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) Introduction

The vector diffusion equation for a low frequency magnetic field H

can be written in the formcl)
S w o OB 3K L il
VH = o 3 3t grad (E . grad u) = (grad o) x curl H (1)

Although the conductivity ¢ is usually constant within each conductor, it
is expressed here as a function of space because this can sometimes
facilitate setting up the computation scheme. The permeability p is
similarly treated, but, in addition, may be a function of H. The
constituent equation is assumed to take the form B = yH where B and H are
not necessarily linearly related but the magnetic material is isotropic
and has no hysteresis effect. For example, the magnetisation

characteristic may be approximated by the Frohlich curve

B=atoi

(2)
from which u = (a + bH) .

Problems in which the magnetic field is described by eqn.l are known
as initial boundary value problems: the initial (t = 0) state of H must
be defined over the space domain and Dirichlet, Neumann or mixed boundary
conditions specified for t > 0. However, in the special case of
sinusoidal excitation, with the additional constraint u = MMy @ simpler
boundary value problem can be achieved by defining a complex vector E which

is related to the instantaneous vector H by

H = Re [E ejwt] (3)
so that eqn.l reduces to
v?ﬁ = jmcﬁE - grad (E-%_grad u)- % (grad o) x curl E (4)
Use of the vector potential A, defined as curl A = B and div A = 0
(Sarma(z) shows that a nonzero divergence may be helpful in some low fre-

quency problems), also yields similar real and complex second-order partial
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differential equations, the real equation being
3A 1
?%ﬁ = auGg? + grad V) - i (grad u) x curl A (5)

where V is a scalar electric potential.

Considering problems involving two space co-ordinates x and y and
time, then if there is only one component of H, H say, which is
independent of z, i.e. the current density is a function of x and y, eqnl

reduces to the convenient symmetrical form

3 aH 3 o dB, M
3, OHzy 3 3Hz, _ dBy My
P o) oy (bt dH, at (6)

where p is the resistivity. Alternatively, if there is only one
component of current density Jz, it is convenient to use the resulting

single component of vector potential Az, and eqn.5 yields

] A ] 3A A, av A,

P =2 o —2) = —a + _—= —& -

ax Y Bx ) 3y (v 3y ) L at & 3z ¢ at Js M
where v is the reluctivity. The term %% is the negative of the impressed
electric field strength Ez, so that - o F=i 3 is the impressed source

current density, if any.

Where a problem has natural boundaries, the differential formulation
is preferable, especially in view of the research effort that has been
put into the theory of differential equations, but it is also possible to
set up an integral equation that sums the contribution of all the field
sources. Interesting examples of integral formulations solved

©) )

numerically are given by Haznadar and Silvester

2. Types of Solution

At the risk of oversimplification we can divide the various types of
mathematical solution into three categories.

(a) First there is the analytical solution in which the independent
variable or parameter of interest, e.g. the magnetic field distribution
or a single quantity such as impedance, can be expressed algebraically in
terms of the system constants (conductivity, frequency etc.) and the
independent variables (the space and time co-ordinates). Needless to say
the expression involved may be a complicated series, for example, and
numerical substitution may be necessary before the influence of a given
parameter can be determined, Examples of this type of solution are the

separation of variables method and the finite, or infinite, Fourier



Compumag Oxford, 31 March to 2 April 1976

transform. Such methods are limited to relatively simple linear problems.
(b) Secondly, there is the almost entirely numerical approach in
which the problem is discretised in some way so that we can work with a
set of numbers instead of with a continuous variable and therefore with a
matrix equation instead of a partial-differential equation. This is the
basis of the finite-difference and finite-element methods which will be
discussed in Section 3. An interesting variation is the coupled electric

(5,6)

and magnetic network approach developed by Carpenter which makes use
of the magnetic scalar potential, instead of the vector potential, by
confining the current flow to thin conducting sheets and is a powerful
way of translating an eddy-current problem into numerical form.

(¢) Thirdly, there is the type of method that can most appropriately
be described as mixed, containing both analytical and numerical components.
They usually arise because a full numerical method is found to be too time
consuming on the available computer system, or because the analyst is
determined not to obey Parkinson's law but to seek an economic solutionm.
An outstanding example is the method outlined by Hockney(7} for the
solution of Poisson's equation in a rectangular region, but alse
applicable to Helmholtz equation and to other two-dimensional co-ordinate
systems, in which one dimension of the problem is reduced by the
application of a finite Fourier transform. The partial-differential
equation is thus reduced to a set of ordinary-differential equations
which can then be solved numerically. There are various refinements
which increase the speed of the solution, and the method should be
appropriate for multi-region eddy-current problems, where the interfaces
are parallel to the direction in which the transform is applied.

(8,9)

A different approach due to Silvester regards each term in a
double Fourier series solution for a long rectangular bar as a single
eddy-current mode for which an equivalent R-L circuit can be set up. The
terms in the series form a complete set of orthogonal functions and so
there is no coupling between the set of equivalent circuits. In more
general terms we can say that the current in a conductor flows in an
infinite number of independent spatial patterns (modes), its distribution
between the modes being dictated by the form of the excitation. Thus the
method had the advantage that any form of time-dependent excitation can be

handled by the same set of circuit equations or matrix equation, and it is
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particularly useful in being able to handle situations in which it is
either not possible or not convenient to formulate an initial boundary
value problem. In this sense the method is an alternative to the
numerical solution of an integral equation formulation of the problem.
We will now briefly consider some numerical methods which are
particularly important if we wish to include magnetic saturation.

3.  Numerical Solutions

Problems that require numerical treatment divide naturally into two
broad classes; linear steady state, and nonlinear steady state and
transient. All nonlinear solutions are essentially the same because a
steady-state solution must pass through a numerical transient which will
be similar to the real transient for the given iritial (switch-on)
conditions.

Time~-dependent magnetic field equations of the diffusion type have
been solved numerically by both finite differences and finite elements,
although the time co-ordinate has always been discretised by finite
differences. The common feature of the methods is that, at each time step,
they yield a large set of difference equations which are usually arranged
to be linear and have to be solved either by elimation or by an iterative
process of some sort.

In the finite-difference method, the complete differential operator
is replaced by a finite-difference operator which sets up discrete values
of the dependent variable at the nodes of a regular grid consisting
(usually) of rectangular cells. The derivation and programming of the
method is relatively straightforward compared with the finite-element
approach, which, in its simplest form, sets up an array of triangular
elements covering the space domain of the problem and forces the dependert
variable to vary linearly over the surface of each element. Thus the
local variable is defined by its values at the three vertex nodes. One
of the advantages of finite elements is that their size is readily varied
so that the field can be accurately represented in regions of rapid
spatial variation without using an excessive number of elements. 1In a
nonlinear quasi-static problem the set of algebraic equations is

generated by minimising the energy functional(lo)

B
F=JJ JdeB-AJ dx dy (8)
o]
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for which the original partial-differential equation is the Euler
equation. One way of introducing the time dependence is to regard J in
eqn.8 as consisting of both the source current density Ja and the eddy
current density - o +— aA from eqn.7, i.e. J = Js -0 %, and to 'graft on' a

finite-difference expressmn for the time derivative after the

(11}_

minimisation process Eqn.8, with J regarded as an instantaneous

injected current, must now more properly be referred to as a functional
associated with energy because, due to the ohmic losses, the new system
is no longer energy conserving. Whatever the formal difficulties the

hybrid scheme appears to work. Results for linear complex problems have

(12,13)

already been reported , and a relatively simple nonlinear problem

has been solved using the Galerkin techniqueclh).

3.1 A finite-difference algorithm for eqn.7.

It is possible to proceed directly via Taylor's theorem, but a

simpler result can be achieved if eqn.7 is written in the form

3A 3A A
Z - Mgy _ 53 - g Mz
curlz (Ex vV 3y W )y =J ¢ 5% (9)
< hj > hy >
6 5
2
W NE
W \I______,__q\_*‘t, UN.E hz
- —
w .
FIG. 1 3 [ 7 0 I
Vsw | S <—E > VSE
5w L e 4 ISE | hy
Tsw IsE L
7 % 8

Integrating eqn.9 over the cross-section of the secondary cell shown
dotted in Fig.l, applying Stokes' theorem and following a procedure
similar to that given in Reference 1 for the complex form of eqn.9, the
following explicit finite-difference equation for advancing from time step
k to k + 1 is obtained.

+ aa) A - (a, A + o A + a,A

R BT S T L

(ul+a + a

3 T 0y o0,k

=Lk~ %k At

(10)
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where ul = (NvNE + SUSE) hl_l

0y = (Eugg *+ W) hz_l

a3 = (g + Svg) h3"1

a, = (Bvgy + Wug) ha_l

Io = NE JNE+ WJNW + SE JSE + S‘w.]Sw
and Qo = NE g + NW O + SE 9gg *+ SW Oau

All these parameters can be functions of time, i.e. the time-step counter

k, including the coefficients %y Uos etc. 1f the problem is nonlinear.

2
The truncation error of the algorithm is 0(h + At) when h is the larger
of hl'

potential A

hz, etc. The algorithm is also explicit in the sense that the new
N1 at node 0 can be obtained directly. However, such a
scheme is known to have a very limited stability range, and
modifications are necessary. These are most conveniently discussed in
terms of a one-dimensional field solution.

3.2 One-dimensional algorithms and comments on extension to two
dimensions

Consider the one-dimensional version of eqn.6 with constant

conductivity, namely:-

2%, dB_ 2 3H_
—— = g e —— = [ —— (11)

Bya de it at

The simple explicit difference form of eqn.ll is
Hi k4l = rH.+l Kt (1 - 2r) Hi,k + rH Lk (12)

where ¢ = AF !th { for stability, Alternatively, the simple implicit

equation) using a backward instead of forward time difference equation
(15,23
15

1 1
Biotaer™ O 9 By *Beo g =~ 7 i (A3

with no restriction on r. The penalty we have to pay for this stability
is to solve all the new values at time k+l simultaneously. However, tue
coefficient matrix is tridiagonal and so thie matrix equation is simple to
solve.

Application of eqns.l2 and 13 at alternate time steps produces the

well-known Crank-Nicolson algorithm

1; 1 =
+ 2(-1 ?) H + 2(1- ?) H, H

ik~ -1,k
(14)

Hibl, kel il ™ et ™ Y
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which has an improved truncation error 0(h? + (At)2) and is stable for all
linear problems and a wide range of nonlinear ones. When r is a function
of H, a two-step predictor-corrector algorithm is usually incorporated(15)
in order to be able to maintain a relatively large time step.

The Crank-Nicolson equation is an implicit one so that its extension
to two-dimensional problems is rather inefficient because of the large
number of equations to be solved simultaneously at each time step. For
this an iterative solution(e.g. successive over-relaxation) is faster
than elimination because, since the change in nodal values from one time
step to the next is small, only a few iterations are needed. However, a
modified version of tlhe method in two dimensions is the Peaceman-Rachford

alternating-direction implicit (ADI) methodcle’zah

ere the nodal equations
on first the rows and then the columns of the space grid are treated
alternately as implicit sets.

1t is tempting to seek an explicit method that is stable and can be
extended to two-dimensional solutions. One possibility is the hopscotch

method devised by Gourlaycl?)

and summarised in Reference 1. Basically it
derives from the alternate application of eqns.l2 and 13 to the nodes on
each time step so that the space—time plane can be pictured as a chess
board of black (explicit) and white (implicit) squares. The resulting
scheme is explicit and is effectively a faster version of the
DuFort-Frankelcla’zg%heme (although some of this advantage is lost in non-

linear problems) where He o in eqn.12 is replaced by Q(Hi 7 ) to
L] L

1
give

H

2T
Biker ™ Biper Yot By~ ) (15

taet TRk

The truncation error is O (h? + (At)2 + (At/h)2) which indicates that At
must be much smaller than h. Closer investigation shows that the optimum
value of At for minimum error lies near %%;for a linear problem(la). For
nonlinear solutions with high saturation, where B may decrease to a low
value (typically about 4) for part of the cycle, the situation is not
clear. The above condition would suggest At = h2, but the method then
involves as much computation as the simple explicit method. The time step
must therefore be larger and a greater error tolerated, although the error
can still be less than that with the simple scheme.
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3.3. Analytical expression for the magnetisation curve

Numerical methods are both faster and less likely to become unstable
if an analytical expression is used for the magnetisation curve instead
of interpolating from a set of experimental values. In any case the
experimental values should be smoothed before use, especially if the
incremental permeability is required. A large number of mathematical
expressions have been examined by Trutt, Erdelyi and Hopkins(lg) and the
¥rohlich curve (eqn.2) emerges as a good compromise between accuracy and
simplicity. 1In fact the curve is excellent for materials like mild steel
but not so good for silicon steels (electrical machine laminations) which
have a pronounced 'knee' in their characteristic. It will be seen from
eqn.2 that as H increases the magnitude of B tends to the constant value
b !, i.e, the curve has zero slope. On the other hand, the magnetisation
curve for steel maintains a constant slope uy after the saturation point
(Bs' Hs)' When working well into saturatiom, it is therefore essential
to make up the characteristic in two partsj the Frohlich curve for B < Es
and the straight line B = By * uH when B > B_. The constant B can be
shown to be given by ng. Thus the incremental slope and reluctivity

when B < B_ are given by

dB a
—_—— E e————— 6
dH (a + bH)2 (16)
a
and VeI (17)
and, when B > B_ by
8 dB (18)
Ve
1 Bo
and V= (1l =) (19)
Uo B

The constants in the Frohlich equation must be such that the
saturation point (BS, Hs) lies on the curve and the slope is Ho when
H= Hg After a little manipulation we obtain

= 2
a=u (Hs/Bs) ; o
and b= (L~ via) B} g
An important point to note is that, if the problem is being solved

in terms of the vector potential, H or v should be expressible explicity
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in terms of B, and hence the derivatives of A, and preferably not in a
form that necessitates making successive approximations to H.

3.4 The DuFort-Frankel scheme in two dimensions with variable
coefficients

The two-dimensional equation in H, for constant conductivity is,from

eqn.b,
a%z ah% dB_ OH_
+ =g-——_= (21)
ax2 ay2 de at

For a square mesh in the x,y plane of side h, the DuFort-Frankel finite-
difference equation is

2r

By gakel ™ By 51 * Tt

(" ) (22)

et N St

=15,k ¥ B gen,e * U000 Y it 5,0 T 4 By gk

where i,j is the integer address of a node in the x,y plane. The co-
efficient r is the same as in eqn.1l5 for the one-dimensional solution and
contains the incremental permeability, which, if the Frohlich
representation is being used, is given by eqns.l6 and 18. However, we
need to express H in eqn.l6 in terms of the nodal values. Examining
eqns.15 and 22 we see that they involve nodal values on three time levels
(k-1,k, and k+l), and , if we view the space-time domain as a multi-
dimensional chess board, the finite-difference equations separate into two
sets, one associated with the white cubes and the other with the black.

Thus, if we allow r to be expressed as a function of H we are forcing

i,j,k
a white value into the black set, or vice-versa. Such a mixture has been
found to cause instability and it is therefore necessary for r to contain

black (or white) values only. The unknown H, cannot appear in r

i,j,k+1
because the finite-difference equation would no longer be linear in the

unknown value, and therefore the average

H = (23)

A " P + H, . + H. x
by Y Btk * B gerk ¥ Bian,g,00
is used in eqn.l6.

If we now turn to a two-dimensional finite-difference scheme in terms
of the vector potential component Az' again taking a square mesh and

constant conductivity, and assuming zero source current density for

simplicity, eqn.l0 reduces to the simple explicit form
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JA

Ay ka1 = 40 TOptvgpda) o+ igptogy

}

2,k

- (v +v }A3 et ( JA

Vse*Vsy

+ {1-C eVt Vse Ve ]A

where C = At/oh2. The DuFort-Frankel equation is obtained by replacing
Ao,k by (A

4,k (24)

o,k+1 * Ao,k—l)'
Whereas the incremental permeability in eqn.22 (in the coefficient
r) is effectively a node centred value, the reluctivities in eqn.24 are

cell centred (see Fig.l). For example, using eqn.l7,

a
Vo, (&
NE 1 bBNE

where Bee is the magnitude of the flux density in cell NE of Fig.l.

Since Bx = 3A/9y and By = - JA/dx, the most obvious finite-difference

expression for B_. is given by

NE

-A
B._ = (B2 B2 ¥ 2 k™ o k, S,k 1,kyq2
NE ( xNE * YNE) ‘“ ( 1 hl )} (25)
A _-A
Lk. O,k k 2
+ e =—5)

In the DuFort-Frankel equivalent of eqn.24 use of eqn.25 involves a
mixture of black and white nodal values. However, in practice, this
mixture appears weak enough to avoid instability if the scheme is used
with care, particularly in the choice of h (typically 0.5mm).

3.5 Two-dimensional linear steady-state solutionms

The complex equivalent of eqn.10 can be obtained by inspection. The
set of finite-difference equations is now stationary in the sense that a
single elimination process only is required. However, due to the sparsity
of the coefficient matrix, iterative methods are usually preferable where
each iteration can be thought of as a step forward in solution time.
Indeed iterative methods have been found to converge faster for complex
than for real arrays of the same size. Apart from the A D I method
already mentioned which has been found suitable for problems involving
several thousand equations, there is the simpler complex version of the

(20) _

well-known successive over-relaxation (SOR) method The only

difficulty with SOR is the estimation of the complex accelerating

factorczl).
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A method of interest, proposed by Stonetzz)

, 1s based on the
realisation that the relatively good convergence of ADI methods is due to
the component of direct elimination in the iterative process. Stone's
strongly implicit iterative method (SIIM) has an increased implicit
content and excellent convergence, but at the expense of a substantial
increase in computer store requirement (about five times that for SOR).
In a simple problem involving 600 internal nodes, SOR required 53 and
SIIM{{? iterations, the latter being approximately 10 per cent faster in

time However, as the number of nodes increases the time advantage of

SIIM also increases.
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Discussion following paper:

(Munro, IBM) 1; The method which you described for generating the
finite difference equations was for rectangular meshes. Is this method
also applicable to general quadrilateral meshes which are not necessarily

parallel to the coordinate axes?

2. Can you comment on the speed of convergence of the ADI method for
problems in which there are large changes in material properties (eg

permeability) within the solution region?

(R Stoll) In reply to Dr Munro's first question, the method I describe
for setting up a finite-difference equation in 2 dimensions using
surface integration and Stokes' theroem can be applied in 3 dimensions
and other coordinate systems. However, the 'box' used should conform

to the coordinate systems selected.

In the second case, I have not used the ADI method sufficiently to be
able to give a firm answer, but I suspect ADI will suffer in the same
way 4as other iterative schemes in static or steady-state problems,
although probably rather less so in view of the direct component of the
method. -

(Miller, University of Leeds) I would like to comment briefly on
Mr Munro's question. The integration method described by Dr Stoll for
discretising the differential equation can indeed be used for irrégular

polygonal meshes.

It has been claimed that discretisation by the integration method
automatically gives properties to the coefficient matrix of the linear
equations which guarantee convergence in iterative solution. Certainly
this appears to be in tune with 2-D problems but at Leeds we have had
the difficulty that these properties (in particular, diagonal dominance)

appear to be lost when going to 3-D problems.

Refs Bronne, B T Ph D Thesis Leeds University

Varga, Matrix Iterative Analysis
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(Schomberg, Philips GmbH) You mentioned the Hopscotch method, where
one has "white" and "black' mesh points arranged in such a way that the
white mesh points are surrounded by black ones and vice versa, and where
one updates the corresponding "white" and "black" potentials alternative-
ly. There seems tobe a strong resemblance to the SOR method with
"white-black" (or "odd-even'") ordering of the mesh points, which is
applicable to elliptic finite difference equations. Could you comment

on this?

(Stoll,) Although Hopscotch is primarily designed for use with
parabolic equations, the question concerns its use for stationary
problems, ie as on iterative method. It can be shown to be equivalent

to the Gauss—Seidel and SOR methods with odd-even ordering of the nodes.
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1.

The Prediction of Machine End-region
Fluxes, allowing for Eddy Current
Losses in Thick Components

by
T.W. Preston, A.B.J. Reece

Introduction

Ag unit ratings of turbine-generators increase, it is
becoming essential to make accurate prediction of flux distri-
bution, and associated induced losses in the machine end-zone,
go that the risk of damage from overheating of components can
be avoided.

Prediction of end-region leakage fields, allowing for
irregular boundaries and internal components, such as the
screen and clamping plate, can only be carried out numerically.
The work described in Ref. (1) outlines a finite-element
method for determining the scalar potential distribution in
the end-region: scalar potential was used because it allows
simple treatment of boundaries, and, compared with vector
potential, only a single function has to be calculated.
BEconomy of nodes was obtained by assuming that all end-zone
functions vary sinusoidally around the periphery, thereby
reducing the problem to one in the radial-axial plane
only, whilst still retaining the essential 3-dimensional
geometry of the end-region. In this way, the complex boundary
outline can be represented adequately, but the magnetic effect
of the boundary can only be represented by either an
infinitely-permeable surface (the Dirichlet condition) or an
infinitely-conducting surface (the Neumann condition).

The infinitely-conducting boundary condition has often
been used to allow for eddy current effects in conducting
boundaries, by setting a surface which has wholly tangential
flux at a depth related to the skin depth below the real sur-
face. This treatment is very approximate, and falls down

badly when dealing with a highly permeable conducting surface,

Steady State C2

since no allowance can be made for the high permeability
within the skin depth. A fully 3-dimensional wvector potential
approach would overcome this difficulty, but it would prove
expensive to use, as three solutions would be required to
obtain all flux densities, and boundary conditions could prove
awkward. Although scalar potential is not normally used in
problems involving eddy currents, the following sections show
that the use of complex potential with a new boundary con-
dition which allows for frequency, permeability and
resistivity to represent "thick" components can give excellent
results.

Development of Boundary Condition

The effect of induced currents beneath the surface of a
conducting surface is dealt with by relating the flux distri-
bution beneath the surface to the density normal to the
surface. In the formulation of the boundary condition, the
following assumptions are made:=—

(i) The thickness of the conductor is greater than the
depth of penetration.
(ii) Flux flows entirely parallel to the surface once inside
the member.
(iii) Flux decays exponentially with depth, as in
1=-dimensional theory.

The flux entering normal to the surface of a conducting
member can be equated to the integrated value of the tan-
gential flux from the surface to an infinite depth. Fig. 1
shows a tiny element of the conducting member, and by
congideration of flux entering and leaving the element, the

following equations are derived:-

P

M
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Byi &x bz
¥

Conducting (Cartesian
surface co-ordinates)
Fig. 1

Therefore, equating fluxes:

“'BByi i aBx,
: —_—
Bz by bx ,[._, By ox :,rdz»n».’ ax&:c&yﬁz

o
which, with Assumption (iii) and the continuity conditions at

the interfaces, reduces to:

u, (1 - 3)8 0By, . 8Bx,_ .
1 [ {alr) falr)} s (1)

Bz(a.ir) = 2 3y ox

where: W i relative permeability of conducting member

5 :[zo]*
B0

resgistivity

]

I

@ = angular freguency

Thus the effect of induced currents beneath a surface can

be represented by a boundary condition at the surface.
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3. Analytic Check
To check the validity of the assumptions made in formu-
lating the boundary condition, the expression for flux density
in a machine gap (obtained by using the derivative boundary
condition) was compared with the exact analytical solution.
(i) Bxact solution

I i

Fig. 2 shows the air-gap and rotor iron in a
Cartesian co-ordinate system, and the resulting equation
for flux density in Zone 1 is:

& Hy
Bx =

sinh ag +

Ky I[cosh a(x - g) - o# sinh a(x - g) :!

cosh ag

. )

where: ¢

L[}

a? + Jw b2

2n/T

B - H

b _'uﬂpi/pi_z/a o
3

= (2 py/npy )

double pole pitch

W
i

(= ]
I |
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(ii) Boundary solution

i,

x=0

Zone 1 air-gap

Fig. 3 illustrates the same example, treated as a
gingle-zone problem, with the boundary condition given by
Eqn. (1) representing the rotor. The resulting equation
for the air-gap density is:

J Hy I[coﬂh a(x - g) - .(5.6_+1..:Jl sinh a(x - g)}
Bx = s =
ginh ag + 0+3) cosh ag
a b My

----- (3)

Egns. (2) and (3) differ only in the coefficients of the
sinh a.(x —g) and cosh ag terms, and if a® is negligibly small
compared with the wb® term, the equations become identical:
this requires §/T to be small.

In order to establish a value of §/T which will give
acceptable accuracy, calculations were made on the problem
illustrated in Fig. 2, with the permeability of the rotor iron
varied from 1-1,000 (this gives a variation of 6/’.[‘ of about
30:1 ).

Steady State C2

The results of these calculations are given in Fig. l,
and show that there is little error introduced in the real
component of Bx over the whole range, but the error in the
imaginary component becomes significant for Mi < 10: this
corresponds to a 8/T ratio of 0.09, Thus, if the §/T ratio
is less than about 0.09, the error resulting from the use of
the boundary method should be insignificant. Typically, the
8/T ratio for the screen of a turbine-generator is 0.0018.

o 16 132 -
o T
5 Analytical method 2
. X
12k - — = === Boundary method 124 8
g
o .
& Bx (real)
H oo A
sF-—_~—- 16
g iz
7/
/
L
Lk 8
0 1 1 1 L I L 1 1 0
1 2 5 10 20 50 100 200 500 1000

Iron Permeability, Mi

Fig.
Li. Finite-element Representation
of the Boundary Condition
In Ref. (‘l), a conducting boundary was considered as
infinitely-conducting, i.e there was no allowance for flux
penetration into the condueting boundary. The new boundary

condition, which allows for flux penetration, can be written
in scalar potential form by re-arranging Eqn. (1) as:

80 _ (1-1),, (2%U, 20
0. Lsdsy (28,27 ceeee (1)
-
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To enable this type of boundary to be represented in
finite-element terms requires Egn. (L) to be re-formulated in
variational form and added to the existing functional. The
basis of the method is outlined in Ref. (2), and when applied
to the present problem results in the following functional:-

%j'f/'{(au =+(a%2}ﬂxd3dz

end-region term

Lﬂapiﬂ( ( J

boundary %
v {9)

The volume integral relates to the volume within the end-
region, whereas the surface integral relates only to those
boundary surfaces carrying eddy currents. Egn. (5) can be
reduced by a dimension by agsuming that all functions vary
simusoidally around the periphery.

Thus Eqn. (5) becomes:

ﬂ{ aU)+au*dedz

end-region term

St b [[E) e

boundary t
swwes: 16)

The above functional is extremised by differentiating with
respect to the unknown potential, U, and equating to zero, i.e.

X
T = 0 s UT)

The numerical form of Eqn. (7) is obtained, as described
in Ref. (1), by representing the area within the end-region
term (Eqn. (6)) by triangular elements, but the boundary term
is given by a line integral only, and thus has to be repre-
sented by a "line'" or '"bar" element, as shown in Fig. 5:

Steady State C2

: End-zone
"BB.I'" or nline" 'J
elements used
to represent
boundary part
of functional i
Conducting
"\
boundary Represents
area within
end-zone

Fig. 5

As with the triangular element, the "bar" element can be
represented in mmerical form by assuming the potential varies
linearly between the nodes. This leads to the following
expression, which is added to the extremised functional only
for nodes on conducting boundaries:-

ax!boundagx! . (1= j!

au 121
x {(6 + 23212)111 + (- 6+ azle)sz

i

where 1 = length of "bar" element

The validity of the bar element representation of con-
ducting boundaries was checked by calculating the scalar
potential within the air-gap of a turbine-generator for which
an analytical solution was available. Several solutions were
obtained for wvarious values of pole-pitch, permeability and
resistivity. Figs. 6-7 show that the bar element represen-
tation agrees well with the analytical solution, and better
than the extreme boundary conditions previously used.
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5. Agﬁlica.‘tion of New Boundary Approach to (o]
a 660 MW Turbine-generator End-region Numerical

320 0-C
Recently the stator-core and end-region of a 660 MW . a o ® Measured
turbine-generator was extensively instrumented, and all com- a S — I
ponents of flux density near the screen surface and (where " / \\x B Tommes Numerical} 5.0
_ . 2L0 F =
possible) the clamping plate surface were measured under open— LAY e B . x X Mea a X
and short-circuit excitations. Loss intensities around the N Bt
screen were also measured, using the 86/t method. bt
B \
These measurements enabled a check to be made on the 160
validity of the boundary approach when applied to an actual //\
\
machine. To do this, it was first necessary to re-formulate ® s, /x “
all the previous equations in cylindrical co-ordinates., With 80 ‘\ =T A
-~
these re-formulated equations, all components of flux density e s
were caleculated within the end-region, with particular \J ‘UM\
attention being given to the screen and clamping plate 0 3 1 - . # L 1 - )
surfaces. Figs. B8-10 compare the numerical and measured Distance around Secreen
values of flux density near the screen surface for open- and Fig. 9
short-circuit excitations. In all cases the agreement is
good. Similarly, Figs. 11-12 compare the surface 1oss intensity ¢ — Numerical
~ 80r 5
around the screen for open- and short-circuit excitations e o
) ° ) © Measured
respecti . ik
pﬁ ivaly o .
g Numerical EI Screen) Bp --——— — Numerical
= 0-C al 60 8-C
L] ° ¢ Measured
e Screen e« En A =i 3 x ¥  x Measured
o|120}F H BD
o
a1l ] s==s— Numerical | E
B[ B } il 4 Lo ~. %
At X X X Measured H ’ ~ig
F | Bn | & 4 ~ i
| 80kt | & g g,
g I I o / T
a |0 | ' Al 20 l%” o N X
= '. / ° = S, &
Lot \ \ I / ) ~
\ o
\ \ K e o
) \ ! 0 A . " R . =y
e No / A B c
0 X Nor Bz=o -y - -k Distence around Screen
A B c
Distance around Screen
Fig. 8 Tig. 10

218



Compumag Oxford, 31 March to 2 April 1976
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From Figs. 8-11 it is evident that the new boundary
method gives very satisfactory agreement with measurements.

The advantage of the boundary approach is its ability to
represent the effect of induced currents in "thick" con-
ducting members, without having to arbitrarily position the
boundary surface below the physical surface, as was done in
the earlier treatment of conducting boundaries. Also, the
magnetic property of the member is more accurately

represented.

6. Conclusions
A method has been developed in which the effect of

induced currents in conducting magnetic members can be repre-
sented in terms of the normal derivative of scalar potential.
It has been shown to give reasonable accuracy for various
test cases, providing the 8/T ratio is smaller than about
0.09, and when applied to a specially instrumented 660 MW
generator gave results in good agreement with the measured
values of flux density and loss intensity.
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Discussions following paper:

(Miller) The paper raises the question, under what conditions can the
surface of a magnetic material be represented by a 'zero-permeability'
boundary condition, established by the reaction of eddy currents? There
is evidence that under certain conditions, for example, when the
magnetic 'eircuit' is mainly in air, the classical skin-depth parameter
§ = v(p/wk) is less significant than the product urﬁ *r = relative
permeability), in the sense that the criterion h/Mré>1 implies 'zero
permeability' or inductance - limited eddy current reaction field. (h
is a characteristic dimension of the conducting material). It has been
found both theoritically and experimentally* that the criterion h/MPré>1
gives a reliable indication of 'inductance limited' eddy currents in
the particular application of finding underground insulated pipes
inductively.
* Glennie E B and Miller T J E 'Inductive detection of Buried Metallic
pipes' Proc. IEE May 1975.

