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PERMANENT MAGNETS IN MAGNETIC FIELD CALCULATIONS

H. Zijlstra
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract

The presence of a permanent magnet in an electromagnetic system complicates the field
calculations. The properties of the permanent magnet material that affect the calculations are
analyzed theoretically. The results are tested by experiments with Ferroxdure magnets.

A magnet model characterized by four parameters can be incorporated into field calculations.
The customary manufacturer’s data seem to be sufficient to deal with practical systems.

Introduction

The ever increasing quality of permanent magnet materials has led to a great expansion of

the area of applications. Magnets are used in loudspeakers, electric motors and generators, relays,
bearings and couplings, magnetic chucks and clamps, ore separators, microwave tubes, to name
only a few. In all these applications the magnet serves to generate a magnetic field in an airgap by
which a mechanical force is exerted on electric conductors or on magnetizable bodies.

The desire for better performance and also the occasionally high price of the magnet materials
call for optimum design of the device containing the magnet.

In the past such optimizations were made by simple calculations on crude models and by
experiments. Increasing complexity, however, and seeking for the ultimate percent have created
a need for more rigorous methods. In the meantime computer programs have been developed for
calculating field distributions in electromagnetic systems. Such programs work satisfactorily as
long as the source of magnetomotive force is an electric current and provided that isotropic
soft-magnetic materials are used.

But the introduction of a permanent magnet as an MMF source is a complication and this paper
attemps to contribute to the solution of the problem. In particular, we shall consider which
material properties are relevant and should be supplied by the manufaturer of permanent
magnets.

The Permanent Magnet
The magnetic flux density B in any magnetizable material can be written as
B = o(H + M), (1)

where "‘OH is the contribution from the field and uyM the contribution from the material.
For a permanent magnet M can be written as

M= Mg + xH, (2)

where MD is called the remanence and x the susceptibility, which is a function of H as well.

164

Magnetic Materials B1

Fig. 1 shows the first and second quadrant of a typical hysteresis loop of a permanent magnet
material. This curve is known as the demagnetization curve.

Fig. 1 Demagnetization curve of a per-
manent magnet material {schematic).

The permanent magnet differs from a soft magnetic material in having a magnetic moment when
no magnetizing field is present. It is the magnetic moment M, that serves as the source of the
magnetomotive force.

Substituting M into B we obtain

B = g 1 H + Mg), 3)

where we have written u_for 1+x. Introducing the vector potential A by B = curl A and applying
the curl operator on both sides we have

curl{po_],ur_'curl A) = curi{;.zr'1 Moi + curl H. (4)

This is the vector equation that is to be solved by the computer. This paper is limited to the
discussion of u_or rather x .

We consider the source term with MD, If we have an ideal magnet, i.e. a magnet that maintains

a constant magnetic moment MO in any field that might work on it, then p_is equal to one and a
scalar. The curl of M(J is then zero throughout the magnet and differs from zero only at the
magnet’s boundary. The magnet can be considered as carrying a current sheet at its surface that
generates its remanent magnetic moment. The density j of this current is given by

j=curl My (5)
or, by applying Stokes’ theorem,

ji= Mot, (6)

where MO‘ is the tangential component of M at the surface and the current density j flows at
right angles around My, in a right-hand screw relation. Thus a cylindrical magnet magnetized
along its axis is equivalent to a homogeneous cylindrical current sheet of a total strength My,
where | is the length of the magnet.

Now if the magnet is not ideal p_is greater than one and trouble may arise in several ways.

1) If u, depends on H and H is not uniform throughout the magnet, the equivalence of a
magnet and a current sheet no longer holds.

2) If B and H have not the same orientation the curve of fig. 1 gives insufficent information,
as in such curves one always measures the B component along the field H.
For complete information curves for all combinations of B and H orientations would be
required.
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3)  If the magnet has anisotropic u, matters become even more complicated, because then
the orientations relative to the magnet axes have to be taken into account as well.

It will be clear that it is virtually impossible to require such information from a magnet supplier
and to feed it into the program. It seems more practical to try to find a magnet model that is
characterized by a few parameters and that generates the B-H curves for any combination of B
and H to a good approximation of what would be found in a real experiment. To that end we
shall first take a closer look into what a permanent magnet material actually is.

What is a Permanent Magnet Material?

A permanent magnet consists of many small crystallites of a highly anisotropic magnetic material.
Each of these crystallites has an individual crystallographic axis along which it prefers to be
magnetized, its easy axis. The crystallites are compacted to a solid body with their easy axes
more or less aligned with respect to each other. The magnet thus has an average easy axis around
which the local easy axes of the crystallites are oriented according to a certain distribution
function. For practical purposes this function can often be approximated by assuming that the
individual orientations are distributed with uniform density inside a cone with semi-apex angle
®*, with no orientations outside (see figure 2). The cone axis coincides with the average easy
axis of the magnet. '
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Fig. 2 First-order approximation a /Mo
to the distribution of easy axes v i Fig. 3 Orientation of magnetiza-
of crystallites in an anisotropic If tion vector M under the combin-
polycrystalline permanent mag- ] " ed action of the anisotropy field
net. H, and an applied field H.

We now consider one crystallite. It is uniformly magnetized with a magnetization l\ﬂs

(s for saturation). The magnetization can vary under the influence of an externally applied

field by two processes: .

a)  uniform rotation, where M, maintains its modulus and only varies its orientation;

b) reversal, where Ms reduces its modulus to zero and grows in the reverse direction to aquire
the value - M..

When no field is applied M, is oriented along one of the two possible directions of the easy axis.

Rotation of Ms requires energy because of the magnetic anisotropy. The strength of the

anisotropy is often expressed in terms of anisotropy field H, . This is a fictitious field, imagined

to be oriented along the easy axis and to bind the magnetization vector to this axis. The strength

of the anisotropy field is chosen such that the vector sum of an applied field H and the

anisotropy field determines the correct orientation of M, under the combined action of the

anisotropy and the applied field (fig. 3). For small angles & between M, and the easy axis,

H), can be considered as a constant field. For larger angles H, has to depend on this angle, but

this situation is of no practical importance to our problem; fields are always small compared to
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Hy- It should be emphasized that HA is a fictitious field and may not be introduced as such in a
calculation. Its influence has rather to be incorporated in terms of susceptibility or permeability,
as we shall see later.

Apart from the gradual rotation of the magnetization vector M, under the influence of an applied
field H another process may occur. If the applied field has a component opposite to M, the latter
will suddenly reverse its sign when H exceeds a certain critical value Hr, which value depends on
the angle v between H and the easy axis. The vector M, then seeks a new equilibrium orientation
under the combined action of H and H,, the latter now pointing along the easy axis opposite to
its orientation before the reversal jump (see fig. 4).

eosy oxXis

Fig. 4 Relative orientations of Hy, M and H
before (left) and after (right) a reversal jump.

This reversal of the magnetization vector is a process entirely independent of the gradual rotation.

It is associated with certain processes inside the crystal initiated by the presence of lattice defects.

The reversal jumps occur at field strengths that are rarely higher than 0.2 H, and are to be

distinguished from rotation jumps, which can only occur at field strengths higher than 0.5 Ha-

The latter jumps are seldom of practical importance in the discussion of permanent magnets and

will be ignored in the present discussion,

We have thus completely described the behaviour of one crystallite in terms of three parameters:

a)  the modulus of the magnetization M,

b)  the strength of the anisotropy field H,,

c)  the critical field H, for reversal of M, and its dependence on the angle ¢ between H and the
easy axis.

A real magnet is assumed to behave as the sum of its individual crystallites, with their easy axes

distributed uniformly inside a cone with semi-apex angle ®*, and is thus characterized by four

parameters.

Experimental

The behaviour of a polycrystaliine magnet as described above is based, of course, on
approximations and assumptions. |t is worth seeing whether a magnet behaves experimentally
in accordance with this scheme.

We have made samples of two different qualities of Ferroxdure (a sintered Ba- or Sr-ferrite),
labeled Fxd 1 and Fxd 2. The anisotropy field of these materials is known to be about

1.7 Tesla, 1,

Fxd 1 was a commercial quality and from measurements of the remanent magnetization after
magnetizing parallel and perpendicular to the easy axis, respectively, we found a value of ©*
of about 33° and a saturation magnetization koM, = 0.415 Tesla. Fxd 2 was a laboratory sample
with @* = 15° and a saturation magnetization poM, = 0.465 Tesla.
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Of these materials we cut small spheres with a diameter of about 3 mm.

The M vs H curves were measured using a PAR vibrating-sample magnetometer. This instrument
measures the projection M, of M on the applied field H, .

Before each measurement the samples were magnetized in a field of 2 Tesla along the easy axis
and, at zero or small field, rotated to a fixed angle ® between externally applied field

H“ and easy axis. Then H,  was varied and the corresponding variation of Mex recorded. Two
sets of curves thus obtained are shown in figs. 5 and 6.

Fig. 5 Mg, vs Hg, curves of Fxd 1 Fig. 6 As fig. 5, for Fxd 2 spherical sample.
spherical sample with the angle @

between applied field H,, and the

easy axis as a parameter, each curve

after magnetizing in a strong field

along the easy axis,

The actual field acting upon the material is the vector sum of the applied field H_, and the self-
demagnetizing field Hy, arising from the poles of the sample itself (fig. 7). Only for @ = 0 the

vectors H, ., Hy and M are parallel.

ex’

Q0SY OXis
Ha b

Fig. 7 Relative orientations of anisotropy field
H,, demagnetizing field Hp, applied field Hex,
vector sum H of H,, and Hp, magnetization
vector M, and its projection M, upon H,,.

