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COMPUTATION OF MAGNETOSTATIC FIELDS

P. Silvester

1. Mathematical Formulation of the Physical Problem.

Nearly all magnetostatic and quasi-static analyses pre-

sented to date have been based on scalar or vector potential

formulations. These often appear in the forms
div u grad ¢ = 0 (1)
curl v curl 4 = J (2)

Generally, these representations involving second order dif-
ferential operators lead to simple discrete forms and
favourable matrix properties (e.g. symmetry). In this
form, the magnetic properties are easiest to represent as
permeabilities or reluctivities. In contrast, the poten-
tials may also be formulated in terms of integral equations;
in that case, the magnetic properties are often easier to

represent in terms of a magnetisation vector M, e.g.,

T2 X’ 1aq (3)
r r

Ho [ [ Jd _4m M X »r
Such formulations frequently lead to iterative methods of
solution, since M is implicitly related to 4. 1In conse-
gquence, wide use has been made of the integral forms in two
sets of circumstances;the nonmagnetic case, in which ¥ van-
ishes, and the nonlinear case, in which iterative methods
must be employed in any event. The vector potential formu-
lation is clearly less economic computationally, since three
components must be considered. On the other hand, it is
very difficult to treat distributed currents by the scalar
potential technique, so that it is most useful where magne-
tic fields exterior to relatively thin conductors are to be
calculated.

The differential eguation formulations (1) and (2) re-
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quire solving a three-dimensional operator equation of the

form

DV = G (4)
where D is a differential operator and its associated boun-
dary conditions, V is the variable sought, and ¢ represents

the given sources and boundary condition inhomogeneitiés.
It is widely recognised that if ¢ and D depend (in some co-
ordinate system) only on two coordinate quantities, V does
likewise, and the problem may be reduced to one in two di-
mensions. It is less well understood that an equivalent
treatment is possible if ¢ is guite general, but D depends
on only two coordinate quantities. In such cases, V and

¢ may be expanded in terms of suitable orthogonal functions,
leading to replacement of the three-dimensional problem by
a set of two-dimensional problems, which may be solved se-
parately.

25 Discretisation of the Continuum Equations.

Two major discretisation methods have been widely em-
ployed: finite differences and finite elements. In the

former, the scolution is approximated at certain selected
points in the region of interest, while in the latter, an
approximation uniquely defined everywhere in the region is
sought.

Finite difference methods tend to result in very large
and very sparse systems of equations, for whose solution it-
erative methods have traditionally been employed. However,
there exists good evidence that direct solution methods
which take account of matrix sparsity are at least competi-
tive with iteration techniques. Iteration methods suffer
from two grave shortcomings in magnetostatics: their conver-
gence is very slow, and there is no valid nonlinear theory

to serve as a guide in choosing acceleration and stabilisa-
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tion factors. The slowness of convergence is inherent in the
interface conditions (large permeability ratios typically en-
countered, thus it is a result of the physical problem rather
than of its mathematical treatment.

Finite element methods lend themselves well to the con-
struction of Newton minimisation schemes, which do not suffer
from the convergence troubles encountered by finite differ-
ences. They are geometrically flexible, allowing curved
shapes to be modelled as well as rectilinear ones. The
systems of algebraic equations to be solved are usually
smaller and denser than with finite differences; thus sparsi-
ty-exploiting direct solvers are attractive, though some it-
erative techniques have been used as well (e.g., conjugate
gradients) . For integral equations, element functions need
only possess CO continuity, and are thus relatively easy to
construct (even though the resulting integrals are not al-.
ways easy to evaluate) by Galerkin projections. For dif-
ferential equation problems, Cl continuity is required;
suitable functions are easy to construct for the scalar case,
but not for the vector case if restrictions are to be placed

on the divergence of 4.