(Preston, GEC Stafford) I thank Mr Miller for his remarks on the
representation of a magnetic boundary by a zero permeability surface.

If reference is made to Fig (6) in the paper it is clearly shown that

the more permeable the surface becomes the larger is the error introduced
by the use of a zero permeability boundary. Thus for magnetic materials
the Wrd product is a better criterion than ¢ in accessing the suitability

of the zero permeability boundary condition.

Steady State C2
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Semi-analytical Computation of Magnetic Fields, Eddy Currents and

Forces in Flectrodynamic Levitation Systems

by
E.-D. Krause and L. Urankar

Siemens AG, Erlangen (W. Germany)

1. Introduction

In the last few years various magnet and track configurations have
been proposed for magnetically levitated high-speed vehicles for
future transport systems. The basic principles of all such arrange-
ments fall into two categories (Figure 1):

Attractive (Ferromegnetic) Principle and
Repulsive (Inductive) Principle.

In systems using the first, attractive forces between magnets
mounted on the vehicle and a ferromagnetic track (solid or laminated)
produce levitation.

Systems using the repulsive principle depend upon Lenz's law,
which implies that a magnetic field generated by induced currents
opposes the primary field,

Two essentially different basic classes of track configurations
have been suggested for systems of the second category. One uses
metallic loops, the other compact metallic sheets.

Among the magnet arrangements there are again two classes: single
magnet and double magnet, respectively. The single megnet class
consists of a megnet on the vehicle which moves above & metallic
track. Such e system is called the normal flux system. The other
system comprises two magnets between which the track is located. The
polarity of the megnets, i.e. the direction of the energising
currents is such that the fields tend to cancel each other (null flux
system) or such that the fields add up (brake flux system).

411 these basic systems may be used either for 1ift of guidance
alone or for both 1ift and guidance together,

In order to simplify the mathematical formulation of the problem,
we restrict ourselves to the electromagnetic aspect omnly and to
basic systems with infinite sheet track of arbitrary thickness. Then
the basic systems between the dotted lines in Figure 1 can be treated
mathemetically together as a boundary value problem for magnetic
fields. The geometriscal arrangement for a theoretical analysis is

Steady State C3
shown in Figure 2. An infinite metallic sheet of arbitrary thickness
d, conductivity G% and permeability /us is situated between two
excitation current systems which are mounted on the moving vehicle
in & distance 2 h0
arbitrary form. The midplane of the sheet corresponds to the z=0
plane of the coordinate system which is assumed to be moving with
the coils. The excitation systems denoted by j=1 above and 2 below
are in parallel planes at distances hJ from the sheet track surfaces,

apart and which consist of plane magnet coils of

move with a constant velocity in any direction and carry currents,
the number of ampere turns being Ij'

A general velocity vector in any direction has been introduced
in the model so that intrinsic demping in the levitation systems
can be analysed. But the lateral and vertical components of the
velocity are assumed to be small compared with the forward velocity,

say in the x-direction.

2. Besic Equations

In the following analysis we assume the excitation system to be
stationary, so that the sheet track moves with a velocity v in the
opposite direction. The electric and magnetic fields in the moving
sheet track are obtained through Lorentz transformation. Since the
track is & good electrical conductor, the displacement current is
zero and hence the magnetic field at any fixed point in the moving
track is equal to that in the stationary one.

The eddy current in the track is

psa® = pogE + @ x 5 (1)
vhere é = /ugssx and E(i) = E(S) + E(E) i,e. the total magnetic
flux density in the track is the sum of magnetic flux densities due
to the eddy current and excitation current, respectively.

Since now /usg(s) =Vx Q(S), we obtain from (1) after teking
the rotation and noting that ¥V * B=0 and Vvx E = 0, the
differential relation

v . @& - v ) (2)
Inside the track sheet the excitation magnetic flux density
satisfies V2§(E) = 0, 20 that (2) reduces to the following Maxwell-
Minkowski wave eguation for the magnetic flux density in the track
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vz -4 o ) o (3)
Outside the sheet track we have to solve
v5(®) - o (4)

Both the exterior and interior flux densities, g(’) and E(i), are
divergence free and are interconnected through the following
boundary conditions

n - 33 .. pe) (50)
£ 3 . e (& 2(%)) (pa. = ps/pg)  (50)

where n and § are outward normal and tangent unit vectors,
respectively, at any arbitrary point on the sheet track surface.

3. Analytical Part of the Method

The central point of the method is a two-dimensional infinite
Fourier transform defined by

+80 +02
Blksz) = — S“‘ ay &% 3T 3 (p) (6a)
=

(vhere k = (kx,ky) and r = (x,y,z)) and its inverse

+oQ + 00 %
+ik
B(z) = Re 5 dke j dk_ e x* iy B(k;z)
-0 -00

too 400 (68)
= Re | dk | dk_ B(k;r)
Bl

The funotions B(k;r) are then taken to be the Fourier components
of the magnetic flux densities constituting the solutions of the
equations (3), (4) and the boundary conditioms (5a, b).

3.1. Ansatz for Solutions

In order to solve the boundary value problem we now make, similar
to E1j, following Ansatz for the solutions Q(g;g) in regions 1, 2
and 3 (s. Figure 2).

Regions 1 and 2:

Bl()ej} . B;EEJ)(E;E) +’§£3)(5i£)

- B (i) + (D () 7] eik*‘{‘;?ﬁ{gi} (b=x,7y2) (1)

cos Y
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where k = (kIE + ky2)1/2 and the column term corresponds, from the

top, to the components p = x,y,z . Q(EJ) is the excitation field
"‘ﬁ(?) (‘i{(ﬂ)

corresponds to the contribution from the field components in the

of the excitation coil J in region j and thus

upper (lower) region due to the eddy current in the track sheet and
the lower (upper) excitation coil, The upper sign corresponds to j=1
while the lower one to j=2.

Region 3:
5 coslk
(D) L) & 4o ) #FI00 ey (0)
P P P cos(kgy)

The subsidiary condition (V¥ x g)z = 0 (which is not a real restric-
tion in the infinite sheet model because of the natural boundary
conditions at infinity) allows us to determine the Fourier

coefficients in the Ansatz uniquely for each (kx,ky)—pair.

3.2, Eddy Current and Force Expressions

The forces between the track sheet and the excitation current system
can be calculated in two different ways.

I. The eddy current density in the track sheet is given by

1) . L x 31 (9
/s

Substituting the inverse transform of (8) in this expression, we get
the Fourier representation of the eddy current density.

With the help of the inverse transform of the excitation field
the force density P on the track sheet can now be calculated as

() = 92 = 3B(g) (10)

where g(E) = g(E1) + 2(32). Integrating over the volume of the

sheet track we obtain the global force between the track and the

F -S&[dx dy dz P(x,y,z) (11)
R

s
This approach is used when the spatial distribution of the eddy

excitation system

current and force components in the track are needed. This is the
case during mechanical outlay of the track system.

II, 1If, on the contrary, only global forces are to be calculated,

the expression
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? -Eﬂax ar a2 [2®) x (2(*)- 3(®))]
Rg
is much more convenient to use. With the help of (7), this then

reduces to

F = g gj‘dx dy dz Ei(Ej)x 3(3)] (12)

which is physically equivalgnt to (11), as action and reaction are
equal and opposite.

For sufficiently simple systems, the volume integral in (12) can
be performed before calculating the inverse Fourier transform. In
this case (12) can be expressed as

+00  +00
- f d‘k'xj‘d'ky f (E; B£E1)(§_id/2}' B’(:Ez)(lg';-d/z)) (13)

where B£E1)(§;d/2) and Bigz)(g;—d/Q) are Fourier transforms of
the x-components of the excitation field at the upper and lower track
sheet surfaces, respectively. '

4, Numerical Part of the Method

Now we discuss the numerical computations of eddy ocurrent end force
densities as well as the global force. The former shall be dealt
with fast Fourier transform, the latter by means of numerical
guadrature, Finally, we compare both methods from the standpoint of
computation time and efficiency.

4.1, Fast Fourier Transform (FFT)

To calculate the eddy current and force densities in the track it is
necessary to compute several integrals of the type

(cos) e Tae ikyx
A (xyy) { _ I dkx'(dk o Hex {coa(ky.?)} Alx_,x ) (14a)

il | 4, BT sin(iy)] XY (1aw)
Introducing the total inverse Fourier transform A(tct)(x,y). we obtain

aleo®)(z,y) - 1000 (x,y) () (x, )] (152)

n(Sin)(x,y) = —% Eﬁ(tnt)(lsy} = A(tOt)("'Y)j (15v)

We now choose two even numbers n, and By and calculate the integral

(14) on a net of n, + n, equidistant pointe ordered symmetricelly

"Herein W
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about the origin:

111 =Ax .« (1,-1-n,/2)

112 "A" : (12-1"n2/2)
For each (x,y)-pair we integrate in k-space by applying the
trapezoidal rule to a similar net of n, *n, equidistant points:

ke, g =Qkg v (34-1-m,/2)

ky'ja -.u:y E (32-1-n2/2)
n n
&(“t)(xl,yl ) = Ak_ a4k 21_' Wi a’“(kx.31'x11+ky..12'ylz)-
12 ¥ 3g=1 3=t 9172 (16)
« Ak

k
1!31’ 3'932)
(11 - 1.---,“1‘ 12 - 1'.--,'[12)

3.»3, OT® weight factors of the trapezoidal rule (1, 1/2 or
ey, v

The n,-n, double sums (16) can be evaluated most effectively in
the formalism of fest Fourier transform (FFT) which is applicable
under following conditions

Ax + Bk = 2M/n, , Ay - Aky = 2T/n,

If, in addition, the numbers n,
tation time is minimum and (16) takes the form

n n
Alot) (o oy . (-1)1‘I+12 Ak_ Ak i i (-1)J1+Jz W ‘
e o R E P R Py d10d,
C My, g oy g) o exp{2mly 1) (1410 /ny (31 (1o 1) /1)

and n, are powers of two, the compu-

(17)

4.2, Numerical Quadrature

The double integral (13) for the global force is not in the form of
an inverse Fourier transform. Figure 3 shows the structure of one
such typical integrand which must be computed by means of numerical
quadrature.

For this purpose the first quadrant in the ky—diraction is
separated into different strips of width 2Aky as shown in Figure
4. In each strip the step length for kx—integration is adjusted to
the structure of the integrand. The starting step length ak(a) is
chosen same for both the coordinates in such a way that for the
oscillating function of the highest frequency occuring in the
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integrand there are at least 3 integration nodes in a quarter period.
Each strip is divided into rectangles of size 4Akx-2rﬂky . For an
integral over such a rectangle two approximate values are determined
from integrals over elementary rectangles (denoted by the subsecript
erec) according to product Simpson's rule (s. Figure 4).

F(coarsa) - F (2Ak )

rec erec
(fine) (1) (x)
Freo Feracﬁak ) + E.erer.z('ﬂ'k )
The integrals Fif:ne) over each rectangle are then summed to give

the strip integral Fstr‘ the strip integrals in turn are summed to

give the total integral F . Integration over all the 4 quadrants

tot

is performed by taking together in each integral F the integrals

erec
over the mirror elementary rectangles I-IV.

The k —step length is controlled with the help of both the

approximate values F(fine) and F(conrsa! Let
(fine) (coarse)
8F 00 = Freo =~ Freo
and ( )
fine
Ftemp = Fiot * Fatr * Trec

where Ftemp is the temporary value of the total integral. We also
introduce 3 accuracy parameters 6 E and E satisfying E <Eg <£5.
Then, if |AF, I<£‘I?t |, the atep langth 4x is doubled; if
|6Frec|>£}lp |, then Ak is halved; in a2ll othar cases it remains
unchanged.

temp

The integration in a strip stops when
F(flne)l f-lp
is fulfilled. In the computer code we use
-(p+1) -p -(p-1)
€ =10 ; éé = 107P, 83 = 10

where p can be freely choosen.

tamp

If the ky-atep is also determined with the help of approximate
values of the integral, the computation time would become unduly
large, To avoid it, we use an heuristic way. If - is the highest
frequency of the oscillating functions in the integrand depending
upon ky, an upper bound for the ky-atep length is defined by

Ak§’“p) B gfﬁ—-
max
dividing the gquarter period of the function 3in(wnax'ky) into four

22k
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parts, Starting with step length Akﬁa) in the first strip, the
step length in each following strip is doubled so long as it does
not exceed Ak(sup)
constant width Eﬁkisup) until the strip integral becomes

sufficiently small i.e.
[Fatr|‘£2lrtemp|

. Integration is then performed over strips of

4.3. Computation Time and Efficiency

Computation of the global force from (10) and (11) requires five
two-dimensional FFT's (2 FFT's for the eddy current density and 3
FFT's for the excitation field) and one volume integral, On our
computer SIEMENS 4004/55 we can execute an in-core FPFT of maximum
128.128 complex data. All the 5 FFT's and the volume integral then
require 10 minutes computation time. According to (13) the global
force is given by a single two-dimensional integral requiring about
40 seconds of computation time only. Compared with (10) and (11),
this represents a saving in computer time of a factor of 15.
Therefore our method of computation is highly suitable if only
the global force and not the eddy current or force density is
required to be enalysed. An extensive parameter study of basic
systems was done by us on the basis of global force, the results of

which are available in a series of papers Ea]‘

5. Results

The results presented below illustrate a variety of subproblems
occuring in magnetic levitation. For a complete discussion of the
physical aspects of these results we refer to [2, 3] and other
references therein. The system data used in the illustrations are as
follows.

Figure 5. Normal flux system with rectangular magnet:
21 =2my 2b = 0.3 m, I = 0.3 MA, h, = 0.2 m, 4 = 20 mm,
&y = 31 MA/Vm, [P = 1
Full flux system with circular magnet:
2r = 0.5m, I = 0.6 MA, 2h. = 0.5 my Ah = 20 mm, d = 5 mm,
S5 = 31 MA/Va, [y =1

1

0
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Ferromagnetic system with rectangular magnet:
21 =1 m, 2b = 0,1m, I = 0,3 m, h, = 0,1 m, 4 = 20 mm,

6y = 10 MA/Vm, [z " 1000

Figure 6, Null flux system with 5 rectangular magnets of alternating

2

polarity:
21 = 1,15m, 2b = 0.3 m, g = 0.25m, I = 0.6 MA,
2hy = 0.5 m, Ah = 50 mm, ﬁ=5m,6'5-31 MA/Vm, /ur-1,

FLO = 125 kN

Figure 7. Normal and null flux:
21 = 1.15m, 2b = 0.3 m, § = 31 MA/Vm, S = 1
Ferromagnetic:
21 = 1m, 2b = 0.1 m, &g = 0.1 MA/Vm, [or = 1000
Normal flux and ferromagnetic:
I=0.3MA,d=20mm
Full flux:

I-O.Gm,d-5m,2h -0.551

0
Figure 8, Normal flux (upper row): h, =0.2m d =20 mm
Null flux (lower row): 2h0 =0.4my Ah = 20 mm, d = 5 mm
Normal end null flux: 21 = 1 m, 2b = 0.3 m, 65 = 31 MA/Vm,
S
r
- 30 w/s, Vi ™ 05 ==-v, = 30 m/s, v, 2 mfs
-0=v_ = 150 m/s, e 03 -x=v_ = 150 m/s, = 2 m/s
where p=z and y for left and right column, respectively

Figures 9 and 10. Null flux system with two rectangular magnets of
different polarity:
2l = 1.5m, 2b = 0.3 m, q = 0.75m, I = 1 MA, 2h0 = 0.7 m,
4Ah = 10 mm, 4 = 12 mm, G% = 31 MA/Vam, /ur =1, v, = 140 m/s

5.1. Global Forces

The Figurees 5 and 6 show velocity characteristics for 1ift and drag
forces and specific losses in basic levitation systems.

In Figure 5a the situation in a normal flux system with rectangu-
lar magnet is illustrated. The effect of magnet form on the forces
was also investigated. For example, Figure 5b shows the forces in a
null flux system with a pair of circular excitation magnets, Figure
5¢ represents the forces which act upon a rectangular coil situated

below a ferromagnetic track sheet. The 1ift force decreases becaunse
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the electrodynamic repulsion between the coil and the track sheet
is superimposed on the magnetostatic attraction between them.

Figure 6 shows the transition of & conceptusl vehicle with a null
flux system from the rolling into the freely floating state. As long
as the 1ift force is smaller than the vehicle weight G, the vehicle
rolls on wheels with a fixed sag Ah (deviation from the midplane
of the track sheet). When the 1lift force exceeds the weight, the sag
adjusts itself according to the relation

FL(Ah) -G=0 (18)
and the vehicle starts floating. In our computer codes, the relation
(18) is solved by Newton's iteration. As a consequence of this
method we obtein the derivative of the 1ift force w.r.t. sag which
is physically the mechanical stiffness of the system., With
decreasing sag the stiffness increases; with increasing velocity

both the guantities approach saturation values.

5.2. System Stiffness

Figure 7 shows suspension stiffness as a function of velocity under
constant load conditions for the basic levitation systems. All the
10 = 25 kN. For the

normal flux system stiffness remains almost constant with 2 mean

3 diagrams correspond to a constant load of F

value 0.25 kN/mm corresponding to an eigenfrequency of 1.6 Hz. The
system stiffness for the null flux system is much higher (at

Ve = 50 m/a about 6 times larger) and strongly velocity dependent.
The stiffness value at ¥_ = 150 m/s corresponds to an eigenfrequency
of 4.4 Hz which is about 3 times higher than that of a normal flux
system. The stiffness of a ferromagnetic system ie almost velocity
independent with a mean value 0,593 kN/mm corresponding to an eigen-

frequency of 2.5 Hz.

5.3. Intrinsic Damping

In Figure 8 we illustrate the dependence of normalized side and 1lift
forces on transverse and vertical velocities at constant forward
velocity in normel and null flux systems., The perturbing velocities

v_ and v, are assumed to be very small as compared with the forward
velocity Vi and teken to be in the range 0-10 m/B. The normalization
constant for the forces is ?0 - /uoIz/Zﬂ: From these curves intrinsic
damping of the levitation system may be analysed if the quasi static
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forces thus calculated are assumed to remain essentially unchanged
in the dynemic situation involving time dependent transverse and/or
vertical perturbations (such as side winds etc.). Restricting the
perturbation velocity vp (p=y,z) to a range of about 0-2 m/s where
the curves are nearly linear with slope Kp, we can calculate, using
Newton's law, the damping time t% in seconds for the perturbation
velocity vp as FL/FO
» &K (p=y,2) (19)
where g is the gravity acceleration, Since t} depends on the norme-
lized 1ift force, it is independent of the excitation current of the
magnets, other parameters remaining constant. An analysis of the

physice of intrinsic damping in basic levitaetion systems is presented

in [3].

5.4. Eddy Current and Force Density

Figures 9 and 10 show the eddy current and force density, respective-
ly, in the track for a null flux system with two rectangular magnets
of different polerity. Figure 9a is an orthographic projection of
the x-component of the eddy current density which shows clearly that
the x-component is maximum under the longitudinal conductors of the
excitation magnet coils.

The y-component of the eddy current density (Figure 9b) is
largest under the transverse conductors of the excitation magnet
coils. Since for different polarity of the excitation magnets the
currents in the neighbouring pair and in the far pair of transverse
conductors each flow in the same direction, both pairs of the inner
and external peasks in the y-component each have the same sign. For
same polarity the signs, for example of both the right peaks, will be
reverse. The eddy current stream lines shown in Figure 9c have a
twofold meaning. Firstly they give the direction of the eddy current
field; secondly between two neighbouring flow lines the same amount
of current always flows i.e., the nearer the lines, the higher is the
eddy current density.

The orthographic representation of the 1ift force distribution
(Pigure 10a) shows that the major contribution to the 1ift comes
from the longitudinal conductors of the excitation coils while the

drag force mainly stems from the transverse conductors. Figure 10b
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shows lines of constant 1ift force acting upon a volume element of
the track sheet.

6. Track of Finite Width

Recently, we have extended the above semi-analytical method of
computation to sheet tracks of finite width. The main difficulty had
been as follows: Whereas in the case of infinite sheet track the
Fourier components of the exterior and interior magnetic field show
a unique one to one correspondence via the boundary conditions, such
a correlation does not exist for a track of finite width. It is
therefore necessary to reduce the problem to a mathematically well
defined interior boundary value problem, the solution of which does
not require any knowledge of the exterior field. The results of this
calculation will be presented elsewhere,

This work has been supported under the technological program of the
Federal Department of Research and Technology of the FRG. The

authors alone are responsible for the contents.
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Basic Principles

T

Repulsive Attractive
linductive) (ferromagnetic)
Metallic loops Metallic sheets  Ferromagn. sheets
(rings or coils) (continuous) (solid or laminated)

Single magn. Double magn. ISingIe magn. Double magn. Single magn.F

/N |

Normal flux Null flux BrakelluxINcrma1 flux Null flux Brake flux Normal flux |
Lift, guide  Lift,guide |Lift, guide  Lift guide Lift, guide I

1 —
= B = ] -

Figure 1: Basic types of magnetic levitation systems

* —— ___|I
l il T (Region1)
0 ' +d/2
Symmetw‘d_?l—d { e —= e - (Reg;on 3)_——f—_—_‘ z:0
plane 1 : 1 T ——-d/2
T hy (Region2)

Figure 2: Schematic diagram of arrangement used in this analysis
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NULL-FLUX

Drag Force Integrand
v, =30m/s

Figure 3: Typical integrand in k-space for global drag force
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Figure 4: Numerical quadrature in k-space
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Figure 6: Transition from rolling to freely floating state Figure 8: Effect of lateral and vertical velocities on side and lift forces
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Discussions following paper:

(Roster, Chain Ltd) Your expression for the force demsity on the
conductor is,

P (x,y,8) =17 (eddy) xB (excitation)
This does not appear to account for the self-interaction of the eddy
currents., An expression for the force density which includes this
effect is,

P (x,y,28) = J (eddy) x B (excitation) + B (eddy)
Why have you neglected B (eddy)?

(Krause, Sicmens) The cross—product between eddy current and its own
field leads to internal stress in the sheet track which is uninteresting
in the problem at ‘hand and hence left out in eqn. (10). The force
density we want to analyse here is due to the interaction between the
current distribution in the sheet and the excitation magnet field.

An analogous argument holds for eqn. (12).

230
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Three dimensional eddy current calculations

W Wolff, ARG Telefunken, Buchslag, West Germany

I) The solution of the magnetostatic equations

For the solution of the three dimensional
magnetostatic equations we used the scalar potential as

system quantity.

The basic idea of the applied method is the
following.

a) H=H, - grad ¢
1) b) curl H = curl gi = i,

c) diV}l grad ¢ = diwv /J.Ei

The magnetostatic field H is split wup into two parts.

The first one ﬂi only has the same curls as the magnetic
field has. Therefore the remaining part is eddy-free and

can be expressed by the gradient of a scalar.potential ¢ .

The scalar potential is defined by an elliptic differential

equation (eq. 1c¢), for which optimized numerical solution
methods are well known. Because the curl-field Ei can
have any sources there is an infinite number of solutions

fulfilling eq. 1b). This fact can be used to pick a simple
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one calculable in a negligible time. Eg. 1b) was solved
by discretization, too. Since the solution is not unique,
the resulting linear equation system has more unknowns
than equations. It is possible to combine the unknowns
systematically in such a way that this linear equation
system becomes recursive, and so the solution is

uncomplicated.

In short, one can say : the magnetostatic problem

is solved in a satisfactory way.

II) Extension to the solution of the time

dependent Maxwell-equations

a) Basic equations

The question is:
can the described method be extended to the solution of

the time dependent Maxwell-equations.

To solve the time dependent Maxwell-equations we
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have to distinguish between a given current density iSt
as already introduced in equation 1b) and a current density
iw, induced by the resulting magnetic field. From here on,
the displacement current will be neglected, so the
divergence must be zero for both the given and the induced
current density and the curl-field Ei can also be split
up into two parts.

o) H, =Hig + 8y

b) curl ﬂiSt = iSt

2) \c) curl H, = i
—iw ~ —w

d H=H. . +H_ - grad# v
e) d:l.\r/.l grad ? = d11.r/1 (_Iiist + ﬂiw)
For a known vectorfield Eiw the equation system does
not differ from the magnetostatic one. That means, the
solution of the time dependent Maxwell-equations requires

the additional calculation of the vectorfield Eiw‘ only.

According to equation 2¢) H, ~— is the
vectorpotential of the induced density. To eliminate éw’
we substitute curl —Iiiw in the second Maxwell-equation

for i and obtain eq. 3b).
=

a) E = 1/3 i, = 1/@ curl H,

C e S
3) b) curl /¢ curl H, =-a% n (H +H o -grad $)
d
c) curl curl H, = —éH/u (H; +H. g -grad ’ﬂ)
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The total time derivitive is allowed if the velocity is

low compared with the velocity of light. If the space,

in which the eddy current calculations take place, is
surrounded by insulators, boundary conditions at its
surface can be formulated. With the further assumption of
constant conductivity d inside this space equation 3b) can

be multiplied by 8 and we have the more simple equation 3c)

b) Boundary conditions

Outside the eddy current space the eddy current
density is zero. So curl Hiw is zero, too, and ﬂiw can
be represented b? the gradient of a scalar function Pw.

Then for the magnetic field we have, according to eq. 2d)

H = Hg, + grad Sﬂw-grad?i

Because H is defined uniquely by the potential equation
2b), for each ¢w the potential ? is determined accordingly.

We put ¢ = const for the sake of simplicity. That

means that outside the eddy current space Eiw = 0 is wvalid.
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Because curl Eiw is a limited quantity the tangential
component Hiwt of Eiw must pass the surface of the eddy
current region steadily. So we have the boundary condition,
that the tangential component Hiwt must be zero at the

total surface of the eddy current space.

c) Time dependence

I suppose, for optional time dependence and field
dependent permeability the problem is not yet soluble in
an acceptable computation time. For the solution of this
four dimensional problem additional numerical methods have
to be developed especially those, concerning the solution
of large linear equation-systems and a suitable dis-
cretization of differential equations. Provided all the
field quantities have the same time dependence the problem
can be reduced to the solution of a three dimensional one.

This assumption includes a permeability depending on locus
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only and is strictly wvalid for non-ferromagnetica. For
ferromagnetica the usual conversion of the permeability

curve has to be carried out.

The following considerations provide both a
sinusoidal time dependence and time dependent effects
caused by moving bodies. In the latter case the
restriction has to be made, that the cross section of the

moving parts must be constant in the direction of movement.

For all the quantities the time-dependence is

expressed by eJh& and all the movements are assumed in

the X-direction, having the velocity Vy- Eq. 3c¢) can then
be written in the final form eq. 4a)

~

S T
_1lw —lW
~d i -~ a Al B
a) curl curl Eiw+3ﬁnﬂiw*vx ax;pﬂiw = .
N Ll o~ 'a -~
) mdwp (B oy -gradf) - v 5o n (H;gy-grad )

- ~
b) div’}.l. grad ?3: div/'u. (_I-_I_ist + -I—Iiw)

The sign above the quantities signifies that these

gquantities are the complex amplitude, only.
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d) Solution

One is used to the divergence of a vectorpotential
being arbitrary. If this holds in our case, too, according
to equation 4b), a suitable selection would be
div&p Eiw =~D, because then the potentiai a does not

depend on and the calculation of iﬁ would be definitive

H, ,
—iw
We had the following direct way of calculation : First the

computation of HﬁSt needing the given current density,

only. Then the computation o£ a for the known ﬂiSt and

at last the calculation of ﬂiw'

In reality the solution is more complicated. Because
we put ﬂiw = 0 outside the eddy current space, le}P Eiw
cannot be made zero at the surface.

At the surface the normal component of Eiw jumps
according to the jump of the tangential component of the
eddy current density, that meansrthe eddy current causes
sources of the magnetic field at the surface, which depend

on the resulting field. So we have to solve the two

234
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equations %4a) + b) by iteration. We start with an
estimated value for H. , solve equation 4b) and
substitute the result for ¢ in equation %4a). The

iteration-prescription is:

a)  div u grad $(0)= div n (EiSt + Eii"-l))
~ (v) 2 I (v)
5) b) rot rot Eiw - PV R% Hiw &

et x(v)
B Ty 'alx (Higy + grad p°°7)

-

With the yielded value for Hiw we calculate an

improved approximation for ¢ by means of equation 4b) and
start again. The procedure will be stopped if the power

balance is fulfilled sufficiently.

e) Discretization

For discretization of equation 5b) the same grid is
used as for discretizing the potential equation 5a). In
this grid the scalar potential is defined at the nodes,
marked as dots in Fig. 5. The components of the magnetic
field ﬁ are calculated by dividing the difference of two
neighbouring potentials by their distance. So the component

directed from one node to the other one is defined in the
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middle of the two nodes. Because of this lay down the

according components of H and are defined at

—=isSt ﬂiw
the same positions.

~

In order to calculate the x-components of Ei , for

w
example, one has to integrate over all the planes parallel
to the grid planes x = constant. At the boundary of each

-~

integration plane, Hiwx is tangential component with

respect to the total eddy current space and therefore zero.

So we obtain equation systems containing the unknown

components of one plane only.

By introducing a suitable numbering at each

integration plane, it is possible to calculate the
~

components of Eiw directly, for example, by means

of Gaussian algorithm.

If no moving bodies are present convergence is

uncritical. With a velocity unequal zero, however, the

Steady State C4

above mentioned iteration procedure diverges if one starts

: ~ (o

with ﬂi% ) = 0. Convergence is obtained, if one starts
2 ~~lo

with Hiw ) necessary for total field displacement in

the eddy current spaces, the so called ideal diamagnetic

case 9u = 0).

III) Some results
a) Electrodynamic levitation systems

For example the forces in electrodynamic levitation
systems were calculated. Fig. 1 shows the set-up as used

for basic experiments.

In principle, it is a rectongular coil moving with
constant velocity above a conducting plate. The plate is
infinite in the direction of movement and has constant cross
section. It is 10 mm thick and 160 mm wide. The coil has a
length of 200 mm, a width of 85 mm and a cross section of
15 % 15 mmz. The exciting current is 48000 A.
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The complete lines of Fig. 2 show the levitation force and
the drag force, caused by the eddy current in the plate,
versus the velocity of the coil. The parameter is the
distance Zo between the coil and the plate. In the lower
curves the distance is 90 mm and in the upper curves 70 mm.
The levitation force increases constantly with increasing

velocity.

The drag force has a maximum at about 15 m/sec. The
broken lines show the respective measured results. The
discrepancies are mainly caused by the limitations of the

experimental model set-up:

The infinite plate was represented by a round strip
mounted on a rotating disc, so that the velocity was not
uniform and the distance ZO was enlarged by the reaction

force, during experiment.
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Fig. 3 shows the current flow patterns at the upper
surface of the plate for 18 km/h, 36 km/h and 540 km/h. In
the patterns for 18 km/h two eddies can be seen, caused by
the increase and decrease of the magnetic field of the
coil. The centre of the eddies moves with increasing
velocity opposite the direction of movement, as it can be
seen comparing the patterns for 36 km/h with those for
18 km/h. At 540 km/h the rear-eddy has vanished and the
front-eddy has shifted its centre to the centre of the

coil.

Because of the symmetric set-up with regard to the
y-direction, the side forces are zero in the cases dealt
with before. For small displacements a linear increasing
destabilizing side force occurs. Fig. 4 shows the side

force versus the displacement .
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b)

Eddy current calculations in iron rotors

To demonstrate an application in material with
locus dependent permeability the eddy current
distribution was calculated in an iron rotor. For
sake of simplicity rotor and stator are fixed and

the excitation consists of one coil, only.

