation method?
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(Collie) Integration is an intrinsically accurate process numerically,
so that for example the constant variation assumption gives a very
reasonable average for the effect of 1 element, especially a few
element sizes away. However, we pay for our small matrix by having it

dense and non-symmetrical.

(Miller) The method appears to solve for four dependent variables,
although these are not independent of one another. I would like to
know whether there is any special physical significance in the use of
the scalar potential ¢, and whether the problem could in fact be solved

solely with the three components of A?

(Collie) ¢ certainly has a simple physical interpretation: charges
build up on the conductor surface until their field, —-Adé, forces the
currents to flow parallel to the surface. This provides the

dependence between ¢ and the vector potential.

Mathematically, the integral equation formulation seems tied to the
Coulomb gauge, since only then does
AL = f Ji; hold ,
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A PERTURBATION EXPANSION WITH SEPARATED TIME DEPENDENCE
FOR EDDY CURRENT CALCULATIONS#*

K. H. Carpenter and H. T. Yeh

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830 USA

Abstract

A particular solution to the eddy current integro-differential
equations is found in the form of a perturbation expansion with separated
time dependence. MNo reference to field values outside the conductor is
required and a full three-dimensional treatment is maintained. Transient
behavior of the eddy currents is obtained by this method through the
technique of fitting the time variation of the driving field with a
polynomial in time., As an example, the case of a thin plate of constant
conductivity is studied. The eddy current distribution is obtained as a
function of time for the external magnetic field of a dipole having ramp
time dependence, and with the dipole axis perpendicular to the plate. The
effects of the boundary charges in modifying the eddy current pattern are
illustrated.

Introduction

Design of structures where pulsed magnetic fields of high magnitude
are encountered (e.g., in tokamak fusion reactors;) requires knowledge of
the eddy currents the fields will produce. Further, because most such
systems are quite complex, it is desirable to adopt an integral formulation
for the eddy current problem.2 In the integral formulation, the field
values need to be determined only for points in the conductor, but the
total external field must be known in advance. This is usually the case.
(In the tokamak example the fields due to magnets and plasma are known
since the charging and discharging of these currents are programmed or
controlled. During quench of a superconductor, although the currents are
not programmed, they follow approximately the solutions of the lumped

circuit equations, provided the coupling between the induced eddy current

*
Research sponsored by the U.S. Energy Research and Development Administra-—
tion under contract with Union Carbide Corporation.
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and the magnets and plasma is not strong.) Any nearby conductors whose
eddies couple strongly to the region of interest need to be treated as a
part of the region included in the integral formulation.

Furthermore, in nearly all cases the external vector potential
imposed on the conductor can be presented as a finite sum of terms of
the form go(gjf(t). Thus provided that the conductor is linear (con-
ductivity and permeability independent of field), it is natural to
separate out the time dependence from the integral equation by making a
perturbation expansion in terms of f and its derivatives.3 This method
still allows for arbitrary time dependence in the external field but
avoids the need for introducing a time stepping numerical technique with
its related stability problems.

In the following we will develop a perturbation expansion that sepa-
rates the time dependence from the space dependence of an integral formu-
lation of the potential equations for a linear conducting medium. We will
then discuss the convergence of the expansion and show how it can be
applied to cases where transient behavior is important by making poly-
nomial fits to the time variation of the exciting fields. Several

examples will be presented.

Derivation of Expansion

A. Basic Equations

The basic differential equations for the magnetic vector potential
A and the electrostatic vector potential Y in Coulomb gauge inside a

linear homogeneous and isotropic conducting medium are

aA
Vzﬁ=uo (oé%-atﬁp—?)(g) (1)
V-t @
3

TeteP=o ®

(A1l equations are in mks units, and symbols are defined at the end of the
paper.) Eq. (3) shows that for typical conductors for which o/e is large,
p will be zero except for charges on the conductor surfaces. Surface
charges will require U to be nonzero if V+A = 0 is maintained.
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The integral formulation of Eq. (1) is

aé (E”t) + V,‘p r”t)
Mo [ 3
A (5e) = A (50 - 7 atlr_r.l N

g tred oo,

4 H |__ r’l 3

(4)

where integration is over the region occupied by the conducting medium and
A, is the part of A due to all sources external to this region. Sinca%

is large, equations (2) and (3) are replaced by

V3 =0 (5)
dA

N ___n

n Bt (6

Eq. (6) is the boundary condition forcing the normal component of the
current density to be zero at the surface of the conductor.

As mentioned in the introduction, linearity makes it sufficiently
general to consider the case where A has the form of gof. In order to
obtain a dimensionless form in the expansions to follow we shall normalize
the space coordinates of o, by some characteristic length L of the con-
ductor region, and normalize the time argument of f to some characteristic

time tyr Thus all succeeding equations will be in normalized variables.

£

t
o]

==

and T = (7N

X =

B. Perturbation Series

One can obtain a particular solution for A in terms of the external
driving field ﬁb by expanding A and § in a perturbation series in terms

of the derivative of f, with expansion parameter I.

nao. 2
e i T
T o4T e (8)
o
The result is
m
Ao =2 a @ nhiL (9

dt
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m
N -1 d°f
Ve =3I o @ ent s (10)
o dT
where the ém, Cm are recursively related by (m > 0),
H V.> Xa ) X (x-x")
- 1 _ _o ( x —m e 3
& @ =g, @ +5-1 u)f h-o dx* (D
2 ' g
v Em =0 with B. C. Kn = - (E'm)tl (12)

¥ 3
Em (5 )+ Vx cm i,

o (%) = | ————dx (13)

R e )

For magnetic conductors (U # uo) recursion relation Eq. (11) is
itself an integral equation. Solution of Eq. (11) could perhaps be
approached in a manner similar to that of Karmacher & Robertsona. We
shall restrict ourselves here to non-magnetic case (U = uo) in
which Eq., (11) is eliminated and ¢ = & . Thus, given o and f, solution

-m ~ —m o
for A and | reduces to a sequence of solvings of the Laplace's equation
with Neumann boundary conditions inside the conductor, and integrations
over the volume of the conductor.

The eddy current density and the total field may then be obtained as

(wtL)
1@ = =T ol D7 [, + 05 o= (9
o dat
m
B @Y =Tl (D™UX g, +7,5] ﬁ (15)

C. Convergence of Series and Handling of Transients

In general, the convergence of an expansion such as Eq. (4) requires
successive terms to be smaller in magnitude. If the normalization condi-
tions L and t, are chosen properly this reduces to a requirement I' < 1.
This condition is similar to that encountered in previous power series
solutions of magnetic field problems.5 Further, as noted above, the
solution for A provided by Eq. (9) vanishes when o, vanishes and hence
is only the particular solution to the (time-dependent) differential

equation and not the complete solution.
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Choice of the proper characteristic length L to make I' < 1 the con-
vergence criterion depends on both the conductor geometry and the distri-
bution of the source field éo in the conductor. Note that for conductors
which are thin surfaces, the successive integrations of Eq. (13) each
introduce a factor of (QLZL) in addition to a factor of L-2 times the
mean of the area weighted by the integrand. Thus, the choice of L should

be L = (AL X mean area)1;3

to cause successive am's to be of the same order
of magnitude for thin (non-magnetic) conductive surfaces. Hence, for very
thin surfaces L is small and so I' << 1 = which yields an eddy current j
that is essentially the first term in Eq. (14). N

The solutions to Eq. (4) with éﬂ = () will be combinations of exponen—
tial decays with time constants proportional to Fto. Thus, for small T,
transient effects die out quickly and j is proportional to %%u However,
for the case of I' < 1, transient effects cannot be ignored. One way to
include them is to replace any discontinuous time functions f£(T) with an
analytic approximation which is valid over a time interval that extends
to several times the longest transient decay time constant prior to the
time for which Eq. (9) is to be evaluated. Thus any transient effects
that are introduced at the beginning of the time interval become negligible
by the time we reach the instant for evaluation. Further, if the analytic
function used to approximate f(T) is a polynomial in T the series in
Eq. (9) terminates, eliminating, technically at least, the convergence
question.

In the following examples we use the technique of approximating f by
a finite polynomial in T, assuming that if the polynomial approximates f
closely, the results for j are also approximated in the same sense, This
indeed seems to be the ca;é when the method is applied to an analo-
gous one-dimensional problem where the problem can also be solved analyt-
ically.3

Examples

A, Numerical Method

We shall illustrate the above method with examples of eddy currents
induced in a thin plate by an external dipole, which has a ramp time
dependence (£ =0, T < 0; £=1, T > 0) in the dipole strength. Numerical
calculations were carried out using a PDP-10 computer. f was approximated

over a specified range of t by an unweighted least squares fit to a
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polynomial. (Both 38 and f could be modified by changing the appropriate
numerical subroutines). Cm of Eq. (12) was determined to within an
unknown constant by a standard numerical program for the Poisson Equation.6
V;m was calculated by central differences. The integration in Eq. (13)

was carried out by a two-dimensional trapezoidal rule, with special
handling of the element containing the singularity of the integrand.

The numerical method settled quickly to a unique solution as the
number of mesh point was increased. Checks on a typical case showed
results from a 7 % 7 grid deviated from those of a 21 x 21 grid by less
than 4%.

B. Results when I' << 1

The first case to comsider is for the expansion parameter [' << 1,
For this case, transients will die away almost immediately following the
external excitation, hence j is given by the first term of Eq. (14) and
no approximation for f is ﬂgéded. -

For the example of a linear ramp, %§= 1 and %;é =0, m# 1. For such
a linear ramp there is no time ty that can be considered a '"matural"
normalizing value. Instead ty is chosen to set the time scale to show
the amount of detail in t desired while the interval used for T is fixed —
say at =1 < T < 1. Thus t, can always be made large, forcing I' to be
small and hence yielding information about only the equilibrium condition.
Fig. 1 shows the resulting equilibrium solution for eddy current j induced
by a dipole of ramp time dependence located half the width of a square
plate from the plate with dipole axis perpendicular to the plate and
passing through the center of the plate. (If the plate has width 2 m and
6 Q_lm_l, U= 47 % 10-7Hfm, and AL = 0.0 1 m are

chosen, corresponding to a stainless steel at 4 K, the effective value of
3

values of 0 = 1.4 x 10
the expansion parameter is I' = 6.5 x 10"~ for £ = 1 sec and effective area
assumed to be 1 mz.)

Fig. 2 compares the current density for points along the line connect-
ing the center of the plate to the midpoint of one side for the case above
and for the case where the plate is of infinite area and the case where a
lumped circuit approximation is used. jb corresponds to the square plate
case of Fig. 1. ja corresponds to an infinite plate (no edge charge
effect), and jc corresponds to the lumped circuilt approximation of a
round plate of radius 1.05 m, divided into eleven concentric circular

rings each of width 0.1 m. We see that &5 follows jb closely, passing
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through a peak near 0.7 m away from center, while j_ increases monotoni- 0.5 | |
cally as we move away from the center. a
O
o
(m}
0.4 o ]
e —— ——p —— ——P ——P —P - P g @ > o,
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o= i | | L
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a thin plate for: jé1 - infinite plate by perturbation series

A
Y Fig 2 Induced eddy current density along line from center outward of
+ method; jb - finite square plate by perturbation series method;

.
f
f
!
!
\
\

jc - round plate by lumped circuit method.

— - T — 4 —— < —

Fig. 1 Eddy current induced in a square plate by a dipole pointing
toward the center.

Another illustration of the edge effect is given in Fig. 3, where the
eddy current pattern is shown for the upper right quadrant of the plate
in Fig. 1, assuming that the rest of the plate is cut away. We notice

that the new boundary significantly modifies the eddy current flow pattern.
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Fig., 3 Eddy current induced in a square plate with dipole pointing at
one corner.
Fig. 4 The fitting of a linear ramp b th
C. Transient Effects range =1 < T < 1. P by a 107" order polynomial over the

We have also evaluated 1 for the case of Fig. 1 by fitting f£(t) by a
10th order polynomial fa in the range =1 < T < 1, and taking I' = 6.5 x
10—3. For those instants for which Tﬁi = 1, the results agree with the
equilibrium solution. This is not surprising, since the sume in Eq. (14) is
dominated by its first term for I' << 1. Hence the acg%racy of the method
is largely dependent upon the accuracy of the factglf.‘ EEL. The more terms
used in fa’ the better approximation it gives for Eav. To reduce the
deviation of ETri from % to less than 10% for most of the range of
interest (0 < T < 1), an eleven term polynomial is satisfactory. The fits

of fa and d_‘L‘a are illustrated in Figs. 4 and 5.
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Having established a limit on the goodness of fit of fa to f we next
investigate the transient case where T f 1, From the results of Fig. 2,
we expect that the lumped circuit solution for points close to the center
of the plate should give a good approximation to the true transient
behavior. We have solved the problem with the same geometry as Fig. 1,
but with larger values of I' (which correspond to changing the plate
material to copper at 150 K - 0 = 1.4 % lﬁ?ﬂ_lmrl) and giving £, the
values indicated below.

It is necessary to shift the origin of T relative to t in order to

I ! l i ! l ! | i optimize the detail obtained for t > 0 while still leaving enough of an
W T internal for t < 0 for the transients introduced at the time the fit
begins to decay before t = 0. As a test case, we have successively fitted
1.4 4 f by fa a ten term polynomial over the ranges -1 < T < 1 (to = 1 sec),
-1.6 < T < 0.4 (t0 = 0.5 sec), and -1.2 < T < 0.8 (to = 0.25 sec). The
last two fits give results very close to each other.
1.2 = B For a large plate where edge effects are small for points near the
.’p-.\. oo center, it is possible to use a lumped circuit approximating solution for
1.0 ‘/ \.\i .’g’ .\ L the transient eddy current. The comparison given in Fig. 6 (for a point
dtg J/ ‘o-9- .\./ 0.5 m away from the center of the plate) indicates that the fit for
dT o -1.2 <1 <0.8 (to = 0.25 sec) is in agreement with the lumped circuit
08 "/, - solution to within about 15%. It is reasonable to assume a similar
. accuracy for our method in cases where other means of solution are not
0.6 7/ = available.
®
04 — =
0.2 — -
o | | | ] | | | | l
0 0.2 04 0.6 0.8 1.0

af 45, th
Fig. 5 Comparison of v (=1) with o for a 10 order polynomial fit

over the range 0 < T < 1.
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which should improve the numerical accuracy of j for a given order

polynomial.
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Symbols
Conclusion A, éb Magnetic vector potential

The method of eddy current calculation using the perturbation % Spatial partiof the extexmal vector pokential
expansion of the integral equations has been shown to give reasonable & Sy mth order term of the spatial part of the vector potential
results for the equilibrium cases tested. These results agree with B Magnetic Induction
lumped circuit approximations and analytic solutions when these are
available. € Dielectric constant

The transient solution for a linear ramp excitation can be obtained £ Time-dependent part of the external vector potential
by fitting a polynomial to the ramp function over an appropriate interval. fa Polynomial approximation to f
In principle, the expansion parameter I' can always be made small by
choosing a very large t . Then one must use enough terms in the polynomial k Perturbation expansion parameter
fit to show the desired detail in the transient region. i Current density

There appears to be no fundamental difficulty in applying the above L Characteristic length of the conductor
method to three-dimensional materials or linear magnetic materials. We
intend to extend our work to these cases. We are also investigating S Thickness of the conductor
alternative schemes for fitting f to fa (such as fitting »g-_% directly) M Magnetization vector
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Symbols (cont.)