Hp

From the Mex vs H,, curves we derived the modulus of Mas a function of the modulus of the
total field H (figs. 8 and 9).
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Fig. 8 Modulus of magnetization vector Fig. 9 As fig. 8, for Fxd 2 sample.
M versus modulus of total field H, with ¢

the angle © between applied field H,,

and easy axis as a parameter, for Fxd 1

sample.

The curves are found to be independent of the angle @ between H,, and the easy axis, and M|
is fairly constant up to a critical value H_where its magnitude suddenly decreases. Obviously
the individual crystallite magnetizations which together add up to M perform small rotations in
fields up to H_, at which value the reversal process occurs. A surprising fact is that H, is
practically independent of ©.

This notion of small reversible rotations is further supported by the observation that a sample,
being in its remanent state after having been magnetized along its easy axis, conserved this state
after application and removal of any field H with modulus smaller than H_.

These experiments thus confirm the validity of our model.

Model for a Polycrystalline Anisotropic Magnet
The behaviour of a single crystallite can generally be described as

M=M, +x (HLH, (7)

" where x is a non-symmetric matrix dependent on H.

If we take My, as the main axis of the description and we expand the components of M up to
terms quadratic in HJ’HA we obtain

H
0 -3 Ms% 5in®
= (8)
- HI .
-MSH—AZ sin@ M /H 5

For [H| < H,, as we assumed, the non-diagonal elements remain small with respect to M./H, and
may be ignored. We then have for a single crystallite
’ 0 0

©)
0 M/Hp

X
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For an aligned polycrystalline sample we assume that the non-diagonal elements may be
neglected as well, and we write

0
X ' (10)
0 xl

=

where Xy is the susceptibility along the easy axis and X1 the susceptibility perpendicular to it.
The spread in the individual crystallite orientations gives rise to a non-zero susceptibility along
the average easy axis, but to a first approximation the contribution to the non-diagonal elements
cancels out.

The usefulness of this matrix is experimentally confirmed by the agreement between a calculated
and a measured M, vs H,, curve for ©* = 33° (fig. 10).

06 Mtn"”a

o |

Fig. 10 M, vs H,, calculated on the
Fo2 basis of the proposed model (see text)
for ©@ = 60°, compared with experiment.
Difference in steep part of curves is due

L | L to arbitrary choice of reversal critical field
O —e g H,, [ Tesial “ H, in model.

Incorporation of the Model into a Computer Program

A program for computing the field distribution in electromagnet systems consisting of isotropic
soft magnetic material and electrical conductors can be used for permanent magnets by simply
replacing My by a current sheet and ignoring any M(H). The magnet is then considered as ideal.
This approach has been followed by Reichert 2) and Kamminga 3). A refinement was introduced
by Slomczynska ‘”, which in our context is represented by the matrix of eq. (10) with xy
derived from the demagnetization curve along the easy axis of the magnet, and x; equal to the
differential susceptibility of the same curve at H = 0.

Polak 5 has used a somewhat different approach, with xy and X1 both equal to the value of x
derived from the demagnetization curve along the easy axis, but with Hcosf as argument (f being
the angle between B and the easy axis). Polak's model was used by Schophuizen 6) for the
analysis of loudspeaker systems, who obtained the satisfactory result of only a few percent
difference between calculation and measurement.

Introduction of the present model with anisotropic x , for which not only the M-H curve

parallel to the easy axis but also the perpendicular one is required, (on the understanding that
initial magnetizing is done along the easy axis), might give more accurate results in more
complicated designs where the magnetic vectors are expected to deviate substantially from the
easy axis.

For Ferroxdure magnets, which are used in the majority of applications, knowledge of the

M vs H curve perpendicular to the easy axis is not strictly required, as this curve is a straight line

Magnetic Materials B1

with slope very close to My/H,, even if alignment is not so perfect (see fig. 5). Technical data
provided by the manufacturer therefore suffice in giving M, Hp, and the M vs H curve parallel to
the easy axis (the second quadrant of the hysteresis loop), which also yield H,.

Acknowledgement
Discussions with A.J.H. Wachters have greatly contributed to this paper.

References

1 J. Smit and H.P.J. Wijn, Ferrites (Wiley, New York, 1959) p. 204
2 K. Reichert, IEEE Trans. Mag. MAG-6, 283 (1970)

3 W. Kamminga, J. Phys. D (Appl. Phys.) 8, 841 (1975)

4 J. Slomczynska, |IEEE Trans. Mag. MAG-10, 1109 (1974)

5 S.J. Polak, ISCA General 003, 11 (1974)

6 P.J. Schophuizen, private communication

Discussion following paper:

(Jannsens, Belgium) What is your position towards the model of Stomer
and Wohlfarth? This model describes a hard magnetic material by means
of an assembly of ellipsoids. The magnetization curve of such an

ellipsoid exhibits reversible rotation and a sudden jump. May such an

approach be compared with your model?

(Zijlstra, Philips, Eindhoven) The jumps in the SW model are rotation
jumps that occur only at fields greater than O,SHA. The reversal jumps
discussed in my paper are independent from the rotation process and occur

at fields on the order of 0,1 - 0,2 HA' They are associated with wall

processes inside the erystal.
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COMPUTATION OF MAGNETIC FIELDS IN NONLINEAR ANISOTROPIC MEDIA

WITH FIELD DEPENDENT DEGREE OF ANISOTROPY

Peter Th. Weggler, CONTRAVES AG, Zurich, Switzerland

1. Summary [1]

Cold-rolled steel sheets with Goss texture are treated as non
linear anisotropic media. Anisotropy, that is, the dependenc;
of the permeabilities on the direction and magnitude of the
vectors of the magnetic flux density B and the magnetic field
strength ﬁ, is fully taken into account. In the algorithm for
computing the field, the magnetic properties are separated
into properties for the x-direction and properties for the
y-direction (=rolling direction). On the area in question a
grid with meshes of different size is applied, which can be
adjusted according to the geometrical structure and the con-
vergence properties of the problem. The vector potential is
used for the representation of the magnetic field. For the dg
termination of the vector potential at each point of the grid
a two step iterative procedure of pointwise successive over-"
relaxation is applied. The determination of the over-relaxa-
tion factor of each grid point is based on the geometrical
structure near that point and on the history of the iteration
process. The values of the magnetic properties are under-re-
laxed. Usually different under-relaxation factors are applied
for the x- and y-directions. The field lines in a 45°—joint
of a transformer are computed for various magnetic excita-
tions.

2. Mathematical Formulation

Two dimensional static magnetic fields are computed. Equation
(1) gives the vectorial relation between the magnetic flux
density'E and the magnetic field strength H.

—

B =g cfu @ B - F @
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In this equation the relative magnetic permeability is repre-
sented by a matrix. The elements of this matrix depend on the
absolute value of B and H as well as on the direction of B

and H relative to the rolling direction.
B=curlX (2) divA =10 (3)

Equations (2) and (3) define the magnetic vector potential

which is wused for the representation of the magnetic field.
curlE =7 (4)

Equation (4) gives the relation between H and the distributed
current densities J. By applying Stokes' s theorem and equa-

tions (1,2,4) a direct relation between J and K can be deri-

ved: i(vx _g_? a - VY‘gTi\ -dy) = ”j.dx-dy (5)

E(W'ﬁ—? - AX - Vy-ﬁ—;? by] - EJ'-AX'&Y (8)
c

o) 9
x50 (6O B =g (D

B
vx and Yy are the reciprocal permeabilities for the x- and
y-directions respectively. Due to the representation of the
magnetic properties the path C for computing the line inte-
gral (eqg. (5)) is divided into components parallel to the x-
direction and to the y-direction (= rolling direction). If
the differential expressions in equation (5) are replaced by
difference expressions, we get equation (8) which is the ba-
sis for the numerical solution of the problem.
For the determination of the vector potential 2 a grid divi-
ded into subsections with meshes of different size is applied

on the area in question.

3. Magnetic Properties of Nonlinear Anisotropic Media [2], [3]

In ordinary soft magnetic materials the directions of the

vectors of the magnetic flux density B and the magnetic field
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B @]
¥ ﬁﬂ Y = parameter

or

| e
]

-
strength H are parallel. In anisotropic materials the vectors

B and H are generally not parallel to each other. Anisotropy - .

The vectors B and H can be split into components parallel to

is caused by a special crystalline structure of the material ) X

and into components perpendicular to the rolling direction

which can be obtained by means of different rolling processes ( i 2)
see g. .

and suitable annealings. Only properties of sheets with Goss Y=rolling direction

texture are dealt with in this paper. BY

: : URX = HX/BX
(010) Walzrichtung URY = HY/BY

X
Fig. 2: split of B and H

/};’ The quotients URX and URY are the reciprocal values of the
/ i
"
N //)S/ that the y-direction is identical with the rolling direction
Blechebene (011) of the sheet. Circle diagrams for B are very useful for the

description of the magnetic behavior of anisotropic sheets.

permeabilities in the x-direction and y-direction, provided

(oo1

Fig. 1: Iron crystal in Goss position

Fig. 1 shows an iron crystal in Goss position. The (100)-di-
rection is parallel to the rolling direction and represents
the direction of light magnetization. The (0ll)-direction re-
presents the direction of medium magnetization. The (111)-di-
rection is the direction of strong magnetization. Tﬁe (111)=-
direction and the (100)-direction form an angle of about
559. All three directions are parallel to the surface of the
sheet. ¥ is the angle between B and the rolling direction. ¥
is the angle between H and the rolling direction.