3. Computational Considerations.

The mathematics of finite elements have now reached a
level of development exceeding that of finite differences.
Concurrently, practical algorithm development has been car-
ried far by engineering analysts. Unfortunately, much less
attention -- one might almost say none -- has been paid to
establishing principles and standards of generally useful
software. There are as many conventions and standards as
programming groups, so that virtually every mathematical
step has to be re-created by every programming group.

At present there exists no generally agreed language or
terminology, oriented toward finite mathematics and computa-
tional solutions, for the description of magnetic field pro-
blems. This lack not only renders communication between
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programs incredibly difficult, it also leads to much fruit-
less discussion between analysts. Much wvaluable manpower
and ingenuity is at present being wasted in the creation of
input languages and data structures suitable only for speci-
fic, strongly restricted, analysis programs. In the future,
effort needs to be directed to producing well-documentéd,
generally useful software modules, and on which specific ap-
plications programs can be based. The ability to create
these, however, presupposes agreement on the form of data
structure for representing problems to be analysed.

Only rarely is the field solution itself of use to the
analyst. Much more often, he seeks functionals of the
field -- inductance values, generated voltages, lifting
forces, power losses. The calculation of such quantities
again requires the problem description, as well as the com-
puted solution for the field, to be embedded in a data
structure of standard form.

4. Conclusions.

Many good static field analysis programs now exist,
particularly for two dimensional problems. Further work
on nonlinear problems, especially in three dimensions and
using integral equation formulations, may be anticipated.
However, the greatest need at present is for standardisa-
tion of data bases so as to permit analysts to link toge-
ther already existing program segments.
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Discussion following paper:

(Fox, Oxford) (1) I would comment that the strongly implicit methods
of Stone and corresponding factorization méthods of people like Golub and
Concus should be included in your list of methods. They seem to me to
form a very satisfactory balance between iterative methods and direct
methods, with more connection with the latter. I agree that direct

methods have many attractions.

(2) It surely isn't true that Newton's method always converges from an
arbitrary start? The method might be slow if you have to compute the
Jacobian matrix all that often and although Newton has guadratic converg-

ence, ie e = kev2 (where e, is the error), this doesn't say that

v+l
the number of significant figures is doubled at each stage. It is true

for sufficiently small v if k is not too big.

(Silvester, McGill) (1) I agree that semi-iterative (or semi-direct?)
methods have many attractions, even though they are not widely used at

present.

(2) For magnetostatics problems, where reluctivity and its first deriv-
ative are monotonic, the usual finite-element functionals are convex.

Thus Newton's method converges. Unless really extreme saturation levels
are encountered, starting Newton from a null solution (ie assuming the
magnetic material to be linear) often yields potentials accurate to within
a factor of two. In other words, one correct binary digit is usually
achieved on the first or second Newton step. This starting point appears
to be sufficiently near the solution to produce nearly quadratic con-
vergence subsequently. Typically, 16 correct bits are obtained in the
fifth or sixth iteration, if the maximum flux density in the problem is

around 2.0 - 2.5 tesla.
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(Jacobs, CERL) I am interested in the second method you described for
treating problems in infinite regions which utilizes a linear operator
for the imposed boundary condition at the artificially included finite
boundary. Yet another method utilizes the inversion in a circle for two
dimensions (on a sphere for three dimensions) of the outer part of the
problem which extends to infinity. Thus one cbtains two finite problems
forming a discus or hyperdiscus matched on the common boundary. The
resulting movement of rectangular coordinate nodal points (if used) to
model such a curved boundary concords with your comments on the longer
time spent on deriving the algebraic equations. With finite element
methods one can also develop specific "infinite" elements which extend to
infinity.

(Silvester) I guite agree. Inversion mappings have been used for
various problems with good success; their main disadvantage I believe is
a fussy and uneconomic program structure. Infinite finite elements
(defined on an unbounded geometric region but bounded in energy) have been
successfully used for various two-dimensiocnal problems; they produce the

desired boundary operator directly.
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MAGNETOSTATIC FIELDS COMPUTED USING AN INTEGRAL EQUATION DERIVED FROM
GREEN'S THEOREMS.