M, (4)  Magnetic permeability in vacuum (conductor)
n Subsecript to indicate normal component
¥ Electrostatic scalar potential
Ty B Spatial variables
p Charge density
a Conductivity of the conductor
Time
Ly Characteristic time of f
T Dimensionless Time (t/t )
Ky X Dimensionless spatial variables (x/L, r’/L)
Cm mth order terms of the spatial part of the scalar potential
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The Solution of Transient Fields by the Nodal Method

A.Y. Hannalla & D.C. Macdonald
Ain Shams University Cairo & Imperial College London

Abstract

The transient field in a machine cross-section is obtained numerically
in terms of vector potential, full account being taken of saturation and
eddy currents in a manner akin to that of the finite element method.
Oscillations in the transient solution which are very pronounced in a solid
rotor are avoided by making the first time at the start of a transient a
special case. Accurate solutions are obtained for simple transients
although the computing/real time ratio is approximately 10h. As it stands
the method is a means to a better understanding and a design tool.

1. Introduction

Magnetic field problems have been studied by finite difference and
finite element techniques under steady-state conditions. The ability of
the finite element method to accommodate awkward geometries without a very
large number of nodes makes it preferable. The nodal I.':lethodﬂi has all the
advantages of the first-order finite element method, but gives a more
accurate distribution of current to nodes. It also indicates that obtuse-
angled triangles give a poor representation. When applied to rectangular
elements it has been shown to have the same approximation as that of the
finite difference method. In transient conditions the nodal method, being
an application of Ampere's law is unquestionably valid. It is therefore
an attractive approach, for the derivation through the calculus of varia-
tions requires careful justification.

Here the nodal method is used to establish equations for the values
of vector potential (A) at nodes in an alternator cross section. In the
steady state these are similar to those obtained by the first-order finite
element approach. The steady state equations are solved by the Newton-
Raphson method for the initial current distribution - here constant field
current. The field decrement test is then simulated, the field supply
voltage being short-circuited, the stator winding being open. A transient
solution of the field is obtained and the field current decrement calcu-
lated compares well with measured values when the effect of field winding
end-leakage is included.

The transient solution requires a good representation of the conduct-
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ing paths in the machine cross-section and this is obtained with a con-
ductivity matrix. The current induced in a multi-turn winding is made

dependent on the values of %% over all of its cross-section. The Newton-
Raphson method is used to provide the solution at each time instant for

the augmented equations including time effects, reluctivity being iterated

at the same time.

Solutions have been obtained for field current decrement for a 3kVA
micro-alternator and a 325MVA lL-pole solid rotor machine. The solution
for the latter indicates that eddy currents in the solid rotor may have
both positive and negative values which may be explicable in terms of
higher modes of oscillation.

Equations have also been formulated for a loaded machine, including
rotational voltages. This requires representation over a full pole-pitch
and very large computing times would be involved in obtaining a sclution.
With the field decrement calculations over half-a-pole pitch containing
300 nodes, a computed to real time ratio of 104 is obtained. TFor the full
pitch analysis 1,000 nodes are required and the ratio might well be 107

The ultimate aim of the work is to find a model of a solid rotor which
will represent it correctly under power system transient conditions. Thus
secondary effects,such as tooth ripple, have been neglected and the rotor

and stator are considered in a single position with respect to each other.

2. Governing equations

The two-dimensional field is obtained in terms of magnetic vector
potential, A, normal to the plane of cross-section. J the current density
is also normal to this plane and is distributed in the conducting paths
presented by the machine. The field is governed by the equation

Var(Tan) = -3 4 o 2 )]
where r is the reluctivity of the medium, J represents constant current

density, ¢' is the material conductivity, and the last term represents
currents induced by the changing field pattern within the machine. At a
point in a closed winding the pattern is more complicated because the
resultant current is dependent on the value of %% throughout the winding.
Motion may also produce induced voltage and is omitted in the above.

The boundary conditions in a machine are taken to be those of

Dirichlet, Neumann and periodicity. At the inner and outer bore of the
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rotor and stator; flux is assumed to be completely contained (A = constant)
the leakage flux being negligible. 1In the field decrement test the field
is symmetrical about each pole and only half a pole need be considered.
No flux crosses the pole axis (A = constant) and flux crosses the gquadra-
ture axis normally (%% = 0). In more general transient problems in the
presence of load currents a pole-pitch must be considered and a period-

icity condition applied along the radial boundaries.

3. Numerical formulation

The machine cross-section is divided into acute-angled triangles
(Plate 1) the sides of which lie along iron and copper boundaries. Within
each triangle A varies linearly, giving uniform flux density and reluct-

ivity and takes the much used form:

1 . :
A = 5 (sum of (ai +byx + ciy) Ai), i=1,2,3

where & is the area of the triangle,Ai are values at the vertices, and
2z, bi and c, are defined typically as

8 = Fy¥y = FH i
b'l = yE = y}
c1 = x3 - x2

the remainder being obtained by cyclic permutation.

Equation 1 is the infinitesimal representation of Ampere's law and
here in the nodal method, Ampere's law is used along the orthogonal grid
shown in Fig 1 around each internal node and those on the interpnlér
boundary. This immediately relates the value of current within the con-
tour and associated with the node, with the values of A at the node and
at surrounding nodes. The matrix equation obtained is thus

gA

SA:cEt——I (2)

where the elements of S on the diagonal are:

1 2 2 b
SPP =g (sum of rj(b1j + c1j)/aj} j=1, m (2
and on the pth row of the kth column
8 T,
S i +1
Spk = Lmj (b'lj b}j + c'lj c3.:|) + Tig;
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T4

) (4)

where b1j and c1j are the l:v,.| and ¢, of the jth triangle, and node k is
coupled to node p by the common side of the j and (j+1)th triangles
around node p. I represents a vector of constant currents.

S is symmetrical and has n rows (n = no.of active nodes). The
inactive nodes on the Dirichlet boundaries are set to zero.

The right-hand side of equation (2) is zero at nodes where there is
no conducting path, i.e. in air and laminated material. In the field
winding, current may flow and the conductivity matrix has the form

c ™3 0 0 0
0 ¢, O (5)
0 0 <,

The sub-matrices c 1 and s represent the damping circuits and the field
circuit. In the damping circuits current point is dependent on the value
of %t-— at each node,and c, is a diagonal matrix of elements representing
conductivity x area for each node. 5 is a full matrix by which the
current concentrated at any node is related to the values of % at all
nodes within the field winding cross-section and the resistance of the
field circuit:

c' N T
% ® TR R, M (6)
s '8 i°f

where W is the column vector of areas associated with the ne nodes in the
field winding cross-section over half a pole of total area aS. N is the
no. of turns/pole, ks is the field winding space factor and ki the mean
length of turn/2 x rotor effective length.

The two parts of the conductivity matrix are kept distinct by
ensuring that conducting regions are separated by a set of small non-

conducting elements.

L. Time approximations

9A

An implicit method is used to obtain it at the end of each time step,
dt:
oA A 2
i ===+ ==(A -A) (7)
ot F5 £ ot £ dt "t+dt t
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The error starts from the third derivative and the time interval
is independent of the size of the elements. The initial time step has to

be considered separately.

5. Initial values and the first time-step
At nodes in non-conducting regions %%-does not give rise to current

and may be allowed to vary freely from zero at the start of the transient.

The solution of equation (2) at the end of the first time step re-

quires a value of -g-%-l , or, more exactly, ¢ g—: . Equation (7) would
dt dt
appear to give this if ¢ %%- is known. In conductors initially carrying
o
current immediately following the transient, current is maintained by g—: 3
i.e.
BA
¢ Fr Io

However the use of equation (7) at t=0 gives rise to oscillations in the
solution (Fig.2 & 3) as was also found by Flatabo in a thermal diffusion
problem.

In conducting paths not initially carrying current, currents rise from

zero at t=0 and therefore g—:-l = 0. TFor a short time after the start of
<]

the transient -g—i— remains constant, changing by dA in successive time steps

dt. Using equation (7) at the end of the first time step:

oA 2
| =0+=-1(da)
at at dt
da
=2 E
which is clearly wrong and at the next instant gives g—i’ =0 .
- 2dt
A better solution is obtained if in the first time step a first-order
approximation is used for g—i
oA 1
1 [ TR
at at df ‘gt 0

with a very small value for dt.
A further difficulty occurs if nodes are situated on a common boundary

between two conducting regions, one of which isg initially carrying current

(the field winding) and the other is not (the damper winding or solid iron).

When driving voltage is suddenly removed (from the field circuit) current
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is maintained constant by %% . However in the conductor that is ini-
t=0
tially dead %% = 0 for current rises from zero. If no special pro-
t=0

vision is made the latter condition is not satisfied and current is cal-
culated in the damping circuits at t=0. A full consideration of this
situation would have to include the effect of the end leakage of the
field winding for it must be the change of flux linkage there which ini-
tially contributes to the maintenance of current at the boundary.

However ignoring end effects a solution may be obtained when the
field winding consists of many small conductors connected in series. The

initial distribution of 28 may then be obtained by assuming uniform rate

ot
of change of current density, which gives rise to %% . The total voltage
induced is at t=0
oA
% m = Tt
%% = 0 is also satisfied at the common boundary. If the field conductors

are large a better approximation would probably be to keep the total
conductor current constant.
Here these difficulties have been avoided by putting a set of small

non-conducting elements between conducting regions and by allowing %%

to have a uniform value over conductors initially carrying current. ‘
6. Choice of Grid

The nodal method allows for triangles or rectangles to be chosen as
elements. Rectangles have been used in stator slots (Plate 1) where per-
meability is constant, and flux distribution is of minor importance in
field decrement conditions. Many small elements have been used where
gradients of flux density are large, but the overall aim is to use few,
large elements, so as to minimise the number of nodes. In transient con-
ditions Carpenter has shown that the surfaces of magnetic material must
have at least one layer of elements in the depth of penetration if serious
error is to be avoided. Here under transient conditions penetration depth
does not have a clear meaning and the grid used has been laid out rather

arbitrarily with a coarse grid and with smaller elements towards the air

- gap surface. As is shown later, higher modes of oscillation appear to be

excited by the sudden transient and clearly the representation will limit

the modes which can appear in the solution.
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The choice of elements in the rotor slots reguires to be sufficiently
detailed to represent the distribution of %% over the conductor. 8ix nodes
have been used in each slot and are about the minimum necessary to obtain
the distributions shown for t=0 and after the first time step in Fig.2.

Nodes are numbered as far as possible so that the s-matrix has a strip
of elements about its leading diagonal, i.e. the numbers of adjacent nodes
are kept as near together as possible. There are exceptions to this rule
in respect of:

inactive boundary nodes

nodes within the field winding cross-section

nodes within the damper winding cross-section, or
in solid iron

These are numbered in three groups within each of which numbers follow

consecutively.

7. The iterative method

The initial values having been obtained by Newton-Raphson successive
iteration, time steps are made in the same way with augmented equations.
However, the solution to be obtained at the next instant involves %% and
the value given by equation (7) is used save at the first instant. The
vector of errors G is given by

oA

G = SA4+I-c¢ 3t

and the solution is obtained for minimal G. The starting values of A at
the instant t+dt are those at t, and at the (j+1)th iteration are
.. = A, -H. G,
3+ b
where Hj is the first order derivative of Gj with regpect to A. Thus at

C
G _sjln,j+2d—t(AJ.-A‘:)JrIJc

j
and
2
HJ_HS+E c -

Hs is the differential of S as given by SiIVesterz At the first time step
in a transient the first order approximation gives

c
Hj = Hs T

._'!'e‘m'lingsl+ sparsity techniques are used and very good solutions are normally

obtained in under ten iterations. The values of reluctivity are adjusted
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at each iteration and the method is unconditionally stable, the size of

time step being restricted by the accuracy sought, not by stability.

Applications
The method has been successfully applied to the calculation of simple

transients, the field decrement test. The first machine, a 3kVA micro-
alternator, has a laminated stator and rotor, damping currents occurring
only in the cage damper winding. Fig.3 shows the growth of damper current
following the short-circuiting of the field supply voltage. It will be
seen that the current density increases fastest at A nearest to the field
winding.Current at point B is slightly slower and is followed by the
current at the top of the bar (¢). Damper current density having reached
a maximum uniform value, the damper and field currents decay away together.
The fast rise in damper current shown is associated with the initial swift
dropin field current.

Fig.3 also shows the oscillation in the solution associated with the
use of the second-order approximation throughout.

A typical solution for the solid rotor lL-pole machine are shown in
Plate II. The field current decrement is shown in Fig.4. Curves C ann D
show the oscillations obtained using the second order approximation
throughout. T shows the effect of using the first order approximation at
t=0 and taking full account of the switching operation (current in the
discharge resistor was initially in the reverse direction), and F allows
for the effect of field leakage reactance at the endsof the machine.

Fig.5 gives the eddy current density at the centre of a tooth at
successive instants. A negative current is clearly indicated towards the
front of the tooth and in the rotor body. These may be thought of as
evidence of excitation of the higher natural modes of oscillation of the
rotor, and several other explanations have been considered which would
tend to confirm what at first was a surprising result. It would be

interesting to confirm these results by measurements.

Conclusions

It has been shown that general transient conditions may be calculated
with due regard to eddy currents, varying permeability and awkward geo-
metry. The method is limited at the moment by the poor computing/real
time ratio, and this must inhibit its use. If the time of calculation is

reduced substantially the method may have a very wide significance. As it
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is, it is an interesting tool giving considerable insight and holds

promise as a means of devising more approximate machine models.
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Correction Tig.5 shows values of current density scaled from % values

at nodes directly. These are not correct for in the consideration of the
solid pole work current taken to act at a node is also dependent on DA

ot
values at adjacent nodes. When this process is followed only positive
values of current density occur.

A.Y.H. and D.C.M.
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Plate 1 Grid of triangles used over half a Plate 2 Flux distribution 0.035s after the start
pole pitch of a 325 MVA machine. of the field decrement test.
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CALCULATION OF THE DYNAMIC BEHAVIOUR OF ELECTROMAGNETIC
ACTUATORS™
B. Aldefeld’

ABSTRACT

A method for the calculation of the dynamic behaviour
of electromagnetic actuators is described which uses finite
difference techniques and solves the magnetic field equation
for successive time steps. Results of numerical investiga-
tions of the convergence of the SLOR method are discussed.

As an application the dynamic behavior of a print needle
actuator is shown.