The properties of anisotropic materials can be represented by
two sets of curves. Depending on the methods of measurement

result the following sets of curves.

1Bl = |B ()|

y = oy (ﬁ') = parameter

Fig. 3: Circle diagram for B for ¥= 30° ana ¥= 60°
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The curves in fig. 3 show the course of the top of the vec-
tor B on the assumption that the direction of H forms fixed
angles of 30° and 60° with the rolling direction and that the
absolute value of B varies from zero to saturation. The fi-
gures on the curves are the absolute values of H. The absolu-
te values of B are marked in the radial direction. If the fi-
xed direction of H forms an angle of less than 55° with the
rolling direction (30° in fig. 3) the growing vector B first
remains near the rolling direction and then turns towards the
fixed direction of H. If the fixed direction of H forms an
angle of more than 55° with the rolling direction (60° in fig
3) the growing vector B first remains near the rolling di- ’
rection too,but for increasing absolute values of H the di-
rection of B turns away from the rolling direction and cros-
ses the fixed direction of H before falling together with it.
It is remarkable that the absolute value of B decreases in
the area of strong angle deviation. The curves in fig. 3 are
valid for sheets of the quality ARMC@ M6X, 0,014" thick.

A direct dependence of the reciprocal permeabilities (URX,
URY) on the components of B (BX,BY) and on the angle Y respec
tively has been found for the algorithm used for computing
the field. From this result three dimensional representations
of the magnetic properties separated into properties for the
x-direction and properties for the y-direction. Fig, 4 shows
the reciprocal permeability URY in function of BY and Y.
These three dimensional representations are called m a g n e-
tization surfaces. They can be calculated by

means of linear interpolations in the sets of curves

IB| = B ()]
v (ﬁ) ¥ = parameter

t?

The expression P = URX/URY is called degree of anisotropy. It
is defined as the ratio between the relative permeability in
the rolling direction and the one perpendicular to the rol-
ling direction. Fig. 5 shows the shape of P in function of

170

Magnetic Materials B2

RN W

AN

\\ N,
D\
=

TR
e
N

R

§

Fig. 4: Magnetization surface URY = URY (BY, ¥)

the absolute value of B with ¥ as parameter. For ¥ = 600,
70° and 80° P can be less than 1. That means that the rela-
tive permeability perpendicular to the rolling direction is

greater than the one parallel to the rolling direction.
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Fig. 6 shows the meshes surrounding a certain point of the

grid used for the field computation. The procedure of compu- Fig. 6: Part of the grid

tation of the vector potential A (I) can be explained by
) ) the rectangles or triangles, which is determined by means of
means of the vector potential at point 27 in fig. 6. The dia-

the potentials on their contours. Because of the representa-
gonal which goes from point 27 to point 82 may be a boundary

tion of the magnetic properties the path for computing the
between twoareas of iron in which the rolling directions form

line integral (see eg. (8)) must be divided into components
different angles with the y-axis of the coordinate system.

; . parallel to the x-direction and components parallel to the
Several auxiliary quantities must be determined. One of them

. y-direction. (W (1) ... W (20) in fig. 6). A subdivision of
is the vector potential AS ( ) in the centers of gravity of

the rectanglés and triangles results from the position of the
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centers of gravity within the rectangles and triangles and
the mutual geometrical positions of the rectangles and
triangles. The contours of these new basic triangles«il..cga)
caused by the subdivision are represented by dotted lines.
Within such a basic triangle the magnetic properties are
assumed to be constant. Crossing the boundaries the magnetic
properties change discontinuously. For the determination of
the permeabilities within the basic triangles the components
of B for the x- and y-directions and the angle Y in the geo-
metric centre of the basic triangle must be calculated. To
do this the vector potential in auxiliary points called AH
(1)... AH (12) must be calculated by means of linear inter-

polation.

5. Iteration procedure

For the computation of X a two step iterative procedure of

pointwise successive over-relaxation is applied. During one
iteration step the following operations are performed:
- The components of the vector B belonging to the
grid point considered are computed from the vec-

tor potentials.

- The values of the reciprocal permeabilities for the
x- and y-directions (called URX and URY) are deter-
mined from the magnetization surfaces on the basis
of the components of B and of the angle ¥ which B
forms with the rolling direction.

Appropriate transformations are necessary if the
rolling direction doesn't correspond with the y-
direction of the coordinate system.

- The values URX and URY are under-relaxed by the fac-
tors FX and FY. The values of the under-relaxation
factors are computed during each iteration step. They
depend on the nonlinearity of the magnetization sur-

faces, on the over-relaxation factor for 2 and on the

Magnetic Materials B2

acquired relative accuracy of 2.

- The vector potential R is then computed with a line

integral and is generally over-relaxed.

6. Determination of the over-relaxation factor for the

vector potential

As a rule the values of the vector potentials are over-rela-
xed. Two over-relaxation factors are defined. The first one
called WF (see eq. (9)) is valid for the whole grid. The se-
cond one called WL (see eq. (11)) is different at every
point of the grid.

WF = 2 (9)

1+{1-X

S AEATY

WL 2 (1)

f4oc? o2 \[L _ 1|2
1+V1 [45+2s Z WFZJ

The determination of the over-relaxation factor WF (see eq.

]

(9)) for the whole grid is based on an average mesh and on
the theory for the computation of linear fields. P and Q are
expressions for the number of average meshes in the x- and
y-directions respectively. For the determination of the lo-
cal over-relaxation factor WL (see eg. (11)) a gquantity S
must be found which relates the specific geometrical confi-
guration in the wvicinity of a certain point to the geometri-
cal configuration of the whole grid. During the iteration
procedure the values of WF and WL are adjusted to the conver-

gence.
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7. Determination of the under-relaxation factor for the re-
ciprocal permeabilities

Usually different under-relaxation factors (FX, FY) are
applied for each point of the grid and for the x- and y-di-
rections at each point (see eq. (12, 13)).

WL - B _ WL-B
e @ ey

OURX  BX OURY BY
GL = — = — —
X 3B IR (k) GLY 38Y URY (15)

The values of the under-relaxation factors depend on the

The values of the reciprocal permeabilities (URX, URY) are
under-relaxed. ’

FX = (13)

/[ /
/

/

= nonlinearity of the magnetic surfaces (GLX, GLY; see eq. (14,
M 15)), on the values of the local over-relaxation factors WL

and on the acquired relativeaccuracy of A. g is a weight for

Lﬁ the correction of the value of the reciprocal permeabilities

and depends on the acquired relative accuracy of A and on

X777

the over-relaxation factor WL. Fig. 7 shows the nonlinearity
s GLY for the y-direction in function of BY for different va-

lues of ¥. The values of the under-relaxation factors are

NN X L S ST

£ T L 4 S
Yy\//\X/X\//////

computed during each interation step.

y L F LS
////>\/\)§///////

L]
AJk 8. Computed examples

a 45°—joint of a transformer has been chosen as an example.

s
20

i, Fig. 8 shows the grid used for the computation for two exam-
|

{)

i
=X
=

=

J ples. The iron boundary is marked by fat lines. The rolling

direction of the sheet is marked by arrows. The current re-

T
—

gions are marked by 1 and 2. The meshes are large in the yoke

%
%
?_

and in the limb and smaller near the joint. The values for
the reciprocal permeabilities correspond with the properties
of sheets of the type UNISIL 51,

Fig. 7: Nonlinearity GLY = GLY (BY), ¥
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Fig. 8: Grid

The properties of the anisotropic material become evident
especially with small values of the magnetic flux density.
Fig. 9 shows the field lines of the first example. The ave-
rage value of the magnetic flux density is about 0.9 Teslas.
The relative accuracy of the vector potentials is about 10'4.
To get this result about 1600 iteration steps had been neces-
sary. In the yoke as well as in the limb the field lines run
almost parallel to the rolling direction. In the joint the
field lines bend almost perpendicularly. This behavior has
been proved by means of experiments with iron powder [4] .

A compression of field lines can be observed near the inner

iron boundary of the yoke, which indicates a concentration of

flux. In the joint the flux distribution changes considerably.
In the limb the main part of the flux runs in the middle. Only

a small part of the flux in the yoke is forced to run perpen-
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Fig. 9: Field lines; |B| = 0.9 Teslas

dicularly to the rolling direction.

Fig. 10 shows the field lines of the second example. The ave-
rage value of the magnetic flux density is about 1.75 Teslas.
The relative accuracy of the vector potentials is 7 - 10—5.
To get this result about 1350 iteration steps had been neces-
sary. In the vicinity of the junction the field lines in the
yoke are displaced from the inner iron boundary towards the
middle of the yoke. Thereby the part of the flux which is
forced to run perpendicularly to the rolling direction is re-
duced. Fig. 11 shows the B-vectors (fat arrows) and the H-
vectors (thin arrows) near the junction. For the same geome-
trical configuration and for the same current density the
field lines had been calculated in isotropic material. If
the two plots are laid one upon the other something like in-
terference lines (see fig. 12) result. They clearly show the
difference in the shape of field lines in anisotropic and
isotropic material,
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Fig. 10: Field lines; |B| = 1.75 Teslas Fig. 12: Interference lines
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Discussion following paper:

(Lord, Cardiff) Has your approach been extended to 3 dimensions? In

practice the joints are overlapped and the flux moves in (and out) to

the next lamination - hence the problem is inherently 3-D in nature.