At first, the magnetic field was calculated for
dec-excitation regarding a field dependent
permeability. This permeability distribution
remained unchanged during the eddy current

calculations.

Fig. 6 shows the real component of the magnetic

field in the symmetry plane caused by an

ac-excitation and the eddy current. In the rotor the

magnetic field is mainly displaced.

Fig. 7 shows the imaginary component.

Steady State C4

Fig. 8 shows the real component of the eddy current

at the surface of the rotor and fig.

component .

9 the imaginary
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Discussions following paper:

(Miller, Leeds) I would like to ask Dr Wolff what boundary condition
he uses at the edges of the strip conductor, where the eddy-current is
deflected into the transverse direction. When this problem is

approached using magnetic vector portential A there appears to be some

uncertainty about this boundary condition. In physical terms my question

asks whether charge appears on the strip edges.

(Wolff) The above derived boundary conditions for the vector potential

are also valid at the edges. Whether charge appears or not cannot be
answered by me, because we do not calculate the electrical field

especially.

(Carpenter, IC) Dr Wolff's formulation is somewhat similar to that which
we shall describe in paper number 38, but with one important difference.

The electric vector potential function which Dr Wolff denotes Hist

as he points out, one of a range of possible functions., We have used

the symbol T. in conducting plate problems such as that described by

Dr Wolff the component of current Normal to the plate surface is usually

negligible, and, as we have shown in paper no 7, this makes it possible

to restrict T to a single component, The calculation is then reduced

to two functions only ( T and £, in our notation). I would like to ask

Dr Wolff if he has considered this possibility. " In general (as shown

in paper 7) the three components of J can always be described by a T

function which is limited to two components, and I wonder if there is any

advantage in using three, °

It is perhaps worth pointing out that Dr Jacob's equations in terms of

a current flow function (paper 38) is essentially the same as Dr Wolff's

but with the equivalent of the single-component T function,

(Wolff) Because of the lay boundary condition that the vector-potential

is zero outside the eddy current space the three components of the

vector-potential are determined uniquely. The advantage of the boundary

condition at the surface of the eddy current space are the small

equation systems for calculating the components of the vector—potential,

is,

Steady State C4
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EFFICIENCY OF NUMERICAL TECHNIQUES FOR COMPUTING EDDY CURRENTS
IN TWO AND THREE DIMENSIONS

C.J. Carpenter* and E.A. Wyatt*
ABSTRACT

The paper reports recent work on numerical techniques for solving eddy
current problems in terms of a scalar, instead of the conventional vector,
magnetic potential function. A method described previously for thin
plates has been extended to large-section conductors, and gives high
convergence rates when solved by iterative methods provided that
suitable numerical techniques are used. These techniques are described

in the paper. The method is particularly well suited to three-
dimensional problems, but it also gives better convergence than the
conventional method of calculation in many two-dimensional problems of

practical interest, particularly in electrical machines.

PRINCIPLE SYMBOLS:

magnetic scalar potential
angular frequency

mesh element ratio (fig.l)
pole pitch

B  magnetic flux density T electric vector potential (equ.6)
d depth of penetration (equ.l1l0) x solution vector

E electric field intensity X,¥,z. coordinates

f column vector of constants o  travelling-wave term (equ.22)

H magnetic field intensity B constant given by equ.23

h  mesh interval u  permeability

J  current density ¢ conductivity

L  coefficient matrix T time

N Q

p w

* Electrical Engineering Department, Imperial College, London SW7 24Z.
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1) Introduction

Eddy currents induced by leakage fluxes are of increasing import-
ance in large electromagnetic devices such as turbo-generators, trans-—
formers, and the like, where increasing sizes and ratings may lead to
severe heating problems, Eddy currents are induced in all conducting
parts in the vicinity of the windings, particularly in the end-regions;
and the end-surfaces of the core commonly need some form of screening.
The eddy current and loss densities are difficult to predict because the
problem is three-dimensional and the iron parts may be laminated and
are liable to severe saturation. The magnetic vector potential, like
the field vectors, has three components and, in general, it has to be
supplemented by an electrostatic scalar potential, so that field
calculations in these terms become formidable.

The obvious advantages of a magnetic scalar-potential formulation
in magnetostatic probleﬁs, some aspects of which are discussed in a
companion paperl, assume an even greater significance in computing
eddy currents. It is necessary to compute only one function outside
the conductors, and excellent convergence is normally obtained when
the differential equation is solved iteratively. A supplementary
current-flow function has to be used inside the conducting regions, and
this is, in general, a vector quantity, but it can usually be limited
to one component, and it has been found to be well-behaved numerically
when applied to problems in which the current flow is confined to thin
sheetsz. This formulation can be applied to conductors of large cross—
section either by assuming continuous conducting properties, by
replacing them by a stack of thin plates, or using an "onion skin"
model consisting of a set of concentric layers. Some of the possibilit-—
ies have been discussed elsewhere s

In the typé of problem considered here the more important conduct-
ors consist of laminated iron cores, or non-magnetic plates whose
thickness is limited (although it may often be substantially greater
than the depth of penetration at the working frequency). Under these
conditions the current density component normal to the major conductor

surfaces is negligible (i.e. the z-component in fig.l), and it is
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convenient to assume that it is zero in all conductors, whether laminated
or not. The effect of removing this restriction will be discussed
separately.

One of the devices of interest is a linear induction motor consist-
ing of a conducting plate in an air gap between two iron surfaces, ome
carrying a winding in slots. This machine has been studied partly
because the flux distributions are easily obtained experimentally.

The principal parameters are given in figure 1. The winding generates a
flux wave travelling in the y direction, and gives three—dimensional
flux and current-flow patterns for which a two-dimensional description
is adequate. This simplifies experimental work and is directly
applicable to many end-field problems.1 Varying the pole-pitch in the

numerical model of the machine changes the field conditions from a rapid

variation in the y direction, at one extreme, to a simple two-dimensional

2 _______
: E 7.3cm
g3 ° 1; I R2
ks 7SS S SN
4  m 6
k Nh : RI 28cm
e | } X
. : A ALEA AV
I k— 6.3cm-—=1
: 35 I
|
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o _}
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Fig. 1 Induction machine geometry.

Machine 380 mm long, pole pitch 95 mm -8
"Duralumin" plate, resistivity 3,02 x 10 ° §m, thickness 6.35 mm
Mesh NWh = 4.67 mm h = 2 mm in region R1

h = 4.5 mm in region R2
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result, at the other, when the pole-pitch is infinite. The more general

three~dimensional problem has been studied previouslyz using thin plates.
Early experience3 with the scalar-potential method suggested

that it had very considerable advantages in eddy-current problems not

only in three dimensions, but also in two, because of its numerical

behaviour when solved iteratively. This has now been more closely studied

and the betaviour of different numerical formulations compared. The

object of the paper is to report some of the results of these studies,

and the preferred numerical formulation. The method is applicable to

both transient and steady-state problems, but for the present purpose

all time variations are assumed to be sinusoidal, with angular frequency u.

2)  Formulation

The problem is to solve simultaneously the magnetic field equations

curl H=J 1

div B =0 (2
together with

curl E =~ j w38 (3

div J =0 (4

in which all the quantities are vectors with three space components, each
of which is complex. The usual two-dimensional method is to satisfy
equation 2 implicitly by expressing B as the curl of the magnetic vector

potential, A, giving

v2A = (57ah)(a - grad V) s
where A is assumed to have zero divergence (Coulomb gauge). The
electrostatic potential, V, adds an electric field component which is
constant inside each conductor in a two-dimensional problem, but is not
in three dimensions, where surface charges appear at all the conductor
surfaces as a consequence of equation 4.

One alternative is to use an electric vector potential,T, defined

by

curl T = J (6
and to confine T to a simple function by placing some other constraints

on it and allowing it to have an arbitrary divergence. As is shown in
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reference 1, T can be restricted to one component, Tz’ inside the conduct-
or, with zero value outside and a constant value in any conductor
hole, provided that Jz is zero. Assuming uniform conductivity, o, equat-—
ion 3 becomes
v2 1 =320 Jax® + 2%T /oy’ = j @ oB (7a
X,¥ z z z z
when expressed in terms of T in Cartesian co-ordinates. Here '1'z is

operated on only in the x and y directions. From equations 1 and 6
H=T- grad @ (8

where I denotes a magnetic scalar potential function. It follows from

equation 2 that, in a non-magnetic conductor,
2
Ve =0T /32 (9

where the vz operator refers to all three directions, in the usual way.
Outside the conductors (or in windings in which J, and therefore T, is
specifiedl) H can be obtained by computing @, whilst in the eddy-

current regions both equations 7a and 9 have to be solved. The sources

of @ - i.e. the right hand side of equation 9 - are equivalent to magnetic
poles distributed through the volume of the conductor, but concentrated
primarily at the upper and lower surfaces where T is discontinuous.

Substituting from equation 8 in 7a,

2 .
x,y'l‘z - e, - an/az) (7b

where d is the depth of penetration defined by

62 = llmuoo (10

The pair of equations, 9 and 7b have to be solved simultaneously for Q
and Tz, respectively. One is Poisson's equation, and the other a form of
the Helmholtz equation, but with a two-dimensional operator and an
additional source term.

In a travelling-wave type of solution all quantities are assumed to

vary sinusoidally with y, and with time T, so that Tz, for example,

2l
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takes the form

Tz(x,Z)exp jlut -my/p + @)

so that the second derivative terms in y can be written

aszfoz — -(nfp}sz (11

and likewise for Q.

In expressing these equations in discrete form the Q@ nd Tz
functions inside the conductors are not restricted to a common node array,
and the first-order derivatives on the right-hand sides of equations
9 and 10 suggest some advantages in computing them in two staggered
arrays. The directional properties of the various terms, together
with the discontinuities in both grad @ and T at the conductor surfaces,
introduce a range of possible numerical treatments, and each of the pairs
of simultaneous equations obtained can be solved by elimination, line,
or point iteration in various combinations.

These possibilities have been somewhat restricted by adopting a
first-order (linear) interpolation in a rectangular node array,
since this is well suited to the problem under consideration. An
investigation of staggered meshes (the"split- branch" formulation4 )
showed that these have no significant advantages in either accuracy
or numerical behaviour over a single mesh in which @ and TZ are
computed at the same nodes.

In general the conductor surface may intersect the mesh between
nodes, but it is usually convenient to place nodes on it, as shown
in fig 1. To compute Tz from equation 7 at a surface node, O, Hz is
required at the discontinuity. From equation 8, the l-lz value mid-
way between nodes 0 and 2 is

(HZ)02 = @ - ﬁz)z’h a2z
and between 0 and 4,
(H,)

(T0 + TQ)IZ = @ = Rajfh (13

40

Here the z suffix has been dropped from TZ as it is superfluous.

o}

The two values can be averaged, or alternatively Hz at node O can be



Compumag Oxford, 31 March to 2 April 1976

derived from the underside values according to

(I-lz)o = (Hz)AO - (aHz;a z)0 h/2 (14

where
(BHzfaz)OZ-(al-lxr‘ax + aHnyy)o

since div H is zero. Hence

o il B 2 2
(3H_/32), = (3°R/x" +23°Q /3 y) @s

and this can be expressed in terms of the nodal values of f in the

usual way. The required Hz can likewise be derived entirely in terms of @
from values on the surface and above by substituting from equations

12 and 15 in

(Hz)0 = (H),

The results obtained from equations 14 and 16 will be identical

2 " (aHzlaz)G h/2 (16

when the solution has converged and the continuity condition (equation 2}
has been met, and likewise adding 14 and 16 together shows that averaging
the Hz valueé above and below the node also gives the same final result.
But at the earlier stages of the calculation the continuity condition

is not satisfied, and it has been found that the different formulations
give very large differences in numerical behaviour when iterated. In
general, the use of asymmetric expressions for Hz has been found to
produce poor convergence, and can lead to numerical instability,

depending on the sequence and method by which the 2 and T functions

are computed. No such difficulty has been encountered when using the

symmetrical expressions
w), = [@)y, + @&),,1/2 az

where the two terms are given by equations 12 and 13, and this form of

dependence has therefore been adopted.

At the conductor surface the discontinuity in the right-hand side
of equation 9 can be represented by treating it as a sheet source,

in which the equivalent pole density is numerically equal to Tz, per

Steady State C5
unit area. Alternatively, from equation 8,
9H /3z = 3T /dz - azﬂfazz
z z
so that equation 9 can be written
2
v = 3H_/3z (18
X,y %
where
(oH,/32) = [(H ), = (H),,]/ b (19

Hence the nodal forms of equations 7 and 9 at the conductor

surfaces are

Ty ¢ T# v’ [@,-2)/m - 1,/2] - @+ iN%g/2 +a)T_=0 (20

a4y + N[yt 2, + (T4 O0/2] - @ + 20+ @)a =0 21
where

« = (mn/p)? (22

e B = h’/2d° (23

When equation 21 is derived by the equivalent pole-sheet approach

the ('I‘0+T4)!2 term is replaced by TO, and this provides an
alternative approximation of the same accuracy. More general express—
ions for T0 and Q

(4]
interfaces at which the conductivity takes different values on the

can be derived in the same way for conductor

two sides, neither zero. At nodes at which the conductivity is
uniform, equations 7 and 9 become:

2 con 2 _
T +T, + JNTB(@, -0, )/h = (2+j2N°8 + )T =0 (24

2 v 2 B
a4, + N (0, + 0, + (T,-T,)h/2] - (2+428°+ a) @ = 0 (25

4
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3. Methods of solution

The method was compared with the conventional magnetic vector
potential (A) formulation in an initial study of the linear motor. To
simplify the A calculation the problem was assumed to be two-dimensional.
Consequently the pole pitch was made infinite. The scalar potential,
when calculated by simple point iteration with unity acceleration
factor, required 850 iterations to reduce the maximum error to 2 x 10_5
of the maximum potential in a rectangular mesh of 202 nodes (with
machine proportions somewhat different from those shown in fig.1).

The dominating effect of the iron surface made the convergence of the
A calculation too slow to be practicable without various acceleration
techniques (including specifying the flux linkage instead of the
excitation current), so that quantitative comparison is difficult

and is not necessarily very meaningful because it is problem-dependent.
But, in general terms, the well-known advantages of the scalar-potential
formulation in regions bounded by iron, because the Neumann condition
which is imposed on A is replaced by the Dirichlet condition, are
retained in eddy-current calculations. It has been found that the
ratio of the convergence rates is reduced as the frequency is raised,
but it is greatly in favour of the scalar potential formulation at the
working frequency of the machine.

Nevertheless, the preliminary results showed room for further
improvement, and experimentation with different methods of computing
1 and Tz showed that not all of them converged well, whilst some
diverged. The numerical behaviour was therefore examined more closely.
The full set of finite difference equations for all nodal T, and 9

values takes the form
Ly El(Q,Tz} 3 El (26
where Ll is a sparce coefficient matrix, X is the vector of Tz and @

values, and fl is a constant vector that incorporates the boundary

conditions. Although the values of the elements of Ll depend on the way

in which Hz and BHz}Bz are approximated numerically, L1 has some
properties that are independent of the finite difference approximation
used, The finite direction graph technique described by Vargas shows
that Ll is not consistantly ordered and does not satisfy Young's

"Property A." Furthermore, L, cannot be diagonally dominant, though
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it may approach this condition when the simultaneous equations are
suitably manipulated. The manipulation takes the form of elimination
of some 'I‘z and @ terms. The equations are derived from two different
coupling conditions, namely the induced current equation 7, and the
magnetic continuity equation 9, and numerical experimentation has shown
that best convergence rates can be achieved if these are separated.
That is, 26 is separated into two simultaneous matrix equations of the

form
L%, (T,) = £, + g, (@) (27)
L353(Q) = £3 + 83 (Tz) (28)

where f, and Eé incorporate the boundary conditions, whilst 8, and £3
are functions of 0 and T, respectively. The coefficient matrices L, and
L3 depend on the numerical approximation adopted. It is found that
Ly and L, are consistently ordered and satisfy Young's "Property A",
although neither is diagonally dominant. Furthermore, LZ’ but not LB’
can be tri-diagonal. It has been found that the Tzcalculaticu is less
well-conditioned than the Q one (partly because the operator diff-
erentiating T, has one less dimension than that operating on ) and
improvements depend on an increase in the number of T, iterations. This
causes relatively little increase in the computing time per complete
cycle because the Tz calculation is confined to nodes in conductors.
There are advantages in solving equation 27 by matrix inversion,
particularly when the finite-diference approximation chosen makes L2
tri-diagonal, and this gives a part line-iteration method.

In a typical calculation, the substitution of equations 27 and
28 for 26 and computing Tz by 10 Gauss-Seidel iterations per step of the
main iteration cycle improved convergence by a factor of 5 (to 173
cycles). The computing time was reduced by a factor of 3.5.

One consequence of the consistent ordering of the L3 matrix is

6,7

that the Carréu S5toll method may be used to calculate the best

acceleration factor, and this has been found to work well in practice.
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4) Results

The linear motor used for test purposes was excited by a 3-phase
winding arranged in 3 slots per pole in the laminated block on the under-
side of the air gap (fig.l). The computation method was tested for vari-
ous thicknesses and positions of the conducting plate as well as at
different frequencies, but experimental measurements were limited to a
plate having the thickness shown in fig. 1l placed on the lower iron
surface. This left an air gap above the plate in which the flux density
measurements were relatively unaffected by slot harmonics. The plate
width was reduced below the normal value to increase leakage effects.
For the field calculation a mesh of 661 interior nodes was chosen with
approximately square elements in the end-region Rz, and rectangular
elements with a length-breadth ratio N of 2.25 in the air-gap region R;.
The scalar potential field sources consisted of current sheets on the
surface of the bottom laminated core, together with sheet pole-type

sources on the end-winding surfaces (the T' function of ref.l).

A contour plot of the real part of the 0 function is given in fig.2.
Here the field in the R2 regions is compressed by treating all nodes,
for plotting purposes, as having the same spacing as in the region Rl.
The imaginary part of R in the air gap and in the plate is drawn to an
enlarged scale in fig. 3. The diagrams show the discontinuity in the
normal gradient of @ at the plate surface which is caused by the

discontinuity in T.

As is typical with these proportions, the variation of T with z is
comparatively small, although the depth of penetration d is only 207
greater than the plate thickness. The variation of T with x and y over
the entire plate is shown in fig.4 for one instant of time (the calcul-
ation assumes no end-effects in the y direction). Since T varies sinu-
soidally with y, as well as in time, the real and imaginary parts are
obtained by choosing appropriate sections of the diagram. It is note-
worthy that T(x) is approximately sinusoidal.

5

The solution converged to a potential error of 2 x 10 ° of the
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maximum potential in 74 iterations, and the convergence rate was found
to be virtually independent of frequency over a range of 40 to 1. The
acceleration factor, computed by the Carré-Stoll method, settled to a
final value of 1.707 + j 0.0047, with a sufficiently high convergence

rate to make its initial value (unity) unimportant.

Computed and measured values of the magnitudes of the two large

flux-density components are plotted in fig. 5 as a function of x. The

measurements shown were made in the mid-plane of the machine, where end-

effects were expected to be least. Somewhat higher values were observed,

in other planes. Under travelling-wave conditions, equation 8 reduces
to

Hy‘ =j(m /p) @
so that the y component of B provides a direct measure of 2. The
purpose of the machine is to produce force in the y direction, and this
force was measured and compared with the computed value to obtain a
convenient criterion of solution accuracy averaged over the plate. The

calculated force was 4.4%7 less than that measured.

The agreement between the calculations and measurements provided
adequate confirmation of the former, in view of the approximations made,
particularly the neglect of end-effects. Since the programme is a small
one it could be readily extended to include thesez, but a more detailed
study was not considered worthwhile. The principal objective was to in-
vestigate the numerical behaviour of the @ and T functions for plate
thicknesses representative of practical devices, and this behaviour

is little affected by the way in which the y variations are modelled.

5) Conclusions

When computing eddy currents numerically the formulation can be
expressed in terms of one of a range of possible quantities, all vectors,
inecluding the four field vectors (H,B,E,J) and the two vector potentials
(A and T). The work described has confirmed the substantial advantages
in choosing an electric vector potential, T, as the current describing

function, defined so that it is constant or zero outside the conductors.

2L7
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As in magnetostatic applications, this reduces the field problem in the
non-conducting regions to that of computing a function 2 which is both a
scalar and which is well-behaved numerically in regions bounded by iron.
Inside laminated and plate conductors the associated T function can be
limited to one component. Its interaction with § can be expressed
numerically in a variety of ways, and many, although by no means all, of
these possibilities have now been explored. Poor convergence, and even
divergence, has been experienced with some, but the preferred methods
give excellent convergence in a device which typifies many power-freq-—

uency applications.

The method assigns @ and T values to the same nodes and is suitable
for line iteration of the T values. Accelerated point iteration gives
convergence which is very much better than that of the magnetic vector
potential A function in regions.bounded by iron, and the technique is
well suited to both two- and three-dimensional calculations. The form of
the matrices is such that the Carré-Stoll method for computing acceler-

ation factors automatically is very effective.
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Discussions following paper:

(Perin, CERN) I should like to point out that the vector T was used,
for the static case, about 20 years ago for the computation of the AGS
magnets at BNL. Again a long time ago it was used by R Christian in
his magnetostatic program Sybil and by myself at CERN in the MARE

program.

(Wyatt) I thank Mr Perin for his comments. It is all too easy to
give the impression that the method presented is entirely new when

this is not the case., Maxwell himself was responsible for the idea
of using a current flow function, though only in scalar form. Our
contribution is that we have extended the flow function concept, using
the electric vector potential T, in order to solve eddy currents in two
and three dimensions.
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THE CALCULATION OF MAGNETIC FLUXES AND

EDDY CURRENTS IN GENERATOR STATOR CORES

DAVID A.H. JACOES

Research Department, C.E.G.B., Leatherhead, Great Britain

ABSTRACT

The time dependent electromagnetic fields in stator cores of

large generators have been determined by a numerical solution procedure.

The outline complex three dimensional geometry is modelled, and the
saturable laminated structure of the core is included. The method has
been ratified with measurements from large generators, and can be used
to investigate the changes in the electromagnetic characteristics of
generators occasioned by design modifications, changes in material, or

material properties, and other alterations.
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NOMENCLATURE

Vector potential

Magnetic flux density vector
Electric field strength vector
Magnetic field strength vector

Saturation magnetic field in the
Fréhlich permeability relation

= v-1
Current density vector

Source term in the stream
function equation

Radial coordinate

Time

Position vector

Axial coordinate

Unit axial vector

Stacking factor

Permeability tensor

Fourier components of permeability components
Permeability of free space

Zero field relative permeability of irom

Limiting relative permeability of iron

Electrical conductivity tensor
Magnetic scalar potential
Fourier components of ¢

Eddy current stream function
Fourier components of §
Angular velocity of rotor
Induced eddy current component
Value in iron

Iteration number

Vector components
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1. INTRODUCTION

It is highly desirable to put the art of designing large
generators onto a firm scientific footing. Moreover during the life of a
generator, the type of use and the load conditions it has to meet are
likely to vary very considerably, and in order to be able to use the
generator most efficiently it is necessary to predict the behaviour and
characteristics under these different conditions. 1In this paper we
concentrate on the derivation of the electromagnetic solution in the end
region of a generator, including the radial air gap, the stator conductor
slots and the stator core. The model developed includes a description of
the three dimensional geometry, the radial cooling ducts, Pistoye slots,
variations in the laminate constitution of the stator core, and the eddy
currents in the laminate.

The aim of this work is to determine the relationships between
the electromagnetic state of a generator and the thermal losses, both total
and also local distribution, due to the induced eddy currents in the stator
core. In principal, since some electromagnetic losses are inevitable, at
least in conventional machines, suitable forms of cooling must be used
where necessary to dissipate the induced thermal generation, and the
channels incoporated in, for example, the stator through which the coolant
passes, interact with the electromagnetic characteristics. It is therefore
necessary to consider the cooling arrangements, together with the thermal
conduction and convection treatment of the stator core and coolant, bound
in with the zlectromagnetics. However in this paper, for simplicity and
brevity, we only consider the electromagnetic problems.

2. REDUCTION OF THE BASIC FIELD EQUATIONS

The iron stator of a generator is not only a complicated

geometrical shape, being basically cylindrical with axial teeth cut on the
inside bore, together with radial and axial cooling ducts, Pistoye slots,
etc., but it is also composed of a laminated material designed to confine
the induced eddy currents to flow in planes normal to the machine axis.
With existing computers it is not possible to represent the individual

laminations explieitly, nor is it strictly necessary; instead in our model

the laminated structure of the core is replaced by an equivalent homogeneous

material with anisotropic non-linear properties. This will be considered
more fully in section 7. We use cylindrical polar coordinates (r,8,z) to
describe the geometrical configuration which together with the associated

simplifications will be considered in section 3.
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The effect of hysteresis is ignored throughout the calculationm,
although as explained in section 9 the thermal generation caused by
hysteresis effects can be estimated from the derived electromagnetic field
solution.

We now derive the partial differential equations from the basic
field equations. Within the stator core we assume that no eddy currents
flow in the axial direction because of its laminated structure, so that
the conservation of charge gives
CRS .

— = 0

6

3 e 1 3 o
div J s (r Jr) + aave C2L)

Ll L

This implies that gf can be defined by an eddy current stream function

$(r,8,z,t) with
3% = zx (grad ¥) , R < )

where | can be defined to be continuous in the axial direction in
accordance with the homogeneous laminated representation of the core.

Maxwell's third equation gives, ignoring displacement currents, that
curlH = J. e (2.3)

Away from the regioms in which stator currents are present, using equation

(2.2) this implies that
é.(curl H = 0 aee (2.4)

so that a magnetic scalar potential ¢ can be defined where

= 20 = L3¢
Hr ot and Ha vl ave (2e8)
By using the other two components of equation (2.3) we find that
H = gradp¢ - zp. saw (PLE)

[currents in the stator bar conductors are incorporated by defining 'cuts’
along specific coordinate lines which connect the conductors to the
boundary and across which the magnetic potential is made discontinuous,
the magnitude of the discontinuity being proportional to the stator

current;] The relation (2.6) is a mathematical expression for the fact
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that in addition to the magnetic scalar potential contributing to the
magnetic field, the eddy currents generated in the lamination by the
impinging axial flux act in a manner to reduce the magnitude of this axial
flux (Lenz's Law).

The remaining Maxwell equations
divB = 0 and curlE = - — ve. (2.7) and (2.8)
together with the constitutive relations

J = veo (2.9) and (2.10)

=

E and B =

=
E

give two partial differential equations for the magnetic scalar potential ¢

and the eddy current stream function y, namely

13 3¢ 1 3 3% 3 L2 P
ror \TMear )t r2 36 \ Yo 38:) Y (Ez 3z 3z \Mz ¥ ves: (RAL)

2
1 3 3P 1 3y 3 3
and ——— — T 4 ==y — [y ..._—lb . ' (2.12)
YUrl i ar or Tgel rz aez o ot (:z (}z

We have assumed that y the permeability tensor for the equivalent

homogeneous material is

ur 0 0

w=u|o g O vee (2.13)
0 0 uz

and that the conductivity tensor Yg} for this material is

o' o0 o
X i

Yo =y | O % 0 wos; (2.14)
(o} 0 0

The important characteristics of equations (2.11) and (2.12) are:
(a) The electromagnetic solution in the three dimensional region is
given in terms of only two quantities, ¢ and i, in place of the
three components of the vector potential A where B = VxA, or of

the magnetic field H.
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(b) The equation (2.11) is a second order partial differential equation
with only spatial derivatives, i.e. there are no time derivatives;
considering ¢ as the dependent variable, given |, the equation is
a non-linear three dimensional Poisson type elliptic equation.

(c) The equation (2.12) is a second order partial differential equation
with only two second spatial derivative terms; considering Y as the
dependent variable, given ¢, the equation is a second order equation
in the spatial variables (r,8) and first order in the time derivative:
it is a second order parabolic equation of the heat conduction form.
It will be seen later (Section 7) that v, is almost constant in an
axial plane, and hence the equation is virtually linear.

3. BREPRESENTATION OF THE GEOMETRY

To obtain a reasonably tractable problem for the finite

difference representation using cylindrical polar coordinates (r,6,z) all
boundaries in the problem are assumed to lie along cylindrical coordinate
surfaces, i.e. they are either parts of (a) surfaces of cylinders

(r = constant), or (b) planes through the machine axis (©® = constant), or
(¢) planes perpendicular to the machine axis (z = constant). Thus, in
particular, the stator conductor slots are not parallel sided, as in
reality, but lie on radial lines from the centre of the generator. A
three dimensional perspective view of the region considered is shown in
Fig. 1. The stator core can have a stepped end, and radial ducts and
steps can be incorporated at axial nodal positions, i.e. the bore can be
of variable diameter. The boundary just above the magnetic material of
the rotor body can also have a varying diameter. A typical cross section
along the axis is illustrated in Fig. 2. An eddy current screen at the
end of the stator can be incorporated by using a stepped stator and by
specifying different properties at different axial positions in the
"stator". 1In practice the radial cooling ducts have not been modelled
explicitly because of the restricted number of axial nodes. A typical
cross—section normal to the axis of the machine through the stator core is
shown in Fig. 3 where we have assumed that only one tooth pitch of the
stator is being considered. The Pistoye slot, if present, is modelled by
a line cut in the core material in a plame 6 = constant, of specified
axial and radial extent across which no eddy currentspass. The radial
penetration of the slot can vary with axial distance. The Pistoye slot
has no direct effect on the magnetic potential §. The offset of the

Pistoye slot from the centre of the core teeth is not explicitly
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represented where this offset alternates on adjacent laminations; however
the homogeneous laminated material used to represent the core means that a
centrally positioned slot models the 'average' position.

Other minor and non-imperative assumptions on the geometrical
configuration are described in Section 8.
4, THE TEMPORAL VARIATION-FOURIER SYNTHESIS

The magnetic scalar potential and the eddy current stream
function are dependent on the three spatial coordinates (r,8,z) and, in
addition, they vary temporally since the magnetic field generated by the
currents in the rotor windings rotate at the machine speed. The rate of
rotation is relatively large, and we are predominantly interested in the
limiting periodic behaviour of the fields when a periodic input is imposed

by the rotor. An expansion in a Fourier time series is therefore used with

#(x,t)

®
= £(x,t) =n£1 (£, (®)cosnut + £_, (x) sinnwt) . vee (4.1)
b(x,t) n odd
The series is truncated after a finite number of terms: typically either
only the first, or the first and third harmonics are sought. Substituting
the relevant expansions of the form of (4.1) into equations (2.11) and
(2.12), and then by multiplying each equation by cosnwt or sinnwt and
integrating with respect to time over a period of oscillation, we obtain
partial differential equations involving the Fourier components of ¢ and .
Considering only the first harmonic variations here, and throughout the

remainder of the paper, we obtain the equations

30 EL
2 - 11 1 o f - 11
ar \FOp M) )t 2 %% (g + Mpp9) —59

M=

L1 (X2}, 1 ¥12), 8 (Y12
r ar 21r ar 2 26 \ 216 38 oz \'21z "3z

a -
= 3z Gy *upn)) ¥y Fugy, ¥g)) oo (4a28)

254

Steady State C6

and a similar equation (4.2b) with @11 and ¢12 interchanged, $11 and &12
interchanged and with the sign of the terms involving ”22!5 changed. For

the stream function components we use the complex variable

E = ¢1l + i¢12 sos Ghe3)

which enables the two equations for the components to be written in

compact form as

2
11 (fae\, 1 1 8%, e =D :
irow \"x)" 12 27 1HOMHZTE g2 HOHY 32 (Ell % 1¢1%)
g a r db
) o ;]
e (4.8)
3 ¢
i 7 11 . 12
with g =y, [(1”22z W12\ "t )t Gt zzz’(az “‘12)}
siie (65)
- o 1w
where y, = = JO U*(E) dt e (4.6a)
M M
d 2 (H)cos2wt dt, p 8 (H)sin nwt dt
-t Ho% T, Ha 2 » Ma1x ¥, WS ’

«es (4.6D)

(where the * can be r, 6 or z).