INTRODUCTION

Electromagnetic actuators are found in a variety of
technical devices e.g. in printers or paper tape and punch
card equipment. They are used to provide mechanical energy
at a given stroke and in a given time interval. Strokes of
the order of 1 mm and times of action in the ms range are
typical for many applications. For the excitation usually
a voltage pulse of short duration is applied.

In the design and optimization of these devices re-
guirements have to be met as to power consumption, magnetic
force, mechanical energy, and speed of action. From the
mathematical point of view, the main problem is the solution
of Maxwell'’s field equations for time-varying excitation and
moving media taking non-linear magnetization characteristics
into account. Because of the dynamic nature of the problem
a large number of field distributions for successive time
steps have to be calculated, and it is of major importance
that efficient methods of solution are used.

Miork supported by the Bundesministerium fur Forschung und
Technologie of the Federal Republic of Germany.

+Philips GmnbH Forschungslaboratorium Hamburg, 2 Hamburg 54

Transient

The work of which some aspects will be described in
this paper is aimed at a complete digital simulation of elec-
tromagnetic actuators. As yet, only magnets with rotational
symmetry have been taken into consideration and eddy currents
have been neglected. However, the eddy current effect is con-
sidered to be important, and the methods have been chosen
with respect to include this effect at a later time.

METHOD

The dynamic behaviour of an electromagnetic actuator
is described by three differential equations, which in com-
mon notation read

iR = U - ¢ (11) (1)

" for the calculation of the current in the coil,

2
m ztz = magnetic force + spring force + frictional (2)
2 force e

for the displacement of the armature, assuming that only one
mass and one spring are present, and

SEE@+H & @) =-3 (3)

for the vector potential, which has only a tangential com-
ponent in rotationally symmetrical geometries.

The basic principle used in this paper for the solu-
tion of these differential eqguations is shown in the simpli-
fied flowchart Fig. 1. The magnetic force and the inductance
can be obtained by simple integrations from the magnetic
field distribution1’2, and the ordinary differential equa-
tions (1) and (2) can be solved by standard methods. The main
problem is the solution of the non-linear partial differen-
tial equation (3), which will be discussed in more detail in
the following.

The finite difference approach is used applying similar
techniques as described by Erdélyij. This method allows Ior
sufficiently accurate discretization rfor the geometrical con-
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Fig.1 Simplified Flowchart
Tfor Calculation of
Dynamic Behaviour Method

Fig.2 Flowchart of Iteration

figurations considered here, and the generation of the grid
and its adaption to the time-varying geometry is easy to
perform.

The iteration procedure consists of an inner and an
outer cycle (Fig. 2). In the inner cycle new vector poten-
tials are calculated by successive line iteration using the
Thomas algorithm for the solution of the tridiagonal systems.
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Fig.4 Print Needle Actuator

Fig.% Magnetization Curve

g

The vector potentials AJ g are overrelaxed according to
?

*
A}?% . A§?ﬁ1) + ORF (A}?% - i (ﬁjé)) (@)
where J,K refer to the nodes of the grid, M denotes the num-
ber of completed iterations of the inner cycle, and ORF is
the overrelaxation factor. Additional acceleration of con-
vergence is obtained by the multiplicative method based on
Ampere’s law, which has been described by Abamedt,

The outer iteration cycle consists of Tfour inner cy-
cles performed in alternating directions followed Dy up-
dating the coefficients. The reluctivities VI, are calcu-
lated from the Fflux density and the magnetization curve and
underrelaxed according to

R TR R B (5)
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where I denotes the number of completed iteratiomns of the
outer cycle and URF the underrelaxation factor.

The initial values for the start of the iterative pro-
cedure are obtained from the field distribution of the pre-
vious time step, except for the first field calculation,
which starts from AJ,K = 0. The convergence of the solution
is monitored by three quantities:

- Percentage change in the magnetic force in two successive
iterations

- Deviation of 531"1' PHal from 1

- Buclidean norm of the difference vector divided by the
average vector potential.

NUMERICAL INVESTIGATIONS

In several publications the convergence of iterative
solutions has already been discussed. However, the results
obtained by different authors, e.g. as to optimum relaxation
factors, indicate that there is a strong dependence on the
special problem and the method used. Additional investiga-
tions have therefore been carried out. The convergence of
the solution for a number of different electromagnets, in-
cluding open magnets (without flux return yoke), has Dbeen
examined for low and high excitation currents and the mag-
netization curve shown in Fig. 5. Also the influence of the
position of the integration path for the evaluation of gﬁHdl
has been investigated. The number of cells was chosen be-
tween 650 and 1500, which gives sufficient accuracy for the
design applications under consideration. The following re-
sults have been obtained.

The position of the path of integration is not
critical and the convergence is at least five times more
rapid than without this acceleration.

On the relaxation Ffactors there is a significant de-
pendence., The uvnderrelaxation Tactor had to be chosen lower
than 0.12 and the overrelaxation Tfactor lower than 1.8 to

Transient

avoid instabilities in the solution. Suitable values were
found to be 0.1 and 1.7 respectively, for which convergent
gsolutions were obtained for all configurations and currents.
Figures 5 and 6 illustrate the typical convergence of mag-
netic force and (ﬁHdl Tor different overrelaxation Tactors
and an underrelaxation factor of 0.1. The test sample is the
magnet shown in Fig, 4 subdivided into 1500 cells.

Fewer iterations are needed at very high excitation
when the flux density in large parts of the magnetic cir-
cuit exceeds two Tesla. This is obviously duve to the facts
that at high saturation the differences Detween the per-
meabilities in air and iron are reduced and that the slope
of the magnetization curve becomes less steep.

The number of iterations required to reach sufficient
convergence in each time step is strongly dependent on the
rate of change of armature position and current. Typical
curves are given in Fig. 7. They apply to the dynamic char-
acteristic shown in Fig. 8a (magnet Fig. 4 subdivided into
650 cells, time increment 0.05 ms). The thresholds for the
termination of the iterations were preset to give an accu-
racy of the numerieal solution of about 3 per cent: change
in the magnetic force < 0.005, norm of the difference vec-
tor divided by the average vector potential < 0.05,
gz $HaL - 1]< 0.005.

The shape of the curves in Fig. 7 can be character-
ized, somewhat simplified, as follows:

- Many iterations at the beginning where the iterative pro-
cess starts from AJ 5 = 0
;g

- Pew iterations where the field distribution varies slowly
because the armature is not yet moving

- Many iterations where the Field distribution varies rapid-
1y because both the position of the armature and the cur-
rent change.
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For smaller time increments fewer iterations are required
per time step because successive Iield distributions are
— - more similar, For the example in Fig. 7 the average number
URE =81 of iterations per time step decreased from 14 to 10 (for
ORF = 1,7) when an increment of 0.025 ms was chosen instead
e Fig.5 of 0.05 ms. For the determination of a suitable time in-
Convergence of crement no general rule can be given because there is a
Magnetic force strong dependence on the special shape of the curves that
I describe the dynmamic behaviour. On the one hand, the incre-
j“ ment should be chosen as great as possible to keep the to-
. | ; T T tal number of iterations low, on the other hand, the incre-
20 40 Nunﬂgg(ﬁ ne?gnons e ment should be chosen small enough to ensure that the mag-
netic force and the inductance can be interpolated with
sufficient accuracy between the points of calculation.

o
1

ORF =17
ORF =13

Magnetic Force [N]
=~
I

X
|
e |
>
-
~

‘ —— ORF =10
m
N

APPLICATION

Pig.6 A computer programme has been developed on the basis
) . of the technigues described and is used currently to assist

Convergence of

Hal the design of print needle actuators. The programme pro-
duces curves of magnetic force, armature displacenent,
velocity, mechanical energy, current, and inductance as
functions of time and allows for taking ' snapshots’ of
vector potential, flux density, and flux lines at any time
step.

0.005+

: : An example is given in Fig. 8 showing the displace-
20 “]Numb:?oflt 5? 100 ment of armature and print needle of the magnet in Fig.4.
erations
Fig. 8a shows the dynamic behaviour under pulse excitation
40 at low repetition rate. Fig. 8b displays the behaviour in
Pig.7 the case of three successive pulses at a high repetition
N rate which causes interference between the pulses. In
Number of Itera-
. Fig. 8c the behaviour for different initial positions of
tions as a Func-
the armature is compared.

URF =01
ORF=17
ORF =15
ORF =13

30 H

tion of Time

Number of Iterations
~
o
1
’\\

0 05 Time [ms] I,IO
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Discussions following paper:

(Chevalley CERN) Have you any comparisons with experimental datas?

They would show the influence of neglecting the eddy current effects?

(Alderfeld) Some measurements on a print needle actuator have
been performed and compared with the computations. It was found that
the computed average force was too large by about 20 per cent for that
electromagnet and it is supposed that this is mainly due to the eddy
current effects. In order to improve the accuracy it is therefore

planned to include the eddy currents in the computations.
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A THREE-DIMENSIONAL ANALYTIC MODEL FOR CALCULATING
EDDY-CURRENT EFFECTS APPLIED TO A TOKAMAK BLANKET
AND SHIELD"

L. R. Turner, S. T. Wang, and J. R. Purcell
Argonne National Laboratory
Argonne, Illinois 60439 TU.S.A.

SUMMARY

A method has been developed for calculating the induced fields
due to eddy currents, in order to determine whether the conducting
material is finely enough subdivided that eddy current effects do no harm,
In using the method, the conducting material is divided into rectangular
bricks, With suitable assumptions about the acting magnetic field, the
current densities can be described by third-power equations, Conse-
quently, the induced field from each brick can be written analytically,
The method has been applied to flux penetration of the blanket and shield
of Argonne National Laboratory's proposed design for a Tokamak Experi-

mental Power Reactor,

1. INTRODUCTION
In a tokamak fusion reactor, as in other kinds of electrical

machinery, time-varying magnetic fields can produce undesirable eddy
currents, The eddy currents can be reduced by laminating or otherwise
subdividing the metal parts; however, to make the pieces smaller than
necessary may be expensive, inconvenient, or even inconsistent with
their functioning, Thus it seems desirable to develop a general-purpose
method of calculating eddy currents and the fields they produce, in order

to determine how fine a subdivision is needed.

In a tokamak, the toroidal plasma is surrounded by a toroidal
energy-absorbing blanket and radiation shield, In the Argonne design of
a Tokamak Experimental Power Reactor (TEPR), these are made of

#“Work performed under the auspices of the U.S. Energy Research
Development Administration,
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stainless steel, plus non-conducting material, The blanket and shield
experience both the pulsed field from the plasma current and the pulsed

vertical field required to hold the plasma in equilibrium,

Eddy currents induced in the blanket and shield will produce mag-
netic fields which may interfere with the plasma current, In addition,
those eddy currents may interact with the field from the toroidal-field

coils to create large forces and torques within the blanket and shield,

In Sec. 2, below, we develop the mathematical model used to cal-
culate eddy current effects. Section 3 is a description of the blanket and
shield of a tokamak, Section 4 shows the calculation of eddy current
effects in the blanket and shield. Finally, Sec, 5 describes possible ex-

tensions to the model,

2, THE MATHEMATICAL MODEL

2.1 Blocks, Fields, and Currents, The induced magnetic field due to

eddy currents is given by the Biot-Savart Law:

W
_ o plxrT
Pin T3 W (@}

where Bin is the induced field, J is the eddy current density, and r is the
displacement from the source point (x, y, z) to the field point (xo, ¥ zo].
o

The eddy current density is determined by two conditions:

J+ n =0 on the conductor surface (2. 2)

VxJ= -O'Z.B =-¢[I.Ba + ].Bm} (2. 3)

when n is a unit vector normal to the conductor surface, ¢ is the elec-
trical conductivity, Ba is the applied field, and the dot designated differ-
entiation with respect to time. Solution of Eq. (2.1) - (2. 3) is a difficult

problem, and no general algorithm for their solution exists.

Let us make sufficient assumptions that the equations have con-
venient analytic solutions., Limitations on the applicability of the model

due to these assumptions are discussed below in Sec. 2.3,

(1) The conductivity is sufficiently low that the induced field is
small relative to the applied field. Thus :éa + hin may be
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replaced in Eq. (2. 3) by éa.

(2) All conductors can be represented as rectangular solids al-
ligned parallel to the coordinate axes. Let a conductor be
centered at the origin and have length 2a, 2b, 2c in the x, v,
z directions respectively,

(3) The field Ba. is everywhere in the z direction; consequently J
is everywhere parallel to the x-y plane,

(4) The field Ba varies across a rectangular conductor according

ke i 3o
B, =B [1-5—% (2. 4)
a +b
2.8 Expression for Induced Fields, Under the above assumptions,

Eq. (2.2) and (2, 3) are satisfied by a current density J with components

- a.z xz
J_=0¢B y —— (2.5)
2 2
= " a“+b
. B B
J, =B x ——L "2 (2.6)
y a +b
Eq, (2.1) then has a z component which can then be written:
o B
o 2 2 2 2 3
Bm=ﬁﬂf[{vo-ﬂ¥(a x") + (% =%) x (b -y 1]xr dy dz (2.7)
a +b !
Substituting:

WEX=X,V=y=-y,W=2-2,
and carrying out the integration, we find the following equation for the

z component parallel to Ba:

- - 1 2
B T B [m13‘:.{%“,3(,{2_&2”2_10,_W4,6}+
in 4r 2 o wr o o
a +b
-luw{ 2 2 .22 2 2 .2 3 ;4}
AR ey (an s e )k gleT s G yomB ) EVE, SEv i+

-1 vw 2.2 g Zod 2 2@ 3 1 4}
flo B & 3 = =
+tan s {uxo[ y°)+gu(b y'c,+xo a]+uxo+§u +
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+ In(r + u) {Wv(bz - yz - Zva;‘3) - Wy (a.2 - xz + 3v2;'2) -%wsy } +

o o o o

2
+ In(r + v) {wu{a.z -X - 2u2f3} - WX (bz - y'2 + 3u2f2) - éwa } +

(e} o o o

2. 2. 2 2. B o2 2, 2 }

+ In(r +w}{uy°{u +x° -a)+ vxo(v A b)) + Zxoyo{u +v)f+

6 3 2 H 2.8
+r {uvw!‘ + % x VW +z Y uw + xoyow ( )

where ¢ is the electrical conductivity, r =ﬂ)u2 + vz + wz. and u, v, and

w are evaluated at their upper and lower limits * a - X b - Vi

¢ - z respectively.

2,3 Limitations Due to Assumptions. Let us look at the consequences

of the four assumptions listed above. For the type of application intended,
subdividing the conductor to control the effects of eddy currents, assump-
tion (1) holds definitely, in that the conductor is not adequately subdivided
unless the assumption holds. Depending upon the degree of subdivision
required, assumption (2) may or may not hold, In some cases, a more
detailed treatment may be needed for nearby conductors, and the model
used for more distant conductors, There is a class of problems for
which assumption (3) is good, but certainly the model would be improved
by including all three components of J and B. Assumption (4) is the most
questionable; if the field Ba were actually uniform and equal to BO, then
the above expression would probably underestimate Bin’ but by less than
one third, An extension of the model to make the next approximation be-

yond assumption (4) is discussed in Sec. 5 below.