(Weggler, Contraves AG) The problem is solved only for two dimensions

The airgap in the joint is assumed to be extremely small. The part of
flux which moves in (and out) to the next lamination depends on the
geometry of the air gap as well as on the flux density and is not taken

into account.

(Phemister, C.A. Parsons) T should be grateful if you would say some-

thing about the measurement of the angle between B and H for various

directions.
(Weggler) Please consult the references in my paper.
(Polak, Philips) Could you tell us why the formulas shown were used

for the computation of the different under relaxation factors.

(Weggler) A basic five point representation of a grid point is

assumed. For each point of the grid a residuum R can be defined:

R ff_] odF = (By;.vy; —- Bxj.vx] ===== + By,vy,)

AR

]

=ABy;.vy; - Byj.fyj.0vy; + ABx).vx) + ———
—0Byy «vyy = Byy.fyy.Avyy
fxi = under-relaxation factor for VX,

fyi = under-relaxation factor for vy,

AR.a = .

R.a {ﬁRA + ﬂRUR) B (1)
o = local over-relaxation factor for K

B = weights for the indirect correction.

Direct correction:

QRA = —ABy].vy] + ABxj.vx) + ————= =ABYy, sy . (2)
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Indirect correction:

duyy dvxy
aRUR == By1.fn .ﬁﬁ . AByy + Bxj.fxj. 3%, ABx
avyy
S = BY“'EY“‘B'E';T,, -AByy (3)

If Eq. (2) and (3) are put in Eq. (4) we get the expressions for

the under-relaxation factors fxi and fyi for the x - and y - directions.

(Endo, Japan) How to control the under-relaxation factors of transverse
directions separately? I think it is difficult to control them for

large "degree of anisotropy'.

(Weggler) Different under-relaxation factors are used for the x- and
y- direction. They depend on the over relaxation factor for X and on
the relative accuracy of X.  The non linearity of the magnetic surfaces
can be described by
x| Bx
aBx  Vx

for the x— direction and by

vy By for the y- direction.
aBy Vy

(zijlstra) In practice the contact between the iron sheets is not
perfect. What influence has an airgap, which, even when it is small,

must represent a considerable magnetic resitance?

(Weggle? An airgap is a considerable magnetic resistance especially

at low magnetic fields.
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Field Computation of Magnet made of Steel with Magnetic Anisotropy

T. Kasuga, E. Takasaki, A. Ando, M. Kihara and K. Endo

National Laboratory for High Energy Physics
Oho-machi, Tsukuba-gun, Ibaraki, Japan

Abstract

The grain oriented low carbon steel has been developed for the magnet
core material of the proton synchrotron and proved to have superior magnetic
properties when used properly. The grain orientation brings on the magnetic
anisotropy which often leads to the different results against expectations.
In order to get the clear view about the field properties of the quadrupole
magnet made of the grain oriented steel, computations were carried out nu-
merically by solving a set of difference equations on the square meshes of
two dimensions. Computations were tried on the models with different ori-
entations of magnetic anisotropy and compared with the magnetic field meas-
urements on the full scale model magnets. In accordance with the experi-
mental results, the marked differences were obtained for the different ori-

entations of the grain.

§1l. Introduction

Since an alternating gradient principle has been applied to a circular
high energy particle accelerator, the weight of the magnet has been saved
greatly. This advantage, however, requires higher quality of the magnetic
field than ever met, in both bending and focusing fields. As inhomogeneities
in the magnetic field will cause an undesirable effect on the beam behavier,
the magnet should maintain good field configuration over the required aper-
ture during the whole of an accelerating cycle. Steel for the iron core of
the accelerator magnet has to be choosed carefully from the magnetic require-
ment such as low coercivity with small spread and high permeability with
small spread at both low and high inductions. 1In addition to these magnetic
properties, is also required good machinability to allow the precision stamp-
ing under the clearance of 0.02 mm or less. From these points of view, low
silicon steel and low carbon steel have been used. These two kinds of steel
show almost the same isotropic magnetic properties except that permeability
is higher for low carbon steel.

On the other hand, irom in high purity form has superior magnetic pro-
.perties in itself at both low and high fields, though its production needs

very careful heat treatments for reduction of the harmful nonmetalic

Magnetic Materials B3

impurities such as carbon and nitrogen which cause magnetic -aging. And
contents of carbon and nitrogen may be readily 0.003 and 0.005 %, respect-
ively. Coercive force of this decarburized steel lowers remarkably by
grain-growing treatment. During this grain-growing process which consists
of cold rolling and hot annealing, anisotropy of the magnetic properties is
developed. Permeability in the preferred direction raises and coercive
force lowers appreciably without changing an ultimate saturation limit.

The orientation of each grain in iron with preferred texture is within

about 3 degrees to the rolling direction —— (110)[001] textured iron. This
type of steel is called as grain oriented (low carbon) steel.

Grain oriented steel has very large permeability to the direction of
easy magnetization in accordance with the rolling direction, while its
transverse has lower permeability. The merit of using grain oriented steel
as the core material for the magnet of the proton synchrotron has been tested
on the full scale models of the gradient dipole magnetz) If the rolling
direction of steel is aligned in the pole of the magnet to be perpendicular
to the median plane in the air gap, the field quality is improved very much
at high field. The same results were obtained from the calculations with
an aid of the SIBYL program by assuming that permeability was isotropic one
taken to the direction perpendicular to the median plane throughout the iron
core. This assumption was based on the computational result that the flux
lines inside the magnet pole was almost perpendicular to the median plane.

In the case of the quadrupole magnet, however, the magnetic properties
of both transverse directions of steel have a role on the field in the air
gap. Therefore, the same assumption must be avoided on this case, despite
that the field computations were carried out by assuming the isotropic mag-
netic properties in the previous reportz) and showed the need for more de-
tailed study to take the magnetic anisotropy of steel into consideration.
First trial towards this problem was to take account of the directional
dependence of the B-j relation which was obtained experimentallyf) This
approach is rather easy because the B-J relation to any direction can be
calculated from the interpolation of the experimental data. This approach
assumes the coincidence of the directions of the magnetic field and the
magnetization. In general, these two directions do not coincide except for
the direction of the easy magnetization. This indicates the second approach
which treats permeability as a tensor quantity. In the case, the difference
equations solving the vector potential in iron must be altered to deal with

the tensor permeability. In this manuscript, both treatments are described
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and tried by modifying the relaxation program LINDA.

§2. Computation of vector potential in anisotropic iron

For convenience of the computation, the air and iron regions are treat-
ed separately in two dimensions. That is, the magnetic field is treated by
the modified scalar potential in the air and by the vector potential in the
iron region both in square meshes. The computation mainly concerns with
the iron region and the magnetic anisotropy is brought in the process of

solving the vector potential field in iron.

2-1. Non-tensor form

An attempt to introduce the grain orientation effect into the field com-—
putation was undertaken by taking account of the directional dependence
of the B-H characteristics shown in Fig.l which were obtained by the Epstein
test!) In the iron region where current does not exist, the Poisson equation

describing the vector potential A (0, 0, A) is transformed to

v2(ya) = 0 (1)

B (kG)

0l ||ll i el L P I | 1 L1

01 1 10 100 1000
H (0e)

Fig.l The B-H relation of the grain oriented steel.
Figures mean the angles made by the rolling
direction and the direction of the magnetizing
force.
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if the average reluctivity Y, reciprocal of permeability, is assumed between
the adjacent mesh points.

Solving a set of the finite difference equations of eq.(l) by the suc-
cessive over-relaxation method, components of the flux density at each mesh

rectangle, By and By, are obtained from
> -+
B=VXxA . (2)

Therefore, the direction of the flux line is given by

= tan-l [o¥|= tan-l [GA ; GA
6 = tan ]Bxl tan |dx / dyl 3)

and the field strength by

2 T 2 p)
H=/Hx+Hy Y/Bx+By. (4)

Thus, the new vy is obtained by the linear interpolation between the input
data of BZ - Y relations of both transverse directions, rolling and its
perpendicular taken in the plane of the lamination.

In this treatment, the flux density along the direction with the angle
0 with respect to the rolling direction at the field strength H can be re-

presented as

B = (By(H) cos?0 + B (H) sin®0) £(8, W) , (5)

where By (H) and BC(H) stand for the flux density along the rolling direction
and its transverse, respectively. An analytic function £(0, H) is determin-
ed to reproduce the experimental B-H relations$)

By using new ¥ walues in every iteration cycle, the whole process in
the iron region is repeated until the change in reluctivity per cycle become

below a specified value for all mesh rectangles.