Note that the expressions (4.6) are the Fourier coefficients of the
permeability components, and are functions of the field values H. Hence
the equations (4.2) and the associated equation, are grossly non—linear
for typical B v H relationships (see Section 8).

The equations (4.2) and (4.4) have been written in the form in
which they are solved: the right hand side is regarded as a source term,
and the Fourier components of the permeability are held fixed for each
cycle of iterations. This iterative procedure is based on the premise
that the equations for the magnetic potential and the eddy current stream
function are only relatively weakly linked in most of the region under
consideration, and that this linking can be relegated to a 'source' term
in each equation only recalculated after each cycle of iteratioms.

5. BOUNDARY CONDITIONS

The external boundaries of the region considered have been

selected to be those at which the values of ¢ and | or their gradients
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are known to a good degree of accuracy: this implies that the normal or
tangential component of the field must be known. However the region must
be as small as possible so that the maximum resolution and accuracy can be
attained consistent with the numerical solution procedure employed, and
the computer available.

With reference to Fig. 4 which illustrates the region considered,

the boundary conditions on the magnetic scalar potential ¢ are:

(a 2

e 0 on the outer axial casing of the generator, ABCD.
d ’

(b) 5% = 0 at the axial 'centre' of the stator core, LMNP.
3 _ . .

() = c at the radial extremity of the core, BCNM.

[These three conditions are the mathematical expression for the boundary

condition that no magnetic flux leaves these surfaces,]

(d) The potential, or its normal gradient must be specified on the rotor
surface AEFLPJKD., This can be derived from models in which the rotor
is treated in considerable detail, but the stator is modelled more
crudely; or, alternatively, at least to a first approximation, we can
assume that all the potential is lost in the radial air gép and hence
derive the boundary potential given the magnitude of the radial flux
entering the stator tooth.

(e) The magnetic potential on one plane (8 = constant) which bisects a
stator tooth is phase displaced from that of the other mid tooth face
according to the formula

%

¢ (raz)t) = ¢CNPJKIgr,Z,t o J{W)

BMLFEA

where 91 is the angle AOD. This is a periodic boundary condition.
(For open circuit calculations, this boundary condition is accurate
when the mid planes of adjacent teeth are considered, and so only one
tooth pitch need be examined, whereas on load it is strictly only
correct when all the teeth within one phase band are considered.)

The boundary conditions on the eddy current stream function 1

are:

(a) ¥ = 0 on the surfaces of the stator core parallel to the axis of the
machine, namely the surfaces GMNH,UVWQ,XYZT,QQIRIR,TT S.5 and on the

171
base and sides of the conductor slot. Across all these surfaces,
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which include the Pistoye slot, no eddy currents pass.

(b) (r,z,t = 1/uw) as for (e) above.

(r,z,t)

Y aruvy = Vunszyx

Internal material boundaries must alsc be treated with care. At

the boundaries between materials of different permeabilities, the tangential

component of H and the normal component of B are continuous. When working
in terms of the magnetic scalar potential ¢ and seeking solutions
satisfying div B = 0, where B = u(grad ¢ - zy), these internal boundary
conditions are automatically satisfied by ensuring that all boundaries are
defined by nodal points.

6. THE FINITE DIFFERENCE DISCRETIZATION

In place of deriving an analytic solution to equations (4.2) and
(4.4) for the Fourier components of ¢ and Y, we characterize the
variables by a finite set of values, and use finite difference methods to
derive the algebraic equations for these nodal values. The nodal points
used to describe the region are defined by the intersection of coordinate
planes in the cylindrical polar coordinate system. With the region as
shown in Fig. 1, about 18 radial nodal lines, 21 circumferential and 14
axial are used. These are spaced non-uniformly so as to obtain the
greatest resolution in the regions of most interest. Thus about 5000
nodes are used, of which about one half are within the stator core.
[These restrictions on the number of nodal coordinates produce a computer
code which occupies less than 250 K bytes of core, which happens to be
both convenient and beneficial on our computer, an IBM 3?0}168.]

The finite difference equations are derived from the analytic
equations producing sets of difference equations for the nodal values of
the variables ¢11,¢12,w11 and ¢12. (Note that the eddy current stream
function is only defined in the stator core region.) The coefficients of
the difference equations for the potential components depend on the local
values of the permeability, and have therefore to be recalculated after
each cycle of iterations.

T THE HOMOGENEQUS LAMINATE REPRESENTATION
The differential equations (4.2) and (4.4) require knowledge of

the values of the Fourier components of the vector components of
permeability. If we assume that B = Hy (see Section 8), then the
transverse permeability M and the axial permeability u, of the laminated
core must be related to the field magnitude in the core material. However

the D.C. saturation characteristics of the core plate iron are generally

255



Compumag Oxford, 31 March to 2 April 1976

known, not those of the laminated material. The magnitude of the magnetic
field in the iron is related to the vector components by

1.2 i 2 i 2 1.2
@) = o@h +@hH + @ . ss Xl

The transverse field in the iron is equal to the transverse field in the
i i
o = H), en (7.2)

but in the axial direction, across the laminations, the magnetic

equivalent homogeneous material (Hr1 = Hr’ H

flux density is continuous so that ulnzl = H . eos (743)
From the definition of the stacking factor
1 . i
= -y + = = + (1- e .
I, T i‘ul and Mg = = YM (1-v) (7.4)
. H
so that Hzl' = ;1 5 i (T5)
y + (I-y)u

If a specified saturation relation between y' and the magnitude
1o ; . ;
of H™ is used (see Section 8), the equations can be formed into an

iterative procedure for H' and u1 given Hr’ H_  and Hz' The permeability

[:]
components HosMgsH, of the equivalent material are then derived from
equations (7.4).

8. FURTHER APPROXIMATIONS

To facilitate the derivation of the difference equations, and

their subsequent solution, several further approximations listed below are
used. None of these is essential, and given the facilities to run larger

computer programs, they could all be relaxed.

(a) B = Mg This simplification models a non-grain orientated core
plate, and can easily be relaxed at the expense of increased computer
run time.

i Hy R .

(b) u = ul + ——————  Namely the D.C. permeability in the iron

i

l,,lgl,uﬁ
comprising the laminated core is related to the instantaneous
magnitude of the local magnetic field by a Frohlich law with the
addition of a constant. This algebraic relationship can be fitted to
the B v~ H curves of most core plate iron with a reasonable degree of
accuracy. Being algebraic, it is easily evaluated on the computer
which has to be done very frequently since the Fourier components of
the A.C. permeability are taken as the weighted integrated averages

(expressions 4.6) over a cycle. In fact to save computation, the
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latter integrals can be approximated analytically given the above
permeability relationship for the first few iterationms.

(¢) The separate core plate sections which make up the core are not
modelled explicitly, so that the butt joints between them, and the
eddy current circuit closures are not modelled.

(d) The radial cooling ducts and any magnetically transparent laminations
are not explicitly incorporated because of the restriction on the
number of axial coordinate positions. Instead they are implicitly
incorporated by suitable adjustments to the axial stacking factor.
Their effect is therefore spread over a portion of the core.

(e) The axial cooling ducts are not modelled in the electromagnetic
computer codes.

(f) Tooth wedge notches and other small geometrical non-uniformities are
not included in the electromagnetic solution.

Both the features (e) and (f) could be included at the expense of program

complexity.

(g) At present, the generator is only being considered in open circuit
mode. Thus the stator current bars and end connections are not
modelled, and, in addition, the periodic boundary conditions on both
¢ and | can be accurately applied to adjacent teeth, thus only one
tooth pitch is considered. On load conditions can be considered by
including the model of the stator conductors and end conditions
described in Section 2.

9. THE NUMERICAL SOLUTION PROCEDURE

The finite difference equations are solved in as implicit a

form as possible, that is in the equations (4.2) and (4.4) only the terms
on the right hand side are calculated with the values of ¢ and { from the
old iterative solution, except for the Fourier components of the
permeability.
To proceed from one solution (¢“,wn) the following steps are

followed:

(i) Derive the required Fourier components of the permeability
components throughout the iron from the local value of the magnetic
field vector and the permeability law.

(ii) Calculate the 'source' terms (the right hand sides) of
equations (4.2) and (4.4) at each nodal point.

(iii) Determine a new solution to the magnetic potential, ¢n+1 to a

reasonable degree of accuracy.
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(iv) Determine a new solution to the eddy current stream function
¢n+1 to a reasonable degree of accuracy.
The cyele (i)-(iv) is then repeated until convergence.

The iterative procedure used for steps (iii) and (iv) has been
selected to be that most suited to the geometry of the region (which is
relatively very thin in the circumferential direction compared to typical
radial and axial distances, and this non-uniformity is even further
accentuated by the anisotropic permeability), and to the boundary
conditions (in particular the periodic boundary conditions which relate
the values of the dependent variables at the extremities of circular arcs)}
namely a line iterative technique, with the implicit lines of nodal points
taken as arcs of circles. The subsystems of equations comprising the pairs
of algebraic equations for the two Fourier components of each variable ¢
and  for the nodes which lie on one such arc are solved simultaneously.
This ensures that the periodic boundary conditions are satisfied exactly.
An acceleration parameter is used, and new values are used as soon as they
are available in all subsequent calculations. Because ¢11 and ¢12 do mot
have the same differential operator on the left hand side of equations
(4.2a) and (4.2b) (the sign of the Hoo

equations), the solution for the components of the potential requires the

components are opposite in the two

inversion of a nine diagonal matrix. Whereas for the stream function, we
can work with the complex variable £ and for which the inversion of a tri-
diagonal matrix with the additional terms representing the periodic
boundary conditions is only required.

It is difficult to optimise the iterative acceleration parameters,
especially those for the potential ¢, because of the non-linear form of the
equations. Many accleration devices are also incorporated to enhance the
rate of convergence.

Typically one starts with a reasonably good initial approximation,
or from the previous solution with different geometry, etc., on backing
store in the computer. A subsequent solution can then be obtained in about
3 to 5 minutes on an IBM 370/168 computer. The program derives the values
of ¢ and | at the nodal points of the grid, and these are then transferred
to backing store. A second program processes these results and calculates
the vector components of the magnetic field, of the magnetic flux density,
of the eddy currents, and from the latter, the rate of thermal generation
in the stator core can be determined. The thermal generation caused by

hysteresis effects can be calculated from an empirical expression (Steel,
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1974) involving the magnitude of the transverse magnetic field. A third
program comprises a heat conduction calculation of the core, using the
thermal generation rates previously obtained. A finer grid is used for
this purpose, and, of course, radial cooling ducts, axial cooling ducts,
and tooth wedges, etc., are all modelled. This program gives the
temperature at up to 10000 nodal points per packet, a packet comprising
those laminations between two radial cooling ducts.

10. VALIDATION OF THE NUMERICAL MODEL

A comprehensive series of investigations has been made with the
programs to ensure satisfactory operation. The electromagnetic solution
procedure has been used to solve several problems in which a known analytic
solution was sought, for example the derivation of two dimensional (r,8)
magnetic fields in a pair of adjacent annuli with known, but different,
permeabilities. Subsequently the results have been compared with measured
variations on 500 MW generators on open circuit test. The results (which
are to be reported elsewhere) indicate acceptably good agreement
considering the simple boundary condition imposed on the rotor surface,
namely zero axial field and the potential calculated to produce the
necessary radial magnetic flux in the centre of the generator and assuming
that all the potential is lost in the radial air gap. Typical results will
not be discussed here since they also will be described elsewhere; instead
some of the salient features already resulting from our investigations are
described; other investigations yet to be made will be detailed. They
indicate the great generality and versatility of the method, and the
increased understanding which the results produce.

11. SOME RESULTS OBTAINED, INVESTIGATIONS TO FOLLOW

One of the purposes of this programme of work has been to

increase our understanding of the factors determining the variations in
thermal generation in large generators, and several investigations have
already been made with regard to the Pistoye slot length, both radial depth
and axial extent, and variations in stacking factor. The results to be
described were derived for geometry typical of 500 MW generators. Only
open circuit conditions have been considered, and the stator end screen
has not been modelled.

It is evident, for example, from the results obtained so far
that the Pistoye slot is an important feature in predicting the thermal
generation rate. These subdivide the laminated area in the stator tooth,

typically, into two parts in which the eddy currents can circulate. The
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magnitude of these currents are therefore reduced, and the results
demonstrate this. However, because the eddy currents are reduced, so the
axial flux is allowed to penetrate further. (The Pistoye slots need not
necessarily be in the centre of the tooth, nor need they extend radially
to the base of the conductor slot, they could extend further, or less far,
or they could be of varying length. However, here we only consider the
simple case in which they divide the tooth into two equal parts.) At some
point axially the Pistoye slots are not cut in the laminations (unless
they extend the whole axial length of the machine) and at that point, if
any axial flux is still present, there is bound to be an increased thermal
generation because of the enlarged eddy current circulations, all other
things remaining unchanged. The program can, and has, been used to
estimate the magnitude of this increase for various configurations.

Test results have been obtained with different configurations of
radial cooling ducts. Their effect on the electromagnetic solution has
been through the stacking factor which is decreased to model the ducting
arrangement; the presence of the air is thus smeared out over an axial
interval. Thus the amount of core plate is reduced, and it is therefore
to be expected, and this has been verified, that the thermal generation
rates decrease. Temperature calculations show these effects are generally
amplified since the cooling efficiency is enhanced. The inclusion of
asbestos laminations carrying instrumentation in the core plate has also
been demonstrated to have significant effects on the thermal generatiom.

These examples are just a brief illustration of the type of
results which can be derived from our model. .

Planned future investigations include on-load calculatioms,
calculations with radial cooling ducts included explicitly, the effect of
axial cooling ducts, stepped stator ends, end screen designs, etc. As
computers increase in size and more detailed investigations are sought,
it is envisaged that the program will be enlarged to incorporate many
additional details.
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Discussions following paper:

(Trowbridge) Will you comment on the use of your program for 3D conductor

regins ie when there are no constraints on the direction of current flow,

(Jacobs) Such a problem would require additional dependent variables if
one is going to consider eddy currents flowing in all three directions

and not confined to laminations., Concerning three dimensional conductors
these will be included in the next version of the program to be released
which is now in an advanced stage of development. There are no inherent
difficulties foreseen, and a method similar to that described by

Dr Carpenter earlier is being used.

(Ratti, Univ Rome) The author has presented a nice piece of work, for

which he must be congratulated.
On these two points we would like to have more detailed information:

(a) The check of convergence is one of the various refinements spoken of
by the Author, to reduce the run time: how is this check achieved

and what are the benefits obtained?

(b) The program is said to be expeasive (something which is rarely
recognised hy research workers): can the author compare the cost
with other methods and/or with the overall cost of the machine under

investigation?

(Jacobs) (a) The primary initial check on the rate of convergehce is
based on the normalized residual and the maximum percentage charge
actually applied at any point of the grid. Subsequently we compare the
results from such a "well-converged" solution with one for which a further
significant set of iterations have been used. As we proceed with the
iteration those lines for which convergence is satisfied are not con-
sidered again for several further iterations thus saving computation.

The fields, fluxes and thermal generation rates often seem to be "better"

converged than the potential,

(b) Compared with typical computer programs it seems expensive; but

it is not a typical program! A generator costs the order of £106 and
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replacement costs for a 660 Mw machine per day are substantially more
than the cost of running our IBM 370/168 computer for a day. They are

therefore cheap in that sense.

(Reece, GEC) The work described assumes that the density on the rotor
surface is known. When both conductors are studied, with the need to
represent both stator and rotor current effects, what is the procedure

proposed and what will be the effect on computation time and cost?

(Jacobs) In order to include both rotor and stator conductors, we

are developing another program similar to that described by Mr Preston
earlier today in which the circumferential variation is treated as a
Fourier series and thereby reduce the problem to two space dimensions and
time, We will ignore eddy currents in the stator initially at least,
and from the imposed stator and rotor conductors and the phase difference
between them we will derive the scalar potential on the rotor surface,
This will be in the form of circumferential harmonics which will then be
used as the boundary condition or the inner radial boundary in the

three space dimensional problem.
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The determination of magnetic fields in power transformers
by
P.B.Johns,M.Sc.,Ph.D.,C.Eng. ,MIEE, A.Wright,Ph.D.,D.Sc.,C.Eng.,FIEE
and J.E.Sitch,B.A. ,M.Eng.,Ph.D.

of the University of Nottingham.

L= Introduction

There are many situations where designers must assess the densities
of magnetic and/or electric fields. As an example, it is necessary to
determine the mechanical forces which may be exerted on the windings of
large power transformers. These forces may reach very high levels
during system fault conditions and they must be assessed with reasonable
accuracy so that the windings may be braced to withstand them. Clearly
the forces can be readily determined by calculating the magnetic flux
densities at the positions of the individual conductors for various
operating conditions.

There are a considerable number of possible numerical methods which
may be used for tackling dynamic magnetic problems of this type and in
particular there are several well-developed finite-difference routines
for solving both transient and steady state eddy-current problems in
two dimensions’. One of the difficulties encountered, especially with
transient analyses, centres around the stability of the method. The
fastest finite-difference routines are those which are explicit but they
are inherently unstable for large time steps. Implicit finite-difference
routines, whilst stable, can require an unacceptable amount of
computation.

Recently a method in which the space to be considered is assumed to
contain a matrix of transmission lines (TLM method) has been developed
for use in communication studies. The method is explicit and also
unconditionally stable. The purpose of this paper is to describe the
TLM method and show how it may be used to deal with power-frequency

problems such as that referred to above.

2. Transmission line modelling of fields

In the TLM method a region to be studied is divided into a mesh of
equal-sized volumes, or areas in the case of two-dimensional problems,

and a corresponding matrix of loss—free transmission lines, which are
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appropriately interconnected at their junctions, is assumed to exist.
For a two—dimensional study, four transmission lines are assumed to
meet at the mid-points of each of the elements in the mesh as shown in
Fig.l. All lines associated with mesh elements in a particular uniform
medium have the same propagation velocity and characteristic impedance,

=0*3 and (u/s)o's respectively. For a medium of

proportional to (ue)
infinite permeability the propagation velocity would be zero and the
characteristic impedance infinite, which implies that currents would not
flow into an§ transmission lines used to represent such a region and
open éircuits could therefore be placed at its boundaries. This
representation is clearly correct because H fields could not be set up
in an infinitely permeable material.

The network of lines is excited by launching ideal delta functions
(impulses) into it at appropriate points and these travel along the lines
until they reach junctions or nodes. Scattering processes then take
place and the scattered pulses travel on to neighbouring nodes. A
numerical routine must be employed to keep track of the impulses and
scattering processes in a somewhat similar manner to that which is used
in the Bewley Lattice diagram when actual transmission lines are studied.

If the model was completely loss free, the pulses would not be
damped and permanent oscillatory conditions would be set up. Considering
the transformer problem as an example it is clear that eddy currents
would flow in conducting material in the window due to the changing
magnetic field and there would be a resultant power loss. Similarly
any conductors forming a winding connected to a load would carry current,
leading to the dissipation of power and damping. It could therefore be
considered that the window space contains a lossy dielectric. Difficul-
ties would be introduced if allqwance was made for this by assuming lines
with distributed conductance (G) because of the distortion of the pulses
which would result. This may be overcome however if the mesh is fine
enough by including lumped conductances at the junctions of the lines as
shown in Fig.2., 1In practice the conductors and dielectric are not
uniformly distributed across the window space and allowance may be made
for this by including shunt conductances (G) at the appropriate nodes.

In many problems the values assigned to these conductances may be made
artificially high to increase the damping and accelerate the

computations.
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Ejure 2

If fields set up by direet currents are to be determined then the
input pulses to the model should be maintained constant and the
phenomena by which the fields are set up in spaces are being correctly
modelled. This process may be done in real time. When fields set up by
time varying currents are to be calculated however it may be necessary to
introduce time-scaling because the actual time needed to propagate a
flux wave across a space will be so short relative to the period of the
input signal that an extremely large number of time steps would have to
be used to obtain a solution. This topic is dealt with in more detail
later.

2.1. Inputs to model

To determine the magnetic fields set up when currents are driven into

certain conductors, e.g. into the primary-winding conductors of a
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transformer, pulses of current are injected into the appropriate

elements of the mesh. The magnitude of the pulse injected into any
element, at any instant, is made equal to the m.m.f. provided by the
conductors in the element at the instant, i.e. the total current flowing
into the element. Scattering of the pulses then proceeds as described in
the next section.

2.2. Scattering process in a two dimensional space

At a node with no shunt conductance an incoming current wave on one
line sees the three other lines in parallel and consequently the
reflection coefficient (R) is given by :-

3Yo - YO
M AR A
where Yo (= l/Zo) is the characteristic admittance of each line.

The transmission coefficient (T) to each of the three parallel
output lines is :-

-2 x 3Y°

T = —m—————— = =
T T

0*5

The above expressions are based on the convention that currents
flowing towards a node are regarded as positive.
When a shunt conductance of GYO is present at a function the
reflection and transmission coefficients are then modified to :-
Y +G) - Y
0{3 ) o

R =
Y (B+G) +Y

LR E G
4 + G
=2Y -2

4]
Md T ST BT+ Lt e
o o]

If the conductors in the window are connected to an external source
or load the currents flowing in them depend on external factors as well as
the material parameters. The type of node used in this case has a
current generator connected across the junction as shown in Fig.3. Any
shunt conductance is effectively in series with the current source and
may therefore be ignored in the scattering equations. The resulting

outgoing waves (b1->b&) are given by expressions of the form

I
bl—Ral+T32+T33+Tala 7
b, = Ta, + Ra, + Ta, + Ta il
2 1 2 3 4 4
in which a, + a, are the incoming waves to the node.
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It is shown in Appendix 1 that the above procedure accurately models

Maxwell's equations.

Z
(o] o) 5
o
| B x
G
Oo— —0

Ej““e 3

2.3. Time scaling

When dealing with direct current conditions it is possible as in
microwave studies to calculate in real time. When solving behaviour
obtained with power—frequency inputs however, the number of time steps
involved would be excessive. This can readily be seen from the
following illustration. For a mesh with 1 cm centres the time steps
would have to be (3 x 1010)~1s assuming propagation to be at the
velocity of light and to calculate 40 ms of real time, i.e. 2 cycles,
would require 1+2 x 109 steps.

This situvation can be avoided by assuming high values of permeability
and permittivity for the medium and thus artificially reducing the
propagation velocity. To keep the levels of the travelling waves .of
current and voltage unchanged the characteristic impedance, which is
proportional to (p/s)o-s, should be maintained constant. It will be seen
therefore that if u and & are multiplied by the same factor k, time
steps may be increased by the same factor.

It must be realised that this change has the effect of increasing
the displacement currents in steady state because of the increased shunt
capacitances of the transmission lines and as a result they do not bear
the correct relationships to the conduction currents. In practice
however the displacement currents in power—frequency problems are
extremely small relative to the conduction currents and they can be

increased by several orders of magnitude without becoming sufficiently
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large relative to the conduction currents to cause significant errors in
computing magnetic field distributions. An indication of these effects is
given in the later sections dealing with actual calculated values.

3. Power transformer studies

While the TLM method can be applied to three-dimensional problems
initial studies of power transformer magnetic fields have been done on a
two-dimensional basis. It was assumed that the transformer had an
infinitely permeable core surrounding a rectangular window through which
the conductors of the primary and secondary windings passed. It was thus
necessary to divide the window area into a mesh of square elements with
transmission lines between their centres. At the boundary of the window
the lines were terminated in open circuits.

In practice one of the windings may be tapped to allow the
transformation ratios to be varied and in these circumstances some of the
conductors might not be carrying current at particular times. To allow
complete generality the model was therefore arranged with input impulse
currents at each of the nodes where primary winding conductors are
present. At any instant each of these currents is made equal to the
ampere conductors (ampere turns) present in the particular element of
the mesh. As stated earlier each of the secondary winding conductors
must carry the same current because of the series conmnection of the
turns. This result would not be obtained by connecting equal conductances
across each of the nodes at the positions of the secondary winding
conductors, because of the different voltages which appear across the
nodes. In the model therefore it is necessary to include a path at each
of these nodes through which flows a current equal to the product of the
sum of the voltages across the nodes and the conductance of the secondary
winding and load. In additionm, conductances may be included in para-—
1lel with these current paths to allow for eddy currents within the
conductors.

The computation proceeds by injecting the appropriate current impulses
at each particular time step and taking account of the currents present
because of the impulses injected at earlier time steps. In this way the
complete current pattern is determined for each time step and the program
runs until the changes over a time step are below a particular level in
the case of d.c. problems or until repetetive behaviour is obtained in

a.c. steady-state studies.
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3.1. D.C. Magnetic field calculations

In these examples, time only enters into the problem as a means of
proceeding to a solution; although the time taken to reach a steady state
may be of some interest to designers of pulse-transformers, the time
scaling in these examples has been chosen to ensure the fastest possible
convergence rather than accurate modelling of transients. All the results
shown here are in windows in an infinitely permeable medium. The first
example is of a situation where the individual conductors are smaller in
cross section than the mesh size, consequently the current in each
element is easily defined. Tables 1, 2 and 3 show the current density and
H-field profiles for this model. Part of the "primary" is unexcited to
simulate the effect of using a tapped winding. We may check the results
by integrating H.d% along rectangular paths, this indicates errors of
less than 0:5%, due to incomplete convergence. In this model mesh size
is not fixed by any external consideration, the current density is in
units of Afaﬁz and H.AL is printed out for the H-field, this easy spatial
scaling only applies to D.C. models. The second example is a window with
comparatively large conductors. The primary winding is driven from a
voltage source and the secondary drives a resistive load. In the steady
D.C. state the current density is constant across the conductor; the
results presented below Tables 4, 5 and 6 were obtained after 300
iterations, the solution is within 17 of its steady value after 200
iterations.

3.2. Transient calculations

These are very similar to the D.C. computations with the exception
that the time evolution of the solution is now of interest. Tables 7 and
8 show the build-up of H-field in a window filled with short-circuited
windings. The units of time are seconds for a mesh size of 0.1 m.

The tables are drawn for different time scalings table 7 has ¢
"slowed down" to 0-:0707 m secwl while in table 8 the modified propagation
velocity is 0707 m sec_l. The agreement between the results shows that
if the problem is correctly specified the use of time scaling can result
in economical transient models.

3.3. A.C. models

To date A.C. modelling has been restricted to the time domain,
although steady-state modelling is also possible. The primary voltage

is input as a function of time and the primary and secondary currents, and
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secondary voltage are found as functions of time. If the time-scaling is
done correctly, the displacement current may be kept to a small fraction
of the conduction current, and although this means the transmission line
matrix is no longer critically damped, convergence to within a few
percent is achieved in about 500 time steps for the 9 x 9 element model.
The leakage reactance may be computed from the model, it increases in
size relative to the copper resistance as the inverse of the velocity
scaling ratio. Thus it is possible to compute the leakage reactance
under fault conditionms.
4. Conclusions

The feasibility of using the TLM method to calculate the fields in
transformer windows has been demonstrated by the preliminary results
which have been obtained using a two-dimensional mesh.

The method models the way in which the fields build up and steady-
state behaviour is approached through the transient conditions. - Although
time scaling is necessary in dealing with power-frequency problems it has
been shown that this may be done with acceptable accuracy and the method
provides an explicit and unconditionally stable routine. This is thought
to be unique and of considerable importance.

The method may be extended to deal with non-uniform media and three-
dimensional meshes.
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7. Appendices
Appendix 1. Modelling Equations

Consider an element, such as the one shown in Fig.A.l.

o z

ol /Z . Zﬂx
| G 3
. i

Figure Al

e Aﬂ/z

The incident current wave at port 1 is denoted by al(t), while the
scattered wave is hl(t)' The voltage across the junction may be

expressed in terms of the ingoing waves :i-
T
Vc(t + —2—) —(al(t) + az(t) + a3(t) + a“(t)).T.Z

where 1T = Qé , the time step.

It may also be expressed as a function of the outgoing waves

T T
V(e =23) = =(b, (£) + b,(t) + by(r) + "4“” 7rar 2

Now
T 2

R+3T 4-G

These two equations may be combined to give :-
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20 (k4 3) <V (E=9) + 2 (V(£+5) +V (t-5)
= (al(t) + bl(t) + a2(t) + bz(t) + ﬂ3(t) + by(t)

*a,(t) +b,(t))z

This simplifies to

avc(t) © (alx E}_
t) =2 O =
2 —2— WG, AL =50
2 o .2 Yy
vi 3t  ARZ "¢ Bx ay
So setting
i=s 3 =g,V =E /A, I =Hx.AL, I_ = -H_ .AL
VE Y ARET S TE T Tigig® vy T TWTRETEE g Uit

where Ax = ay = AL, the space step and Az = lm, we obtain the magnetic
circuit law assuming no external electric sources or sinks.

At a point where there is a conductor connected to an external
circuit the node has a current generator connected across it, and the

following equations apply :-

Vot + ) = Glag(6) + ay(6) + ay(e) + a,(6)) + 7t - )z

=iy wos(i I X
Vo(t = 3 = =G (E) *+ by(E) + by(e) + b, (£)) + Z(t = D)z

2 BVC 1 aIx al

vi 9t AR ax dy

So we may set — %E = Jz to obtain the general magnetic circuit law.
Similarly we may compute the currents at an intersection

SR § = -
I(t+5) = 5@, () + b (t+ 1) = ay(t) = by(t + 1))

Substituting for the reflected waves (L + T - R = 2) :-

I(t=3) = (a(t) - a,(t))

Also
1 (- %) = (-by (&) + by(t))
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(@ & =2y =T [t # 2} = @) ~ By(E)) - G, 4E) -~ B5(EN)

5 z.w
at v 9x

So with the same equivalents as before and with % Z u, we get the
law of electromagnetic induction.

Combining our equations together we may obtain expressions for the
characteristic impedance and velocity of propagation of the transmission
lines in the matrix in terms of the characteristic impedance of the
medium and the velocity of electromagnetic propagation within the medium

2w VB2 w2
o E

v=+vVle -/Z
LE

Appendix 2. Time scaling

We wish to keep the magnetic relaxation time (-rm = g.M) constant,
but vary o and y to reduce the propagation velocity. Denoting time-scaled
quantities by a prime we may write :-

1 1
T = 0. =0 .
n o H

W (P, om0 &P

. . /we
Now we require ¢'>> we which means c¢' >> 5 ¢

1

i Sm ’

For copper (w = 2.7.50 radians sec. ! €=€, 0= 5.8 x 10

c=13x 108 m sec_l) we obtain

c¢' >> 2.07 m sec—l.
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1-0
1+0
1-0
1-0

1.0
1+0
1.0
1.0

-+023
--064
=+101
=137
-+167
--176
=153
=-+103
-+036

-+479
—479
-+480
-+483
-+490
...-_502
-+519
-+531
-+536

1-0
10
1-0

1+0
1-0
1-0
1-0
1-0
10
1-0
1-0

1-0
1-0
1+0
1-0
1-0

~=023
-+065
=+105
-+147
=+185
-+206
-+183
-+120
--042

-1-437
-1-437
~1+440
~1+447
-1-463
=1-500
-1-564
-1+599
-1-614

1.0
1-0
1-0
1-0
10
1-0

-+023
-+066
=+111
-+161
-+220
-+276
==253
=154
=+051

-2+394
=2+393
=2+394
=2+400
-2+418
—-2+470
-2+636
-2+680
-2+706

-0+733
-0+733
-0-733
-0+733
=0+733
-0+733
-0-733
-0+733
-0-733

-+022
-+066
=112
-=170
=+255
-+425
-+402
-+190
-+058

-3-351
-3-348
-3+345
=-3+341
=3-335
=3+328
=3+322
-3-317
-3-314

Table 1.