3., THE BLANKET AND SHIELD AND THE EQUILIBRIUM FIELD

3,1 The TEPR Blanket and Shield. In a tokamak power reactor, most

of the energy is carried out of the plasma by 14 MeV neutrons, The
blanket surrounding the plasma captures almost all (approximately 99%)
of these neutrons and contains a circulating coolant (water or helium)

to carry the energy to the generator outside. Surrounding the blanket is
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the shield, designed to stop the remaining neutrons, An early design for
the Argonne TEPR blanket and shield is shown in Fig, 1, It consists of a
torus with alternating layers of stainless steel and boron carbide; the
layers are between 5 and 15 cm thick, with a total thickness of 80 cm of
stainless steel. The torus was unbroken toroidally or poloidally, After
the calculations described below were performed, the design was changed
to that shown in Fig. 2, which consists of thirty segments toroidally,

each divided into rings of 16 blocks poloidally,

3.2 The Equilibrium Field. A tokamak must have, supimposed upon

the other magnetic fields, a vertical magnetic field throughout the plasma
region to keep the plasma current in equilil')rium. In the Argonne TEPR,
the field is 3 kG, it must be established during the one second rise time
of the plasma current; and it is produced by coils outside the blanket and
shield, It is this equilibrium field which produces eddy currents in the
blanket and shield,

4, CALCULATING THE EDDY CURRENTS AND INDUCED FIELD

4,1 A Simpler Model, Because the blanket and shield shown in Fig. 1

consists of thin toroidal rings, it can be approximated by a toroidal shell,
with toroidal and poloidal currents, but no radial currents, Furthermore,
unless the aspect ratio is too low, the toroidal shell can in turn be re-
placed by a cylindrical shell, with the toroidal and poloidal currents re-
placed by axial and azimuthal currents,

If we take the equilibrium field to be vertical and perpendicular to
the axis of the cylindrical blanket and shield, then when the equilibrium
field changes, there will be, in the low conductivity limit, an axial cur-
rent .

J=-casin@B_ , (4. 1)
when a is the radius of the cylindrical shell, and 0 is the azimuthal angle,
This current will produce a field in the plasma

Ho z

B, = -3-hacB_ , (4. 2)

where h is the thickness of the cylindrical shell,
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4,2 Calculation of Unbroken Toroidal Shell and Modification of the

Model, For the blanket and shield design shown in Fig. 1 with a rise
time of one second, the induced field at the plasma as calculated by

Eq. (4.2) is more than three times the applied field, This non-physical
result would not actually occur; the induced fields would induce additional
currents which in turn would produce fields, limiting the net induced field
to a value sufficient to cancel the applied field,

Although we have not correctly calculated the field, we can draw
two conclusions about what will happen if the blanket and shield are un-
broken,

(1) The induced field is large (comparable to the applied field),

(2) Fields induced by the induced field are significant,

Consequently, it appears that we must break up the iron into pieces small

enough so that:

(1) Theinduced field at the plasma is negligible,
(2) Fields induced by the induced field are negligible,
If the cylinder is broken into segments of length 2 £ which is

small compared with the diameter, the current density has components

.Te=cry cosal.So (4. 3)
o, ,2 2 d
e e € i
JY 32 ( y ) sin 8 Bo (4. 4)

where y is measured axially from the center of the segment, The field

on axis a distance A along the axis is given by

2 2 2 =l
nooha , |y(a”+y -1 /2 5 y Yo
B, = B -In(Wa +y +vY) (4. 5)
in 8 o| 2 2, 2
a .\/a +y y:..,e..yo

4,3 Results for a Segmented Shell. For 16 segments and an applied
field of 3 kG, the induced field at the plasma is calculated by Eq. (4. 5)

to be 566 G; for 32 segments, it is reduced to 144G, or five percent of
the applied field, Plasma physics considerations suggest that even this
value is uncomfortably large; it seems safest to try to further reduce

the eddy currents, To do so requires making the blanket and shield of

blocks weighing a few tons each,
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4.4 Results with the Brick Model. For calculating the effects of fur- where N is the torque and BT the toroidal field, For one of the

ther subdivision, the design in Fig. 1 was divided into thirty segments largest blocks, Eq. (4. 7) yields a value of 36000 foot 1b,

toroidally; and each of those was divided into sixteen regions poloidally, 5 EXTENSIONS OF THE MODEL

i addition;; the divtalon babo Sroun four touaix reglons xadlally ls;mains 5.1 Fifth-Power Equations for J, The model described in Sec, 2 can

tained, h i by 92 i : . . .
e Eedb-segnuenkis ropresonted by Jé eocinaguing siszloge otes] be extended in several ways. Most important, perhaps, is relaxing the

bricks., The bricks closest to the plasma are 30 cm thick, the others are condition that the fleld must vary sctoss & bridk according t6 B4, (2.4),

10 cm thick, Widths vary from 112 cm to 153 cm, and lengths from 80 cm which was imposed so that the current density would obey the simple

to 180 cm to correctly represent the volume of stainless steel, expression Eq. (2.5) and (2.6), If we allow fifth-power terms in the

A FORTRAN program, BRICK, was written to establish the ver- .
expressions for current, we get

tices of the bricks in one segment, to translate and rotate the bricks to 2 2 22 2 2
- 4 2 2 2
Jx=o-Boy[a - X -[—{ab(a =b)+@a -ab +b4]x2+2a2by2—
2 2 2 2
specified point by Eq. (2,8), The calculation shows that the maximum - szx ¥y =a x4}.f {a4 + 5 azb + e }] f{az 4 bz) (5.1)

JY = - crﬁox [bz - }r2+{azb2 (b2 - az) + (a4 - azb2 + b4) yz +

represent the other segments, and to calculate the induced field at a

induced field in the center of the plasma is only 0, 86% of the equilibrium

field, of which the two nearest segments contribute 0, 79%. The effect of

2,2 2 222 24}1’4 22 4}] 2B
2 -2 -
repeated subdivision is shown in Table I, The induced field was judged PeE B2 axy by f/ (2t 5a bbb /(2" +b7) (5.2)

to be sufficiently low with a subdivision of 16 cuts, The actual blanket B oan. |Le a2x4 + 6x2y2 (a2 + bz) - b2y4 )
and shield design suggested as a result of this calculation is shown in il (2 5 BOYa~ + 5a b” 4B (5.3)
Fig. 2. Equation (5.1) - (5. 3) obey
J + n =0 on the conductor surface
Table L. Effect of Segmenting and Subdividing the Blanket and Shield and VxTJ =-0 éa .
Peak induc.?ed field on Moreover Eq. (5.3) approximates Ba = B0 over much more of the con-

P ﬁia:;;iti:}sie?:'percent Gilolated By ductor volume that Eq. (2.4) does, When Eq. (5.1) and (5. 2) are sub-
Dnsegmented 3 25%* Eq. (4.2) stituted into Eq. (2. 1) and the integration carried out, an analytic ex-
14 segmonts 19% Eq. (4.5) pression for Bin results, involving the same functions as the simpler
32 segments 5% Eq. (4.5) expression in Eq, (2,8), When calculations with that expression are

. ; i ¢ 4
30 segments, each compared with those described above, the limitations of assumption (4)

with 16 cuts 0. 9% Eq. (2.8) can be understood,
*Assumptions of calculation invalid in this case, 5,2 Other Extensions, Three other useful extensions of the model
would be:
4.5 Forces and Torques. The torque on a horizontal block due to the (1) Using the Jx’ g , wid Ba which approximate a linear varia-
40 kG toroidal field can readily be found from Eq. (2. 5): tion of the magnetic field,
N '”‘r ‘TxyBT o (4:9) (2) Incorporating all three components of T, Ba’ and Bin'
=16 ].E'aoo‘BTasb3cf9(a.2 + bz) ’ (4. 7) (3) Going beyond the low-conductivity limit by including Bin in
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B _, thus producing a set of linear equations to be solved for

the eddy currents.

Extensions (1) and (2) in particular would be straightforward because the

same kinds of expressions occur there as were determined for the equa-

tions of Sec, 2 and 5,1
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Fig. 1 Unbroken Blanket and Shield Design for the Argonne TEPR
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Discussions following paper:

- j . (Yeh) What is the duration for which the perturbing field due to eddy
T.F. COIL

is comparable withVF, since eddy will dive away at flat top of pulses?

INSIDE EDGE F . %

/
/ BLANKET (Turner, Argonne) Duwing the first 15 msec or so, while both the
COOLING LINES PANEL

= applied and induced field are less than 2 gauss.

FOR Bl, W

B3,85 & B7 i

Fig, 2

Blanket and Shield Design for the Argonne TEPR, with
16 Cuts Poloidally to Reduce Eddy-Current Effects
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Induction Motor Analysis and Field Calculation

using Anisotropic Laver Theory

S. Williamson

Introduction

'Layer theory' is a technique of analysis that has been developed
over a number of vears (see introduction and bibliography of ref.l).
Its chief use is for the analysis of induction machines. The basic
philosophy lies in replacing the regions of a real machine by a series
of separate layers. These layers may be arranged concentrically or
stacked one on top of the other, dependina on the geometry of the machine
under analysis. The physical properties of the layers are determined by
the physical properties of the regions they represent, composite regions
being modelled using an averaging process. The layers are assumed to be
magnetically linear, so that the principal of superposition can be evoked
to enable a solution to be obtained, harmonic by harmonic. Maxwell's
field eguations are solved for each laver separately, matching solutions
at the boundaries. This is then repeated for all significant harmonics
to allow the calculation of an input impedance matrix. The solution is
now essentially complete, and the various fields, forces and torgues can

be readily cbtained.

A recent paperl has extended layer theory to allow the effects of
both electric and magnetic anisotropy to be taken into account. This
extension has become necessary with the introduction of the new trans-
verse flux linear induction motorsz_q. In many of these machines the
path which the flux takes is governed by the direction in which the
back-iron is laminated. 1In addition, certain flux-paths may be actively
discouraged by grouping the laminations into packets, with air-spaces
between. Windings have been proposed which are apt for both longitudinal-

flux and transverse-flux machines4.

Th? aut?or is with the Department of Engineering, Marischal College,
University of Aberdeen, Aberdeen AB9 1AS. '
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This paper deals with the application of the anisotropic layer-
theory to the analysis of one of the new linear machines, with particula

respect to the field in the airgap.

Anisotropic Layer Theory

It may readily be shown that if a harmonic solution of the form

Bt () exp(iet - ky - ) W

ek'g' Re
x

is assumed for all the field guantities in a region, where the x and y

r

3 s =k j
axes lay in the plane of motion, then E:x can be expressed in the form

=k, % - : ;
EL (z) = D,y cosh .2 + D, sinh €,z + D, cosh €,2 + D, sinh €,2
(2)
where €., €, =0 + /% - B (3)
i zcx Yy zal uy :
o = 3 {2 (G- + 30 +KiG- + 30 + jswlou + cxuy)} (4)
z z z
u u o uu ¢ o uoo
B o= (22 X4 k? Ly jeu 22XV 2 X2 Ly g 22Y,
n u o o o
z z z z z z
(5)

and Dl gl D4 are constants of integration.

A total of twelve constants of integration result. This number
may be reduced to four by applying Maxwell's equations, and then to two
by assuming the regions are electrically isolated. Finally a transfer
matrix can be calculated, relating field guantities at the upper bound-
arv to those at the lower boundary. This enables surface impedances
'looking up' and 'locking down' from the excitation layer to be deter-
mined. If the excitation layer is assumed to have zero thickness, then
the winding input impedances may be calculated as shown in ref.l, but
if a finite thickness of excitation is incorporated, then thick-
excitation formulae should be useda. This produces a surface input

impedance given by
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£8 2
=y oo IR +l
n(zU + ZD)(ES tanh €8) + tanh €S(2 tanh(2 ) ~-ESN (ZUZD 1)

=k, & -1
- 2 + (5 2 &
IN ne n(zu ZD) n ZUZD 1) tanh €5
(6)
k2
where N = GEE— S = thickness of excitation laver
2 € = solution of equation 3
Z = surface impedance looking up from
U i .
the excitation
ZD = surface impedance locking down from

the excitation

For a voltage-forced solution the windings are firstly resolved into a
complex double Fourier series. If the x-directed conductor distribution

of winding 1 is given by

(7

n =

400 400
—k, L - (ky+ix)
x1 I 1N e

=00 =00

Lok

then the coupling impedance between this winding and a second can be

shown to be given by the expression

oo o * *
= =k, =k,L =k,L =k,% =k, ==k, L
= N + N N
12 4TxTy E E x2 x1 ZIN x1 x2 ZIN (8)
k 2

Calculation of the coupling impedances enables the winding currents,
and hence the excitation layer current density harmonics, to be calcul-
ated. This then enables the fields at the excitation layer boundaries to
be determined, and these in turn allow the fields in any region to be

caleulated, wvia the transfer matrices.

Of particular interest is the field at the surface of the rotor
plate, since this can conveniently be measured for verification purposes,
and can also be used in conjunction with the Maxwell stress technigue to
calculate the forces on the rotor assembly. In terms of the field
guantities normally calculated using the transfer matrices (i.e. Bz and
Hy} the 1ift, propulsion and transverse forces may be shown to be aiven

respectively by the expressions
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21T +00 oo 2
. X 2 &__ kL2 _ k, L2
F, = W Re ;_E {po(l +37) i}ly’ | ]Bz' [2}} (9
L -k
400 400 *
F = -4tt Re| J ¥ kot gkt N (10)
¥ Xy foa ¥ z
% -k
00 i 2
_ X kody =k, 8,7 172 L+,)T /T
Fx = 8T Im -3; X g_ E HY' 1 ! 2{‘% -1 }(1-( 1)! 1772 )
¥ v (11)
L_#8

The 'infinite' summations are, of course, intended to imply that
as many terms as necessary should be considered. This is best deter-

mined in an empirical basis and is discussed in a later section.

It is interesting to note that the transverse forces arise out of
an interaction between odd and even harmonics. This arises because of
the nature of the transverse modelling. For a given harmonic pair, BY
and Bz are constrained to vary sinuscidally with x, whilst Bx varies
cosinusoidally. The transverse (i.e. x-directed) force is therefore
calculated by integrating products of the form sin Elx cos £2x over
one transverse pole-pitch. Such integrals are zero unless one of the

pole numbers is odd and the other even.