J Simkin and C W Trowbridge
Rutherford Laboratory, Chilton, Didcot, Oxon, OX11 0QX

ABSTRACT

A method of computing magnetostatic fields is described that is based on a
numerical solution of the integral equation obtained from Green's Theorems.
The magnetic scalar potential and its normal derivative on the surfaces of
volumes are found by solving a set of linear equations. These are obtained
from Green's Second Theorem and the continuity conditions at interfaces
between volumes. Results from a two-dimensional computer program are

presented and these show the method to be accurate and efficient.

1. INTRODUCTION

The present generation of computer programs for calculating magnetostatic
fields in three dimensions are expensive to use and they will continue to
be until new algorithms are developed. Changes in computer hardware, eg.
parallel processors, may make it possible to obtain solutions more quickly,
but, it is doubtful whether the amount of storage available will change

significantly. In this paper the numerical solution of an integral equation -

derived from Green's Theorems is shown to have many advantages over existing

integral equation methods.

Integral equation methods are now widely accepted and the Rutherford
Laboratory program GFUNSD(]},which solves the integral equation for the
volume distribution of induced magnetisation, has been successfully used
for the design of many magnets. As an example of the accuracy of this
program the measured and computed results for the homogeneity of an
essentially two-dimensional C shaped dipole magnet are shown in Figure 1.
This accuracy (better than 1 part in 10%) was obtained by using 10 minutes
of CPU time on an IBM 360/195, a cruder model capable of 1% accuracy would
typically require 10 seconds CPU time. In the case of strongly three-
dimensional magnets however, 60 minutes of CPU time are probably required
for an accuracy better than 1%. Furthermore, for complex problems even

when the magnetisation distribution has been computed, the time taken to
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compute fields at particular points is not trivial.
HOMOGENEITY, IN

J PARTS M 10
X (cw)

SOLID LINE _  GFUN COMPUTED
-6 = POINT VALUES MEASURED RESULTS

-8

FIGURE 1 - MEASURED AND COMPUTED HOMOGENEITY OF THE FIELD PRODUCED BY
A C-SHAPED MAGNET WITH SMALL POLE TIP SHIMS

Iselintz) has proposed a scalar potential method that may prove to be more
efficient than GFUN3D which uses the three component magnetisation. An
alternative approach is the Boundary Integral Method, this method is based
on the numerical solution of an integral equation for the magnetic scalar
potential, derived from Green's Theorems. This approach has already been

used for the solution of linear flow and elasticity proh]ems.(s’h’S)

For linear problems, ie. constant permeability, it is only necessary to
define the boundaries of regions with different permeability, together with
a far field boundary condition - however the far field boundary can be
expanded to infinity. A region may consist of several surfaces that do not
touch or intersect and this fact together with the use of symmetry allows
the calculation of fields with minimal effort. In an appendix an extension

is discussed that will make it possible to include non-linear permeabilities.
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To determine the magnetic field distribution in a region the magnetic scalar
potential and its normal derivative to the boundary must be computed over
the surface of the region. This is done numerically by sub-dividing the
surface into small areas over which the potential and normal derivatives are
assumed constant. The distribution is then found by solving a set of linear

equations for the potential and its derivative.

A two-dimensional computer program was written to test the method and
compare the accuracy with existing programs. Results from several tests
are given. It is expected that this method will be even more attractive

for three-dimensional calculations.

2. THEORY
Green's second theorem can be used to relate the magnetic scalar potential
V(p) at a point p inside a volume to the magnetic scalar potential and its
outward normal derivative on the surface of the volume. The equation
connecting them is:

Vip) == [ Lozvav oo ! 12 4s - o { VE D ds ()

vo | ume

where r is the distance between the point p and an element of the volume
or surface of the region. |If the permeability of a region is constant

then:
V2V = 0

and therefore the first integral in equation (1) is zero. In Appendix 1
the use of a perturbation term based on the volume integral is shown as

a possible means of extending the method to non-linear permeabilities.