2-2. Tensor form

If the tensor quantity of permeability is given by Zu, the flux density

is
-+ 2 =
B=“uH (6)
where 2 U1y Hyg
U“(u U ):
21 22
B He
B= () and  H=(, ) . (7
¥ i
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In order to satisfy the symmetry for the rotation of the coordinates, ten-
sor must be diagonal, that is,

H 0
R S ®)

when the direction of the easy magnetization coincides with the axis of the
coordinate. If }y refers to permeability in the direction of rolling, Hy
is taken to be its transverse. Tensor of reluctivity 2y is obtained from

the relation

2
bl o

Then 1
L -_— 0 0
2y = ( M i
)= ) . (10)
0 -_ 0 Yy
uY

Using these expressions, the Poisson equation in the iron region is

expressed as follows,

3 . O, , d A
=W et () 0. (11)
Txb 0 ) Txa 0
0 b 0 %a
A; Ao A

Y r——

Fig.2 Tensor reluctivity in each mesh rectangle to derive
the finite difference equation.
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In the mesh rectangles shown in Fig.2, the finite difference equation of
eq.(11) is given by

You FY Vot % Yoy X
ya vd xa xb vb ve
- Ay S Ay + Aq
h g
Y.+ Y Y. Y,
_xe  xd & S T ORED -
+ s by = kS A= 0, (12)
g h g

where Y _ and Yy in each mesh rectangle are expressed by adding suffixes

(a,b,c and d) as shown in Fig.2, and

3 =1

Yx = % ( Yxa ¥ Yxp k; Yxe *® Yxd )

Yo = F (Yo Yo + ¥, + Yo ) (13)
Yy T & Yya Yy T Yye de '

h and g are the horizontal and vertical mesh sizes, respectively. If per-
meability is isotropic, that is, vy = Yy (= ¥), eq.(12) becomes the dif-

ference equation of the ordinary isotropic problem,

Ya * Yd A Ya * Yb Yb e Yc
5 1+ R Tad 7 A3

h g h

T, Y =

+ 2 - G+ DAy =0 (14)
4 h 8

where
- 1
T W BT .

In order to solve eq.(12), the initial values of Y, and YY are assumed
to be 0.0002. After every iteration, angles given by eq.(3) are calculated
at all meshes and new reluctivities of both transverse directions are re-
calculated by the linear interpolation of Ei = Yy and Bf, Yy tables which
are obtained experimentally. The problem is likely to diverge unless the
iterative increments or decrements of reluctivities of both directions are

limited each other. Among several trials, limitations such as
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Blay, - Ay, |
<Ayx> = X b 3 AYx
byl + 1avgD
(16)
Blay, . &y
<byy> = X J

by
2
bryl + Iy h® 7

seems to be good. Ay, and ﬁYy are the changes of the transverse reluctivities
at some mesh rectangle after iteration and £ is the under-relaxation factor.
The problem converges very slow, so the iteration cycles are limitted to a
few hundreds.

After computation of the iron region, the vector potential is trans-
formed to the scalar potential to get the scalar boundary values on the air-
iron interface. Changes of the scalar potential along the horizontal and
vertical mesh lines are given by -Syy g% dx and fYy g% dy, respectively.

If the scalar potential is obtained according to these integrals, the bound-
ary conditions at the air-iron interface are satisfied in the following

iiterative relaxation in the air region.

§3. TField problems and their results

At the medium field level for which permeabilities of both transverse
directions are expected to be very high, the field distribution in the air
gap is mainly determined by the shape of the pole profile. So, the design
calculations on the quadrupole magnet for the lattice forcusing element to
be used in the main ring of KEK proton synchrotron were carried out regard-
less of the magnetic anisotropy. Fig.3 shows the pole profile and the cross-
sectional view of the quadrupole magnet. The rolling direction of the grain
oriented steel was selected to be perpendicular to the horizontal median
plane. The magnet of this type is referred as the vertically oriented one.
In the same meaning, the horizontally oriented one means that the rolling
direction is parallel to the horizontal median plane. The full scale models
of both types were made of the laminated steel with the magnetic anisotropy
shown in Fig.l. Thickness of the lamination is 1 mm.

Magnetic field was computed for the asymmetric configuration of Fig.3,
although the pole profile underwent the slight modification so as to correct
the field quality at the high field by using the experimental data on the
full scale models. The field quality deteriorates due to the saturation
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Fig.3 The pole profile and the cross-sectional
view of the quadrupole magnet.

around the minimum gap on the horizontal median plane where the flux density
in iron becomes high, say about 19 kG at the maximum excitation level.

While the field distribution on the vertical axis does not deteriorate,
because the flux density at the nose of the pole is not so high.

Fig.4 and 5 give the computational results for the vertically and hori-
zontally oriented magnet, respectively. Also, are shown the experimental
data®) whose accuracy is *0.1 # by the search coil method. The difference
between two approaches is evident for the horizontal distribution of the
vertically oriented case (Fig.4) and the tensor approach fits in the experi-
mental data well. For the horizontally oriented case (Fig.5), however, they
give the similar distributions of the field gradients and explain the experi-
mental data fairly well. As for the vertical distributions, the difference
between the computation and the magnetic field measurement is very small in
two cases.

To compare the grain oriented cases with the non-oriented case, the
quadrupole magnet with the same size was made of the low silicon steel and

its field was measured. Fig.6 contains the results of the experiment and
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Fig.4 Distributions of field gradients on the horizontal (upper)
and vertical (lower) median planes for the vertically ori-
ented quadrupole magnet. Solid circles are the experimental
data.

the computation. As the magnetic properties of the non-oriented magnet,
was assumed the compiled B2 - y table in the original program.
Generally, the magnetic flux lines are not parallel with the magnetiz-

ing force in the media with magnetic anisotropy. In computation, two curves

of 0 and 90 deg. in Fig.l were assumed for the transverse magnetic properties.

But it is difficult to derive another curves from these ones at the present
stage of the work even if the angular difference between B and H is taken
into account. It is rather interesting that the second approach gives the

good coincidence with the magnetic measurement.

Authors should like to express their thanks to Prof. T. Nishikawa for
his continuous interest and invaluable discussions. They also acknowledge
Messrs T. Igarashi and A. Araki for their efforts paid to the field measure-

ments.

Fig.5

Fig.6
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Same as in Fig.4 for the non-oriented quadrupole magnet.
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Fields Involved in Magnetic Recording on Moving Steel Strip

by E. M. Deeley and L. Hayali

Summary

A finite-difference method is deseribed for
solving field distributions relating to magnetic
recording on steel strip, in which hysteresis, eddy-
currents, and strip motion are taken into account.
The method is sufficiently general to allow other
nonlinear phenomena to be studied. A hysteresis
model based on the arctan function is used which
can be adjusted to approximate practical loops
sufficiently closely.

An implicit time-stepping method is used
together with nonlinear over-relaxation which
gives convergence rates comparable with those for
linear problems, even when the medium is heavily
saturated. The inherent stability of the implicit
method allows large time steps to be taken,
particularly during the initial transient pericd.

An alternative method using equivalent currents

to represent magnetization has also been used.

1. INTRODUCTION

The accurate measurement of the speed of moving steel strip
by pulse or sinuscidal magnetization methods has led to the need
for a better understanding of the recording process itself.
Various studies of recording on non-conducting media have been

sade 1,2,3

to have been studied in detail. The representation of hysteresis

but the process of recording onto steel does not appear

is a necessary feature of the computation, but as remmant
magnetization is fundamental to the process it is not possible to
employ complex permeability and a more physical model of hysteresis
must be used. In addition, eddy-currents and the motion of the

recording medium must be taken into account.

Magnetic Materials B4

- - . . - - - - - - - ¥ " - - .

Fig. 1. Recording Head and Strip (current coils shown hatched)

The arrangement of the ferrite recording head, exciting coils
and steel strip is illustrated in fig. 1. A square mesh is used
with a 3mm spacing, reducing to a rectangular mesh in the strip.

This reduction ratio, and the node spacing in general, can be

easily modified. In practice it is desired to study the effect of
the separation between recording head and strip over a frequency
range of approximately 4-250 Hz, and of strip speed.

The programme developed to simulate this process has also been

used to study other nonlinear phenomena.

2. THE COMPUTATIONAL METHOD

Various finite-difference methods have been used to solve non-
linear magnetic field problems, including alternating-direction and
extended Liebmann methods. In the present work the parabolic

diffusion equation
Uk = Kaly t Kouy L

is solved by an implicit time-stepping method. The simplest scheme
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is that described by O'Brien “, while greater accuracy is possible
with the Crank-Nicholson scheme 2 at the expense (for nonlinear
problems) of somewhat greater storage. These have the advantage
that the equations solved are essentially the elliptic equations

of the equivalent static problem, the additional terms due to time

variation behaving as source terms, so that the computation is stable

for any time step. Nonlinear relaxation as originated by Lieber-
stein = is used in conjunction with the Gauss-Seidel iterative

method. If the N equations are of the form :
gp(xl,xg, s xN) = 0 p 5 1.2 cvai'N (2)

then an overrelaxation factor w is used in the computation of the

next value of x_ such that :

dx
(XP)nﬂ § (xP)n & m(d_gi (gp)n (3)

where n refers to the nth

iteration. The derivative appearing in
this equation is calculated node by node, making use of the most
recently corrected results as in the linear SOR method. This
calculation is straightforward if analytic expressions are used for
the non-linearities present, and the rate of convergence is
comparable with that for linear problems.

Writing the non-linear relationship between B and H as :
B =y £(H) (4)

then for the conventional
five-point star in the

®-y plane as shown in fig. 2, Fig. 2
for which the node spacing, h, is the

same for each connection, the z-component of Curl H becomes :
I =1 =T 1 -1 =1
~u—h[f (Byy)-£ (am)] @[f (8,06 (8, |

A -A,
=1 o 1
£ ( B ) (5)

(Curl H)z

(=]
1y
l'ic:rh i=1l
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which can be equated to Jz in accordance with Maxwell's equation.