-0-733
=0+733
-0-733
=-0+733
=-0-733
-0-733
-0-733
-0-733
=-0-733

Table 2.

-+020
-+061
-+103
-+151
-+207
-+263
-+242
-+146
--048

Table 3.

-3+443
-3-438
-34431
-3+416
-3-387
-3+319
-3-139
-3+075
-3+053

Jz
-0+733 -0-733 -0-733
—0+733 -0+733 -0-733
-0+733 -0+733 -0:733
-0+733 -0-733 -0-+733
-0-733 -0-733 -0-+733
-0-733 -0-733 -0-733
-0-733 -0+733 -0-733
-0-733 -0-733 ~-0-733
-0-733 -0+733 -0-733
Hx
--018 -+016 -+014 -+013
-+054  —+047 =042 -+039
-:000 =«077 =-+067 =062
-+126 =+103 -+087 -+079
-+158 =--122 ~-+100 --089
-+177 --128 -+100 --088
-+159 --112 -+086 -+075
-+104 --075 --058 --050
-+036 -+026 -+020 -+018
Hy
-2-671 -1-904 -1-141 --380
-2-667 -1-900 -1-138 --379
=2+657 =-1-892 ~1+133 ~+377
=2:640 =-1-877 -1-123 -+374
-2+609 -1+853 -1-109 --+369
-2+555 -1-819 -1-090 --+363
-2:474 -1-777 -1-069 --357
-2+425 ~-1+747 -1-053 --352
=2-403 ~-1-731 -1-044 =-+349

o O O o O o o oo o

349
+585
=263

-+0855

+0855

-+263
-+585
~+349

-+349
-112
«211
-138

-+223
-138
211
-112

-+349

0
3-339
3-339
3+339

3339

3+339

3+339
0

+809
1+145
+289
=+520

+520
—-+289
~-1-145
-+809

=1+506
-+974
-+865
-+968
=1-392
-+968
-+865
=-=974
=1+506
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Table 4. Jz
0 0 0 0 0 0 0
3+339  3-339 0 -3-339 -3+339 -3-339 0
3-339  3.339 0 -3:339 -3-339 -3-339 0
3-339  3-339 ) -3+339 -3+339 -3:339 0
0 0 0 ) 0 0 0
3+339  3-339 0 -3+339 -3-339 -3-339 0
3+339  3+339 0 -3-339 =-3-339 -3.339 0
3:339  3-339 0 -3-339 =-3-339 -3-339 0
0 ) 0 0 0 0 0
Table 5. Hx
881  +698 O --698 --881  --809 --349
1-226 <941 0 -+941 -1+226 -1+145 —+585
+268  +170 0 =--170 =-+268  -+289 —+263
-+612 =-+528 0 +528 612 +520  =0856
0 0 0 0 0 0 0
+612  +528 0 -+528 ~—+612  =-+520 -+0856
-+268 =+170 0 +170  +268 -289 +263
-1+226 —-+941 0 +941 1-226  1-145  +585
881 -+698 0 +698 881 +809 - 349
Table 6. Hy
-3+195  =4+774 =5+472 ~-4+774 =3+195 =1+506 ~-+349
-3+306 -5+655 —6+869 —5+655 -3°306 —+974 4+112
-3:399  -6-000 -7+354 =-6+000 -3+399 --865 -211
-3+424  =5-923 -7210 =-5-923 =-3-424 --968 +138
-3+407 -5-388 —6-299 ~-5-388 -3+407 -1-392 --223
-3+424  =5+923 =7210 =5-923 =3-424 —+968 138
-3:399  -6-000 -7+354 ~-6+000 -3*399 --865 211
-3+306 -5'655 —6-869 =-5'655 -3+306 --973 -112
-3+195 4774 =5472 -4+774 -3+195 =-1-506 —+349
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Table 7
T Node
ime 1 2 3 4 5
5 -9.30 3.78 20.27 9,37 5.38
10 -8.57 8.04 26,63 17.43 15.47
15 -7.97 9.83 29.61 21.68 18.84
20 -7.57 10.41 29.80 22.10 20.12
25 -7.58 10,52 30.0 22.17 20.20
Table 8
T Node
IS 1 2 3 4 5
5 -9.18 5.86 22.83 13.20 10.16
10 -8.35 8.24 26.54 17.87 15.34
15 -7.97 9.34 28.26 20.03 17.73
20 -7.79 9.87 29.09 21.07 18.90
25 -7.70 10.14 29.50 21.59 19.46
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THE COMPUTATION OF EDDY CURRENT LOSSES IN SOLID IRON
UNDER VARIOUS SURFACE CONDITIONS

Dr. D.A. Lowther* and E.A. Wyatt¥*

Abstract

The paper compares the computation of eddy current losses by diff-
erent methods. The rectangular B-H curve approximation is used to study
the effects of sinusoidal and non-sinusoidal surface electric and mag-

netic fields.

The non sinusoidal form is convenient both for external field cal-
culations and the analysis of experimental data. The Frohlich curve
approach is examined under similar conditions of non-sinusoidal surface H.

The extension of both methods to two-dimensions is examined.

1) Introduction

The severe heating problems which can occur in large transformers and
turbo-alternators have given rise to the need for an accurate prediction
of the power losses. This requires a detailed description of the field

distribution both inside, and external to, the core.

The problem may be conveniently divided into two parts in order to
simplify the calculations. The first part involves predicting the loss
distribution inside a magnetically non-linear core for a given surface
field distribution. The second is to find a simple model which allows
the calculation of the exterior field, aveiding complex interface condit-

ions.

*Department of Electrical Engineering,
Imperial College of Science and Technology,
London. S.W. 7
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At the levels of magnetisation encountered in these applications
the hysteresis loss is negligible and the eddy current loss is the major
component. The purpose of this paper is to compare different methods
of computing the losses in a non-linear medium. The resultant solutions
may be expressed in terms of surface impedance. This concept is useful
for comparing the various methods and can be used in the computation of

the external field.

Two different approaches have been used in the published work.
These may be classed according to the way in which the magnetisation
characteristic is represented. In the simpler, and historically earlier
method described by MacLean, Agarwal et al (references 1-6) a rectangular
approximation to the characteristic is used. This leads to an algebraic
solution in one-dimension and can give a useful indication of the be-

haviour of the field inside the material.

The more complex method employs a more realistic representation
of the magnetisation characteristic and uses time stepping techniques
(references 7-12). This method has become popular as large computers
have become available and it gives the field distribution in the material

accurately.

Because many electromagnetic devices operate under "current forced"
conditions, attention has been restricted to the boundary condition of sin-
usoidal surface H in most of the published analyses. However, this can
be considered as a limiting condition; the other limit being that of
sinusoidal surface E (or total flux). Because, in practice, the surface
conditions may vary between the two extremes and are, in general, non-
sinusoidal, the analysis in this paper deals mainly with the sinusoidal
surface E situation. In addition, the analysis is extended to include
surface waveforms which are non-sinusoidal in time. This is useful as

far as comparisons with experimental results are concerned.

In regions in which the non-linear medium is subject to a high level

of incident normal flux, which turns along the surface after entering,
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a two-dimensional analysis is required. Such an analysis will be con-

sidered briefly.

2) The Finite Difference Model
The finite difference model is taken to include all those models

using time-stepping techniques (references 7-12) and in this approach
the magnetisation curve may be represented by a single function or,
alternatively, the actual curve may be stored at discreet points and
curve fitting employed. Many different finite difference schemes have
been employed. Examples include the Crank~Nicolson9 and DuFort-Frankel
techniques7. In practice both the E and H surface waveforms are non-

sinusoidal in time.

2.1) The Sinusoidal Surface E Analysis

When the sinusoidal surface E condition is imposed a difficulty

arises which is not present if the sinusoidal surface H solution is

sought. The difficulty is that the non-linearity considered is magnetic

and thus concerns the relationship between B and H rather than E and J.
The method used here is similar to that described by Lim and Hammund?
who used a Dufbrt-Frankel time-stepping scheme in conjunction with a

Frohlich magnetisation characteristic.

If the material conductivity, o, is assumed constant and the per-—
meability is a function of B as well as the spatial coordinates, the
following governing equation for E may be derived from Maxwell's
Equations used in conjuction with the constitutive relations;

2 3
v g 3T ( curl HE ) (1

which can be further modified to give
2 3 (2)

V" E = ’T (uoE - H x grad u)

If (2) is applied in conjunction with

dive = 0 3

all of Maxwell's equations are satisfied.
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A convenient experimental model of the one-dimensional diffusion
problem is a steel rod of circular cross-section subject to sinusoidal
surface conditions. It is thus appropriate to consider the circular

cylindrical coordinate form of equation (2) which is:

1 3 3E 2 W %)
Tor (Tac2) = 3 WOE, +H g7 )

The subscripts may be dropped because there is only one component of
E and one of H. Equations (2) and (4) , however, require that the time

derivative of the permeability be known and this is an inconveniénce.

A simpler equation can be obtained from equation (1) by substituting
B for pH and noting that
B _ a8 2
T di 3r
The equivalent form of equation (4) is then;

1 5 (L2, _ 48 2
T o (T ) ° I 3t (5)
from which the following finite difference equation may be derived

using central differences:

E(i,j +1) = Q(E(,j-1) (Br (Ar)22rAt) + At E(i+l
(2r + Ar) + E(@i-1,7) ( 2r=Ar)))

»1) (5a)

where

__d8 B 1
B=oqm °» U @mEmend

The relationship between B and H is defined by the Frohlich curve:

H

B = oTHI

in which H and B are in the same direction.
At each step the H distribution must be calculated from that of E

so that the magnetisation curve can be used. Because curl H =J

g = 1 23GH) M
T T

and integration with respect to r yields
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r
H= $ \zrk a (®)
o

With this modification the calculation of the field distribution
follows the method of Lim and Hammﬂnd7, using the DuFort-Frankel time-—

stepping scheme.

2.2) Surface Impedance.

From the solution, the fundamental components of the field vectors
at the surface can be obtained by harmonic analysis. If either E or H
is sinusoidal at the surface, the total power loss in the material may
be determined by applying the Poynting Vector to their fundamental
components. This loss can be regarded as occurring in the real part of
a complex surface impedance. The quadrature component of the impedance
may be used to describe the reactive volt-amp absorption. This surface

impedance can then be used to terminate the exterior network.

The concept of a surface impedance is useful as a basis for compar-

ison of methods and as a check against experimental results.

3) The Approximate Model

The approximate model in which the magnetisation curve is repres-—

ented by a rectangular characteristic has been described by several
authors (references 1-6). It restricts the flux penetration to a surface
layer in which the material is saturated gither one way or the other;

the switching point between the two magnetisation directions defining

a wavefront. An algebraic expression is obtained for the E and H wave-

forms.

As with the finite difference nethods,much of the published
literature considers the ginusoidal surface H condition. The following
analysis considers the condition of sinusoidal surface E (as in the pre-
ceeding section) and, in addition, the analysis is extended to include

the non-sinusoidal surface fields.

Steady State C8

3.1) Sinusoidal Surface E

Using a modified form of Maxwell's equations and the co-ordinate
system of figure 2, the field at a distance x from the surface is given

by:

B o o 9)
X
and E = 235% = Eo sinut (10)

After integration these equations give a wavefront depth of

EQ (1 - coswt)

X =2:|JHB_O (11)

and the solution for H is

OB e U
H = wBo sinwt sin” 73 (12)

As in the finite difference method the resultant solutions for the
surface values of E and H may be harmonically analysed. If either
waveform is purely sinusoidal, the loss may be obtained from the fun-
damental components by Tourier analysis, The fundamental component of H
is:

H = H' (-4 cosut+ 3nsinwt) (13)

where H' is defined in equation (A.1) of the appendix. If

E =E, i.e. is purely real

H = H' (31 - 4ji) (14)

Again a surface impedance may be used to describe the resistive and
reactive components of the total volt-amps. If this impedance is

considered to consist of series components, their values are given by
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equation (A.2). The impedance shows the power factor to be 0.9206 so
that the phase angle is 23% . This result may be compared with that for
the sinusoidal H condition given by HcConnella and Agarwals. In the
latter case the impedance is that given in equation (A.3) and the power

factor is 0.8944 giving a phase angle of 26.6°.

These two solutions can be compared on a basis of the same peak
value of the fundamental component of E and the ratio of the magnitudes

of the two impedances is then

(15)
= 2.04745
Izsé / IZSQ

This indicates that the power loss for the condition of sinusoidal
surface E is double that for sinusoidal surface H. This point is confir-

med by the finite difference solutions.

3.2) Non-sinusoidal Surface Fields

The above approach allows a further generalisation to include non-
sinusoidal surface excitations by expressing the surface waveforms in

Fourier series form.

The derivation described below is in terms of H although the

treatment for E follows a similar procedure.
If the surface H distribution is given by

(16)

H = H;  sin ot + H; coswt + H3g sin 3wg + Hy, cos 3wt +...

1s

and equation (10) is modified to become

dx (17)

H
ptr = 2g B e
= o dt

the resultant equation for the depth of penetration any time, E, is

_|2 '
e woBo i 18)

given by
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where H is defined by equation (A.7) of the appendix. The solution for

- [uBo H
4 . R (19)

Equation (18) assumes that x = 0, and hence H = 0, at time t = 0 S0

E is then

that the time origin has to be displaced to the point at which H = 0.

As before, a harmonic analysis can be used to yield a surface im-
pedance, although the impedance now has harmonic components so that the

surface layer must include a series of harmonic generators.

Agarwal's has modified the saturation flux density by a factor of
0.75 so as to predict the loss (but not the VAr's) accurately when
the surface H is sinusoidal. This factor has been shown to be dependant
13
!

on the magnetisation leve In the sinusoidal surface E condition a

similar approach can be employed to model the loss accurately.

The advantage of the rectangular magnetisation characteristic lies in
the simpliecity with which the surface impedance may be derived. The
approximation is satisfactory at the large values of surface mag-

netisation which occur in many problems of interest.

4) Results

The results in figures 3 to 6 show the E and H waveforms predicted
for a specific B - H curve for sinusoidal surface E and H. As can be
seen, the waveforms are similar in form for both methods and as the
magnetisation level is increased the similarity increases. The effect

is shown more clearly in the surface impedance results.

The method of section 2 can be adapted so that a finite final slope
is included on the B = H curve but the effect is small, as has been
noted elsewheree. It would seem that the difference between the approx-
imate and finite difference methods is largely due to the fact that the
finite difference solution allows for the initial slope in the B - H

characteristic.
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The extra loss caused by assuming a step change in flux density
requires a reduction in the saturation flux density to obtain accurate

predictions.
This result suggests that a modification of the rectangular curve
to one having a finite initial slope would improve the agreement between

the two methods considerably.

5) Extensions To Two-dimensions

Both methods may be extended to give field solutions in two dimen-—
sions, as is necessary when the flux density normal to the surface is
large. This condition is commonly met in practice in the end region of

a turbo-alternator or around a transformer leg.

The finite difference approach in two-dimensions may be formulated

in terms of magnetic vector potential, A , which has only one component.

k]
This function was chosen because it is often employed in two-dimensional

linear eddy-current problems.

The governing equation for A is

3A av 3A_ al/p _ 3A_ 8l/n ] (20)
] - L3 9x 3;2 3y

which may be approximated by a nodal (DuFort-Frankel) finite difference
method. Care is needed in the treatment of interface conditions which

include restrictions both on pand the normal gradient of A,

The approximate approach may also be adapted to two-dimensions
although the wavefront, which is the key to the algebraic treatment of
the one-dimensional problem, no longer becomes as clearly defined since
the angle through which the magnetisation vector switches is not
necessarily 180 degrees. The evaluation of H is complicated by the
variation of the current density within the saturated region. The
solution is still of the surface layer type and is only applicable to

high magnetisation level problems.

Steady State C8

Two-dimensional calculations using these two approaches are being

made and it is hoped to publish the results at a later date.

6) Conclusions

The foregoing analyses have shown that the most commonly used methods
of treating non-linearity can be adapted to allow for any specified
surface E or H time variation. A comparison between the results for
sinusoidal H and E (the two limits) indicates a region within which the
practical condition must occur. The methods have concentrated on the
fact that sinusoidal surface E may be regarded as a limiting condition

on the waveforms encountered in practice.

The surface layer concept,together with that of a characteristic
surface impedance, can simplify external field calculations considerably.
In addition,they provide an extremely useful point of reference between

different analyses and experimental measurements.
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Appendix
The following equations are used in the approximate model of
section 3.
1 2
oEo
B =@ (&)
z _ E _ 12uBor [ I, +4]j ]
se H oEo 9T +16 (A.2)
, . E . 16 wao]* [1+34]
sh i 31 k72Hoo 14 (A.3)

for the same peak fundamental component of E

Zsh = __E_ = lﬁﬁgmnfg_() I:]_ + ji] (A.4)
9m“Eq0
1241
se 2773
IES—hI -{;6-?9“2 +16)! 2.0475 (A.5)

27k
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for the same condition, the ratio of penetration depths is

Se
= 0.949 (A.6)
by
0o
' . 2 nuwt ., Dt nwt
H= Y(H,, sin” —5= + Hn, sin —5- cosny ) (a.7)
n=1,3,5
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Discussions following paper:

(Hammond, Southampton) The loss in solid iron is closely predicted by
using a rectangular B-H characteristic, Does the author think that

this loss could be obtained very simply by using an energy functional?

(Lowther, Imperial College) The rectangular B-H characteristic predicts
the loss in solid iron closely enly if the saturation flux density is
Teduced by a factor such as that suggested by Agarwal. In representing
the non-linear surface layer by a surface impedance (in order to simplify
the exterior field calculation) both the phase and quadrature components
of the impedance should be accurately represented. At high levels of
magnetisation the rectangular B-H curve gives a reasonable solution for
the magnitude but produces an error inphase angle. The Agarwal factor
reduces both components of the impedance whereas a better solution might
be a method in which the phase angle only is increased, improving the

accuracy of both components of the impedance.

With the above proviso the concept of an energy functional, employing a
rectangular B-H curve, to represent the loss is an interesting idea.
This would overcome some of the problems involved in an accurate repre—
sentation of the non-linearity. However, it is an idea which we have

not considered.

Following Professor Hammond's paper at the conference, which employs this
technique to obtain the relevant parameter of interest very simply; we
would be interested if he has applied the method to predict the loss in

the non-linear situation.

Steady State C8
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EVALUATION 'OF THE AIR-GAP FIELD IN SHORT-STATOR LINEAR ASYNCHRONOUS MOTORS

G. Figalli - G. Gentile - E. Pagano - V., Vaccaro

1. Generalities

One of the essential problems to be considered in the study of the
performances of short-stator linear asynchronous motors, is the determina-
tion of the air-gap magnetic field. In this evaluation, it is necessary
to take into account the actual geometry of the stator and therefore the
real map of the magnetic field both at the end and at the top and bottom
sides. This implies that the air-gap magnetic field can not be identified
with an ideal field in which all the lines are parallel and have equal and
finite lengths. By introducing suitable simplified hypotheses, different
approximate solutions can be obtained if the motor has a periodical confi-
guration., These hypotesis have been validated by the agreement between
the theoretical and experimental results obtained up to now.

A mathematical model based on an improved representation of the air -
gap fiel map can be useful for application to a wide range of motor confi-
guration, For this purpose the air-gap permeance can be expressed by mea-
ns of a function of exponential type, which satisfactorily expresses the
actual air-gap magnetic field, Allowing for symmetric conditions, the air
-gap permeance can be approximated by an even function of x and =z (see
fig. 1), which vanishes at infinity., This function can be expressed in
the form:

gy w ool CRI ool (5] o

In this relation for each given pair of wvalues of n and m , the
constants AD, B, *i1 24 8re calculated to obtain the nearest approxima—
tion. A congtant trénd of the air-gap permeance inside the dominion D (
/x/<1 /2, /z/<1 /2 ) is imposed together with a more or less guickly
decreaging trend a% the outside. For this purpose, first of all, a study
has been done to determine the optimus value of X0 AD, and Yqr Bn 2
which give the minimum of the functions:

t:;z L]
A.rx..AaJ=f [2(x,00-2(0,0)]* ds ks f A(x,00dx ,
o l::

Lo
4 (zi.s.,J-! [3(0,2)-400,0)] az 'k,fwffo.z}dz :
L
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In these ewpressions, k and k_ are two constants chosen to give
the decided weight of the er‘rgr of thezappmvimatinn inside the dominions
D and Do (/v/2 1‘;? " /z/;l‘:’ )+ The air-gap field in the dominion Dy is
supposed to be zero.

2. Mathematical Model

In the study of steady-state operations of short stator linear induc-
tion motors, it is useful to make some approximations, i.e. neglect satu-
ration phenomena and displacement currents, assign an infinite permeabili-
ty to the inductor. If the z-component of the inductor current is only con
sidered, the second Maxwell equation is: B

2 [Blxz.b)8(x,2)] o An(x,z8 + pioy; Gz (2)

In this eguation, it is also assumed that the induction field B has
the same direction as the y-axis, This assumption generally made in the
technical literature, does not alter the B distribuction on the rotor.
Ohm's law combined with the first Maxwell equation gives the following
equation:

’G,,  IG, : (B B
FIVCI ax?z-z?x_(ﬁ_ﬁ"v :E_X_)EO @)

This equation together with equation (2) makes it possible to de-
termine the functoon B(x,z,t) on the rotor whenever the function A, is
dssigned. The latter depends on the time variation law of the inductor
currents and on the geometric structure of the inductor windings. Refer-
ring to a symmetrical system of sinusoidal currents, one can write the
linear current density as:

. P 39
A (x,2,8)=V2 13, 3 EefilxH(z) exp [j(ot - 24 (i-1)/3)]

if &ll1 the pole windings are series connected and if we set:

fulx)= \/TT‘]ScE- exp [- (%=2g )\ }"'/(2 s? a? ]-exp[—fx-x,".,J/r2S§g'21 ] I

exp[—(zﬂf]rzazf'e} ] exp[— (z-a /125 F% ] dz

£ (2= f
2z af &
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This assumption implies that the distribution of the inductor currents
is supposed to give rise to a Gaussian distribution of linear current densi

ty in the slot opening along the w-axis and to an integrated Gaussian distr
ibution along the z-a¥is (see fig. 2). -

Since at the steady-state the forcing variables are sinusoidal, all
other variables will be alsp, i.e.:

B (x,z,t) = Bix,zl exp [_jmt]
G., (x.2.8) = G (x,2) exp[imt]
A, x,2,5)=A,, (x,z) exp[imt]

Some other properties are now examined. The vector B has zero diver

gence. Due to the magnetic symmetry with respect to the z axis, this pro-
perty is summarized in the following equation:

Bix,z) dx = 0 (4)
-0
Performing the Fourier transform along the w—axis, the equation (4)
becomes B(0, z) = 0. The intrinsic structure of the physical model impli
es that the By and B, components of the resulting air-gap induction

field, separately generated by the current distributions on the stator and
in the rotor, are zero i.e.:

B, (0,z) = B,(0,2)=0 (5)

On the other end the eguation (2) can be written in the form:

B (x,z/=A(x,z) (2')

pn[ fA,, (x.z!dx»mj(?,a (x.szx]‘k,(zJokz(zJ

In this equation we denote with k, and k_ two integration functions. These
functions must satisfy the mnditll:in (5), namely

n A . 2 2
Ky (Z)=piq g'fl_n"‘gﬁﬂ e xp[——A-Q- §-i§xi:| d§
UCAN T 4 ®)
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g _jEXI

o 5 2
ke zi=-pond, [ Szl onp Bagt jeslar ()

Performing the double Fourier—transform of eguations (2) and (3) and

taking into account the properties of the integration functions we obtain
as a result the integral equation:

= - R,.’}’ ¥ = @ = .
Bia= ﬂof —ji,'*la'&-?-ﬂ-wdrdwpm[ _Bﬂj’-{_‘;'.fi%w_’.

. f.fg-y, n-vidydy (7)

h .
where the function 622

To solve the equation (7) it is necessery to assign an adequate form
to the function A(x, z), which represents the air-gap permeance. PRefer-
ring to the relation [1], performing the double Fourier-transform, intro-
ducing in the equation (7) and making a normalization of the variable §,

7 over the quantities AS/4 and BS/4 we obtain the final equation.
This equation is an integral eguation of the Fredholm type, second kind,
of two variables., The inspection of the kernel suggests an evpansion of
Hermite polynomials as fugctions of &€ , 1 Performing the same ewvpansion

of thg forcing function Kz‘I( E, n) we can predict the form of the functs
ion a’(g n ]:

is eliminated,

= L
AlEm)=2g ABy Y, 3, exp[—!Azagz'Bi q’)/4]exp[—j{x‘§+z.‘ 13)]

= nm ; @ -
B, n)=Cexp [—(§’. q’)] fwexp [—1 (Dx &+ szm] Sng Hl&) Hym) By (8)

Fin(E) = Ha (§)=H,(0)

where the guantities Elh 144 are the unknowns to be determined and where
]

D=2/A, F= 2/’80, C =lyA;874 o is set. Inserting the expression found
in eq:.:a%icn (2') © and performing all the eventual algebra, the procedure
leads to a system of infinite eguations with infinite unknowns E!h 1.i.h
gpayitn
Truncation of the system which is equivalent to a degeneration of the ker-
nal and an approximation of the forcing function leads to the matrix equa-

tion: B=H+ Ak B
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whose solution is:

B = [I‘Ak1_1 H

whose [I] is the identity matrix

A, lx 2)
B(x, z)
', g’

) [*s Z)

H @ -

k=]

c

e,r,i, .’:s,r,i

v
6 (», 2)
A[": Z]
Mo
®

LIST OF SYMBOLS
halfwidth of the rotor.
linear current density at the stator air-gap surface.

air-gap induction.

numerical coefficients.

single and double Fourier—Transform of the function f .
current density.

effective value of the inductor phase current.

number of pole-pairs.

number of slots per pole and per phase.

halfwidth of inductor slots.

abscissae of the slots for clockwise and counterclockwi
se currents.

mutual velocity between stator and rotor.
lenght of the air-gap field-lines.
air-gap permeance.

permeability.

electric conductivity.

angular frequency.
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NUMERICAL DETERMINATION OF AN EQUIVALENT
COMPLEX PERMEABILITY FOR SATURATED STEEL

Alain BOSSAVIT

Electricité de France (92140 Clamart, France)

This work has been done in relation with the design of a mathematical
model of an induction furnace for slabs. The geometry of the furnmace is
such that a monodimensional study is valid, leading to a coupled system
of non-linear partial differential equations, one for the temperature,

one for the magnetic field.

A numerical treatment of this system is quite feasible, but time -
consuming. The introduction of an equivalent permeability (see []}} for
saturated steel is a useful device to reduce the complexity of this system,
for it allows one to solve the field equation in closed form, leaving only

the heat equation to be solved.

The organization of the paper will be described at the end of the
first paragraph.

1. — DEFINITION OF THE EQUIVALENT PERMEABILITY. ITS PURPOSE

We consider an infinite steel block, limited by the y 0z plane, and
a current sheet parallel to this plane, at the abscissa - &, % being the
air-gap. Its resistance is r and its inductance s per square-meter and a

voltage v(t) =V sin wt is applied.
The steel is characterized by its (constant) resistivity ¢ and its
magnetization curve, linking the induction b(t,x) and the magnetic field

h(t,x) by the relation

(n b(t,x) = b(h(t,x))

282

Steady State C10

The evolution of the field is given by the parabolic equation

3 3 , -1 3h, _
(2) 3t b(h(t,x)) - 5 (o 3;) =0, x =0,

with the boundary condition
ah =1 3h
(3) (uo %+ s) SE (t,0) + r h (t,0) - ¢ 3;-(t,0) = v(t).

Having obtained the periodic solution of (2) (3), we can compute the mean

power P and the quadratic mean intensity J under the applied voltage V.
Let us now imagine a steel of complex permeability
(4) u = My W exp(i 8)

heated by the same inductor. In this ideal material, the field would be
Qe [exp(iu.\t) H(x)] where H is the solution of

2
imauH{X)'—a—H(x)=0, x > 0,
ax2
(5)

[i wlu, 2+ s) + r] H(O) - o'

e 0) =V

From (5) the mean power P' and the mean quadratic intensity J' are easily

found, as functions of M and 9.

We define the equivalent ecomplex permeability as the solution of the
system of two equations

(6) P om P'{i—lrra)’ J=J fur,ﬂ)

A priori, u and 6 depend on a lot of parameters, and we shall exa-

mine this dependence in the next paragraph.

Let us remark that this ideal steel with equivalent permeability
behaves like real steel with respect to P and J. These are the major pa-

rameters in heating applications, for J determines the power loss in the
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coil, so that the heating power can be exactly determined.The comparison

between P and J is also important to design the compensating capacitors.

This approach has a flaw : the exact distribution of power in the
steel is not accurately predicted if one refers to (5) instead of (2) (3),
but this is a minor disadvantage, for this power is dissipated in a very
narrow skin depth (an the heat diffusion helps to smooth off the

differences).

On the other hand, the simplification brought on by (5) in comparison

with (2) (3) is obvious, 7f the equivalent permeability is known.

We shall attempt, in the coming paragraphs, to compute this permea-
bility. In § 2, we put the equations in non-dimensional form, and make
apparent the occurence of a small parameter e. Setting € = 0, we obtain a
classical formula for the equivalent permeability. In § 3, we expose an
approximate method, valid for small e, which results in corrections to
this formula. Detailed charts and curves for these correcting terms are

given in § 4.

2, - EQUATIONS IN NON-DIMENSIONAL FORM. THE SMALL PARAMETER

Let us define new variables by
(1 b=t b, t=uwt, h=Hh, v = Vv, x = 6x
and introduce the classical penetration depth
@®) &, = V2o wu,
Three non-dimensional parameters appear :
9 p=ro 50, A=ow Go(uo L+ 8), e = Gféo
If we decide that

1/2

(10) 6§ = (B/ow b)) '“, H=0 8V =0 VZ/ub,
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the equations (2) and (3) become (ignoring the bars)

2

an e m-2L-0, xso0,
t e 2
9x

dh

(12) lEE

3h "
+ —-_—— = =
pe h % sint, for x =0
where B is the non dimensional magnetization characteristic. For satura-
ted steel under high applied fields, it is customary to adopt the follo-

wing representation of the b-h relation (figure 1):

b
(13) b = bo sgn(h) + My h
If b is taken as the new b /
induction unit, (13) takes
the non-dimensional form 0 >h
(14) g_(h) = sgn(h) + 2 e2 h b
When € = 0, (11) (12) reduce '

to a classical equation (cf.
Agarwal,[2]). The instantaneous
field is (cf. fig. 2).