3 4 : :
The 'Herringbone' Motor #3 and its Mathematical Model

QR

Reverse phase seguence
Outwards-travelling fields

Forwards phase seguence
Inwards~travelling fields

Fig.l Plan view of Herringbone motor stator,
showing doubly-skewed slots and field
velocity vectors.
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The 'Herringbone' motor was originally desianed to enable the self-
stabilising properties of doubly-skewed stator slots to be examined. A
plan view of the stator is shown in fig.l. When the phase sequence is
in the 'forwards' sense the transverse components of the field-velocity
Vectors produce an 'inwards'-travelling field, as shown. When the phase
sequence is reversed an 'outwards'-travelling field is produced. The
machine is laminated in the conventional sense, i.e. it is an axial-flux
machine. The stator is fitted with a four-pole Gramme-ring winding in
sixty slots. The rotor consists of a sinale sheet of aluminium, backed
by a single block of laminated iron. The plane of lamination for the

rotor back-iron is the same as that of the stator as indicated in fig.2.

“"—m‘q_— Rotor block

I < Rotor plate

I' i ll Stator block

le————  Gramme-ring windings

Fig.2 End-view of Herringbone motor

To model the herringbone motor, it was assumed to be one of an in-
finite two-dimensional array in keeping with the normal layer-theory
practice. Longitudinally the machines are arranged in a nose-to-tail
fashion at an appropriate separation as shown in fig.3. This allows the
windings to be Fourier-analysed in the longitudinal direction, with a
period equal to the spacing of the stators. In practice a mark to space
ratio of 1:1 was used, since at standstill the flux fringing beyond the
stator ends is negligible. In the transverse direction the machines are

arranged as shown in fig.4.

Loz
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[T

Fig.3 ILongitudinal arrangement of stators for Fourier ahalysis
of windings.

Z
T_, A B
1 x | I I
: 3 7 4 |
I | ’ ! ; ! I
R o = S w3
I
!:. :!‘ ;![-1 .-:: ,I‘ :!: :i
1 |
at, | th i B'rx ot ' at, I S'rx
hf B‘

Fig.4 Transverse arrangement of slots for Fourier analysis
of windings

Adjacent machines are connected in opposite senses so that the plae
current does not cross the lines of symmetry given by BA' and BB' in
fig.4. By varying the ratio of 0:B the effect of off-setting the rotor
plate can be simulated. It will, however, be appreciated that this
model is only wvalid when plate widths eguivalent to or greater than the

stator width are used.

The two-dimensional array is subsequently replaced by a multi-
layer model. For the herringbone motor a total of eleven regions was

used. These are indicated on fig.5.

Of the eleven regions only two (Nos. 2 and 10) are fully aniso-
tropic. This arises because the stator slot and tooth regions must be

assumed non-conducting, and when this is the case El =&, (see equa-
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tion 2). The same result is obtained for the (isotropic) air and rotor

conductor regions.

— e | oy

H

|

— e -

NWhUONN 0 ©

|

|

Fig.5 Regional representation of Herringbone motor.

1. Air 7. Stator tooth tip
2. Stator back-iron 8. Airgap

3. Stator slot bottom wedge 9. Rotor plate

4. Stator excitation 10. Rotor back-iron
5. Stator slot top wedge 11. Air

6. Stator tooth neck

Experimental Procedure

The herringbone was tested at standstill with an aluminium plate

rotor 25 cm wide and 3.25 mm thick. This represents an overhang of some

2.4 cm either side of the stator, the plate being in the central position.

The clearance airgap was set to 6.15 mm and the machine excited in first-
ly the forwards and then the reverse sense. For each case a search-coil
was used to measure the variation in the flux normal to the rotor plate

surface with position across the width of the machine. The rotor surface

temperature was held at a steady 60°C (*4°C) throughout both tests.

Transient D10

Comparison of Experimental Results with Theory

As pointed out above the herrinagbone motor was fitted with Gramme-
ring windings. These are excessively leaky and, in fact, the machine
impedance is dominated by leakage reactance. This leakage accentuates
the unbalance inherent in any normally-wound linear motor, and has to
be accurately calculated if a vvltaqe~£orced solution is required. In
order to overcome this difficulty a current-forced solution was ob-
tained. The unbalanced currents used in the experiments were fed into
the program as input data, and as output the program predicted the
magnitude and phase of the search-coil voltages. Figure 6(a) and
6(b) show the computed and measured search-coil emf magnitudes and
phases for the 'forwards' phase sequence, and figures 7(a) and 7(b) do
the same for the 'reverse' phase sequence. It will be seen from these
figures that the agreement between theory and practice is reasonable.
The greatest discrepancy occurs in the plate overhang regions, where
the predicted direction of travel (i.e. the slope of the phase vari—
ation) is the opposite to that méasured. There are two probable
causes of this. Firstly, the layer theory model ignores the lateral
discontinuities in the iron blocks. In other words the back-iron is
assumed to be as wide as the rotor plate. Secondly, the Gramme-ring
windings are modelled as if they are conventional (i.e. drum-type)
windings. This means that the winding overhang in the model must
carry longitudinal currents, whereas in the real machine the stator
currents return at the back of the stator iron. The first of these
probable causes is inherent to layer-theory in general. The second

is a feature of the test machine only.

This phase discrepancy occurs over a narrow width of the machine.
It will be seen that over the majority of the plate surface the
agreement is very good. In addition, it will be seen that the direc-
tion of field travel across the rotor plate surface is, indeed, deter-
mined by the analed field. The results shown required a total of 40
transversely-directed and 60 longitudinally-directed harmonics, and
represented a medium-sized job, requiring 2% mins on the Aberdeen

University ICL 4/70 machine.

k03
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Figs. 6(a) and 6(h)
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Conclusion

The anisotropic layer theory has been shown to be capable of pre-

dicting the airgap field in the herringbone motor to a reasonable

accuracy. Purther work must now be done to test its wvalue in predicting

the performance of a wide variety of machines, in particular those with

unusual geometries.
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Discussions following paper:

(Wyatt, Imp College) First, I congratulate Dr Williamson on a fine
piece of work. In the model used, a series of stators is assumed in the
transverse direction and I would ask him what the inter-stator distance
corresponding to the results shown is. It seems that the accuracy of
the method presented must suffer as the plate width approaches the
stator width and I would appreciate Dr Williamson's comments on this

point.

(Williamson ) I would like to thank Mr Wyatt for his kind remarks.
The transverse modelling requires the 'inter-stator' distance to be equal
to the width of the rotor plate when the plate is central. This
constraint is imposed so that there is no current flow between adjacent
machines. When the rotor plate is offset the 'inter—-stator' distance

is varied as shown in fig 4 of my paper, where Tx is the plate width.

I should also point out that the discontinuous stator iron is replaced

by a continuous slab in the model, and it is this approximation which

I believe, produces the phase error at the plate edges. Regarding

Mr Wyatt's last point, I would like to comment that because of the
inability to model the transverse discontinuity in the irom, I would
expect the accuracy of the model to increase rather than decrease as the

plate width approaches the stator width.

(Freeman) My congratulations to Dr Williamson for producing an analysis
for an anisotropic model. I should like to ask two questions. Firstly
is the material in each region continuous or discontinuous? Second ,
what is the effect of the transverse flux on the iron losses in the

machine?

(Williamson) I should like to thank Dr Freeman for his congratulations.
The material in each region is continuous in the plane of motion. The
results presented in the paper represent a preliminary investigation,

in which only the normal component of airgap flux was both measured and
calculated. It is hoped that the anisotopic midelling will be able to
predict eddy current loss in the backing-iron with a reasonable accuracy,
but hysteresis loss is eutside the scope of the analysis. No

calculation of eddy-current loss in the laminated iron has yet been made,

hoe
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but T would like to thank Dr Freeman for pointing out a useful means of

comparing isotropic and anisotropic working.
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CALCULATION OF TRANSIENT SKIN-EFFECT IN CONDUCTORS EMBEDDED IN SLOTS
5.P. Verma, Member IEEE 5.E. Abo-Shady, Student Member IEEE

Power Systems Research Group
Department of Electrical Engineering
University of Saskatchewan
Saskatoon, Canada

ABSTRACT

Skin-effect has a marked influence on the stea-
dy-state performance of electrical machines. In order to study the
phenomenon of skin-effect during transients, the gemeral partial
differential equation of the vector potential is developed on the
basis of two-dimensional analysis. Numerical techniques for solving
the field equations obtained from two- and single-dimensional anal-
yses are presented. With the consideration of single-dimensional
analysis, a transient analytical solution is derived for the case
of a sinusoidal total current applied to a rectangular bar embedded
in a slot. The two specific cases of a step total current and a si-
nusoidal total current applied to a rectangular bar are considered
for investigating the skin-effect during transients. The excellent
agreement between numerical and analytical results verifies the nu-
merical techniques developed in the paper. The results show the im-
portance of the phenomenon of skin-effect and the need for its in-

corporation in the transient analysis of electrical machines.
INTRODUCTION

It is well known that the phenomenon of skin-
effect has a marked influence on the steady-state performance of
electrical machines. The investigations related to this phenomenon
for the steady-state conditions are well established in the pub-
lished literature. It is interesting to note that the behaviour of
the phenomenon of skin-effect during transients is quite different
from that during the steady-state conditions. This is revealed by
the studies conducted on an isolated bar by Tuohy et al.‘J and on a

bar embedded im a slot by Moeanu2 and Probsts.

In several applications of induction, synchron-
ous and induction-synchronous machines, accurate information about
their transient performance with special reference to starting,

synchronizing, switching-over and load-changes is required. This
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necessitates the incorporation of the transient skin-effect in the
analysis of the machine under consideration. Important as it is, un-
fortunately the transient analysis of electrical machines in itself
is very complex. In order to study the transient behaviour which
takes into account the skin—effect successfully, one requires,
firstly, a suitable method of analysish which simultates the machine
in a manner suitable for incorporating the skin-effect during tran-
sients and, secondly, an appropriate technique to determine the va-
riation of skin-effect with respect to time. This paper is devoted

to the investigations of the transient skin-effect in cage windings.

Eddy currents are produced in conductors carry-
ing alternating currents by the virtue of the changing magnetic
field. These currents result in a non-uniform distribution of the
current density. In the case of a conductor carrying a steady-state
alternating current, as well known, the current tends to flow in the
outer layers of the conductor. This causes an increase in the effect
ive resistance of the conductor and a decrease in its effective in-
ductance. In general, at any instant of time the amount of skin-
effect due to a time-varying current depends on the rate of change
of the current at that instant and on the conditioms prior to it.

It is, therefore, to be expected that the current distribution in a
conductor during transients is quite different from the steady=~
state distribution.

It is worthwhile to mention that although the
approaches based on single-dimensional analyses can be successfully
applied to the cases of deep bars, such approaches are not suitable
for treating end-ring segments or bars having a small height to
width ratio. Further, the representation of bars by series and par-
allel combinations of resistances and inductances requires the de-
velopment of a suitable technique to solve such a network which in
itself is a problem.

In view of the above, it is the main object of
this paper to present the general Torm of the partial differential
equation of the vector potential on the basis of two-dimensional
analysis and to develop a numerical technigue by formulating the

difference equations in a2 form which is suitable for the computation
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of transients in electrical machines. This technique can be applied
to bars and end-ring segments provided that the boundary conditions
are completely defined. Since in the case of deep bars the use of
single-dimensional analysis is quite satisfactory and it requires
much less computation time, a numerical technique is also presented
for the determination of instantaneous distribution of the magnetic
field intensity, the current density and the instantaneous voltage
drop of a deep bar embedded in a slot. In order to verify the re-
sults delivered by the two-dimensional analysis and to determine
the degree of its accuracy, the case of a sinusoidal total current
applied to a deep bar embedded in a slot is treated and an analyt-
ical transient solution is obtained on the basis of single-dimens-
ional analysis. Expressions for the magnetic field intensity, the

current density and the voltage drop are presented.

The numerical techniques are applied to study
the transient skin-effect of a deep bar embedded in a slot by con-
sidering the following two specific cases:

(i) a step total current,
(ii) a sinusoidal total current.

A comparison is then drawn between the numeric-
al results of the itwo- and single-dimensional analyses. In addition,
the analytical results of the single-dimensional analyses are used

for further verification.

DEVELOPMENT OF TWO-DIMENSIONAL ANALYSIS

In general, the variation of currents as a
function of time in the various bars and end-ring segments of an
electrical machine is not known during transients. These currents
can, however, be calculated at each instant of time through the nu-
merical solution of the non-linear differential equations of the
machine. It is practically impossible to obtain an analytical so-
lution for the purpose of investigating the transient skin-effect
in electrical machines. This calls for the development of numerical
techniques for studying the skin-effect during transients. The
analysis is commenced by formulating the field equations in a man~

ner most suitable for the transient investigations.

L0
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General Partial Differential Equation of Vector Potential

Considering two-dimensional variation of the
electromagnetic field, the following equations are obtained from
the general form of Maxwell's equations:

oH oH

g_{l-aTx=0, (1)

- BHX
Erair i (2

and b EEZ
ax p "Bt (3

In order to simplify the calculations of the field, one makes use of
vector potential A, which is so defined that its line integral
around any closed path is equal to the total flux enclosed by the
path16. As the area of a surface bounded by the path approaches zerqg
the limiting value of the line integral per unit area, (i.e. curl 4)
is equal to the flux density B. Hence,

curl A = B = uH, (4)

where the direction of 4 is in a plane perpendicular to the direct-
ion of B.

With the help of eauations (1) to (4), the ge-
neral partial differential equation of the vector potential A is
developed as:

3°A  3°A _u oA
3* 3 5 gt H) =, (5)

where f(t) is a function dependent on time and independent of the
co-ordinates x and y. The physical meaning of this function will be
interpreted later.

The vector potential equation for some particul-
cases which are of considerable importance in practice can be

derived from the general form given by equation (5).

Fhysical Interpretation of f(t)

As mentioned earlier, f(t) is dependent on time

and independent of the co-ordinates x and y. It is a well-known
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fact that at any instant of time the voltage drop between two points
located at the two ends of a current-carrying conductor is the same
irrespective of the location of these two points. As the voltage
drop is the only physical gquantity which possesses such a property
for any mode of operation (e.g., transient or steady-state), there
must be a relationship which correlates f(t) with the voltage drop
of the current-carrying conductor. This interpretation is confirmed
through the mathematical proof given in the following.

Consider a conductor of an arbitrary cross-sect-
ion and having a unit length, as shown in Fig. 1, which is located
in a magnetic field described by the vector potential A. Such a
magnetic field may be produced due to a current in the conductor
itself and/or due to currents in other conductors. If the vector
potential is defined at a point within the conductor, the flux link-
ing with an infinitesimal filament §S situated at that point will
be (A-Ao) due to the magnetic field bounded by a flux line whose
vector potential is Ao. Further, the voltage drop per unit length
of this filament caused by its resistance is "po" . Hence, the to-
tal drop of the filament under consideration due to the resistance
and the magnetic field is given by:

3(A-A0)
ET R v, (6)

which is actually the voltage drop across the conductor as a whole.