For moving media the vector current density is :

J=0o(E+VxE) (6)

where ¥ is the velocity vector. If the only component of v in the

two-dimensional case is Vs then (6) becomes :

= wD SA
& “iar = iR, a8 (7

Using a backwards difference expression for 6A/6t, and a central
difference expression for 8A/6x, averaged between the present and
previous time steps, equation (7) becomes :

Vx

o
- _9 o __ % _ _
9y = &t[{Ao)]ﬁl (Ao)k] &h [(Aa]kﬂ*(‘"‘a)k GO Eﬁl);l (8)
where k and k+l refer to successive time steps and At is the length
of the step. Combining this with equation (5) to form Curl H - J=0
gives
gp(Ao) =0 (9)

The values of (A}k in the conducting region, must therefore
be stored, and this formulation is then essentially that of O'Brien
et al. If values of Curl H at the kth
averaged with those calculated by equation (5), the Crank-Nicholson

step are also stored and

form is obtained. In this method independent values of H, and
hence of incremental permeability, are attributed to each connection
in the 5-point star.

Differentiating gp(Ao) with respect to Ay gives :

2
) 1o+ 1+ 1o+ 1+ T i)
s B M My Wy AL

where By eeee Wy are the slopes df/dH of the nonlinear B-H functions
at the four operating points, and is the factor required for the

nonlinear over-relaxation of equation (3).
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Modified forms of equations (5) can be found for nodes on the
boundary of the non-linear medium, or where a change of mesh size
takes place, or where both occur together. In computing vector
potential it is convenient to allow the numerical values to
represent A/h at each node, as this quotient appears in the non-
linear functions. This representation is therefore alsoc used in
the remainder of the field, the exciting current appearing in the
form I/h, where I is the actual current concentrated at a node.
An Equivalent Current Method

By using for Curl H the expression :
Curl H =% Curl B - Curl M
u
Q
and representing Curl M by an equivalent current, Je, there
results :
Curl B = u (J +4J.)

or in vector potential terms :

(=21

2 A SA ‘
A= - e bt
¥ M Tt MoV Fx T que (an

In this approach , which has been used in an integral method by
Robertson and Zaky 7, the nonlinear properties of the medium are
contained in Je' In the finite difference vepsion of this method
the equivalent currents are calculated after each complete sweep
of the field used to calculate the values of A, so that
acceleration of both A and Je can be used. If a node-by-node
computation of Je is used the method reduces to a Curl H formulation
similar to that already described.

The equivalent current method has proved successful for thin
structures of not more than two node spacings in depth, where with
appropriate choice of both acceleration factors it converges
rapidly. For thicker regions however, the method traps residuals
so that the convergence rate is slow.
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3. 'THE HYSTERESIS MODEL

Several hysteresis loop models of varying degrees of complexity
have been proposed to represent metallic and non-metallic magnetic
materials. These include piecewise-linear 2’8, simple algebraicand
trigonometrical functions used in conjunction with variable control

1,9,10’ and more complex models using two or more non-

parameters
linear functions ll. A necessary feature of any model is the ability
to represent minor loops, and in the simulation of a hysteresis

motor Jackson 8 has used a piecewise-linear model with five control
parameters which operates in any of nine different modes. Sawamura
and Iwasaki have also used such a model in studying tape recording
processes 2, Simple algebraic expressions may not fit practical
loops particularly closely but have the advantage of simplicity and
speed when the hysteresis routine is to be accessed many times.The
model described by Everatt based on the FrBhlich equation 9 is
probably the most suitable. Certain simple functions fit practical

1512 ot the expense of greater computing time,

loops more closely
particularly if the inverse of the function is required. This is
usually a problem if H is to be computed from B. Chua and Bass

L making use of several

have described a very comprehensive model -
functions which also represents dynamic effects, but would be
prohibitively time-consuming in an iterative process.

In the present work the arctan function is used, shifted in
position along the H-axis when the flux change is reversed in order
to follow the major and minor loops l. This is used to represent
magnetization, to which uOH is added to obtain flux density. The
model can be adjusted to provide a close fit to actual static
loops, such as those obtained for a steel sample by Zakrzewski and

Pietras 13.

4. TRANSPORT EFFECTS

The magnetization of the strip is transported at the strip
velocity and this effect must be represented at each time step.
This is particularly easily arranged when the velocity is one

node per time step, interpolation being necessary for other speeds.
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In the equivalent current method the Je values represent the
magnetization. Another transport effect is represented by the
terms containing o, and for an idealized situation when o becomes

infinite equation (9) reduces to :

A _y OA

3% - R 33 (11)

In these circumstances the vector potential pattern should be
transported in the x-direction with velocity Voo unchanged in form.
The accuracy with which this transport effect is simulated depends
on the truncation errors introduced by the finite-difference
approximation to equation (11) and has been studied using a one-
dimensional model. Figure 3 shows how the peak of a gaussian-
shaped potential distribution starting a node O is modified after
being transported over a distance 3h in 15 time steps. The solid
curve indicates the initial distribution with the actual values at
nodes indicated by circles, while the broken line shows the ideal
distribution 15 time steps later. The backward time difference
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and central space difference averaged between time steps used in
equation (8) leads to actual potential values illustrated by
circles in Figure 3. An attenuation of the distribution by about
3% at its peak is observed, while there is a lagging effect in
the velocity of the distribution of approximately 10% below the
expected velocity. When a higher order approximation to 3A/3x

is used however, so that the truncation error is reduced to O(ha},
the error in the velocity is reduced to less than 1%.

Experiments with higher order approximations to both derivatives
indicate that the amplitude error is reduced by reducing the
truncation error in 8A/3t, while the velocity error responds to
improved expressions for 3A/dx. Various methods have been devised
for reducing errors in the computation of equation (11), which
have been summarized by Ames':" and further reduction of the above
errors is possible, although not necessary in the present study where
the major transport effect is by remmant magnetization.

A further effect caused by the moving medium is the build-up of
spurious vector potential values at points of entry to, and exit
from, the computed field. This is particularly severe if a boundary
condition of A=0 is imposed, but can be reduced by employing a

derivative boundary condition.

The use of a hysteresis loop necessitates storing values of B
and H at each iteration in order to define the point reached on the
loop. These values must be moved with the strip at each time step,
but the presence of the 3A/38x term in equations (7) and (11) removes
the need to move values of A. If the values of A stored at the end
of a time step are also moved with the strip, however, the 3A/3x

term can be deleted.
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Fig. 4 - E/H Relation using 0'Brien method

-
-
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Fig. 5 - E/H Relation using Crank-Nicholson method

5. .RESULTS

For comparison purposes various studies have been carried out
using linear material for the strip, as well as non-linear material
without hysteresis. The equivalent current method has also been

used for moving material with hysteresis.

(a) Studies with Linear Material

Results for linear material were obtained using the model

Magnetic Materials B4

shown in figure 1, with the same mesh spacing throughout the region.
The frequency used was such that the strip thickness equalled twice
the penetration depth at a relative permeability of 1000, and 22
time steps per cycle were employed.

In order to study the behaviour of different computational
schemes, the relationship between tangential electric and magnetic
fields was observed at a distance h/2 above the top surface of the
strip, at a point between the poles (marked by P in figure 1).
Simple finite difference expressions using the nodes above and below
P, and those stored for the previous time step, were used. This
relation is illustrated in figure 4 using the method of 0'Brien et
al, from which it is seen that after an initial transient the
computation rapidly settles to its steady-state condition. The
apparent phase angle between E and H is more nearly equal to 90°
than u5°, this being due to the mesh representation of the region.
(A very much finer mesh in the strip region would improve this
situvation, which in network terms would cause the strip to appear
more as a transmission line than as a capacitance as seen from the
air region).

A similar result is illustrated in figure 5 for the Crank-
Nicholson method which, while employing more exact finite
difference expressions with smaller truncation errors, is seen to
follow a zig-zag oscillatory path before reaching its steady-state
response after about one cycle. This numerical oscillation is
considerably worse in parts of the field where only small
differences are taken to calculate E and H, and appears mainly in
the calculation of H. Inadequate convergence at each time step,
which is not easily detectable in the O'Brien method, very much
increases the amplitude of numerical oscillations in the Crank-
Nicholson method.

Consideration of the corresponding network model of the field
distribution indicates how a more accurate relation between
tangential E and H can be found by also making use of values of
vector potential at neighbouring nodes on the surface of the strip.
By this means a phase angle of 42° is measured on the surface below

point P, which is close to that expected. Where the component of
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Fig. 6 - A wave of flux change in nonlinear material

normal flux is large, such as below the poles, further errors are
introduced into the calculation of the tangential fields, the
measured phase angle at these particular points being 5?0.

(b) Non-linear material

For studies with non-linear material the B-H curve was
represented by the particular Frolich equation:
H

Bz—— 4 pH
300 + 1.25|0] '°

where B is Teslas and H in A/m. This gives an initial permeability
of about 1000 and a saturation magnetization of 0.8T. Using an
exciting current which would have produced a maximum flux density of
approximately 2.5T in linear material having the same initial
permeability the non-linear over-relaxation procedure worked well,
the rate of convergence being approximately 0.6 that for the linear
problem. The optimum acceleration factors were 1.88 (linear) and
1.85 (non-linear) respectively. Experiments with very deep

saturation using a current drive ten times greater still necessitated
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a reduction in acceleration factor to 1.65, the convergence rate
being approximately 0.3 times that for the linear problem.