Figure 1
The b-h curve for intense fields

(15) h(t,x) = (sin? t/2 - x) sin t if x < a(t) = sin? t/2
=0 if x » a(t)

This allows to interpret § and H in (7) : § is the maximum depth of
penetration of the field and H = (32/5)]f2
quadratic field on the edge of the slab.

Hm, where Hm = J is the mean

The factor e is thus a ratio of two penetration depths (under and
above the point of Curie) and it takes small values (0.1 to 0.3) in

standard situations.

This fact justifies Agarwal's approximation (¢ = 0). A straight -

forward computation leads to the following expression for the equivalent
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permeability when e tends to zero :

U

(16) po=1.6 =2 exp [i(2 Arctan 1/2 - 7/2)]
2
€

This must be understood as the first term of an asymptotic series in

e and we shall attempt to estimate the next term.

3. - A CORRECTION TO FORMULA (16)

Let us return to (11) (12). If we introduce the zeros

{ai(t), i=1,2,...} of hin x, (11) is equivalent to
2
2 e2 g%__:a__h=0 if x # a,
an ax2 .
2&4.8_11( +0)—ﬁ( -0), i=1,2
at x4 ax o » ¥ myecie

It is physically obvious (but hard to prove) that h is negligible

for all x >a . So that (11) (12) can be restated in the following form,

keeping only the first abscissa o in consideration :

.
(18) ZEZQ—H=0, x>0, 0<t<m,
at 3x2
X
da . 8h
(19) 2 oy + T (a(t)) 0, 0<ts<m,
(20) h(a(t))=0, 0<tgm,
@) Ae$R0,0)+ p £ h(0,t) - —gg 0,t) = sin (t + y())

(22) h(0,0) = h(0,m) =0

(A shift y(e) in the origin of times has been introduced in (21) to satisfy

(22), which ensures the necessary periodicity).

To study(18)... (22) we introduce a new parameter f = 2 €2 and set

]
gy -2,
9x
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Developping formally the solution h in terms of £ and £, we have

= 8 3
(23) h; h + hﬁ'0 + 0(e?)

SE 0,€

As we wish to obtain h2£2 e , the following procedure stems from (23) :
3

- Solve (18') ... (22) with ¢ = 0 to get ho "
»

- Differentiate (18') ... (22) with respect to L and set & to zero,

3h
to get "éz 3

- combine the results according to (19).

The solution found is accurate to the third order in e.

The term h
— 0,&

?

Let us introduce the new unknown function.

t
(24) u(t) = f h(s,0) ds

The system (18') ...

(25)

[+]

du
dt

u(0) =0

u'(n) =0

(22) with £ = 0 becomes

t
Ae=—+ peu + 2/u = f sin(s + y(e))ds, 0 < t < m,

o

a two-point boundary value problem. It has been solved by a shooting

method, with a standard iterative procedure on the phase shift vy, and a

Runge-Kutta scheme (with precautions near the origin to cope with the

stiffness of the differential equation).

The term 3h/3zg

It can be obtained in closed form easily,
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Combination

A computer program has been written for the IBM 370-168 of Electricité
de France to carry through these operations, to compare the results with
the solution of(5),and to derive the equivalent permeability as a function
of the three parameters e, p and A. About 0.4 second of CPU-time is used

for each triplet.It is convenient to express the results in the following

form

VTLE

2
(26) ule, p, A) =—(’—p-'—?‘—)9«xp i B(E; Ps A)

€

The curves below show how v et 8 vary with

4., — RESULTS

For a numerical example, let us use the MKSA System.

Reasonable values are :

Frequency

Resistance of the sheet

Inductance of the sheet

Airgap

Conductivity

Applied voltage

Induction at saturation :

With these values,knowing that p

Penetration depth :

@ m2)
=t/ (@ w?)
=0.1 (m )
@
=10 (Vv )
=15 (T )

b 10‘?, we obtain

6 =0.021 (m )

Mean magnetizing field : Hm = 83000( A/m )

g, p and A.

Steady State C10
and for the dimensionless parameters
e =0.298, A = 2.88, p = 0.0712.

From these figures, and from the examination of our results, we can draw

the following conclusion :

Agarwal's formula is valid only for weak magnetizing fields (but
strong enough to achieve saturation, of course). For strong fields, as
in heating applications, a correction must be provided. This correction
depends strongly on the airgap and only to a negligible extent on the

impedance of the coil.
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A COMPUTERIZED PROGRAM FOR THE NUMERICAL SOLUTION OF
HARMONIC FIELDS WITH BOUNDARY CONDITION NON PROPERLY
DEFINED

A, Di Napoli, C. lMazzetti, U. Ratti
Electrical Engineering Institute - University of Rome
ROME

Sumpary

In a previous paper, /1/, an automatic computerized
program was defined that, making use of the finite ele-
meént technique, allows the study of the electromagnetic
field relative to large-sized structures involved in high-
frequency phenomena,

This program had been used for the determination of
the electromagnetic field of a simple resistive divider
for high-voltage measurement.

In this paper new devices are introduced that allow
to markedly reduce both the storage area involved in the

program and the computation time. This proved necessary in

so much as the use of the program was so extended as to in

clude the determination of the electromagnetic field of
resistive dividers in the presence of electrodes and
screens of various shapes and placed in different posi-

tions,

Introduction

The present paper represents an intermediate stage
for the study of the electromagnetic field relating to
large-sized structures involved in high-frequency pheno-
mena, The computation methodology set forth here and ap-
plied to the solution of an electromagnetic field of a
resistive voltage divider, was extensively illustrated
under /1/; Fig. 6 shows the flow-chart, and Appendix 1,

the relative equations,

Steady State C11

In this paper, a computation subprogram was defined
that, through the coefficient matrix inversion, directly
solves the system of algebraic equations obtained, by means
of the finite element technique, starting from the follow-

ing differential equations:

PPvao0 ; vPil=p:0%H
st2 (1)

The program was applied to the study of the electromag-
netic field in a system consisting of a resistive voltage
divider placed in a test laboratory, in which, unlike the
work /1/, there are also present an HV electrode and ring-
shaped screens. The system configuration, with the relative
boundary conditions, are shown in Fig. 1.

The screens and the electrode are assumed to be made of
fiber glass whose surface is metalized by means of a high-
conductivity aluminium paint; in this way, they have a mere
electrical and non magnetic function /2,3/.

The field distribution analysis was performed conco-
mitantly with the frequency change; it is well known, in
fact, that an impulsive wave may be always regarded as a sum
of signals having a different frequency, amplitude and phase
it ensues that the behaviour of the system under review,
vis-a-vis this type of signal, provided that the system may
be regarded as linear, is inferred from the results as a
function of frequency. The interval considered is that com-
prised in the range of 0 to 250 kHz: such an interval also
involves pulse waves with a rise time in the order of micro-

seconds,
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GEOMETRY OF THE SYSTEIl AND BOUNDARY CONDITIONS

A system similar to that considered under /1/ was

taken into examination, namely, a resistive divider with -
an anti-inductive winding, placed in a high-voltage labor
atory, with both walls and ceiling assumed to be at zero
potential,

In respect of the system analyzed under /1/, the
resistive column is completed with an electrode placed in
correspondence of & high-voltage terminal, as shown under
Fig. 1 and 2.

The presence is subsequently considered of an annul-
ar screen positioned as in TFig. 1, and the influence is
verified that it exerts on the behaviour of the field
(Fig.3) and on the potential distribution along the di-
vider (Fig.4), in the assumption of keeping it at the
high-voltage terminal potential, '

It should be noted that the system thus schematized
presents a symmetry axis, and it is therefore possible to
study the field behaviour in relation to any planes con-
taining this axis, and to convert the problem under
examination from bidimensional to tridimensional, Further
more, in the plane under review, the system is still s vz
symmetrical in respect of the axis of the divider, and it
is therefore possible to confine the study to one half
plane only. In other words, it is possible to tackle the
study of the field in eylindrical coordinates, loreover,
on the basis of the previous assumption of a perfectly
anti-inductive winding, it is sufficient to study the
phenomenon only in the region external to the divider,
as schematically indicated in Fig. 1, where the part of

the plane under examination is shown,. This region, for
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the purpose of the application of the finite element tech-
nique, was in fact discretized into triangular elements of
the first order, as shown in Fig, 2, where it looks thicken
ed in the areas in which a higher electrical gradient was
assumed to be present.

The presence of the screens or of the H V electrode has
obviously modified in part the boundary conditions and the
previously described /1/ field equations, without, however,
any changes being made to the functional to be minimized
/4:5:6/5

Concerning the boundary conditions relative to the HV
electrode and the fixed potential screen, it proved suffic-
ient to impose to the nodes placed on the conducting surf-
aces a potential equal to that of the high-voltage terminal
of the resistive column,

As to segment 00', representing the divisor-air separ-
ation surface, it is quite impossible to define "a priori"
the value of the displacement currents flowing from such
surface;, hence the V electric potential and the Hy magnet-
ic field among it, As previously indicated under /1/, it
was initially assumed to consider a purely linear potential
distribution, and hence, by means of the iterative proce-
dure described in the flow-chart, the actual distribution
along the divider was calculated by successive approximat-
ions,

The electromagnetic field equations throughout the
region under review, are represented by (1) equations,
except for the areas placed internally to high-voltage
electrode and screens, In this region, owing to the absence

of displacement currents, equations (1) are replaced by:

P2v-0; P E =0 (2)
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Computation Program

The flow chart of the computation program is shown in
Fig, 6. In this paragraph two peculiar features of the
worked out program are emphasized: the storing of the co-
efficient matrix of the finite elements and the solution
of the two following equation systems obtained by means of
the finite element technique (5,6), starting from (1)
equations:

[n| . v+ 5vn| = o (3)
“MIHOE l'rjl |H s gHY Lr] =0 (4)
With regard to the first point, it may be observed

that we succeeded in considering a hisgh number of nodes,

occupying rather reduced storage areas /7/, by storing
only the values of the coefficients different from -zero
that appear in matrices IM! and IN!,

Let us consider, in fact, the node i, j, Fig. 5, be-
ing the vertex of six iriangles forming the drawn hexagon;

it is in fact pointless to assign storage areas to the co-

efficient tying node i,j to node i+2, j+2 which is certain

ly equal to zero, In this way, it was possible to store,
making use only of triangular elements of the first order,
only sevenccoefficients for each node, thus obtaining a
remarkable saving in storage that becomes greater and
greater a8 the number of nodes increases,

The solution of the system of equations (3) and (4)
was performed making use of Choleski's decomposition /8/.

It should be reminded that the matrix IN! of (3) is
a symmetrical matrix, decomposable in a univocal way into
the product of two triangular matrices, of which one is
the transposition of the other; equation (3) may be thus

Steady State C11

written as follows:

[N' .IV' + jvn [=[mIT ‘ml V‘+jV"1= 0

(5)

Premultiplying (5) by the reverse of !m!T, we obtain:

[m] . [ve & svn| =0 (6)

that, being a triangular matrix, is directly soluble.

In view of the previously mentioned storing of the ma-
trix of only the coefficient different from zero, the one
difficulty presented by such a way of working was that of
obtaining the algorhythms r the computation of matrix !m!
from IN!, writing in Im! only the coefficients different
from zero. Sk

Such a way of working involved a storage increase that
was, however, offset by a decrease in computation time; this
time was reduced to 2/3 of the computation time previously
required, by having recourse to the over-relaxation method,
It should be also noted that in so doing, the uncertainty
is eliminated, that is due to the imperfect knowledge of the
overrelaxation coefficient. It should be finally observed
that this type of solution is particularly suitable for the
problem under examination: in fact, owing to the lack of
knowledge of the potential distribation along 00', recourse
must be had to successive iteragtions, during which the ma-
trix to be inverted remains unchanged, and hence, for each
iteration, it will suffice to solve the system in respect of
the new values of V and of H, calculated along the 00' bound

ary.
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Conclusions and Further Developments

The work carried out highlighted two particular fea-
tures of the system under review:

- the methodology used for the solution of the system of
equations (1);

- the application of the program formulated under /1/, as
modified for the study of the divider-screen-electrode-
laboratory system.

Concerning the first point, one can be fully satis-
fied, in view of the saving obtained both in machining
time and in the storage area occupied,

As to the second point, although the influence the
gcreen and the electrode exert upon the field behaviour
and upon the potential distribution, was duly ascertain-
ed, some doubtful points, already present in /1/, still
remain in existence., In fact, for frequences below 1kHz,
there 8till exist uncertainties due to the error in the
computation of the derivative of !M! (eq. I.6); such un-
certainties would be at least reduced by using elements
of & higher order than the first one, and we intend to
work in the fubure along these lines,
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APPENDIX
The flow-chart of the computation program and the
algorhythms referred to therein, are reported hereunder
(Pig. 6) for a correct understanding of the work.
The equation systems (3), (4), by making use of Cho-
leski's decomposition, may be respectively written as

follows:
ml Wt g =V Ve | (I.1)

(1.2)

In| By +3Hg |=[B) + jH}
where, as a secondo member, %here ;;e placed the voltage
and magnetic field vectors fixed at any iteration; !m!
and In! are triangular matrices., From the computation of
potential V one goes back to the value of the electric
field Ez in the barycenter of the triangles adjacent to
the instrument

i 7 (1.3)

and, hence, to the displacement currents value:

.99 _d_
s dt dt
The H values along 00' may be calculated from:

I (eE‘P s 2xsrl)=jmsEr 2mwrl (1.4)

—I I.
Hﬂ= 2z (1.5)

where 1 is the current flowing through the divider, less
the quantity Is that flows out of the latter by the capa
citive route.

Starting from the value of the magnetic field HB
the electric field E is determined along 00':

% ﬁ% (Hy +3HY ) .1 = ¢ g% (B + JEp ) (I.6)

Steady State C11

The knowledge of this component allows fo-caleulate
the electromotive force AV= EZ.A 1 induced by the magnetic
field that is added to the resistive dump:

(x.7)

new 'R
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A COMPUTER METHOD OF CALCULATING THE EDDY CURRENT HEATING OF MAGNETIC
MATERIALS, WITH A COMPARISON BETWEEN PREDICTED AND MEASURED RESULTS IN A
ZMVA INDUCTION FURNACE

R C GIBSON

|. Introducticn

At the Electricity Councl| Research Centre, Capenhurst, considerable
effort is being expended on research into the induction heating of metals.
Much of this work is of a practical nature, concerning the development of
existing andnovel induction heating techniques, leading to the production
of full scale industrial prototypes. In parallel with this, a theoretfical
analysis of induction heating methods has been undertaken by the author.

As a result of this theoretical analysis, a series of computer
programs have been written to model various induction heating processes.
These programs include the calculation of the eddy current heating, and
the subsequent thermal diffusion, together with facilities for
controlling the furnace power, frequency and other parameters necessary to
model industrial heating processes accurately. Due allowance is made
both for the temperature dependence of electrical, magnetic and thermal
properties during the heating cycle, and also for saturation of magnetic
materials.

This paper describes the methods used to calculate the two-dimensicnal
magnetic field, with eddy currents, in a short cylindrical or flat wide
coil of an induction furnace. A finite difference method has been
selected as being most suitable for this application. A direct method of
solution of the complex coefficient matrix has been adopted, as it has
been found to be more efficient of both user and computing time. A
detailed analysis is made of the simplified treatment of magnetic
saturation used in the method, and it is argued that this is suitable for
cases where a low cost calculation giving greater accuracy than orthodox
design methods Is required. Defails are given of tests performed with
both non-magnetic and magnetic loads in a 2MVA multilayer billet heater,
and the measured results are compared with those calculated using the
methods given in this paper.

2. Description of Program and Mathematical Model Used.

The program is essentially in ftwo halves. First the eddy current
power distribution is evaluated, and fthen this is used as source terms In
the thermal diffusion equation to calculate the temperature rise in the
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furnace charge. After a suitable Interval, the eddy current heating i
recalculated using updated values of physical properfies appropriate to
the new node temperatures. This cycle of alternate sclution of magnetic
and thermal fields Is continued until the required temperature is obtained
During this heating cycle, such parameters as supply voltage and freguency,
furnace power etc. can be altered to model the particular induction heatimg
process being followed. In addition, the program permits furnace power

to be controlled in order to provide rapid heating under such thermal
constralnts as a maximum temperature gradient or a maximum surface
temperature. Heat losses from the furnace charge through a thermal |y
insulating refractory are also taken into account.

Figure | shows the cross-section of the short circular furnace for
which the calculated and measured results are compared in Section 5. A
finite difference mesh Is fitted to the cross-section as shown, the
mesh extending beyond the coi.l to take adequately Into account the stray
magnetic field. The electrical and thermal conductivity, heat capacity
etc. for each mesh element are interpolated from tabulated values. The
derivation of the effective mesh permeability is given in Section 4.

The magnetic field equations are written for each node in terms of the
vector potential so that in the usual notation

curl C(I/p curl A) = -j2mfohA + Js 21
where 4 and o are assumed constant in +time, but can differ for each
mesh element. A and JS are assumed to be sinusoidal functions at
frequency F. The method of solution of these equations is given in
Section 3.

The thermal diffusion equation can be integrated by a variety of
means, In this case a variant of the Runge-Kutta method.

2.1. Calculation of Coil Losses.

The coil losses can be calculated by covering the winding with a
finely divided mesh and allowing the program to calculate the eddy
current losses in the winding strands in the same way as for the furnace
charge. However in a case such as that of Figure |, where the windings
are reasonably wel| stranded (each strand being not deeper than one
penetration depth) a more economic coarse mesh can be used. |t is
sufficient to assume initially that each strand is perfectly insulating
but carrying the requisit source current. Once the magnetic field and
the eddy currents in the furnace charge has been evaluated, the ohmic
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coil axis
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Figure |

Cross-section of Top Half of 2 MVA Inductor showing
Billet, Multi-layer Winding and Finite Difference Mesh
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and eddy current winding losses can be simply calculated using the
magnetic field passing through each strand. The slight difference
between the current distribution Initially assumed within each strand,
and that which actually occurs as a result of the eddy currents, has
negligible effect on the actual magnetic field distribution.

3. Method of Solving Node Equations

A finite difference method was selected, as, although finite
element methods are advantageous with irregular geometries, the regular
shapes of Induction furnaces, with current flows parallel to the
surfaces, allow a rectangular mesh to be suitably graded so that the use
of excessively fine meshes in unimportant regions can be minimised.

The use of a rectanQujar grid considerably simplifies mesh preparation,

an essential feature if the performance of a furnace is to be assessed at
short notice. Another important advantage of using a rectangular grid

is that more efficient algorithms can be written for the solution of the
node fleld equations; +he problems of optimising the band width due to
the use of an irregular mesh being avoided.

| terative methods for solving the matrix of node coefficients have
been attempted, but in spite of using |ine relaxation and other aids,

It was found that convergence was relatively slow for complex
coefficients with non-uniform meshes and varying physical properties.
Problems were also experienced with defining convergence and selecting
convergence factors in +the complex plane.

A direct method of solution was adopted, and implemented on a
UNIVAC 1108 computer as follows. A coefficient matrix for a small
problem is shown in Fig. 2. The only core storage required to set up
the matrix is for the real arrays f, g,r and the complex array A, A
being used both for the source terms J and the solution. A Gaussian
elimination method is used, and each line of mx coefficients of the
upper friangular matrix is written to the NTRAN backing store while
the next line is being formed, using a local complex array of size mxz.
The rapid data transfer to the NTRAN drum occurring simultaneously
with the main core calculations and combined with the low core storage
requirement allows sets of up to 3000 equations of complex variables to
be solved. The time taken on the UNIVAC 1108 is approximately 35
mXBNY}LS. Fortunately, many Induction furnace applications require
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is multiplied by 10° and the source term J is set fo zero.

Figure 2.
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Coefficient Matrix for Small Finite Difference Grid.
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long thin grids and so the band width mx is kept relatively small.
When evaluating the matrix coefficients, f, g and r, values of
resistivity and permeability are taken appropriate fo the local node
temperature and magnetic field strength. An extensive error analysis
undertaken for a one-dimensional case shows that the second order
error for a node at the Curie temperature, where eddy currents pass
from a magnetic to a non-magnetic region are not excessive provided a
sufficiently fine mesh is taken. |t should be noted that in a typical
induction furnace the magnetic field strength in the coil airgap can
be as high as IOGAm—l, giving a billet surface relative permeabi|ity of
about 3.

4. Method of Treating Magnetic Saturation.

The solution of eddy current problems with saturating magnetic
materials has been attempted by many methods. A disadvantage of most of
these is that they are relatively expensive in terms of computing time,
and, as will be readily appreciated, not really suitable for the
model ling of Induction heating processes with the attendant recalculation
of the magnetic field as the furnace charge heats up.

A common feature of these more elaborate treatments of magnetic
saturation is that the magnetic field strength H is assumed to be a
sinusoidal function of time, the flux density B being grossly non-
sinusoldal. Less commonly B is considered to be sinusoidal with H non-
It is the author's opinion that In reality, neither of

these assumptions is true.

sinusoidal.
It is considered that both H and B are near
sinusoidal, or rather that H and 9B/ dt are near sinusoidal.

4.1 Analysis of Magnetic Field Waveforms.

I+ is usual to connect power factor correction capacitors across the -
mains supply terminais of induction furnaces, and other low power factor
devices. For optimum power factor correction the reactive components of
current circulate in the series circuit formed by the coil and the
capacitors, the value of capacitance being chosen so that the reactance
of this series circuit is zero at the supply frequency. The magnitude,
however, of this series reactance is much greater at higher frequencies,
and so any higher harmonics in the current, and hence airgap and furnace
charge surface magnetic field strength waveforms are heavily damped.

Two other features of induction furnace installations merit

attention. Firstly, the voltage applied to the coil is known to be
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sinusoidal as the load taken by the furnace has little or no effect on
the supply system. Secondly it is usual fo leave a fairly substantial
distance between the furnace charge and the coil to allow for mechanical
clearances and thermal insulation.

The significance of these last two points can be demonstrated by
considering a very long uniformly wound coil of cross-section area AC.
Inside this coil, parallel to its axis is, placed a magnetic core of uni-
form cross-section area Am. This magnetic core has a typical B-H
characteristic, but has infinite resistivity so that no eddy currents are
induced in it. |In such a case the magnetic field strength H inside the
coil is therefore everywhere parallel to the axis of the coil and of
constant magnitude both within the magnetic core, and in the airgap
between the coil and the core. The flux density In the magnetic core Is
};H where M is a function of H. The instantaneous voltage/turn in the
coil Is given by

- 5
v apHO A+ ufA - A D) 4,1
9 e 2
Apar ¢ pHY + m(A - AD a‘r“” 4.2
Now 1§ ;
v = V cos wt 4.3

both sides of equation 4.1 can be integrated with time, and if;; is
represented as a function of H by, for instance, the Fr8hlich equation

M = a/lb + [HI) + ¢ 4.4
a table of instantaneous values of H can be calculated corresponding to a
number of points on the voltage cosine wave. |+ is then a simple-
matter using fast Fourier transforms fo obtain a Fourier series expansion
for H. From the table of instantaneous values of H it is possible to
tabulate the flux density in the magnetic core from the product F-H‘
Furthermore, the instantaneous values of flux density can be numerically
differentiated to tabulate the expression b{f;H)/ ot. The accuracy of
all these numerical calculations can be checked by evaluatingvfrom the
computed values of the right hand side of equation 4.2.

This analysis was carried out for a wide range of typical magnetic
field strengths, B-H characteristics (including hysteresis), and magnetic
core cross-sectional areas. Characteristic waveforms of magnetic field
strength, permeability, magnetic core flux density and the time derivative
of magnetic core flux density, are shown in Figure 3. Although the wave

Steady State C12

forms may look distorted, examination of the harmonic content shows in
particular that the magnitude of the third harmonic of the H and

a(ﬂH)/ 0t wave forms is less than 30% of the fundamental, no other
harmonic being greater than 10%. Also the r.m.s. value of the fundamentd
is greater than 95% of the r.m.s. value of the total waveform.
4.2 Derivation of Concept of Effective Permeability.

Returning now to the eddy current analysis, equation 2.| can be

rewritten as

curl (pcurl H) = = 2(uHI/d* 4.5
Now if H is H'sin wt and u is constant In time, the right hand side of
equation 4.5 becomes

MOH sin wt )/ dt = w‘u.H‘ cos wt 4.6
or using the notation H = ﬂ(H'eJWf) the right hand side of equation 4.5
becomes = ] wuH.

However 1f u is a function of H, the above analysis of equation 4.5
is invalid. Looking again at Figure 3, it can be seen that if higher
harmonic components are ignored H can still be written as H'sin wt.

Also a(le)/ 3t can be written as H" cos wt. |f we define

H' = w u'H! 4.7

then a new right hand side of equation 4.5 can be written as - jw }L'H.

fﬂ is defined as the effective permeability. In the analysis of
Section 4.1 1t was found that for a wide range of cases, M
corresponded to the permeability calculated for a value of magnetic
field strength equal to 0.75 to 0.85 of that of the peak of the fundamen-
tal component of the magnetic field strength wave form. It was also
found that, for a wide range of typical B-H characteristics, this value
of effective permeability is independent of the exact form of the B-H
characteristic below the saturation knee.

I+ is admitted that the extension of the analysis of the magnetic
core without eddy currents to cover the case of a magnetic core with
eddy currents is not strictly valid. The significant point, however, is
that although the relationship between B and H is grossly non-|inear,
there can exist waveforms of 8B/ 01 and H which are simultaneously near
sinusoidal. As has been noted in Section 4.1 the physical mechanisms
occurring in induction furnaces and other similar devices are such as to
reduce the magnitude of higher harmonic components of magnetic field
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Figure 3(a) Waveform of Magnetic Field Strength H with

Corresponding Permeabi ity Waveform .

Figure 3(b) Waveforms of Magnetic Flux Density B and dB/dt
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Corresponding with Magnetic Field Strength above.
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strength and flux density.

I+ therefore seems reasonable to assume that for problems similar
to those encountered in Induction furnace analyses, that is with
sinusoidal voltages, and with power factor convection tuned to the
supply frequency, it Is possible to use the simple concept of a constant
effective permeability.

4.3 Simplified Treatment of Magnetic Saturation Used in Program.

The program only considers the fundamental of the magnetic field
waveform and uses the concept of effective permeabllity introduced in
Section 4.2. The permeability for each mesh element is calculated using
a value 0.8 times the most up to date peak value of the magnetic field
strength stored for that mesh element. After solution of the magnetic
field, new values of the permeability are calculated and compared with

the old values. |f agreement is within previously determined limits,

(usually 10% s adequate) the program continues to calculate the eddy
current power distribution. Should agreement not be achieved, the
process is repeated, convergence usually being very rapid with the direct
method of solution of the node field equation used.

4.4 Representation of B-H characteristic.

Various methods of expressing permeability as a function of
magnetic field strength have been tried, but it has been found adequate
to use the simple FrBhlich expression of equation 4.3 where ¢ tends
to , for optimum it for high values of H (10" - 10° Am ). A rapid
method of obtaining the coefficienfs a, b and ¢ is to plot I/(M~ c)
against H for various values of ¢ and to select the value of ¢ that
gives the best straight line fit in the region near the maximum value of

H that is expected. The slope of this straight line is |/a and the

y-intercept b/a.
5. Comparison of Predicted Performance with Measurements made on a

2 MVA Induction Furnace.
The validity of the mathematical model used in the analysis of

Induction furnaces, and the accuracy of the method of solution, were

tested by comparing predicted performance with measurements taken during
heating trials on the prototype Z MVA 50 Hz cylindrical billet heater
with coils using multi-layered windings shown in Figure |. The winding
losses, the terminal voltage, current and power, search coil voltages,
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and temperature distribution in the billet, were continuously metered
during the course of several heating cycles.

5.1 Tests with Non-magnetic Billets.

The programs were first tested comprehensively with non-magnetic

billets, before the complications of magnetic saturation were infroduced.

The initial tests were made with copper billets, as the physical
properties are well documented for the commercially pure metal.

Excel lent agreement was achieved with electrical measurements such as
coil voltage, total power, power factor, coil losses and search coil
voltages, and with the rate of temperature rise. A less constructive
interpretation could be made of the temperature gradient through the
billet however, as the high thermal conductivity of the copper prevented
the surface fo centre temperature difference from exceeding about 16%.
This was about the same value as the estimated error in the
measurements.

In an attempt to increase the surface to centre temperature
difference, the tests were repeated using a metal with a much lower
thermal conductivity, namely stainless steel. As the physical proper-
ties are variable from sample to sample, it was necessary to have the
thermal and electrical properties accurately measured as functions of
temperature, specimens for this purpose being cut from the billet after
the heating fests were completed. To facilitate the measurement of
the thermal gradient, the billet was cut into two equal lengths. After
thermocouples had been attached to the surfaces thus exposed, the- two
halves were packed closely fogether again as shown in Figure |. A
detailed study was also made of temperature corrections for heat lost
along the thermocouple wires. The stainless steel billet was heated up
to 1200°C and excellent agreement was again obtained, the predicted
values of electrical and thermal parameters being within the estimated
accuracy of the measured resulfs.

5.2. Tests with Magnetic Billets.
A mild steel billet was prepared in a similar way to the stainless

steel billet, and heated from cold, through the Curie temperature, in
+hé 2MVA billet heater. Additional measurements were made by logging
the coil voltage and current, together with fiye search coil voltages
on a multi-track tape recorder. This enabled the waveforms to be

analysed, and also the inductor power to be defermined accurately by
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taking a true product of the instantaneous current and voltage, and
analysing the waveform of this product. Flgure 4 shows the terminal
voltage and current waveforms, together with the waveform of search
coil 5 shown i n Figure |. The values of the third harmonics are
1%, 4% and 15% of the respective fundamentals. It can be seen that
the harmonic content is small.

The Calculated values of furnace power and voltage, winding losses
and search coll voltages taken through the heating cycle were within 5%
of the measured values. The coll current was taken as the common
parameter for predicting the results. A comparison between calculated
and measured values of femperature through the heating cycle can be seen
in Figure 5 where the temperatures measured by thermocouples |, 2 and
3-6, posifioned as in Figure |, are shown. The disparity between
predicted and measured values around the 80 second mark largely reflects
errors in the measured value taken for the Curie temperature of the
billet material. This is a critical comparison as not only does the
fTemperature rise show the instantaneous eddy current power and power
distribution, but the graphs also reflect the time integral of power
and power distribution.

While agreement Is not perfect, the accuracy is quite adequate for
predicting furance performance. In particular the thermocouple readings
giving the femperature distribution through the billlet indicate that the
eddy current heating has been calculated with reascnable accuracy.

While calculating the results discussed above, the effect of varying
the values of physical properties of the billet material were assessed.
The permeability measurements are the most difficult to obtain accurately,
but it was found that for the above heating cycle the billet power varied
as I{I for small changes in permeability. This agrees with the
analytical results obtained for a cylindrical billet where the penetration

depth & = (EP/WfA?i

is small compared with the billet diameter.

As the sensitivity of the results to changes in the value taken for
billet permeability is small, and as noted 1 n Section 4.2 the results
are independent of the exact shape of the B-H characteristic below the
saturation knee, it is only necessary fo measure values of permeabi|ity

near the peak value of H expected during the course of the heating cycle.
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6. Conclusions

The analytical techniques for modelling induction heating processes,
and in particular the treatment of magnetic saturation giving rise to
the concept of a |inear effective permeability have been tested by
comparing predicted and measured results of tests on a 2MVA 50 Hz
billet heater.