Since the line A = Ao is a flux line, the value
of AO is independent of x and y but may be a function of time de-
pending on the mode of operation. Accordingly, equation (5) may be
rewritten as:

2 2
3 [A-Ao} 9 (A-AD)

"]
+ B
2 ayz p

3(A-A)) A
s R B2 el ()

ax

From equations (6) and (7), the following re-

lationship is obtainesd:

¥ i vy
PP - pqedim =5 (8)

The above equation represents the general relationship between f(t)

and the voltage drop v. The two terms,
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aA
(£(t) and (E gfg), of equation (8) can be combined to form another

function directly proportional to the voltage drop across the con-
ductor under consideration. Further, it is much more convenient, if
not the only appropriate way, to deal with the quantity (A-Ao) as a
vector potential variable. By doing so, the partial differential
equation of the vector potential assumes the following form:

A Vi
T T (9)

Finite Difference Representation

As stated earlier, a numerical technique is re-
quired for obtaining the solution of field equations during tran-
sients. The finite difference method is adopted for developing the

numerical technique.

In order to replace the partial differential
equation of the vector potential by a set of finite difference al-
gebraic equations which inter-rdate the values of the vector poten-
tial at discrete points, any spatial distribution of these points
may be chosen. However, it is preferable to make the points lie on
the '"nodes" of a regular mesh which may consist of squares as is the
case presented here. Fig. 2 shows a simple rectangular field region.
%t a certain time tn' any node within the boundary is positioned
with respect to the neighbouring nodes (including those on the
boundary) as shown in Fig. 3 and Fig. 4. As the symmetrical star
shown in Fig. 3 is merely a special case of the asymmetrical star,
Fig. 4, the difference equation of the latter is presented.

To derive the difference equation of a node (e.
g., "i, j, n"), the vector potential function is expanded at the

node by using Taylor's series. Expressions for:

Z
aZp %A {3n

- — and | —

;3 PR 3 . at) . .
x7/ i,j,n ay"/ i,j,n i,j,n

are then obtained in terms of the values of the vector potential at

this and the neighbouring nodes. The results thus obtained are
substituted in equation (9}, which gives the following general dif-

ference equation:

heg
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2(klAl 1,j,n + k3 1+1,3,n) . 2( 2Ai j-1,n + k4A1,J+l,n)
klkS(k1+k3) k2k4(k2+k4)
Ay 1 1 2 vy Ay (10)
= 25—+ =) A, . + (M) (/) =-—A. . .,
) kKiky o koK, 7L 5m on e i,j,n-1
where N = (AX)Q/AT
and (A. ) is the vector potential of the node (i,j,n) at the

i’j,n-1
time interval preceding the one under consideration.

For nodes outside the current-carrying regions,

equation (10) becomes:

20648 15 m e Kshian i) | 209M o s K4y je1,n)
kg (kK ) Kk, (,vk,)
1 1
- 2 (= + —) A, . =0. 11
klk3 k2k4 i,j,n (11

At all boundary points, which may be situated on an iron-air inter-
face or on a magnetic flux line or on an interface between a cur-
rent-carrying region and a non-current-carrying region, the corre-
sponding difference equation can be suitably developed’I by modi-
fying equations (10) and (11). Corresponding to the number of nodes
"m", a set of m equations similar to equations (10) and (11) can
then be formulated. To obtain a complete solution of the vector po-
tential at a given specific instani, one more equation is required
for the variable (%ﬂ)n. This particular equation is obtained by
equating the line-~integral of the magnetic field intensity around

a current-carrying conductor to the instantaneous value of the cur~
rent in the conductor. This integral depends on the vector poten-
tial of various nodes. It should be mentioned that in the presence
of more than one current-carrying conductor, sayv conductors, a
corresponding eguation has to be obtained for each conductor due to
the fact that each conductor has its own value for (g—i)n . The pro-
blem is, therefore, converied ito a set of simultaneous algebraic
equations having the form:

> (12}

where
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[G] is a square matrix of order (m +v ),

[Pjn is a column of m vector potentials at
the various nodes in addition to v
variables of (§£ and

n

[C]n is a column of order (m +v ).

It is evident that the matrix [G] is indepen-
dent of time. As the solution of the algebraic equations during
transients is required at each instant of time,.from computation
time considerations it is not advisable to solve these equations by
employing iterative methods. Instead, the inverse of fG] should be
determined and stored in the computer. By calling[g]| ~' from the
storage, the vector potential at the various nodes and the variable
(—:—B—)n can then be evaluated at a specific instant from the follow-

ing simple algebraic equation:

[p], = [e] 'lel,- (13)

Knowing the vector potential at every node of

the region under consideratiom, any other variables (e.g., current
density, magnetic field intensity, flux demnsity) can be easily de-

termined at these nodes with the help of simple algebraic equations.

SINGLE-DIMENSTONAL ANALYSIS

In studying the skin-effect of deep bars in
electrical machines, the problem can be simplified to a single-di-
mensional one without committing great errors. This is achieved by
assuming the flux lines in the slots to be paraliel to the periph~
ery of the rotor. With this assumption, the partial differential
equation of the magnetic field intensity in a recitangular bar as
shown in Fig. 5 assumes fthe following form:

3°H oH
X _ M x

pa dt

> (14
where a = 3.
a

It should be pointed out that the boundary con~
ditions of the magnetic field intensity are muclh easier o define

-~

than thoze of the current density. It is, therefore, preferable to

deal with the magnetic field intensity HV instead ¢f the current
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density o, Equation (14) is a parabolic differential equation. In
order to solve such an eguation, both an initial condition and sub-
sequent time-dependent boundary conditions are required. In the

case of a rectangular bar, Fig. 5, the boundary conditions are:

Hx =0 at y=0 (15)
i
and Ho=¢ at y=h (16)

where i is the total current carried by the bar. Having recognized

the initial and the boundary conditions, equation (14) can be solved

either numerically or analytically.

Analytical Solution

A transient analytical solution can be obtained
for equation (14) only if the total current is defined by an expli-
cit function with respect to time. Although this condition is not
satisfied in electrical machines during transients, the analytical
solution of the case of a sinusoidal total current applied to a
rectangular bar embedded in a slot is derived, firstly, to use the
solution for confirming the validity of the numerical techniques
presented in this paper and, secondly, because such a solution is

not available in the published literature.

Equation (14) can be rewritten as:

2
oH, ,  oH,
7 o7 B * (an

P

dy

- where K2 = @ .

=

Considering the boundary conditions given by equations (15) and
(16), the solution for a sinusoidal applied total current is ob-

tained as:

& {2n1rk2w(-1]n+1 o (nmk/m) %t

-sin(nmy/h) )
n=1 hé P+ (nnk/m)

Tl

Hx(t) =

(sinh(y/AN) - cos(y/Ad)) %+ (cosh (y/AN) -sin(y/AN)2
(sinh{h/AA)-cos[h/AA])2+[cosh{h/AA)‘Sin(h/AA})z

. sin[mt+ul]] A (18)

where AL = Kk yaim
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a. = tan” (cotanh(y/AA).tan(y/AA)) =

1

and ~tan~ 1 (cotanh(h/AA) .tan(h/AR)).

Differentiating equation (18) partially with
respect to y and multiplying the results thus obtained by (=a),
the transient distribution of the current density is obtained as:

© 222 n+1
2n k" w(-1
o L

o (nk/m) e
n=1 h°(w%+ (nik/m) ")

a(t)= % cosinmy/h) }+

Ccosh(y/a) -cos (/)% + (sinh (y/AN) -sin(y/a))
’(sinh(h/AA)-cos(h/AA]]z + (cosh[hfﬁA)-sin[h/AA]]z

. %%;Sin (wt + uz) s (19}

where o, = w/4+tan_1(tanh(y/ﬁﬁ).tan(y/ﬂﬁ))
- tan"1(cotanh(h/AA).tan(h/AA))-

The voltage drop per unit length can be obtained by replacing the
variable ¥y by h in equation (19) and multiplying the results thus
obtained by p.

COMPUTED RESULTS

The various results presented here were calcul-
ated for a rectangular bar embedded in a slot by considering the
two specific cases of a step applied total current and a sinusoidal
applied total current. In the latter case, the frequency is assumed

to be 50 Hz.

The dimensions of the bar under consideration
D a=5b =10 mm, h = 50 mm,
and the length of the bar is assumed to be unity, i.e. 1 meter.

For the generalization of the results, the dif-

ferent variables are normalized as follows:

. "B |iu=ﬂ—h.
P-u- iy p.u. i
oah vah
4] = —_— and v = ——
p.u. i p.u. 54
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A computer programme was developed for the numer-
ical calculation of the instantaneous voltage drop across the bar
on the basis of the two-dimensional analysis. Also, a2 computer pro-
gramme was developed by considering the single-dimensional analysis
for the analytical and numerical determination of the instantaneous
voltage drop across the bar and the instantaneous distribution of
the magnetic field intensity & the current density along the height
of the bar.

Case 1 - Step Applied Total Current

Fig. 6 shows the variation of the instantanecus
normalized voltage drop versus the normalized time for a step ap-
plied total current. It is interesting to note that the voltage
drop reaches a value of more than 15 times the steady-state value.
Although the application of a step total current is not actually en-
countered in electrical machines, nevertheless this important re-

sult shows the significance of the transient skin-effect.

Case 2 - Sinusoidal Appliea Teotal Current

The variation of the instantaneous normalized
voltage drop versus the normalized time is shown in Fig. 7 for a
sinusoidal applied total current. It may be observed that the va-
riation of the voltage drop during the first cycle is quite differ-

ent from the steady-state variation.

The distribution of the normalized magnetic
field intensity along the height of the bar at different wvalues of
tp.u. was obtained by using the single dimensional analysis and it
is shown in Fig. 8(a) and Fig. 8(b). The results shown are for the
first cycle of the applied current. It is cobserved that initially
the magnetic field is concentrated in the upper layers of the bar

and as time lapses, the field spreads down to the lower layers.

The variation of the normalized current density
along the height of the bar is shown in Fig. 9(a) and Fig. 9(b) at
different values of tp.u.' As in the case of the magnetic field in-
tensity, ipitially the current is concentrated in the upper layers

of the bars and then it spreads downwards as time increases.

It should be pointed out that the difference

between the numerical and analytical results shown in Figs. € to §

Lig
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is practically negligible, which supports the accuracy of the numer-

ical techniques presented in this paper.
CONCLUSIONS

The general partial differential equation of the vector potential
has been developed on the basis of two-dimensional analysis. The
corresponding vector potential equations have been derived from the
general equation. The numerical solution of such equations has been

described in a manner which is suitable for transient conditions.

In the case of deep bars embedded in slots, the
phenomenon of skin-effect can be investigated with sufficient accu-
racy by using the single-dimensional analysis. For this purpose,
the procedure for solving the field equations numerically has been
presented. In addition, the transient analytical solutions of the
magnetic field intensity, the current density and the voltage drop
have been derived for the case of a sinusoidal total current applied

to a rectangular bar in a slot.

The transient skin-effect in a deep bar embedded
in a slot has been investigated by considering the two specific ca-
ses of a step and a sinusoidal applied total current. The excellent
agreement between the analytical results and the results obtained
by using the numerical techniques developed on the basis of two
and single dimensional analyses verifies the wvalidity of the numer-

ical techniques.
NOMENCLATURE

Vector potential

Flux density

Width of the bar

5lot opening

Magnetic field intensity

Height of the bar

Instantaneous total current

Constants less than or equal to unity

wn noun

noaon

T
Number of nodes

Time, sec.

x and y Cartesian co-crdinates
Instantaneous voltage drop per unit length
Frequency of the aprlied current, rad./sec.
Current density

Resistivity

Eermeability

=
o onn

{1 R I T H

TP AQE 4o FeeppEHop o=
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v
AX
st

Number of current-carrying conductors
Width of a sguare mesh
Time increment

Subscripts:

th

i = The variable at the i X co-ordinate

] = The variable at the jth ¥y co-ordinate

n = The variable at the nth interval of time
P-u. = The normalized value of the variable

x = The variable component in the x direction
y = The variable compenent in the y direction
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Discussions following paper:

(Reichert)  What boundary conditions were assumed in the airgap over
the slot? There are two possibilities, either field parallel in the

airgap or perpendicular on the iron.

(Verma, Univ of Saskatchewan) In the case of a deep bar embedded in a
slot as presented in the paper, the field is considered to be parallel to
the periphery of the rotor. The main purpose here was to verify the

validity of the numerical techniques developed in the paper.

The method can, however, be applied to the cases where the airgap field

is radial on iron by considering the boundary conditions properly.

e

Transient D11
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MAGNETIC FIELD DIFFUSION IN FAST DISCHARGING
HOMOPOLAR MACHINES: A FINITE ELEMENT APPROACH

E. B. Becker, R. D. Pillsbury, M. D. Driga

Energy Storage Group and Texas Institute for
Computational Mechanics

The University of Texas Austin, Texas

The Energy Storage Group at The University of Texas have
engaged in the preliminary design of several homopolars for
fusion reactor applications, have designed and built two ex-

perimental homopolar machines and are currently designing and

will build a very fast discharging experimental homopolar

machine. This machine, shown in Figure 1, consists of two

counter-rotating rotors which turn in a field with a maximum
strength of approximately 8 Tesla produced by the circumferen-

tial field coil. The 6" diameter rotors, at their initial

velocity of 28000 rpm, produce an open circuit voltage of 100
volts. The shaping of the rotors is to reduce the stored en-
ergy while maintaining the voltage, thereby reducing, as far
as possible, the discharge time. It is expected that the .35
MJ of stored energy will be discharged in approximately 1.25
msec. with a peak current of some 2.8x10° amps. The forces and
torques produced in the rotors and brushes by the large cur-

rents and fields (both applied and induced) are a limiting

factor in the mechanical design of the machine; thus the ac-

curate prediction of the force distribution is required.

Since the penetration time for a conductor of dimensions com-

parable to the rotors is roughly the same as the discharge

time of 1.25 msec., the determination of the current distribu-
tion in the system is truly a transient problem, the driving

function of which is the motion of the rotating conductors in

the (relatively) steady magnetic field.

Formulation of the Boundary Value Problem

With a few exceptions, notably Silvester (1), computa-
tional approaches fo field penetration problems have been

limited to either the a.c. steady state case, or, as in the

work of Miya (2), to situations in which the field is driven

Transient D12

by a current whose spatial as well as temporal distribution

is assumed to be known. In these situations the penetration
is conveniently expressed in terms of the magnetic field WX

which satisfies an homogeneous diffusion equation driven by

boundary wvalues of H which can be inferred from the assumed

conditions.

In the present application, as in many instances invol-
ving, say, electrical machines, commutating gear or fusion
experiments, there is a conversion of energy that is stored in
one form and converted into another, in the process of which
the magnetic fields and currents are unknown and cannot
reasonably be assumed a priori.