For the lesser degree of saturation fig. 6 illustrates the flux
density at four levels in the strip for the first half cycle of
excitation using the 0'Brien method. These levels are those
directly beneath P (fig. 1) and illustrate the characteristic rapid
change in flux between the saturation levels at progressively later
times as the material is penetratedls.

Similar behaviour is observed under each pole, and greater

excitation produces faster switching and more rapid progress of the

wave, as expected.

Fig. 7 - E/H Relation on Non-linear Material Surface

The relaticn between tangential E and H on the surface below Point P
is illustrated in fig. 7, although no attempt has been made to
measure the phase angle between the fundamental components. This
might be expected to lie between 26.6° and 45°,

(c) Hysterectic Material

The arctan hysteresis loop model has so far been used only in

conjunction with the equivalent current method. Preliminary results
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Fig. 8 - Transient and Minor loop in stationary strip

for a simple model employing a single coil recording head and
strip of thickness equal to 2h have been obtained for various
frequencies, for both stationary and moving strip. TFor a
frequency at which the thickness is approximately one-half of the
penetration depth for the initial permeability used, figure 8
illustrates the form of the magnetization loop reached after an
initial transient, at a point on the surface of stationary
material in the viecinity of the exciting coil.. It has also been
found practicable to examine the variation of magnetization in
moving strip at a point remote from the execiting coil, which is
the essential requirement for studying magnetic recording
phenomena. No detailed studies of this have yet been made,

however.

LCONCLUSIONS
Implicit time-stepping methods have been used on linear,

non-linear, and hysteretic material with the object of studying
the magnetic recording produced on moving steel strip by a writing
head. An equivalent current representation of magnetization has
been used in conjunction with an arctan hysteresis model to obtain
preliminary results using both stationary and moving strip, but the
poor convergence rate of this method when the strip is greater than
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two nodes in thickness preclude its use for more detailed studies.
This disadvantage is found to be due to the trapping of residuals
within the magnetic material when the equivalent currents are
computed altermately with vector potential on a field-by-field basis.
The use of a formulation based on Curl H together with non-
linear over-relaxation is found to give excellent convergence using
either the O'Brien et al or Crank-Nicholson implicit schemes, although
the latter is found to go through a number of numerical oscillations
before reaching a steady state. There appears to be no difficulty in
principle in extending this approach to moving hysteretic material,

which represents the next stage of the present work.
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liscussions following paper:

(Reichert, Brown Boveri) Have you neglected Eddy Currents?

(Deeley, Kings College) No. 3A/3t term accounts for these.

(Polak, Philips Eindhoven) Which equations are used at the material

suterfaces to complete the problem definition.

(Deeley) The expression Curl H = J is sufficient to specify the
vector potential equation at an interface. If Hol is written in terms
of the vector potential at nodes O and 1 in the following manner (for
linear material):

1 1
+ — = —
Hn::l u Bol u

Ao - Al
h

and similar expressions written for the other connectionms to node O, then
substitution into Curl H=J yields the familiar expressions for vector

potential relations at interfaces and corners.
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MATHEMATICAL MODELLING OF MAGNETIC HYSTERESIS

by N. JANSSENS
Faculty of Applied Sciences
University of Louvain

Abstract

The aim of this study is to build, for polycristalline ferromagnetic
bodies, a general model of hysteresis to be used as a framework for com-
paring the various mathematical models which have been proposed.

One only relies upon the properties of the experimental magnetiza-
tion curves since the value of a given model is ultimately measured by
the accuracy with which experimental curves can be predicted.

This approach makes it possible to prove on purely phenomenologi-
cal grounds, without any recourse to microscopic physics, the validity of
a generalized Preisach model.

This leads to a model of hysteresis which is fully justified and re-
latively easy to handle. Furthermore, it shows which experimental charac-
teristics are the most relevant for the calculation of the "Preisach
density".

1. Magnetization curves

In order to build models of the magnetic hysteresis phenomenon, we
will begin with a detailed analysis of experimental magnetization curves

and point out their fundamental characteristic features.

1.1. A property of almost every magnetic material is symmetry with res-
pect to the origin (H=0, M=0) of the magnetization curves for evo-
lutions of opposite signs.

Athough this simplifies the models , the following developments do not
refer to this property so that we will, for instance, be able to represent
the asymmetric cycle of a permanent magnet cooled in a magnetic field.

The symmetry property will thus provide us with an additional rela-
tion within every model.

1.2. Another fundamental characteristic can be idealized by stating that :

Magnetic Materials B5

Secondary cycles are closed and, after being closed,
have no more influence on the subsequent evolution

{we will say they are forgotten].

Figure 1 shows how accurately this statement is verified for a given
material (ARMCO.D202). A model having such a property eliminates the acco-

modation phenomena (stabllization and drift of successive cycles).

200 Alm

6 . Fig. 1 Secondary cycles

Some hitherto proposed representations of magnetic hysteresis do not
comply with this requirement. For instance, the model proposed by Duhem h]
aims to describe the magnetic state of a material with the only two varia-
bles H and M by considering two curves passing through each point inside
the limit cycle, one to be used for increasing, the other for decreasing
field and magnetization. Other models [2, 3, 4] are similar to the prece-
ding one or particular cases of it. Their utility seems limited since, for
some kinds of evolutions, their predictions are far from approximating the
real behaviour of the material. This is shown on figure 2 by evolution

12345 which is based on a model of this type and deviates appreciably
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from any experimental curve.

—

Fig. 2 Duhem model

Such models may only be used when the monotonous parts of an evolution
are of great amplitude, compared with the width of the limit cycle. In
this case, indeed, the magnetization curves are so close to the limit
cycle that the closing and forgetting of the secondary cycles becomes of

little importance.

Let us notice that the model we will establish (par.2) makes it pos-
sible to give a very simple (although rather crude) description of hyste-
resis with H and M uniquely determining the magnetic state and where the
secondary cycles are closed and forgotten. This d4s shown on figure 3 :
the evolutions are reversible inside the limit cycle and irreversible on

this cycle.

1.3. A statement which is satisfied with the same accuracy as the closing

and forgetting of the secondary cycles is the following :

Inside a secondary cycle, the magnetization curves depend

only on their starting point.
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Fig. 3 Hysteresis model
ﬂ__ﬁﬂ,.——’ with two state
— variables

Figure 4, for instance, shows that the evolutions 12324 and 1737
practically coincide upon the path 32 . There is a certain analogy bet-
ween this property and the ideas which form the basis of Duhem's model.
In both cases, indeed, the curves depend only on the starting point in a
given direction. However, here, the utilization of the curves to be fol-
lowed is so restricted that the physionomy of the model is entirely dif-

ferent.

1.4. The preceding idealization requires the knowledge of a double infini-
ty of curves. It may be seen that an important simplification is in-
troduced at the expense of a small reduction in accuracy if one states

that :

The curves issued from points located on each of the
straight lines of fixed slope - 1/k are deduced from

gach other by translatiaon
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H

200 A/m

Fig. 4

Evolutions inside secondary cycles

If (HG,NB] is a point of the descending (ascending) limit cycle, the
equation of the ascending (descending) curve starting from KHi. Mi] loca-
ted on the straight line with slope -1/k passing through HB,MB has thus

the form :

M- Mi . ?[H-Hi, He+kNB] (1]

(The use of HE + kM, as a parameter instead of H, or Ns will prove to be

convenient at a later stage).

Figure 5 shows that the last statement is in good agreement with
experiment. The value of the parameter k is choosed from the magnetization
curves in such a manner that one gets the best possible verification.
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Fig. &

Curves deduced from each
other by translation :
a, a', a"s b, b'.

2. Proposed Model.

The above statements leads us to the following model.

We consider the family of experimental ascending and descending cur-
ves starting from each point [He' Me] of the left respectively right side

of the limit cycle. Their equations are given by (1) for [Hi' Hii=[He. NE]
and by introducing for every pair of (H,M) the new variable
H' = H + kM
they can be transformed into
M- Mg = g(H', HY) (2)
According to statement 1.4, the ascending evolution starting, after
reversal of the direction, from point {Hﬂ' NA]chatad on the straight
line with slope -1/k passing through [Ha' ME1, has to be given by
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M- M, = glH, HY)

or, since H, = H' ,
A e

M- NH = g(H", HA] (3)
The construction is shown on figure 6 as wel as the curve corresponding
to the following reversal at point B.

As indicated on the figure, the use of experimental curves does not in

general give exactly closed secondary cycles.

) H

yoo A/m

Fig. 6 "Construction” of the magnetization curves

In order to satisfy statement 1.2, the curves (3) must obey the relation
- - [ [ = - [ [
ME MH gEHB, HH} gEHA. HB]
To obtain this result we modify the experimental curves (2) and use for
the model the expression

[ ] i 1_ [] (] e ] 1
Mg =g (HUHD = o= [ g(HHL) - glH, H) ]

194

Magnetic Materials B5

This change affects the curves only slightly (in fact to the extent the

previous statements are not fully verified experimentally).

To complete the model, we only have to add that, after coming back
to point A, the subsequent evolution is the continuation of curve P A
followed before reaching A for the first time.

If applicable, the symmetry statement (1.1) takes the form

g(HL, HAJ == gl=-Hi, -H!]

=} A

In summary, the proposed model is formed by the family of almost
experimental curves issued from the limit cycle, the parameter k and a

simple rule for combining the curves.