With non-magnetic billets the agreement between measured and

predicted results is very close, being within the accuracies of the
techniques used to monitor the heating cycle, and also to measure the
physical properties used for the theoretical calculations. Less good
agreement is achieved for magnetic billets. The measurements are also
more troublesome in this case, and it Is difficult to separate out the
errors due to the analytical methods used. However, the overall accuracy
of the results is within the general tolerances within which the

physical properties of industrial steels are known.

Figure 4. Waveforms of Coil Voltage V, Coil Current | and The analytical fechniques outlined In this paper can therefore be

C 5 Volt Voo Taken 4 S d
g?::ihofoéésf w?ihaaggnaiicaB?TIeT.econ ¥ fron used to compare different furnace designs and the performance of a

furnace with different billet materials. While these techniques may not

:;. ki be applicable to all electromagnetic field problems, their use is
recommended In many cases where, as in the predictién of induction
| furnace performance, it is necessary to obtain a theoretical assessment
6004 of problems fo a greater accuracy and detail than by conventional
. design methods, and yet remain within a realistic costing for the study
of a complete industrial process.
#00 1

measured
T e calculated
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A METHOD OF CALCULATING EDDY CURRENT LOSSES IN THE ROTOR
RETAINING RING OF A TURBOGENERATOR DUE TO THE TOOTH RIPPLE FIELD

BY

D. Howe and T.G. Phemister
C.A. Parsons and Co. Ltd., Newcastle upon Tyne

A method has been developed for calculating the eddy current loss

in the rotor retaining ring of a turbogenerator. The airspaces
and the conducting ring are considered independently, the two
regions being comnected by the continuity of the field between

the regioms.

The airspace has a complicated geometry and a solution of the
Laplacian field in this region has been based on the finite
element method. The retaining ring has a simple geometry

and a solution of the linear diffusion field has been obtained
by an analytical method derived from the boundary conditions in
that region. Interaction between the regions is calculated by

iteration.

The method may have wider application to more general problems.

List of symbols

a thickness of retaining ring.
ai’biaciJ coefficients.
Am’Bm‘cn’Dn

B magnetic flux demsity.

B pole pitch of field component % 1/2 T
Ex‘By‘Bz components of flux density

length of retaining ring.
electric field strength.
EE,F%,G SH coefficients.

magnetic field strength.

L4

J current density
J Lagrangian

k

harmonic number, number of stator slots
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L linear operator

4 radius of rotor surface.
P,4,R,8 coefficients.
r,0,2 cylindrical polar coordinates.

8 radius of stator bore.

t time.

Kﬂ magnetic scalar potential.

Kn, approximation to Kw
LY, 2 Cartesian coordinates.

A element area.

[E} phase angle.

¢m’nbf¢n’€n coefficients.

Hp permeability of free space.

H1 incremental relative permeability along x and z direction.

Ua incremental relative permeability along y direction.

resistivity.
w angular frequency.
v2 Laplacian operator,
Introduction

The continuing increase in the unit size of turbogenerators is being
made possible by the use of improved materials and cooling methods, and by
more sophisticated design techniques. With the development of more
reliable methods of calculation it is possible to extend the limits of

safe design.

The rotor end retaining ring is the most highly stressed component in
the generator!. The ring is normally shrunk on the end of the rotor body
and incorporates some form of bayonet retention against axial forces. It
is usual practice to use a non-magnetic steel, although a number of recent
designs employ magnetic rings. Serious damage would result should the
ring fail. It is important, therefore, to avoid possible areas of
locally high temperature. One source of heating is produced by eddy
currents induced in the ring by the stator tooth ripple flux.

Tooth ripples are pulsations of the main air-gap flux due to stator

slotting. The flux density at points oppositea tooth is greater than at
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those opposite adjacent slots, and the resultant ripple travels across the
surface of the rotor and induces eddy currents therein. In order to
calculate these eddy currents it is necessary to calculate the total field
including the reaction field of the unknown eddy currents. The eddy
current loss and heating will be strongest in the nose of the retaining
ring, which extends into the air-gap, where the tooth ripple field is
strongest. Unfortunately, because of differential thermal expansion, a

concentration of loss in this area may impair the shrink fit.

The calculation of the eddy current losses is complicated, requiring
the solution of Maxwell's equations in three-dimensional cylindrical
coordinates. The approach which is described in this paper is based on
solving the field in the airspaces and in the conducting ring independently;
continuity of the magnetic field between the two regions is established by
an iterative process. All fields within the end-region are assumed to
vary sinusoidally around the periphery. The electromagnetic equations
are formulated in terms of scalar potential, and a finite element rumerical
method is used for determining the field distribution in the airspaces.

The eddy currents induced in the retaining ring are calculated analytically

2 Method of analysis

Apart from the assumptions which have already been mentioned, two
further simplifications have been introduced in order to make the problem

mathematically tractable.

Firstly, the analysis is restricted to linear electromagnetic
conditions. Except near the polar direct axis a magnetic ring will be
heavily saturated by the excitation field. Since the tooth ripple flux
is superimposed on this main flux the ring can be considered incrementally
linear. The incremental permeability in the peripheral directiom is
assumed to be dB/dH. In the radial and axial directions the incremental

permeability is taken as B/H.

Secondly, the rotor retaining ring of Fig. 1 is represented as a
tubular region concentric with the rotor. Such a shape is amenable to
analysis, and should not introduce undue error. No attempt has been made,

however, to model the singularities at corners in the mathematical analysis,
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The fundamental time component of the inducing field at the stator
surface will have two harmonics k + 1, where % is the number of stator
slots. Since they are of similar magnitude, they can be treated appoxi-
mately as a single time and space harmonic ej(mt -'wk; the relative error
is at its greatest on the rotor surface, where it is about 2(s - p)2/s2,

p and & being the radii of the rotor surface and stator bore respectively
This fundamental harmonic will have a wavelength equal to the stator slot
pitch, and may be calculated, in the air-gap, by the method described by
Phemister?. Alternatively, this field may be calculated by conformal
transformation or, if saturation of the stator teeth is important by a
numerical method such as finite elements. The distribution of the tooth
ripple flux density around the stator end-surface may similarly be
calculated by any appropriate technique. The fundamental component will
be obtained from the Fourier expansion of the tooth ripple flux. Since
the theory is in terms of sinusoidal functions of arbitrary wavelength

and velocity it is possible to combine several such components together to
represent any waveform of ripple flux density. In practice, however, only

the fundamental is likely to be of importance.

2.1 Equations to be solved

Fig. 2 shows the model of the problem. In the airspace, region 1,
cylindrical polar coordinates will be used. The magnetostatic field is

described by Laplace's equation,

2 =
v ﬂﬂ g.

When the scalar magnetic potential Vm varies sinusoidally in both space

and time

Vo= ejfmt - 0Jk
m m

and Laplace's eguation can be reduced to two dimensions

2 2
i.e. ! Kﬂ + 1-352 + 7 Kﬂ _E V =90 (1)
aw? T ar | g8 rlom

In the retaining ring, region 2, rectangular Cartesian coordinates are
used as shown in Fig. 3. The skin depth at the frequencies considered is

low enough to make this a good approximation. The tooth ripple frequency
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is low enough for displacement currents to be neglected, and Maxwell's

equations take the form

Curl H =4, vea(2)

38
Curl E = = 55 weaa ()
and Div. B = 0. PR ¢ 2

For the anisotropic permeabilities considered,

Bx =ulﬁx’
B =ul#H veea £59)
Y 2 Y

and B, = u H .
a 1 &

By manipulating equations 2 to 5, it can be shown that

w., B8H. wu, -, 826
72y g _&3___1 2-—-—-—&, sin LY
T p At Uy axaY
%2R 8%H oy 9%H oy, oH
Ar—t 2 2 4 . g, s D)
%2 17 5z ¥y By p Bt
- 2
v2g _ilﬁgi _EL__EE_EESL eee. (8)
3 p a9t B, 833y
Since all the field components are proportional to &’ (wt ~ y/bJ, where

2nb is the wavelength of the spatial distribution, equations 6 to 8 can

be written as

2 2 . _
i.f:ﬁ+aﬂz_ i,.Juml H o~ b " a_Hli (9)
2 ag2 b? p & b ¥y 3z e

328 324 [1.: Jup ]
Y ogpomdl o] By By mip .o (10)
sx? 322 wb? o ) ¥
328 a2y Juwu . |uy —ow,| 8F
1 1 1 2

23 23— = # H -—% LS| O Y . (11)

Az 3z b o 2 Hy 9z

where Hx’ Hy’ Hz are now functions of » and z only.

Valid solutions af these equations must also satisfy the condition
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that the normal component of current density is zero on all surfaces,

which implies that

3H
- - .
Hx Jb o at e 0 and 2 = a ven(12)
3H
= ] —G—E‘ = =
and H:c Jb o at 2 =0 and z = ¢ . eei(13)

2.2 Solution for potential field in airspace

The general Lagrangian function for Laplace's equation is
J[Vm’] =2 W' g - &' IV >

Therefore the variational expression for equatiom (1) is

v, )2 A L 3 av !
= ~_ ] 222 ]
J{Vm ] Pl ol + 2 [Vm ] drdz = gV, 'r —- dl .. (14)

L

the 1line integral is zero for the appropriate boundary conditions.
Natural Neumann boundary conditions are given by including the additional

term
v !
' m
R di

L

If 1st order triangular elements are assumed, the trial function Vm' is

expressed as a linear function in r and z of the three vertex values.
i.e. V! =L 1 [a, +brte.z|V .
U om (v,z) 28 L2, [1. 2 ) mi?

in which the coefficients depend on the vertex coordinates according to,

ay =7Tr32; = Y33,
by =23 - 8y,
2] = Is — ra, etc.
By minimizing the Lagrangian equation 14, with respect to the vertex values

of Vm’ at each node the problem is reduced to the inversion of a matrix

of finite order. The coefficients of the resulting matrix can be derived
explicitly in terms of the vertex coordinates,
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M
2.3 Boundary conditions on the surface of the retaining ring Hy =P + (g - PJ% + z Am ain EQE at @ = 0,
m=1
It is shown in the appendix that, if a certain condition is satisfied,
the following iterative process is exponentially convergent: M ;
8 P P ¥ B =R+(S—RJ§+ZBmswﬂz—g-atz=a,
(1) An assumed normal flux density on the surface of the retaining m=1
ring is used as a boundary condition for the solution of Laplace's N
o @ A =P+ R-PE+ V¢ ein Tt z=0
equation in the airspace. a ;N a ’
n=
(2) H_ on the surface of the retaining ring is calculated from this y ?
y R =Q+fS-QJ;E+ ZDnsm——nmatz-c.
solution. n=1 o

(3) Equations 9 to 11 are solved with this H_as a boundary condition. At each iteration these parameters can be obtained by Fourier analysis of
Y

This gives a new normal flux density to continue the iteratiom. the Hy from the solution in the airspace.

It may be verified that, if

Zero normal flux density is a convenient starting point. Convergence
can be improved by a suitable weighting of two consecutive solutions. / 2 o u Juwu
fpm e T T, e
e uib o
Over the rotor pole, where the retaining ring is little saturated, the
condition for convergence breaks down. An alternative iterative process, 2.2 My jwliz )
with normal flux density used as the boundary condition for the retaining u’n = a? i uib2 * g
ring, and H as boundary condition for the airspace, is then exponentially :
convergent; this is not discussed in the present paper. ginh ¢ (a - x) sinh ¢ =
then &, = [P+ rq—PJf]W+ [R+ rs—RJ-g];?mr-TgE

2.4 Solution for the diffusion field in the retaining ring

2 ;! =
Completely general solutions of the field equations 9, 10 and 11 for % af 2¢0 [P = (-lJnR} &k wn{c z) sin 1TE
the conducting region of Fig. 3 are presented, and then these solutions n=1 nmpy,? gtnh Yye a
are reduced for the particular case of tooth ripple losses. .
o 205% n) Sink Ve e
+ 1 5 [@ - (-1)°8 T egin ——
=] Am sin e a
The method of solution begins by assigning a system of parameters that n=1 nmy Uy
define #_ at the surface of the ring of Fig. 3: ; - %
- ing g . ig [Cn ainh ’l!n{'ﬂ z) + D, sinh bz sy
g l sinh rpnc
Hy =Patx =0, 2 =20,
Qatxz =0, 2z = e, 4 J‘f Am aih ¢m(a ~'Bld B oinh ¢ = oin MTE (16)
Rate =a, 2 =20, et sinh ¢ma c
Satx =a, 2 = ¢,
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It follows that, if

3.9 FT
and £ = LA —1-+ 1,
n a2 b2 P

el . E’y_ . il cosh nm(a -z + Fm cosh n,& i TE
z bnoz 2 m=1 S‘!:?‘-'h nma a
@ Gn sinh En{'o - 3z) + Hr.' ginh £,% e
+ ¥ e t e co8 T e fl?)
n=0 n

and similarly for Hz'

The coefficients of equation (17) can be found from equations (16) and

(13). Similarly the coefficients of the expression for Hé can be found
from the condition of equation (12). Equation (17) then becomes

2

7 i

1

- = )& - = P& “
E&‘ = m R+ (S R)G] cosh ¢.3a: [P o (Q PJG] cosh ¢g(a x)

wulb
pa ng2 sinh Ege [(R - P) ginh Egl2 = 2) + (S = Q) gink EUS]

2gu, = cos BIE
+ P - (—JJ”R] inh § (c-z) + [ - (—IJRS] inh ¥ 2 p—F—
abuy ng_g [ R B g PRt W, 28inh Ve
4 i x'i_’n C’?1 mnh[w”(c = 3)] +D, ginh wnz-[
e:z.bﬂo2 e sinh e
; 2 ; _ -
N qulb Cn ginh En(c z) + Dn sinh gné] .
inh E_c cog ——
p , 8 o J
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. M B cosh ¢ x — A cosh ¢ (a—m)_l
b —d z A m m___.m m
?31102 mag | sinh $,a J

P ) 2 - -
Jméntep, b Am aosh nm(a: z) Bm cosh n’“ﬂ_ i T
| e’

s (18)

pcznm sinh n.a
and similarly for H, |
For the particular case of tooth ripple, considerable simplifications

can be made since P, @, Am and Dn are all zero, and the hyperbolic

functions of z and ¢ can be replaced by exponentials, to give:

R+ (S-RE wi b
g = -ﬁ y c = 1 "Eoz + 8 —Eofc - z)
.= d " b____ﬂg S 0 cosh ¢z s Re e

23‘“2 v f-l)n [R e_dan + 8 e—\bn(c - 3}} coe nnx

(Zb'ul n=1 ‘pnz a
. Jun,b?
T - Sf g e nwe
+ abnnz n=1 7 Cn[e + e cos -
. M cosh ¢ &  jm?nwu b2 cosh n x
* bn. 2 Bulm Somn ¢ma & 2 : ginh n a g mcﬁ’ wws )
g™ m=1 m pe Ny, m

and similarly for Hz.

3 Calculation of eddy current distribution

It now remains to state the relevant boundary conditions for the
problem. In region 1, Fig, 2, the field stimulus, which does not include
the field of the eddy currents, is the normal component of tooth ripple
flux density over the stator surface, vw. The boundaries wv and ws are
assumed to be flux lines. On the first iteration,when the retaining ring
is represented as an impermeable surface, the part of the boundary prs is

also a flux line. At the rotor surface, up, the scalar magnetic potential

is arbitrarily set to zero. The potential function calculated by the finite

element method of section 2.2 simultaneously meets these boundary conditions
and satisfies the field equation (1).
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The tangential field, Hy, at the surface of the retaining ring is

calculated from

H=-vV.
- m

Thus the constants in the solutions of section 2 can be evaluated.

A correction to the normal component of the field at the surface of
the ring is found directly in terms of the parameters derived from the
boundary condition, and immediately incorporated into the finite element
formulation. In this way interaction between the ring and the airspace
can be calculated to any desired accuracy. It will be noted that the
'source' distribution is modified on successive iterations whilst the
coefficient matrix for the finite element solution need be assembled only

once.
Finally, the eddy current density is obtained from equation (2).

Conclusions

Analytical solutions have been formed in three-dimensional Cartesian
coordinates forthe diffusion equation applying to a conducting annulus inp
a rotating harmonic field. Additionally, a numerical solution is
presented for Laplace's equation in three-dimensional cylindrical
coordinates. These solutions have been applied to the calculation of
eddy currents induced in the rotor retaining ring of a turbogenerator by
the tooth ripple field. The conducting and non-conducting regions are

connected by the continuity of the field between the regioms.

An alternative iterative solution could be developed for regions of

high permeability where the present method breaks down.

The solutions may be applied to the study of eddy currents induced by
rotating harmonic fields over a wide frequency range. At low frequencies,
however, the magnetising force at the inner surface of the ring may no
longer be negligible. Therefore in calculating the effect of asynchromous
operation, for example, it will be necessary to apply the general solutions
and include the area occupied by the rotor end windings as an additional

connected region.
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APPENDIX

Condition for the convergence of the iterative procedure

It is possible to investigate the convergence of the iterative
procedure in a simple model. A two-dimensional field will be considered,
with the retaining ring represented by a semi-infinite slab whose boundary

with a semi-infinite airspace is at & = 0. All fields will be proportiomal
ia ej(mt - y/b)

If %) is the value of Hy on the boundary of the slab, then the

solutions of equations (9) to (13) are

- —¢
Hy Hoe 0¥ i
. =g
. TJu.e
H 2 »

" by
where ¢n is given by equation (15).

Using
—Ju, 4

H = sl 6 <3
T by,

as the boundary condition for the solution in air gives

. x/b

H =:ff-o_e__- B.g.
Ll
x ¢Ub Ho
=H_ q ex/b
i ow2 2
¥ dgdb My

The iterative procedure will be exponentially convergent if the ratio

of the new Hy to the old Hy is less than 1 in absolute value. Thus the

EEEliﬂL > 1

Uy

iteration will converge if
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Because the space harmonic number is high and the skin-depth in the
retaining ring is small compared with the radius, this criteriomn for
convergence can be applied with little error to the problem of tooth
ripple. For the particular generators considered, it guaranteed conver-
gence if py < I0 yp for two-pole or pp < 14 pg for four-pole machines.
These conditions are certainly satisfied over the heavily saturated parts

of the retaining ring since
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AN ANALYTICAL APPROACH FOR SOLVING TWO-DIMENSIONAL
SATURABLE EDDY-CURRENT PROBLEMS
by J. Muhlhaus, C.E.R.L. Leatherhead

Eia INTRODUCTION

The solution of saturable (i.e. non-linear) eddy-current
problems is important in many branches of heavy electrical engineering, in
particular, with reference to static and rotating electrical machines.
The magnetic characteristic of the iron present is usually represented by
an algebraic approximation and for one-dimensional problems, numerical
solution of the resulting non-linear differential equations is nearly
always necessary. For two- and three-dimensional problems, until now, it
has always been necessary. Numerical solutions, of course, imply large
computing expenditure and anxiety over convergence. A new analytical
method for solution of one- and two-dimensional eddy-current problems is
presented here and results checked for a one-dimensional case against
existing results obtained by a numerical method.
2. THEORY

The eddy-current problem to be solved is that of a semi-infinite
ferromagnetic slab excited on its surface by a travelling magnetic field
caused, for example, by a sinusoidal current sheet. In other words, both
normal and transverse magnetic fields exist at the surface. The origin of
coordinates is taken on the surface, the y-axis along the surface and the
x-axis into the material. All currents flow in the z-direction, thus
giving a two-dimensional problem with x and y variations only (e.g. the
screening of a transformer tank from adjacent heavy current bus bars).

There are many algebraic approximations to the B-H curve, but if
these B-H relations are substituted into Maxwell's equations, the eventual
non-linear differential equations lend themselves only to solution by
numerical methods. If power-series solutions are attempted, fields which
are infinite at infinite depth (ascending powers of n) or infinite at the
surface (ascending powers of i) are found. Series solutions in ascending
powers of exp (-x) were found by the author to be invalid for various
representations of the magnetisation curve. Power-series solutions are
anyway very unmanageable.

For the present problem, however, four simplifications can be
made which will eventually lead to an analytical solution.

(1) All time harmonics can be ignored. Although there will be

harmonic loss components, they will in general be much smaller than the

Steady State C14
loss due to fundamental frequency fields. This means that %E.in real time
can be replaced by jw in the complex domain.
(2) All transverse spatial harmonics can be ignored, that is, the
spatial variation in the y-direction parallel to the surface can be
considered as exp(-jqy). Thus if H = hx(x)exp(—qu), etc., the equations

to be solved are

o

== + thx =J vee (1)
= LR 2

J (mo!q)bx (2)

dJ «

I deby eow (3)

dbx

— w4 ves (4

=T Qby (4)

(The capital letter J is used for current density to avoid confusion with
j =7/¢1)).

In the one-dimensional problem of a semi-infinite slab excited
on the surface by a sinusoidal tangential magnetic field strength,
analytical solutions are possible if the relationship between B and H is
assumed to be a step-function, or of the step-function type. In this case-
a "separating surface" is postulated below the top surface of the slab
beyond which no fields exist and at which the magnetic field strength is
zero. The magnetic flux density is generally finite or indeterminate at
the separating surface, which itself may vary in position with time. The
permeability, therefore, will be infinite at the separating surface. An
idea of Neiman (1949) was to postulate a separating surface of fixed depth
B and to let the permeability variation be

u=a!’(8—x)2,0$x$ﬁ (5)

e

This idea is used in the present two-dimensional problem.

It is a necessary criterion that the pole—pitch should be large.
This means that in the slab the flux density is predominately transverse.
It is assumed that when the slab is saturated, the transverse magnetic
field strength l-‘l,y in the slab is much larger than the radial magnetic
field strength H and that H is small; consequently, while the relation-

ship between B and H_ is non-linear, that between B and H_ is linear.
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Combining this statement with the discussion of the previous paragraph, 5
the final two assumptions are therefore
=uH i sta:
(3) Bx wH where u, is a constant, u

2
4) B _=pH where =af(B - x
(4) g TR iy ( )
Appendix 1 gives the analysis of the behaviour of the magnetic
field in a slab subject to assumptions (1) to (4) and it is shown that the

implied B-H relationship is

1-2/n

B = kH saw (6)
3 COMPARISON OF THE NEW NON-LINEAR THEORY WITH EXISTING ONE-DIMENSIONAL
THEORY
It is useful to consider the new non-linear theory under one-

dimensional circumstances (i.e. q=0) with existing theories. In effect,
the loss is being considered for a semi-infinite slab with tangential
sinusoidal magnetic field strength on the surface. Equation (Al.38) is
used.

The table shows results for rotor steel of conductivity 5x1.06

mho/m and Ferrosil 253 (a silicon steel) of conductivity 2.5x106 mho/m.
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constants in the magnetic characteristic B = kHl_zfn

B 5 = 4 H =W
=1

see equation (Al.10)
m/(pole pitch of travelling wave)
constants in the permeability relation p = af(B—x)z

-
W

skin depth

permeability in x and y directions

]
5 =4

a © o g 0
E
"

conductivity

£
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APPENDIX L

ANALYSIS OF LOSS IN A NON-LINEAR SLAB

The best existing non—linear theory is a finite-difference scheme using a
Frohlich approximation to the B-H characteristic, built into a computer
program PIFEOl at the C.E.G.B.

and skin depth at 50 Hz predicted by this program are shown as case nos. &4

The values of loss per unit surface area

and 6 in the table. The other cases are calculations based upon the best-
fitted first harmonic curves for rotor steel and Ferrosil 253, the first
harmonic curve of the Frthlich approximation to rotor steel and, for
comparison, the actual d.e. curve for rotor steel. The loss per unit area
for this last case (case no. 3) gives lower than predicted values at high
magnetic field strengths (and thus high saturation) but the other cases
agree very well with predictionms.

All these results are very encouraging and seem to indicate
that the new theory is practical for one-dimensional problems. It is
reasonable to expect similarly reliable results for the two-dimensional
problem subject to the assumptions of Section 2.

4, CONCLUSION

A new non-linear theory for ferromagnetic material has been

developed which agrees closely with existing numerical solutions for one-

dimensional eddy-current loss in irom.
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where

If only fundamental frequency behaviour is required, Maxwell's

equations for a non-linear material occupying the half plane

x > 0 with %— = 0 are
z

81 BHX

__I_ax -_ay = Jz .- (A].-].)
an

TR Jchy ... (A1.2)
333

3y - dweB ais (AL.3)
BBx 3B

_+_1= A
3x T3y ° er (Al.4)
Ex = uxHx and B}‘r = uYHY

If only the fundamental component of transverse spatial varia-

tion is required, H = hx(x) exp(-iqy), Hy = hy(x) exp (-jqy), etc. The

equation relating hx and hy then becomes
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in

—J = 2
o2 Guugo +a.) (ulu ) by ... (AL.5)

If the field distribution is linear in the x-direction, such
that By = ¥ but non-linear in the y-direction, such that uy = af(B-x)z,
then within the region 0 < x < 8,

2

d'h

— T * el ver (AL.6)
dxz J

p P
Substituting a solution of the form hY = A(B-x) Ly B(g-x) 4

requires that Py and p, are the roots of the equation

2 2 2
po-p-a(jus +q/p) = 0 vo. (A1.7)

The required root for the present problem is the one whose real part is
positive, so that hy is zero and not infinite at x = B, and appropriately,
either A or B must be zero. The solution can therefore be written as

n+jm

hy = Ht(l-x/B) ... (A1.8)

where

n = {{1 + % 1+ iqu.’u'+ v+ 4uq2fu)2+{éuwa}2]] é}

~.. (AL.9)

and

m = woa/(2n-1) = Y{n(an-1) - qzafu} vee (A1,10)
Therefore

b, = (8,a/8) (omin) (x/8)™ 3% (g4 uno) ver (AL.11)

bx = phx oo (A1.12)

b, = (ati /%) (1-x/g)" 2" vee (AL13)

As HY = hyexp(jmt— jgy) and BY = byexp(jwt* qy),

it is seen that the transverse B-H relation in the slab is given by

|8 = k[H|1-2In e (A1.14)

where k is a material constant and the modulus of field strength H, of
course, removes its oscillatory variation.

From equation (Al.9), the quantity o can be derived:-

a = {=2+/ [+ -1)w?e 22/ 2n-1)2] 1 @n-1) 2/ 2u?o?p) . (aL.15)
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and from equation (Al.14), the penetration depth B can be deduced:-

B = ut”“ /(a/k) vee (AL.16)

After further algebraic rearrangement, the field distribution can be

written as
n+jm

Hy = H, (1-x/8) exp(-jqy) v (ALI7) |
: -1+jm
H_ = -{(H4_/8) (aq/u)/[-j (n=1)] } (1-x/8)"
= - l ! ... (A1.18)
exp(-iqy)
By = (uﬂtfﬂz}(l-xlﬁ)n_zﬁm exp(-iqy) ve. (81.19) '
B, = uH_ vv. (A1.20)

As x™ = exp{jm 1n(x)} it is seen that the fields decay in an oscillatory
fashion as x approaches B. Clearly, given the appropriate values of k

and n for the material under consideration, equations (Al.15), (Al.16) and
(A1.10) can be used to define the field distribution uniquely in terms of
surface tangential magnetic field strength H. In particular, the surface

normal magnetic flux density is

B = -(d,aq/B)/[m-](n-1)] ... (AL.21)

The power loss per unit surface area can be deduced either
* .
from the Poynting vector or from the integral of -%3- J,J, over the region
0 < x < B. The result is

W= gmutszﬁ)f[mz + (n—1}2] oo (AL.22)

It is useful to examine the skin depth 6. This quantity is different from
the depth of penetration B8, which marks where the magnetic field strength
and current density become zero. It can be calculated only from one-
dimensional fields and is defined as that depth within which the actual
total current induced would, if uniformly distributed, produce the actual
total loss. One-dimensional fields are given when q = 0, so the total one-
dimensional current is

B
tw| Faxs= —{Ht(Zn—l)/(nz—n)}/{E/(nz-n) - j@-1]
o Z .. (A1.23)

B+ 3§ 2]

The total loss per unit surface area is ! II*/(c8), and the one-dimensional
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loss from equation (Al.22) is } th n/(oB). Equating the two losses gives
§ = B/n «oe (AL.24)

To demonstrate that the field distribution reduces to the well-
known distribution for the linear case as n + « and k = u, it is sufficient
to express m and o in terms of n and then proceed to the limit. From
equation (Al.16), B -+ Y(a/k) and from equation (Al1.15), @ + =, Thus
and uy - afﬁz =k = y. By expanding (n + jm)ln(l-x/B) as a series, it is
found that

it ST mrallg® 4 fupcd .. (A1.25)

n -+ o

if the following identity is used:-

i 1 2 4 222 O -
/(g +jwpo) = o5 {q"+/(q +w"u"0 4 72
... (A1.26)
{—q2 + \/(q4+w2u202)}é
The consequent linear relations are
Hy = Ht exp{--x/(q2 + juwpo)} exp(-jay) ees (A1.27)

B, = -jal, expl-x/(a” + joyo)} exp(-jay)/¥(a +uo).. (1.28)

The power loss reduces to

W= !(muﬂtziﬂ){I:—q2+/(q4+w2u202):|fl}t'ﬂuzuzuz }§ ... (A1.29)
and the skin depth becomes the well-known relation,§ = Y2/v (wuo) .
When n = 2 and k = B,, the B-H characteristic becomes the non-linear

limiting curve, i.e., a step-function curve. (In actual practice, n will

be very close to 2). Under such circumstances,

a = 9{—q2 + /(qﬁ+8m202u2!9)}!(szozu) ... (Al.30)

m = (woa)/3 .+ (Al.31)
——

B =H, v’(a;“Bs) ... (A1.32)

W -%m25(33Ht3Bs)& ! (9+ic2ad) .. (A1.33)

and for a one-dimensional field with sinusoidal tangential excitation,

g = 0 so that

3/2

W= /(mBSJ'a) H 1V (3v2) ... (A1.34)
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For small q and general n, the important parameters are:

a = (Zn-l)/(nz“n)f(mo) ... (A1.35)
m = /(nz—u) .o. (A1.36)
B = n:”“/(ufk) ... (A1.37)

W= 8.2 Y/ /i Py [ [(0-1) 2o-1)] 1 ... (A1.38)

APPENDIX 2
DERIVATION OF THE BEST-FITTING B-H EQUATION

It is required to derive the best-fitting equation

B = Ll 2/m

first harmonic components of magnetic flux density and field strength

, where k and n are constants to be determined, to relate the

for a given ferromagnetic material.
For an applied magnetic field strength H = H cos wt, the
d.c. magnetisation curve can be used to obtain the wavefom of the flux

density B, which can be expanded in harmonics as

IB = LB coswt,
r :

that is,
Blwt) = Bl cos wt + 53 cos 3wt + 35 cos Swtee. ... (A2.1)
The amplitude of the first harmonic Bl in particular is given by,
b
Bl = %— B(wt) cos wt d(wt) a0 (A2 2)
-7

As B(wt) is an odd function of H,

n T|'/‘2
B =

1 B(ut) cosuwt d(wt) eow: (A2.3)

ElE=

o
When the d.c. magnetisation curve is a step—function, the integral is

soluble.
w/2

Bl = 4Bs/n cos 6d8 = ABSKH = 1.2}'33S s QA2 )
a
Otherwise, the integration must be done numerically, and a first harmonic
characteristic can be drawn.
To obtain the best-fitting equation, its form must be

redefined as
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log B = log k + (1-2/n)log H ... (A2.5)

where logarithms to the base 10 are convenient to use. Linear regression

is used to derive the slope and intercept of this straight line:-

(1-2/n) = {NZ(log B log H) - ZlogH IlogB }/

(N (log)? - (z1ogh)?} vee (A2.6)
log k = (Ilog BI(logh)” ~ Zlogh (logh logh)}/
(N2 (logh)? - (Zlogh)?) <ee (A2.7)

where the summations are over N data points.
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' Flux Density Loss per Unit Area .
Case ) (ki /m2) Skin Depth (mm)
1 0.7638° 118 | 0.322 x 107 Ht1.ssg 0.0313 Hto'““l
2 0.6531°° 128 | 0.295 x 107 Ht1'564 0.0339 1,043
3 0.693u° 106 0.307 x 10> Ht1.553 0.0324 HtO‘AA?
4 - 0.18 x 107 Htl'622 0.0556 Hto.sya
5 1.18 82°998L | 4 574 % 1070 Hc1'533 0.0348 Ht°'467
6 . 0.498 x 10 Htl'555 0.0402 Hto‘““5

N.B. magnetic field strength is in units of A/m
Identity of Cases:

first harmonic curve of rotor steel

first harmonic curve of Frohlich approximation to rotor steel
d.c. curve of rotor steel

existing results using a numerical method for rotor steel

first harmonic curve of Ferrosil 253

o Lo e

existing results using a numerical methof for Ferrosil 253
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5 10 15
Field strength, kA/m

MAGNETIZATION CURVES FOR ROTOR STEEL

d.c. curve

first harmonic curve

best fitted curve of the form B = kH®

e n o oW

2

Loss per unit surface area, kW/m
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7 8
Surface field strength, kA/m

o

LOSS IN ROTOR STEEL CAUSED BY A TANGENTIAL SINUSOIDAL MAGNETIC

FIELD

existing results using a numerical method
new theory
new theory using first harmonic curve of Frohlich approximation

new theory using d.c curve
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Skin depth, mm
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1 10 100

Surface field strength kA/m

VARIATION OF SKIN DEPTH IN ROTOR STEEL WITH SURFACE
MAGNETIC FIELD STRENGTH

existing results using a numerical method

new theory

Steady State C14

315




Compumag Oxford, 31 March to 2 April 1976

CALCULATION OF EDDY CURRENTS IN A CONDUCTUR AND ITS SHEATH
BY A FINITE ELEMENT METHOD

by J.C. NEDELEC®, J.L. SABRIE** and J.C. VERITE**¥*

INTRODUCTION AND HYPOTHESIS

The purpose of this work is to determine a map of currents every-
where in the set of conductors and sheaths conmecting an alternator to its
transformer. All these conductors and sheaths are interacting and eddy
currents are developped in their volumes. When these currents are known,

it will be easy to determine heatings and stresses appearing.