In order to employ the driving function v » B directly
we introduce the electric potential ¥ and the magnetic vector
potential A as primary dependent variables. Standard defini-
tions of the potentials (1), Ohm's law for moving media (2),
and Maxwell's equations (3) (neglecting displacement current)
are the basis of our formulation.

e
-9Y¥=E + 5g
B=vVrA (1)

J:GLEi—vao\ (2)

VUx W=7
Y- =0
< AE = -22 e
[238 -5
pR =5

To these equations we adjoin the constraints that J and
A be divergence free - the first on physical grounds and the
second on mathematical ones. Combining these conditions we
see that the field equations are equivalent to
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Q',Z\ﬁ* '{{“xﬁVKA_GLV"V*AO ""Q"P) )
(4)

V-G9Y -Veq(VaUsxAe-A) =0
SUBdTECT T

5
VA =0 3)

Because both the rotor motion V and the potential of the
applied magnetic field Apare axisymmetric and have only ©
components the problem separates into two weakly coupled ones,
namely, (6) which governs the distribution of the steady
applied field and (7) in which the wvector A has only r and z
components.

vx.i,avx Ao =T (6)

Q‘L«+‘?n#z§?nb. FET W 2 T VR T e AL
T-0A +T-TIY= - vxT=Ae (7)
VeA=o

The finite element solution of (6), although necessary to
our problem, is a standard one and need not be discussed fur-
ther here.

In addition to the equations (7) we have as side condi-
tions the vanishing of the potentials at large distance from
the conductors and the usual continuity or jump conditions on
current and field. These take the form (8) and (9).

A= Az =4 =0 e (8)

C&v~Ad=o0

[o(vxveAo- Sy -Al=o 2

In (8) the brackets denote the jump in the enclosed quantity
across an interface between different materials or between
moving and stationary materials. In the finite element model
of the region shown in Figure 1, the symmetry about r = 0 and

L8
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anti-symmetry about z = 0 give rise to the following addi-
tional boundary conditions

A,=0 o RL=o© (10)

A,-,_-'-\'P'-L'; N B 2O

Finite Element Formulation

We seek solutions to (7) and (9) subject to the condi-
tions (8) and (10) in the weak or Galerkin sense. To this
end we introduce a Lagrange multiplier A corresponding to the
constraint (7¢) and the test functions W,™M, and L corres-
ponding to A, ¥ and A. The weak statement of the problem is

?{ SSI'\WI&*P?,‘#\?‘A cTTP -T vk Ix A - da

Sl
—SE#'\?*‘\J-L{. Asg=a el Ahe (11)
DR

[

A

LT ohev.0v¢- v sungaAdn da
L o

= SLeWavr A -39 -AT-m Mds| =0 (12)

2l

Fe.n Ao 1-]

In (11) and (12) the regions fL; are regions within which all
fields are continuous i.e. all the jumps are across the
boundaries @ 2 of these regions. Applying the divergence
theorem to each region ¢ and introducing the constraint (7c¢)
with its multiplier and test function leads to the final weak

form

z{”[“’“;\*ﬁ(“‘“\)"(V»A)-\-&s'u.-q»p4.,;\ "

T
{-'E V-A-WVH'\?KAC L\..J &(\_}:

L)
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Z{JT-ovn v - Aron « T vaTc A Inlda] = o

FER  ALL WL ;ﬁ' Amd T, (13)

for arbitrary 4,™M, and 1 vanishing at =.

It is significant that the jump terms have equilibrated the
boundary integrals from the integration by parts i.e. the jump
conditions are natural conditions that follow as a conse-
quence of (13).

The discrete form of (13) is obtained by introducing the
finite element approximation of the fields A, W W N, A and
€. The elements are quadrilaterals and the shape functions are
quadratic for A, W, ¥, and ¥ and linear for A and T, Thus
each corner node of the mesh has a total of four unknowns,
i.e.An Ay, and A, while the midside nodes have only Anr, Az
and¥. If the set of nodal point values is denoted _then the
discrete form of (13) can be written as

€% vkg-t (14)

In (14) g and 1§ are, for an element, 28x28 matrices whose ele-
ments are the integrals of products of shape functions. It is
apparent from (13) that neither € nor % is symmetric. The
forcing function £ in (14) contains terms proportional to
vxuxA_. The motion of the rotor is treated as given in this
analysis and the value of the applied field A, is known from
an initial finite element solution for the single component
Bey:

Although, in some designs, there is iron shielding around
the field coil making the eguations for P\..-Onon linear, the

Transient D12

complete compensation of the machine as shown in Figure 1
confines the magnetic field governed by (14) to the region
within the return conductor. There is no iron in the in the
machine itself - the rotors being aluminum to reduce the
capacitance of the machine - and so (14) is linear.

The initial value problem for % is solved using a combi-

nation of algorithms. Using the approximation

RS il RECL

leads either to

. ma'ty - y “n Wty
FERLIEAT AT as

LY

(28 L AT S

In (15) g7 E4( ‘56"“'+ *)
at (m+i)at. Both (15) and (16) are implicit and clearly each

is taken as the value of

involves the same amount of computation. We find that, once
started adequately, longer time steps can be used with (15)
but that the use of (15) for the first few time steps leads to
unacceptably noisy solutions. Since, with either scheme, a
change in time step means reassembly and decomposition, there
is no computational penalty paid in changing scheme when the
initial small time step is increased.

It is of great significance that, although neither g— nor
K is symmetric,(*g_""*i\ can be made symmetric simply by di-
viding the g equations thru by =(. We have employed both sym-
metric band solvers and a frontal solver to reduce (15) and
(16) .

Lig
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Results

The computational sequence begins with the solution of
(6) for the values of the applied field ©.:¥YaA.. The values
of B, are calculated at the integration points of each element
and saved for use in calculating the forecing function in the
transient problem. Figure 2 shows a flux plot (contours of
constant wvalues ofﬂl&qg) for a current density of 1.18 x 108
amps/m2 in the field coil. Incidentally this coil, which is
LN2 cooled copper, is energized by the discharge of a 5 MJ
homopolar machine. This pulse is of the order of a second,
quite long compared to the transient phenomena under consi-
deration.

The computation proceeds using (15) and/or (16). Figures
3, 4, and 5 show contours of constant values of the magnetic
field ™, induced by the current at an early time,

t = 20 x 10_6sec. an intermediate time, t = 200 x lOﬂssec.,
and a time, t = 1000 x lO_Gsec. The diffusion of the current
into the rotor the brushes and the return conductor is appa-
rent. At selected time steps the body force density TxB is
calculated and used as input to a finite element stress ana-
lysis. Both azimuthal and inplane forces give rise to signi-
ficant stresses. In addition to the stress calculation it is
possible to accumulate the time integral of ohmic heating in
each element obtaining a detailed map of the resulting tem-
perature distribution.

For reference, Figure 6 shows the long time distribution
of De together with the finite element mesh used to model the
problem. This state is not actually reached in teh course of
discharging the machine since the rotor speed decreases to

zero before the steady state could be reached.

Comments

The formulation described above, in conjunction with
finite element techniques, makes possible the solution of
guite a general class of problems involving transient magnetic
phenomena. Arbitrary geometries, material interfaces etc.
can be treated routinely. This formulation has evolved only
after a good many false starts. The formulation is cumbersome
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and the computations expensive, but can furnish approximate

solutions to problems that are otherwise unapproachable.

[1]

[2]

[31]

[4]

[5]

References

Silvester, P., "Modal Network Theory of Skin Effect in
Flat Conductors," Proceedings of the I.E.E.E., Vol. 54,
No. 9, 1960.

M?ta, K., Ando, Y., Ohta, M., and Suzuki, Y., "Applica-
tion of F.E.M. to Electro-Magneto-Mechanical Dynamics of
Superconducting Magnet Coil and Vacuum Vessel," Symposium
on Engineering Problems of Fusion Research, San Diego,
California.

Stratton, J. A., Electromagnetic Theory, McGraw-Hill,
1941.

Rowberg, R. E., Becker, E. B., Rylander, H. G., and
Woodson, H. H., "Characteristics of a Homopolar Machine
as a Power Supply for Large Pulsed Magnetic Fields for
Fusion Experiments," 1973 S.W.I.E.E. Conference Record
of Technical Papers, p. 453, April 1973.

Driga, M. D., Nasar, S. A., Rylander, H. G., Weldon,

W. F., and Woodson, H. H., "Fundamental Limitations and
Topological Considerations for Fast Discharge Homopolar
Machines," I.E.E.E. Trans. on Plasma Science, Vol. P5-3,
No. 4, December 1975.




Compumag Oxford, 31 March to 2 April 1976

REGION
HODELLED
|
TO LOAD OR
SHORTING
SWITCH

SV

BEARINGS

i
COUNTER- BRUSHES
ROTATING
ROTORS
———
L colL

FIGURE 1. MACHING CONFIGURATION

Transient D12

—— L, s ien ’ ’
i 4 =) I

FIGURE 3.

INDUCED FIELD By AT t = 20 u sec.

FIGURE I, APPLIED MAGWETIC POTENTIAL A,

FIGURE 4.

INDUCED FIELD B, AT t = 200 4 sec.

L21




Transient D12

Compumag Oxford, 31 March to 2 April 1976

Jin

FIGURE 5. INDUCED FIELD B, AT t = 1000 u sec.
FIGURE 6. INDUCED FIELD B, STEADY STATE

k22



Compumag Oxford, 31 March to 2 April 1976

FIELD PENETRATION INTO A VARTABLE-u MATERIAL

I. Gumowski
CERN, Geneva, Switzerland

Abstract

A non-linear partial differential equation is formulated which des-
cribes the distribution of H inside a material of non-constant relative
permeability p. The assumption p = p(H) leads to the existence of solu-
tions differing qualitatively from those obtained with the assumption
W = const. One of these solutions suggests that remanence is not an inde-
pendent phenomenon, but merely a consequence of u = u(H). Conditions are
established for the field penetration to be of the usual diffusion type. A
recursive method of calculating H is proposed.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In field calculations the internal properties of magnetic materials
are rarely specified microscopically, in terms of molecular and crystalline
structure. The specifications are usually macroscopic ones, in temms of
remanence, hysteresis, static-, incremental-, a.c.- and effective-relative
permeability. Since an explicit relation between the microscopic and
macroscopic descriptions is not yet available, the Ising model notwith-
standing, the macroscopic description is obtained phenomenologically, in
the form of a set of flux-density versus field curves (B versus ugH,
po = permeability of vacuum, MKSA units used in this paper). The corre-
sponding mathematical problem is extremely complex, because these curves
are not single-valued. If it is assumed that the knowledge of the geometric
configuration and of the relative permeability u is sufficient for a com-
plete description of H, then p is a function of instantaneous as well as
past values of H and 3H/5t.

The problem of constructing macroscopic models of field penetration of
minimal mathematical complexity constitutes in essence a problem of succes-
sive approximation, each approximation step describing a physically richer
situation. The coarsest possible approximation is based on the assumption
M =}, = const, describing some "mean' or "effective' static state of the
material. The next step, discussed in this paper, is based on the assump-
tion that p depends also on the instantaneous value of H. The assumption

u = u(H) involves some dynamic effects excluded by the simplification
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u = const. For example, the diffusion of H changes into a wave propaga-
tion with finite velocity (unrelated to displacement currents), and rema-
nence appears as a limiting case.

The paper emphasizes qualitative aspects, i.e. conditions of physi-
cally distinct behaviour of H. When the propagation of H corresponds to
the usual diffusion process, a computation method based on successive cor-
rections is proposed. In order to reduce the notational bulk and render
the procedure physically transparent a very simple geometric configuration
is used. The resulting mathematical model is one-dimensional. A generali-

zation to more dimensions is straightforward.

2. FORMULATION OF THE MATHEMATICAL MODEL

Let the magnetic material have the form of a rather thick C in the

x-z plane and be quite long along y. The origin of the rectangular coor-
dinates is placed so that the x-axis bisects horizontally the rectangular
air gap of the C, x = 0 and x = X representing the inner and outer edges of
the latter. Let h = const be the height of the air gap and £ the length of
a flux line inside the magnetic material. If p = const and % = const, the
time scale can be so chosen that the product oug, o = electrical conducti-
vity, is absorbed into t, and the field H(x,t) inside the air gap is des-
cribed by

3 oH) _ 8H =
3_}(-[1(‘5'}_(.]-‘5?’ t>to,0<x<x, (1)

where k = h/L + 1/p and t,
fined, for example, by the boundary conditions

const. A unique solution of eq. (1) is de-

H(0,t) = G (t) , Hix,to) = G2(x) , (2)

Gi, Gz being two given (sufficiently smooth) functions.

When u = p(H) and & = &(H), the form of eq. (1) changes only slightly
(cf. Appendix):

3 [y 8H] _ 3H i =
5‘{[”“351‘]'55’ BTy 0 RIS Ry )
R E Y 8§ "
Fa) =5+ leTu g U} (3a)
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The specific problem consists at this stage in ascertaining properties of
u(H), and eventually of R(H), which define qualitatively different solu-
tions of eqs. (1), (2) and (3), (2), respectively. From the theory of non-
linear parabolic equations it is known that eq. (3) is singular when

F(H) = 0 4)

for some real H = H_. Near the critical field H. there exist no solutions
of eq. (3) in the usual sense, i.e. there is no function H(x,t) possessing
a continuous second derivative with respect to x and verifying eq. (3) iden-
tically. Normal numerical methods are known to yield meaningless results
under these circumstances. Physically significant solutions exist in a
mathematically generalized sense, subject to the condition that F(3H/ax) is
a continuously differentiable function with respect to x. The function
3H/3x need not be continuous!). Appropriate numerical methods have already
been worked out?). Moreover, some analytical solutions are known when F
has a special form. Such solutions are mainly a source of physical insight.
Equations of type (3) arise also in other fields, for example, in plasma
physics®), heat conduction), and filtration of fluids by porous media®»®).

The question arises whether eq. (4) is ever satisfied in the case of a
magnetic material. As a preliminary step it is necessary to fit p(H) and
%(H) by some analytically simple functions, because otherwise the physical
content of eq. (4) is obscured by the mathematical manipulations in eq. (3a).
It is obvious that the p involved in eq. (3a) is intermediate between the
conventional a.c.- and static-p's. u(H) is thus a single-valued function
possessing one maximum, say My, at Hm, which implies 3u/8H > 0 for H < [%
and 3p/eH < 0 for H > Hm. Physical concepts, like leakage flux and edge
effects near an air gap, suggest that 32/8H 2 0. An elementary analysis of
F(H) shows then that F > 0 when 3p/8H £ 0, and a real Hc can only exist
when 3p/8H > 0. Whether Hr:. actually exists depends on the specific values
of max(h/%), min u and 3u/3H. A good fit to experimental data is provided
by

w) =uy + H G - w)/G +HY . 0sH<H S ®

where b= u(0), and Hp,n are determined numerically. The parameters H, and
n characterize the scale of H and the rate of increase of u, respectively.
For a typical silicone steel by = 1.2, u, = 8.5, H =100, Hy =17, n = 3.5,
whereas for a low-p ferrite (type UGO) My =3, ¥, =33, H =1000, He = 376,
n=2.3.