3. Identification with the Preisach model

3.1. Dne knows that the Preisach model represents a polycristalline fer-
romagnetic material by an assembly of dipoles having rectangular

hysteresis loops displaced a distance h_, away from the origin and with

a coercive force h, (figure 7). The -Flu:tuation field h; takes into
account the interaction of the neighbouring dipoles [5,6] . The density
P (h,s he) of the dipoles characterized by h_ and h. can be represented
in a plane where a line formed by segments alternatively at 45° and - 45°

provides the state of the system (figure 8).

In order to get a good agreement with experiment, this model has to
be expanded in two ways. Firstly, we take the reversible permeability
into account [?.B] by adding on the axis hc=0 a line distribution of
dipoles ¢ (h.)8(h ). Secondly, as indicated in [10] and used in [8] ,
we replace the variable Hby H' = H + k'M. This introduces a mean inter-

action field proportionnal to M.

The differential expression of a magnetization curve has then the

form (figure 9 )
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PERMANENT MAGNET MODELLING FOR MACHINE APPLICATIONS

W. Lord

Hoover Electrical Machines Group
Department of Electrical and Electronic Engineering
University College, Cardiff

ABSTRACT

Permanent magnet materials are used widely in the construction
of all types of electrical machinery, from fractional horsepower stepping
motors for incremental motion control to dec machines of 100 horsepower
for rolling mill applications. With the increasing availability of
high energy ferrite, alnico and rare earth magnets, it is imperative
that design techniques for magnetic structures containing permanent
magnets be improved to yield optimum utilization of the permanent

magnet materials.

This paper reviews the application of permanent magnet
materials to electrical machinery, particularly with regard to the complex
recoil behaviour which exists in dc machines, alternators and stepper
motors under dynamic operating conditions. Suggestions are made for
adapting finite element algorithms to include the effects of complex
recoil phenomena’ caused by the heavy demagnetization forces experienced
in practice and other problem areas relevant to permanent magnet design

are identified for further consideration.

INTRODUCTION

Future advances in permanent magnet technology as applied to
electrical machine design will come, not only from the development of
new materials, but also from improved design techniques. With the
increasing availability of high energy ferrites, columnar crystal alnicos
and rare earth magnets, it is imperative that advantage be taken of
modern numerical analysis techniques in the design of permanent magnet
(p.m.) poles for electrical machines in order to minimize the volume of
magnet required, Current 'trial-and-error' approaches to p.m. design,
although contributing to the 'black-art' aura surrounding the subject, do

very little in terms of providing a sound basis on which to build the
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flexible, iterative design strategy needed for economical utilization

of modern p.m. materials.,

Considerable work still has to be done before the finite
element and difference techniques, which have been so successfully
applied to transformer and alternator design studies,lv? can be applied
with equal success to permanent magnet structures., This paper discusses
some of the factors affecting the use of numerical analysis techniques
for p.m. design, including demagnetization forces in electrical machines
and recoil loop modelling.  Suggestions are made for incorporating

these factors into finite element algorithms,

CURRENT DESIGN PRACTICE

Major aspects of permanent magnet design as applied to

electrical machinery are summarized in Figure 1, with a typical p.m.

motor construction shown in Figure 2.8 It is normally assumed that

FIGURE 1 Permanent magnet design factors

all poles are initially in an unmagnetised state characterized by
Point 0 at the origin of the B-H coordinates, Subsequent
magnetization is assumed to take all poles into saturation, with a
uniform flux density distribution resulting throughout the p.m.
material. After magnetization it is assumed that all points on the
surface of the pole work at point A, the intersection of the maximum

unit permeance line with the major loop in the second quadrant.
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FIGURE 2 Permanent magnet motor construction

The angle 6 can be used to define the maximum unit permeance line:

tan 8 = vy AngfAng (1)
Leakage and iron m.m.f. are often taken into account by using
appropriate constants in equation 1. Stabilization of the magnet poles
is then achieved by subjecting them to a demagnetization force greater
than any likely to be experienced during operation. Short circuit
and air stabilization lines are shown in Figure 1; demagnetization
forces after stabilization, such as armature reaction m.m.f's, cause
the magnets to work along lines BB' or CC'.9 Ideally, for minimum

magnet volume, the p.m, poles should be stabilized to operate close

to the (BH)max point,
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Pl 2
Minimum P.M. Volume Bg Lg&g!uo (BH)max. (2)

Assumptions and approximations in this treatment are related to:

a) flux density distribution in the p.m. poles after

magnetization

b) estimates of leakage factor and iron m.m.f.

¢) recoil loop representation by a line

d) recoil line slope

e) demagnetization effects in electrical machinery.

All of these factors require further study in order to optimize
the use of p.m. materials for machine excitation. Demagnetization
forces are discussed in the following section as an illustration of how
the physical phenomena associated with permanent magnet poles would

affect numerical analysis techniques.

DEMAGNETIZATION PHENOMENA

0 .. . . P
Zakharovl first reported the excessive demagnetization
effects in dc machines during reversal, and their effect on the flux
density distribution under p.m. poles. This work has been substantiated

11, 12

by the author and Figure 3 shows the effects of reversal on

the second quadrant operation of permanent magnet poles in a dc motor.

After short circuit stabilization all points on the surface
of the p.m., poles would recoil to B', the flux distribution in a
smooth rotor machine being similar to that shown in Figure 4.13
On reversal, currents approaching twice the short circuit value are
present in the armature giving a resultant flux distribution similar

to that shown in Figure 5; one pole tip becomes heavily magnetized

(point C in Figure 3) and the other heavily demagnetized (point D in
Figure 3). After several reversals a non uniform flux density
distribution exists over the magnet pole face, the centre of the pole
working along recoil line BB', the pole tips working along DE.
Attempts have been made to derive empirical relationships describing

14-16

these effects, but the results are not generally applicable to

p.m. design,
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7 Y

FIGURE 3 Demagnetization Phenomena in a Permanent Magnet DC Motor FIGURE 5 Flux distribution in a dc motor with heavy armature reaction

Similar effects are present during 'pull-in' and 'pull-out'
modes of operation of p.m. stepper motors and synchronous machines.
Figure 6 shows a simulated flux distribution in one quadrant of a four
| phase reluctance stepper motor,13 and it is clear that the recoil
| . behaviour of p.m. material on the rotor would be rather complex over

the surface of the poles.

It is quite possible that with each part of a p.m. pole
working along a separate recoil line, a 'minimum volume' design would

entail the positioning of a band of recoil lines around the (BH)max

point, as shown in Figure 3 for the dc motor case.

The problem of optimum design becomes even more complex

when rotor and/or stator slots are present and when it is realized
that recoil line slopes can change by as much as 257 depending upon
the point of origin on the major loop.l?

FIGURE 4 Flux distribution in an unloaded dc motor
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FIGURE 6 Flux distribution in one quadrant of a fourphase stepper motor

FACTORS AFFECTING NUMERICAL ANALYSIS OF P.M. STRUCTURES

Analysis of magnetic circuits in electrical machinery is

based upon finding solutions of the nonlinear, poissonian-type equation

3 UdA 3 UdA _

R 508 -~ -
where A is the magnetic vector potential, v is the reluctivity found
from the nonlinear H/B characteristic in the case of the magnetic
portions of the region being analysed, and J is the current density

associated with the conducting portions of the circuit.

In finite difference methodsl’3 of analysis the partial
derivatives of equation 3 are modelled over a rectangular mesh to yield

a set of nonlinear algebraic equations of the form:

[s¢] [u] = [F] ®

where [SXJ is a square matrix containing nonlinear reluctivity terms,
[U] is a column matrix of nodal vector potentials and Dﬂ is a column

matrix of current density terms.

Magnetic Materials B6

A similar equation results from a finite element

approach,2’4’5’6’? where equation 3 is satisfied when an energy
functional is minimized over a triangular mesh covering the region of

interest (see Figures 7 and 8).

Figure 9 shows the elements of a computer algorithm used
to obtain the flux plots of Figures 4, 5 and 6 based on the mesh
configurations of Figures 7 and 8. 1In the iteration procedure used
to solve equation 4 the H/B characteristic of the iron parts can be

modelled in a number of different ways.18_23

FIGURE 7 Mesh configuration for dc motor flux plot

Application of such an algorithm as a design aid in the
construction of electrical machines with p.m. excitation would require
modifications to be made depending upon the designers requirements.

For example, the prediction of leakage factors might be made by
assuming all parts of the magnet to be working at point A in Figure 1.
In this case equation 3 is simply modified to include an additional
current density term Jm representing the effect of the p.m. material.
Prediction of leakage factors after several cycles of operation however,

would require accurate knowledge of the demagnetization effects so
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FIGURE 8 Mesh configuration for stepper motor flux plot

that each mesh element within the p.m. material could be characterized
correctly. Estimation of leakage reactances in p.m. alternators
and stepper motors would also require the development of individual recoil
loop models for each element, Some work has already been done on
modelling p.m. recoil behaviour by linear approximations and

Frihlich-type equations,25_27 and perhaps recent work on exponential
¥ . 2 5l
series representatlons28 and phenomenological modelling 2 could be

adapted for p.m. machine design.

CONCLUSIONS

The author's purpose in presenting this paper is to indicate
some of the areas of p.m, machine design which need additional attention
before numerical analysis techniques can be successfully applied.
Knowledge of both demagnetization phenomena in electrical machinery and
magnetization effects in permanent magnets, coupled with accurate recoil
loop modelling techniques will represent a further step towards on-line,

interactive design of p.m. structures.
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FIGURE 9 Flow chart for finite element program
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