We suppose in this report there is one conductor C and one sheath G.
The generalization to the case of several conductors and sheaths does not
bring about new theoretical problems.

We consider the following hypothesis :

- The conductor and its sheath are both concentric cylinders in alu-

minium. They can be curved.
- We only calculate mean values of the currents according to the
thickness which is supposed small. So the thickness will be neglected and

current densities will be surfacic ones.

- We know the total applied current.
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EQUATIONS VERLFIED BY THE DENSITY OF CURRENT
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. !
Let the Maxwell's equations be curl H = J and curl E =-§% where J
is the current density, E the electric field, B the magnetic induction

and H the magnetic field. We may define a vector potential A by
B = Curl A with div A = 0 so we obtain AA = - uJ

G(x,y) being the Green's function associated with the Dirichiet’s pro-

blem we obtain for A :

Ax) = u[ G(x,y). J(y).dy (1
G+C .
9B _ _ A, . L BA, _
and curl E = - e curl (3EJ gives curl (£ + e 0

thus, E + %% = - grad V, where V is a scalar potential.

Equation (1) gives é + u[ G(x,v). a;i ) . dy = - grad V

G+C
with agg ). jwJ(y) when J is harmonic.

Finally, the current density verifies the following equations :

J(x) + jwop ]' G(x,y).J(y).dy = —ograd V (2)
G+C

Ja = 0 (3)

divd= 0 (4)

Equation (3) expresses that current lines do not leave G or C,
equation (4) expresses continuity of electric loads for a stationnary

mode .

SIMPLIFIED TWO-DIMENSIONAL PROBLEM

These three equations represent the general case of a three-dimen-—
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sional problem. A preliminary study has been worked out for a two-dimen-—
sional problem corresponding to an imaginary configuration of a rectili-
near conductor and a sheath by the side of it and parallel to it (see fi-
gure 1). The study may then be realized in a plan perpendicular to their
ax1ls x, all the quantities being constant according to X.

1

For a two-dimensional problem G(x,y) = Tl Log(x-y) and equations (3)

and (4) are automatically verified.

We have thus to solve the following equation :

J(z) + i%%ﬂ J(y).Log|y-2z|dSy = o(grad V+1)

G+C

where A is a constant vector due to the fact that grad V is not completely
defined.

The sheath is then discretized in n sectors according to 8 (see below),

J being constant in each sector, and the equation becomes :

; n - jwoy
J =g - dwou ﬁ Jyr -Log|Mi , |as, —l-z—n— I, Log|am |
K~ "0 I a0
Letter A refers to the conductor, MK is a point in the Kth sector.
M
2
A 1
*.-_“_E e N/2
N N/2+1
N-1

Thus, we obtain a complex linear system the solution of which gives

the current anywhere in the sheath. The constant J, is calculated by ex-

0
pressing that the currents in the sheath and in the conductor are equal.

Then the magnetic induction has been calculated near G by the fol-

lowing formulas :

Steady State C15

Ay

I
p °Q
= = 1 =l ¥ ' "
By, = curl Ay with Ay = o L J(M').Log|MM' | dM
G+C
Ay
-

where AM is the vector potential at point M.

THREE-DIMENSIONAL PROBLEM (see figure 2)

We now have G(x,y) = 4Hlx—y

Let J'€ LZ(R) with div J' = 0 in G and C, and let us rewrite

equation (2) in a variationnal form :

I(x) 3" (x) d5, + 4L / [ L)’_,_l_'( )31 4oy dsy =
[G+C ¥ A ec e [x-y

(2")
aV f J'.nCe.dr', + gV J'.nGe.dr - oV, [ JnlSedl, . =
Ce I'ce Ce Ge I'Ge Ge cs rcs Cs
- L}
GVGS J .nGS.ers
TGS
rCe’ PCS’ FGe’ PGS being respectively the extremities of the conductor

and of the sheath.

The problem now is to solve the equations (2'), (3) and (4). We use

a finite-element method where J(x) is decomposed in a base of known func-

tions wi :
n
J(x) = ¥ ol.wi(x)
i=]

Then the problem is to determine the n unknowns oi.
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DESCRIPTION OF THE FINLTE-ELEMENTS AND OF THE BASIC FUNCTIONS

Let Th be a partition of G and C in triangles the vertices of which,

Ai, are on G and C. We then define a set of vectorial functions wik :

- To one vertex Al corresponds one function wi.
- 8i, support of wi, is the set of triangles having Ai as vertex.
- wi is constant an each triangle and is in the plane of the triangle.

wi is then defined in the following manner :

Let I'i be the boundary of Si and n the vector perpendicular to T'i in
the plane of a triangle Tik of Si. We take wik.n = 0, wik being the res-
triction ot wi on Tik. This condition defines the direction of wik, parai-

lel to the side of Tik belonging to T'i (see below)
A

AL

The modulus of wik is defined by the relation :

[ |wik|.n.dS = ] = - f

AiAj AiAL

|wik|.n.ds" i.e. wik.n.|AiAj| = %1

We choose +] or =1 to have the same direction or rotation for ail the

wik round the vertices Ai (see below).

wik are then completely defined.

We have just defined a set of functions but do these tunctions cons-

titute a base of the functions which are constant on each triangle ¥

Let us consider one cylinder C (conductor or sheath). Let N be the

number of functions wi on this cylinder.
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It is easy to show that these N functions verify the relation :

wi(x) = 0 VYx€C

=

i=1

Thus these funcrtions don't constitute a base and in particular it
can be shown that the circulation of a density of current defined by these
finctiorsis zero along any section of the cylinder. If we note that this
circulation must be equal to the applied current which is known, the most
natural idea is to replace one of the functions wi by a function the
support of which is the whole cylinder, which is constant and equal to
the density of the applied current when any electric influence is neglec-—

ted.

Thus the base of functions for a cylinder is constituted by the

N-1 former functions wi and the new special one.

Equations (3) and (4) are automatically verified by these functions.
Equation (3) is verified because function wik is in the plane of trian—
gle Tik and equation (4) because function wik is constant on Tik, so

div wik = 0 on Tik. We now have to solve only equation (2')

LINEAR SYSTEM OBTAINED

Let us always take the case of one conductor and one sheath. There
are two special functions, one for the conductor and one for the sheath.
Let L and Wy be these two functions if N is the total number of verti-
ces on G+C.

If we replace J'{x)N in_equation (2') successively by the N fune-

tions wi(x) and with J(x) = aiwi(x) we obtain the following system :

N
L
=1

for k from | to N : .
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(Foiwi(x)) swk(y)
/ ] L dSydSx

/ (7 aiwi(x)) .wk(x).dSx + h G+C [x=y]

e 411

= u'\fce / wk (x) .nCe. dI‘Ce+o‘VGe[ wk (x) .nGe.dl"Ga- du’cs wk (x)'.nCS.dEe

Ce I‘Ge I‘CS

- UVGS / wk(x) .nGS.dI Gs

Tes

Let us note that by construction, except for the two special func-
tions, the circulation of wi is equal to zero along the extremities of the

cylinders. Thus, we obtain, for k from | to N :

IIMZ

Jwou wi(x) .whk(y)
[f31 wi(x).wk(x).dSx + S !i Lk —|T:ﬂ_L de.dSyJ

0 for k < N-1

aV’e fre wk[x).ne.cl[‘e ol UVS[I‘S wk(x).nS.dI‘s for k = N or N-1

It is a symmetrical, linear and complex system of N equations with

N unknowns ai.

Let us rewrite it in the following partitionned form where A is an

(N-2) x (N-2) matrix, Uy and Uy, are vectors :

£ -1 Un # 0

T . _ i
UN-1 ¥N-1 N “N-1 N-i
u N wN Oy BN

g and oy can be determined by expressing that the circulation of the

current density at an extremity of each cylinder is equal to the applied

Steady State C15

current, which is known.

Let I(.: and IG be the applied currents on the conductor and on the

sheath and RC and RU be the radius.

We have [r J(x).n{,e.dl"ce = IG = ceN_l.wN_].ZI[RG
Ge
and / .J(x).1'1(.:.<:.|\:I‘{'ce = = ey 2]'[R
iy
Ce
Taking Ve T IGI2IIRG and wy = I /21'[11 we have O = Oy = 1

We can then rub out the last two equations from the system. 8 and SN

N-1
which are the only terms where appear the applied tensions, are eliminated

from the system. So we have only to know the applied currents and the

system reduces to :

Aa + U g Oy *ougeog = 0 1i.es ha = - Up1 " Uy
It is an (N-2) x (N-2) linear, symmetrical and complex system.

CALCULATION OF THE COEFFLCIENTS OF THE SYSTEM

Let aij be a term of the matrix A.

aij = [ wi(x) Wj(x).dsx + L8 f [ wi (). wi(y) dSx.dSy
i 41 i /sj x|

5

Thus, it is necessary, in order to determine the terms of A

(or Uy and uN), to calculate two types of integrals :

Sik = f wi(x).wk(x).dSx and Dik = [ f wuxllwk() dSx.dSy
si si /sk .4

In fact, 5i and Sk are sets of triangle. Thus, we have to calcula-

te integrals over triangles :
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[ wij(x).wki(x).dSk and f f “’13(;“2"‘“( ) isx.dsy
P Ty T b4
i i

wij(x) and wkf(x) are constant or equal to zero on each triangle. So we
can put the scalar products wij(x).wk&(x) and wij(x).wkf(y) out the inte-

grals and we have to calculate :
/ dsx and/ [[ -‘%YT dSx
L T T ¥
] il e

The first integral is equal to the surface of Tj'
As for the second integral we have to consider several cases, accor-

ding as the triangles are far from each other, adjacent or identical.

- If they are far from each other, we calculate the product of the

surfaces divided by the distance between the centers of gravity.

- if they are adjacent we use twice a Gauss product formula of de-

gree 5 with 7 points.
- if they are identical the inner integral is analytically calcula-
ted and the outer one by a 64 points, 15 th degree triangular Gauss pro-

duct formula.

RESOLUTION OF THE SYSTEM

The resolution of the system has been performed by a classical direct

method which is not necessary to describe here.

FIGURE 1
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c FIGURE 2
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NUMERICAL RESULTS

Two-dimensional problem

The density of current and the induction near the sheath have been

calculated.

Curve | shows the tangential induction at | mm outside G and curve 2

at | mm inside G.
Diagram 4 shows a spreading out in the plane of the diagram of the

Three-dimensional problem sheath near the knee-pipe and on both sides of it, in case 1. We can see

the finite-elements. Little vectors represent the average density of
Numerical results have been obtained with the configuration of the CUXTEUE. of sach tIRangle:

figure 2 for two cases Diagram 5 in the same in case 2.

- Case | : The length of the sheath is supposed infinite but there enclugion
are finite-elements only on a length D. The sheath is isolated from the

o Obviously, this study has not yet been brought to an end and we have

to make several remarks and to underline some difficulties. First of all
- Case 2 : The sheath is truncated at the distance D from the knee- experimental verifications have to be realized and are worked on at the

pipe. The sheath is still isolated from the conductor moment. There are two main difficulties for the numerical results. The

first one is that we obtain only average values over triangles and thus
Many tests have been realized with various numbers of vertices and it is difficult to well describe the aeras where the density of current

triangles. We give there the results corresponding to the greatest number zapidly: chapge: iudivection or-wedulus becaws the:nuber-of trimgles

of elements, with the following values : is bounded by the power of the computer, all the more so that we shall

have to consider the case of three conductors and three sheaths. The
Applied current : 375 A Length D : 2 m second one is that we don't know very well what hypothesis is to be ta-

Ray of the sheath : 10 cm Ray of the conductor : 5 cm ken at the extremities of G in order to be in the same conditions as in

Thickness of the sheath : 0,9 ecm Thickness of the conductor : 0,5 cm the experimental device. As for the experimental measurements, it is

Number of vertices : 496 Number of triangles : 960 quite difficult to interpretate them.

Nevertheless, because of the heavy difficulties, especially efforts
Diagram 3 shows the modulus of the density of current obtained in and heatings, appearing in the new power-stations and our high-power

cases | and 2 along the generating lines AA' and BB' of the following fi- laboratory, we go an actively studying both experimental and numerical

gure (for the sheath only) : a8pepts ok the problem.

321




Steady State C15

Compumag Oxford, 31 March to 2 April 1976
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DIAGRAM 5

DIAGRAM &4
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one of these quantities. The other continuity constraint then enables

The piece-by-piece solution of eigenvalue problems integral equations to be formulated for the distribution of the con-
by ceptual sources.
G. J. Rogers, B.Sc.(Eng.), F.I.M.A. Consider the region (R) shown in fig. 3. Let it be divided into
sird two sub-regions R, and R‘b Within R the field satisfies the scalar
D. S. Benaragama, B.Sc.(Eng.) Helmholtz equation
Department of Electrical Engineering " 2
The University Veu + A°u = 0 (1a)
Southampton with
u=0 on §, (1b)
Summary
A piece-by-piece method is applied to the determination of the eigen- %E =0 on s, (1e)
values and the eigenvectors of the two dimensional scalar Helmholtz
Equation. Examples are given for boundary shapes which occur in eddy
current problems in electrical machines.
1. Introduction
A piece-by-piece method for the approximate solution of elliﬁ?%c 84
boundary value problems has been described by Rogers and Cambrell . Ra
It has beenzapplied to simple electrical machine problems by Hammond S9ab S2ab
and Rogers( ). In this paper we extend the technique to the determination Rb
of the eigenvalues and the eigenvectors of the scalar Helmholtz equation. 5,
VZu + 3%u = 0 (n Fig. 3

with homogeneous boundary conditions. : .
In each sub-region we may calculate the field u by means of a Green's

In machine problems the effect of eddy currents can be represented by function, in terms of the field specified on the interface between two
equivalent circuits which can be defined in terms of these eigenvalues and regions. On s, Ve assume that u is specified and on s, . we assume
a a
eigenvectors(3>. Here we examine two regions: a basic L-shaped region that 3u/3n is specified.

(Fig. 1) which can represent an induction motor rotor T-bar or the salient . _ . . )
- . i = 2 If 6_(r/r ) is the Green's function for region R_, satisfying
pole of a synchronous machine; and the region shown in fig. 2 which &= a

represents a cross section through the rotor of a turbo-alternator.

v2g + )2 = =§(r - 2
(x/r) + 36(x/x) = =6(x = r ) (2)
2, The Piece-by-Piece Method r 3G (r/s)
. . . . . . h ( ) o G (r/ ) B_U(S) 8" ( J d
The method is applicable to regions which may be split into sub- then ulr, J a =8 o ds - ™ uls) ds
o
regions of such shapes that elementary methods of field solutions may be S34b 81ab
used in each taken in isolation. At the interface between two sub-regions r iniR (3)
= a

the field u and its normal derivative 3u/%n must be continuous. We may

postulate conceptual sources on the interface to guarantee continuity of
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and similarly ¢ ¢

= | — ——r——— .|
1
du(s) aGb(IIS) %2 °2
u(x) = -f Gyl/e)igg " ¢ 'f W™, W s, "a s, 8 b, , N 52
$2ab S1ab B 3 240
" 2 s
r in (4) 2
% . 5, By F2 Ry 5]
5 | 5,
Fer T on SZab u must be continuous and for r on slab 3u/8n must be ) N
continuous in order to satisfy the remaining continuity constraints. Fig. la Fig. 1b
Thus
The dominant eigenvalues associated with the direct and quadrature
axes for two-pole geometries are given in table I. Ferriss(é) has
(6.(s, /) + G (s,  [s) } 288D 4 . .
a'"2ab b " 2ab an calculated the eigenvalues for the L-shaped region (A) and his values
Soab are given in parenthesis.
3G, (s, ,/s) 3G (s, ,/s) 3.2 Cross-section Through the Rotor of a Turbo-alternator
+ bR 8 AN ey e D ()
ano ana The specification of the boundaries in figures 2.a and 2.b, once
21ab again correspond to the two-axis representation of the rotor.

[ { Efi(slab!s) ) th(slabfs)} su(s)

3n 3n an
$2ab
2 2
) 3 Ga (s]abfs) . 3 Gb(s]abfs} (o) ds - 0 ©
andn non u s
. o o
lab

These coupled integral equations may be solved approximately by

Galerkin's method, which leads to a non-linear eigenvalue problem,

[a)] [B] =0 (7

where each root of Det [A(li| =0 is an approximate eigenvalue and the

corresponding B is related to the eigenvector .

3. Applications Fig. 2a o Fig. 2b

3.1 The L-shaped Region

. . s . . A list of the dominant eigen associated with t wo a

With the boundaries specified as shown, figures l.a and 1.b illus- genvalues he:tw Axes
; y ; for a typical turbo-alternator rotor is given in table 2.
trate the two-axis representation of ome half of a salient pole. » &
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Isble 1 Table 2

(a) (B)

t=0.5 h=0.5 h,=0.5 t=0.53 h=0.73 ﬁ1=o.33 t,=0.58 t=0.0323 h=0.414

A2 32 32 X2 a2 A2
D-Axis Q-Axis D-Axis Q-Axis D-Axis Q-Axis
11.499 3.221 11.207 2.438 2.298 1.599

(11.499) (3.214)

17.255 21.808 25.667 20.573 7.821 6.580

(17.218) (21.792)

37.698 34,561 35.321 36.610 10.564 10.065

(37.697) (34.548)

70.319  46.810 64.505 45,889 11.810 11.580

(70.181) (46.740)

79.749  63.501 79.318 54.515 29.397 12.376

(79.745) (63.404)

t=t/8 h=n/t, h=h/1, = t=t/R, E;com, h=h/R, A=AR
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SIMPLIFIED INTEGRAL EQUATIONS FOR ALTERNATING-CURRENT
DISTRIBUTION IN STRIP-CONDUCTORS AND STRIP-LINE WITH
MINIMIZED PROXIMITY EFFECT

Branko D. Popovié, D. Se.
Department of Electrical Engineering
University of Belgrade, Yugoslavia

1 Introduction

In integral equations for alternating-current distribu-
tion in parallel cylindrical conductors enter double integrals
which are relatively difficult and time-consuming to integrate
when solving these equations numerically. This is true even
in the case when the conductors are in the form of thin strips.
Only when the strips are flat can the integrals be integrated
once explicitely.1

This paper shows that in the case of thin strip conduc-
tors of arbitrary cross-sectional shape the double integrals
can be approximated with high accuracy by simple ordinary in-
tegrals. Thus the simultaneous integral equations for current
distribution in any number of parallel, cylindrical thin
strips of arbitrary cross-sectional shape contain only single
integrals, and the system can easily be approximately solved
using any of the known numerical methods.

If we consider these equations in the case of two iden-
tical, symmetrical parallel curved strip conductors, it be-
comes possible to consider the integral equations not only as
equations in current distribution, but also in the shape of
the line cross-section. In particular, by shaping the conduc-

32k
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tors and their distance appropriately, it is possible to have
approximately uniform current distribution in the conductors,
i.e. to minimize losses. This appears to be the first attempt
to reduce skin and proximity effects by an optimization pro-

cess.

2 Integral equations for current density in parallel

cenductors

Consider n very long, parallel nonferromagnetic conduc-
tors situated in a vacuum, of constant, but otherwise arbi-
trary cross-sections. Let the z-axis of a coordinate system
be parallel to the conductors, and let the conductors strech
from z=-b to z=b, with b much larger than the distance bet-
ween two most distant points of the cross-sections Sj and Sk
of any two conductors of the system. Assume that the cur-
rents im(t), m=1,2,...n, in the conductors are time-harmonic
of angular frequency w, and that, in the complex notation,

kzl Il; 0. (1)

It can be then shown that complex current densities Jm(x,y),
m=1,2,...n, in the n conductors satisfy the following set of

simultaneous integral equations:

jwuoo n
J (x,y) = J J, (x?,y?) x
m b égl L k ?
k
k] 2 3 2 3
x In{(x-x*)" + (y-y?)°} dx’dy’ + Tom
m=1,2,...0 . (2)

The JUrn are complex constants to be determined, and current

density functions are subject to constraints

l Jm(x,y) dx dy = Im, m=1,2,...0 . (3)

m
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Consider now a conductor system consisting of n
thin, not necessarily flat strips, of thicknesses dl’ d2,...dn

(Fig.1). Assume that the strips are such that the middle lines

of their cross-sections can be represented by single-valued
functions fm(x), having finite derivatives fé(x) at all points
of the strips. (By rotating the coordinate system and/or by
subdividing the conductors® cross-sections appropriately this
condition can be fulfilled in most cases. The other cases,
for which f%(x) becomes infinite at some points, can be treat-
ed by a somewhat more complicated technique, not to be menti-
oned here.)} Let us designate by gm{x) the functions represen-
ting the upper border-lines of the conductors® cross-sections
(see Fig.1), i.e.

d
gm(x) = fm(x+ Ax) + 7? ,fl + fn’ltxl2 4 (4)

where
d f2(x)
T epeam— NS, 3 (5)
2 \’1 v £2(x)2
m
Y

Fig.1. Geometry of cross-section of strip-conductors.
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The strips being thin, current density can be assumed
constant across the strip thickness, and we can substitute

Jk(x’,y’} dx*dy’ by Jk(x’) dk \/I-+ fﬁ(x’} dx?’. (6)
If k#m we can set
y -y’ = £ (x) - £(x°), m#k (7)

but for m=k this would lead to singular integrals. There-
fore we put
y -y’ = gm(x} - fk(x’) N (m,k=1,2,...n) . (8)

Thus from egqn.2 we obtain the following set of approximate

integral equations valid for thin strips:

X
jMUDG n k2 5
J (x) = > a J J(x’}\/1+f’(x‘) x
m e - k k k
k=1 xk1

x In{(x-x2 + [g_GO-£, (x)]?%} ax* + 3,

m=1,2,...n . (9)
Similarly, with approximation in eqn.6, eqn.3 becomes
x
k2
dk I Jk(x) V 1+ fﬁ(x) dx = I, , kz1,2,...0. (10)
*k1

To solve approximately the system of integral equations
(9), subject to the n constraints (10), different methods can
be used. Perhaps the simplest, and from the computing time
probably most convenient, is the so-called point-matching
method with polyngmial approximation of Jk(x) of the form
n, +

k
J (%) = :E: Crs x>l x=1,2,...n . (11)
i=1

Here, C are complex current-distribution parameters to be

ki
determined, and nye is the order of the polynomial approxima-
tion in strip k. With assumed current distribution (11),

eqns.9 and 10 become
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n_+1 # nk+1
i-1 _
Cmi 3 = Z Cki Gki(x) + JOm )
i=1 k=1 i=1
) R BN JISSREE (12)
k+1
IR WL VT S I e (13)
i=1
where . iin
Jjwu od b
G (x) = 0K I x’{l n 1o+ £2(x)? x
k
Y
*x1
x1n{(x-x")? + [g ()-£, (x)]%} ax’ ,
¥ = Li25veen 5 (14)
and *k2
by = 4y J S/ e 007 ax . (15)
XK1
n
Alltogether we have N= { D (n,+1)+n} unknowns (i.e.,

k=1 X

all the current-distribution parameters Cki and the n con-
stants JU
we therefore need another (N-n) equations, which we obtain

9 m=1,2,...n). In addition to the n equations (13)

by stipulating that egns.12 hold for (nk+1) points of the
k-th conductor, k=1,2,...n. The simplest choice for these
"matching points" is that they be equispaced along the x-axis,

i.e.
Ko = X
= - k2 k1 =
X5 ® Xpa + (3 1)v———:r——— s X315250050
k
j=1,2,...(nk+1) S (16)
Egns.12 thus become
n, +1
jé n n,+1
Gy it o EZ
o miTmy G Z CriCiXps) + Jop >
= k=1 i=1
SR S P [ j = 1,2,...(nm+1) . (17)
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These (N-n) equations, together with the n equations (13),
have to be solved for the (N-n) current=-distribution parame-

ters C and the n constants JOm' Both numerical evaluation

ki
of the integrals in eqns.14% and 15 and solution of the N com-
plex linear equations (13) and (17) is today a relatively

simple matter, and we shall not discuss these topics here.

3 Synthesis of strip-line with minimized proximity effect

In the case of two strip conductors (n=2), symmetrical
with respect to the origin and to the x-axis, we have Il=_12=
=T, Jl(x)=-32(x}=J(x). The equations (9) become two identi-
cal equations, of the form

. xq
jmuood 5
J(x) = ———— I J(x?) \’1 + £7(x?) x
Y
X4

(x-x*)% + {gix) - £(x")}?
(x-x°)° + {glx) + £(x?)}°

x 1n dx’ + JD . (18)

By physical reasoning it can be concluded that, in
principle, there should exist a shape of the conductors for
which J(x)=constant, at least approximately. If this is
approximately true, equation (18) can be considered as an
equation for determining f(x) for which, with J(x)=constant,
equation (18) will be approximately satisfied. Obviously,
this leads to finding f(x) such that

X4 s xex?) 2a{g o -£(x))?
Réx) = I\/1+f’(x’) 1n % 7 dx? (19)
<% (x-x")"+H{g(x)+f(x?)}
1

be constant on the segment -x,<x<x,. This f(x) cannot be
obtained directly. However, it is not difficult to find it

approximately by assuming, for example, f(x) in the form
p+l

F(x) = Z F x2(k-1) , (20)
k=1

and determining the unknown parameters Fk by an optimization
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process so that the expression
q 12

A = EE:
i=1

with X; representing any set of arbitrary number q of points

R(x;) - R(D)
e SR , (21)

R(0)

on the segment Lﬂ,xlj, be minimal. This optimization process
can also be performed relatively easily by means of an elec-

tronic digital computer.

4 Numerical results

Using the theory described in Section 2, numerical re-
sults were first obtained for several cases of thin strip
conductors for which numerical results already existed. For
all the cases of flat thin strips considered in References
1-4, practically the same results were obtained by the pre-
sent theory. This proved the validity of the present theory
which, however, is simpler than any of the available methods
for determining current distribution in strip conductors
known to the author, particularly if the strips are not flat.
As a new example, Fig.2 shows current distribution in three-
phase balanced line consisting of three flat strips as shown
in the insert of Fig.2. Note considerable asymmetry of cur-
rent distribution in the strips. Current distributions obta-
ined theoretically in the three strips were practically iden-
tical and shifted in phase as expected, although the complete
system was solved without postulating the symmetry.

As an example of minimization of skin and proximity
effects in a symmetrical two-strip line by shaping the con-
ductors, consider a strip-line having minimal distance of
10 cm, maximal width of 20 cm, made of copper strips (0=z5.7 x
x 107 S/m) of thickness d=2 mm. By the optimization process

using the trial function of the conductor’s shape of the form
£(x) = 0.05 + F5 x'  (x in metres) , (22)

it was found that F,=836 m_q, i.e.
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Fig.2. Real part, imaginary part and magnitude of normalized
current density Jn(xn)=J(xn)/J(G.5} in strip 1 of the symme-
trical three-phase strip line shown in the insert. The con-
ductors carry balanced sinusoidal currents, with clockwise
phase sequence. a=20 cm, d=0.2 cm, 0:5.TX1D?S/m, f=50Hz ,n=bL.

u

(£ 0] = 0,05 + 836 x' (x in metres) .  (23)

optimal

For that shape of the conductors current distribution was com
puted using the present method. The results for real and
imaginary parts of current density are shown in Fig.3. For
comparison, the results for parallel flat strips of the same
width (measured along the x-axis) and the distance equal to
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the minimal distance between the curved strips are shown in
dashed lines. 1In spite of relatively crude modelling of the
strips (using only one optimization parameter, as in eqn.22),
the combined skin and proximity effects are seen to be reduced
appreciably.

1,2
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’ » e x/a
0,2 0,4 0, 1
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Fig.3. Real (1) and imaginary (2) parts of normalized current
density J(x/a)/J(0) in optimized two-strip-conductor line
(solid lines) and two parallel flat strips. (dashed lines).
Cross-sections of the two systems are shown in the insert.
a=10 cm, b=10 cm, d=0.2 cm, c=5.7x10? S/m, f=50 Hz, n=6.

5 Conclusion

A simple method is presented for determining alternating
-current distribution in parallel thin strip-conductors of
any cross-sectional shape. It is assumed that the strips are
thin enocugh that current density is practically constant
across their thickness.

It is shown in addition that a symmetrical two-strip

line can be synthesized with approximately constant current
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density at all points of a strip, i.e. with minimized skin
and proximity effects. This appears to be the first attempt
to minimize the proximity effect by shaping the conductors.
Numerical results obtained by the present method are in
excellent agreement with available experimental and theore-
tical results. However, the present method appears to be the
simplest of all the existing methods, particularly if the
strips are of a curved cross-section. Numerical results ob-
tained for an optimized two-strip line show pronounced unifor-
mity of current distribution across the optimal line when

compared with similar line consisting of two flat strips.
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