L2k
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Consider first the simplest possible case & = const. Combining
eqs. (3a) and (5) yields a ratio of two quadratic polynomials in HY. The
vanishing of the numerator being equivalent to eq. (4), the critical field
H. can be expressed explicitly as a function of h/% and the parameters of
eq. (5). Two simple roots of eq. (4) exist when h/f << 1, n > 1 and by is
not too large. In the case of the above examples: HCl = 0.3, ch =14
when h/% = 0.1; H., = 8.2, H , = 20 when h/% = 0 for silicone steel, and
H, = 140, ch = 360, h/% = 0 for the ferrite. The non-existence of real
H. as h/% increases describes simply the diminishing role of the magnetic
material compared to that of the air gap. For small n the dynamic effect
of 9u/9H is weaker than the static effect of the constant part of p. When
% = const is replaced by & = L(H), eq. (4) becomes too complicated to allow
an explicit solution. Numerical tests with particular forms of 2(H) have
shown that flux-line lengthening has a rather weak effect on the roots of
eq. (4); they tend, however, to be slightly more separated.

The existence of critical fields Hc permits a rough qualitative
assessment of the solutions of eq. (3). Assume, in fact, that the boundary
conditions (2) place H(x,t) into the interval Hc1 <H«< ch. In this in-
terval F(H) < 0. Replacing t by -t reduces eqs. (3), (2) to a "normal
diffusion problem, with F(H) > 0, except that the new time runs backwards.
In the original t there exists therefore a process of "inverse' diffusion,
with a possible steepening of the spatial profile of H.

3., SOME INVERSE DIFFUSION EFFECTS

Consider eq. (3) in the field range defined by F(H) £ 0. Replace
H - ch by H in order to render H. a static reference solution, and t by
-t in order to make all terms nominally positive. When only the largest
term is kept in the transformed F, eq. (3) simplifies into
] 3}1] _ oH
a T [H 3%) T 3t

0OSH<H,-H, ,

(6)

where a = F' CHclj' The usefulness of eq. (6) consists in the fact that
some of its solutions can be found in explicit form. These solutions can
be verified by direct substitution. For conciseness, the statement

"H(x,t) = 0 outside the specified range of x" is omitted below. All sym-
bols not mentioned explicitly are positive constants whose values are given
by the boundary conditions (2) after insertion of the relevant H(x,t).
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In contrast to normal diffusion, eq. (6) admits a non-constant sta-
tionary state

Het) =H (o -0,  0Sx3x, %)

where iy and x, represent the boundary field intensity and the field pene-
tration depth, respectively. From a physical point of view, solutions of
type (7) represent a spatially non-uniform remanence. Hence, remanence does
not appear to be an independent phenomenon, distinct from the non-linearity
introduced by u(H).

Various wave-type solutions are also possible. The simplest case is

GSXSXD“‘Ct

) (8)

H(x,t) =S (et + X0 = %) ,

where the propagation velocity ¢ is defined indirectly by the boundary
field intensity Hi. A wave with a steepening profile and a non-propagating
front is described by

H(x,t) = (xo - x)*/[6a(c - t)] , 0SxSx . (9)

Variable velocity waves are represented by the family of functions

Hix,t) = Hy (c + )™ fw), u-= % [aHi (c + :]“‘”]_2 ; 0<us<l,
(10)

where £ = v(u) is a particular solution of the ordinary differential equa-
tion

W+V2+.]2;(]_+m)!\2u‘:”mﬂz\’=0- (1)

When (1+m)A? = B, one solution of eq. (11) is

v(u) (12)

[}
= =
s
o
L)
-,
”
=
"
18
o
)

where w =1 - u, by =1, by =1/4, b, = -1/24, ... .

Non-constant stationary states, and wave propagation with a finite ve-
locity exist also in two- and three-dimensional inverse diffusion problems.
There is no inherent need for symmetry as far as the different spatial
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directions are concerned. The resulting macroscopic anisotropy is also a
mere consequence of p(H).

4., A RECURSIVE SOLUTION METHOD FOR THE NON-SINGULAR CASE

When the field penetration problem is described by eq. (3) and
F(H) > 0, the analytical fitting (5) is inappropriate. A convenient repla-
cement, emphasizing the range 3yu/8H < 0, is

n+i

() =y + mHHY ¢+ 1Y H>H_ (HZ0if InH, #0),

(13)
where, as before, the constants are empirically determined. For silicone

steel, for example, By = 1.2, Hp = 82, m = 13, n = 2.8, and for a low-p
ferrite (type K12, Wy = 34, Hm = 2700), B = 18, o = 2090, m = 27, n = 2.4,
Let Los He be the effective values used in the linearization (1), where

k = h/‘?.e & l/ue. The difference g = F(H) - k represents therefore the
effect of the non-constancy of & and u. Since the effective values are
well chosen by definition, g is a small correction of k. Fommally this
property is described by

F(H) = k + eg(H) , 0k /51 5 (14)

where € is the coefficient of the dominant non-constant term of F(H), or
simply an auxiliary ordering parameter (set to unity in the final result).
If a solution of eqs. (3), (2) and (14) is written in the form

oo

Het) = ) H, (x,t) et H, (0,t) = H;(x,te) = 0 , i>0, (15)

i=o

then the non-linear problem reduces to a sequence of linear ones

3%Hy _ 9Hg _

£ =0
. ax at
3%, _ 8l _ _ 3 3o
kT~ o ?fl:gm“] ax B
” (16)
a7H, _oH, _ _ 3 L2 Ay
Tk A R [g(”") 5 * 8 () H ax]

the first to be solved with the boundary conditions (2), and the other
with homogeneous ones given in eq. (15). The boundary-value problems (16)

Las
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can be solved by standard analytical or numerical methods. When k repre-
sents a good linearization, the corrections H; (x,t) diminish rapidly as i
increases. It is noteworthy that no direct analytical methods of solving
eqs. (3), (2) and (14) are known. Numerical methods require the solving of
sets of non-linear algebraic equations, which is a considerable complica-
tion compared to the computations involved in solving eq. (16).

CONCLUSION

When the assumption u = const is replaced by p = p(H) the field pene-
tration into a magnetic material constitutes a non-linear diffusion process.
In the range op/8H > 0 an inverse diffusion is possible. Two distinct in-
verse diffusion effects are illustrated. The full set of such effects, and
their stability with respect to small structural perturbation of the dif-
ferential equation, are still unknown. The most relevant structural per-
turbation appears to be a dependence of p on 8H/3t, which can be made to
simulate the presence of hysteresis.

APPENDIX

Consider the geometric configuration described in Section 2. For con-
ciseness, let I-lZ =H, L =2(x,y), L(MAx) = L(x + AX,y), and similarly for
other variables. Integrate H around two flux lines separated by Ax in the
x-z plane of the air gap:

o

=

§H - ds

J - [h+ aa)/ua] 1)

—[H%[%)+[h+§]%]ﬂx+... =3, %8,

where J is the current density. Neglecting 3%/dy, 3u/3y and keeping only
terms of first order in Ax yields

. _.HD3 (2 h , 1)3H _[hlaﬂ _
yetm(p)Er R, w-GeiEs o

Inside the air gap (1/g) curl Ef = -un[Bﬁ/at), which implies

h  1)8%H, affh,1y8H ,H 3 (2)]_ .  aH
[E*Il?“ﬁ%‘[{f"i]ﬁ”ﬁﬁ(ﬂﬂ = Glo 3E
Equation (3) is obtained by neglecting the dependence on y, and replacing
u(x,y), 2(x,y) by u(H), 2(H), respectively.

kog
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3)
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5)
6)
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Use of Bubnow - Galerkin Nethod for Calculation of Transient Skin Effect in Foil Wound Chokes

P. Rolicz®

Abstract

It is shown that the Bubnow - Galerkin method can be
applied for the analysis of non - steady states in conduc-
tors. The Joule power dissipated in a foil wound choke with
an air gap is calculated in this paper. The particular case,
when the excitation current is sinusoidal, is alsoc conside-
red.
1 Introduction

The steady state in foil wound chokes and transformers
has been investigated by using numerical R experimental
and analytical e methods. The transient skin effect in the
winding lying in the window of a foil wound choke with an
air gep is examined in this paper by using the Bubnow - Ga-
lerkin method.
2 Use of Bubnow = Galerkin method for parabolic equation

The theory of the application of the Bubnow - Galerkin
method for the parabolic equation has been considered by
Sobolevskii?. Let H be a real Hilbert space with a countable
base, and C a linear positive and self - adjoint operator
in H. The operator equation

o5

o0t

CE + =0 iy 0£t< T ()
is given with the initial condition E = Eo at t = 0. We
chose the sequence {ﬁ;}, ¥; belongs to the domain of the
operator C, complete in the energetic space P{C of the ope-
rator C such that the elements qu,qi,...,fn are linear
independent for arbitrary n. In order to find the approxi-
mate solution of equation (1) we take

n

5 Z E;¥; (2)

i=1

¥The author is with Dept.of Electrical Engineering, Polytech-
nic of Biaiystok, Poland

and we solve this equation with the initial condition
Eén)= PnEo at t=0, where Pn denotes the orthogonal projec-
tion onto the n - dimensional subspace spanned upon the
elements q¢1T1\“'3?n « This leads to the following sys-
tem of equations

Z [Ei(c 91| fm) + e (‘Pi“fmJ:]*- 0y m=1,2,000,n (3)

i=1 at

where (x|y) denotes the scalar product in the space H. The
following theorem hold37 (Thecrem 1 ¢cat o= 1/2).

Theoreml. If E, E(n)denote the exact solution of the
equation (1) and the approximate solution of one obtained
by the Bubnow - Galerkin method, then

lim sup VEIE®-gl =0,
n>00 O04£Lt4T

where Jxl denotes the norm of x in the space Hye

Hence and from positive definition of the operator C
results the convergency in the initial space H.

Let L2 denotes the real Hilbert space of guadratically
integrable functions in a closed and bounded set 2 . The
scalar product of the elements f, g € L2(52) is defined
as follows

(£ &) = |£ega®. (4)
04

The operator = V 2 is positive definite and self - adjoint3
in LE(SZ) for homogeneous boundary problems: Dirichlet,
Neumann and mixed.

The Joule power (formula (10)) dissipated in windings
lying in the window of a choke is proporticnal to scuare
of the norm of E in the space LE(SB). Thus, by Theorem 1,
the Bubnow - Galerkin method can be used for the calcula-
tion of the Joule power,
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3 Joule power dissipated in winding of choke
3.1 Non - steady state

The choke section is shown in fig.1. We assume that
the permeability of ferromagnetic substance is infinitely
great, the field iIn the gap is homogeneous and that foils
are such thin that the current density is independent of x
in each of them.

{5‘

777

77
g ’,b,"-”['

il ! /
;4 1 20
A X

N
N
.\ b
W
&
\\ .

Fig.1 Choke section
The z component E of the electric field fulfils the follo-
wing equation

Pho}
W=—— for 0O<x<£a
5 fo ¥ %

VE = (5)

0 for a<x4<h ,

where o2 Y. w denote the permeability, the conductance

and the filling factor, respectively. By the received assump-
tions, the Green’s formula and (1) = (5) , the Bubnow - Ga-

lerkin system of equations has the form
h

h ,b
J;%f;radqigrad E dyt}%rwii[ W.Ddyaﬁi dIs

[
2c dt |x=
0 b -C

Log

ay , {6)
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where Iy = n I, I - a current flowing in afoil, n-number
of foils. We assume that I has the form
N
I = I, sin(@t+ot)+ Z Iie"n(it’ I-0 at t<0 . )

i=1

The Stone-Weierstrass Theorem2 can be used for the deter-
mination of the sequence {‘{i]. By one, any even (with
respect to the ¥y - axis) continuous function on

52 = {[x,y) : 0&x£h, |yl ¢ b} may be uniformly approxima-
ted by linear combinations of functions of the seguence

{cas h (m 0,65]’]"—3-—) 5 cos(lﬂ—?}} m,1=0,1,2000
h
We admit that E has the following form

E = E; + E, cos h(O 65

! =), coe T = (8)

From (6) - (8) it follows that

E, = gg-;—w— (9a)
. [ weos(w t+d ~¥)+ sin (x ~¥) e =&
277 V2 02 '
+i I .8 “"“_“ (9v)
1=1 " My )
where
sinT ——

’ g =(25,7 % + 80,7 %)g ’



Compumag Oxford, 31 March to 2 April 1976 Transient D14

-1 In1, using the serial reactions of eddy currents method, the
§=1 Mo ¥ wab - sin h('&"'——oaa)+ 1 Yy = ‘1:.:,111'15‘3J following formula has been worked out
4,08a h 3 - —
The Joule power dissipated in the foils lying in the window d=4d [1 i j“z (cosrﬂTX- cosnTr) B (x):’ (1 5)
of the choke is equal to 25 b 3
b
5 e 1 5 Tow N
P =wy dx [E° dy = : & E2 3 [._?F_:' (10) where )
. eabwy 2/“05’ 1+ jd E (cosnﬂi - cosnn-) F, (=)
0 -~ b
J?= J n=1
= 0 =0
3.2 Steady state _”_
The steady state in the choke is considered later on. 1= P (x) coslin )
From (9b) it follows that n=1
mcos(mt + ok =) c
= o sinTl
E2 = Xlli‘ IO \/ 2 2" (11) Fn(x): ———-—--—E cos h(nTT _}_t_) ’
7+ w : nsin h(n'ff%-) »
The mean value of P is equal to
I ) = 2W Moy Woa b2
5 =
R 2. .8 wywab 2 .
Bre Pat = 21a 1+.l2__2_ [..w_] (12) T e
T 4wyab /(Jog (S + ) m m 1
o g
| ! b
The current density J may be written 410 ! /'\_\ 10° /\!\&‘Q
: | a
. sun s uniEY
J=3rE=Im[‘.f§'gert+°{‘c] ' (13) / & f 3 /
100 ; v } - 0 /
i | '
where Im denotes imaginary part and 95 L [ ] -5°
| !
| of /
23 wywab 90 Il "fﬂl
3=3,[1+ j2 cos b (2,04 E)coslL |=[3] &3  (14) | |
- §+ jw h b ‘ 83 — = -15 S
2 | L J o1 3
Je—bo 0 1o 20 30 [mm)] 0 10 20 30 [mm]
o)
2 V2 a bWy ’

Fig.? Diagrams of the function |J| and ¢ for x =0
a) according to (15), b) according to (14).

k29
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In order to compare the results, the calculations were made

for ¢ =1mm, a = 4¢, b = 30c, h = 20¢c, w = 1, J0= 100 ,

Wy ¥ = 12600 m"2 - Al at f = 50 Hz. On the ground of them

fig.2 is made. The differences between |J| and ¢ given by (14)

and the exact velues of these parameters given by {15) are

not greater than 7 %.
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