If a surface is defined just inside the boundary of a volume and this
surface is subdivided into small areas over which V and %% are constant

then equation (1) becomes:

dv,
] j 1 3 ]
Vip) = 3 [.E 5. 4 ds;. = ¥ ] & dsj] (2)
j=t,m ] 55 s;
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where the surface is subdivided into m area elements. Equation (2) can
also be used to express the potential of a point on this surface as a
function of the potential and its outward normal derivative on each

surface area element.

If the geometric factors relating to the potential and its derivative on
every element of the surface are calculated for points at the centroid
of every area element, then providing V or %% is known on every area
element, the unknown values can be found by solving a set of exactly

determined linear equations.

0f more interest is a problem consisting of regions with different
permeability where there are interfaces between the regions. For
example, consider a two-region problem, where region 1 has permeability
¥y and region 2 has permeability py. (This could correspond to region 1
being iron and region 2 air.) There must be some driving field, however
this is at present of no account expect that a distribution of field Hv
is assumed to be produced by a set of current carrying conductors. A
surface is defined just inside each region and this surface is sub-

divided into small elements with an exact correspondence between the

elements across the interface between the regions.

Equation (2) then gives for each surface element:

V.(R1) - 1= (I ) Lgs, = viR1) [ @

jR) - (T s Ty (P dsp)=0 (3)
;=I,nl i s, s;

v, (R2) - (: i R N | ds, = V. (R2) [ 2 (1) ds.)=0 (4)

k Ty i=1,n2 an s r i i siani P

where VJ{RI) are the potentials in region 1 and Vk(RZ) are potentials in
region 2. On the interface between the two regions V and %% on the surface
elements are unknown in both regions. If V or %% is known on the surface
elements that are not on the interface then the set of linear equations
formed from (3) and (4) will still be under-determined. Two extra
equations must be introduced for each interface element and these can be

obtained from the interface continuity conditions. The equations are:
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\!J.(Rl) = Vk(RZ} (5)
av, (R1) avk(Rz)
M- gl #HO(RD ) =up( 5= +H (RD)) (6)
J J k J

where H, (R1) is the outward normal component of the driving field on element

J
j of region 1. The same ideas can be applied to problems consisting of any

number of regions.

It is interesting at this stage to examine the set of equations generated
to determine V and %% in a two region problem, where there is an interface
between the regions. A pictorial representation of the equations is shown
in Figure 2. There are nl and n2 sides and ml and m2 unknowns in region I
and 2 respectively. The submatrix (1) is dense and is formed from the
coefficients from equation (3) applied to the element of region 1.
Similarly submatrix (4) comes from region 2. The submatrices (2) and (3)

are sparse (two unknowns per row) and are generated from the interface

conditions. The other areas contain zeros. |f on the boundary surfaces
where the potential or its derivative is known the value is zero then all
the right-hand sides are zero except those corresponding to the normal B

continuous boundary conditions.
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FIGURE 2 - A REPRESENTATION OF THE SET OF LINEAR EQUATIONS REQUIRED TO SOLVE
FOR THE POTENTIAL AND ITS NORMAL DERIVATIVE IN A 2 REGION PROBLEM
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FIGURE 3 - SUBMATRICES (1) and (2) ARE DENSE, (3) IS SPARSE

In order to make the most efficient use of existing computer programs

for solving linear equations the interface conditions can be used to
replace unknowns on the interface in region 2 by the values in the
equivalent elements in region 1. The order of the matrix can be reduced
using this technique but at the expense of the loss of the blocking that
previously existed. From a long term point of view it would be more
efficient to use the blocked matrix and special factorising methods.
Figure 3 shows the structure of the set of equations after order reduction
has taken place. In the case of a problem only consisting of interfaces

the order is reduced to half its previous size.

3. SYMMETRY

The number of unknowns in a problem can be reduced significantly when the
geometry and its associated potential distribution possesses a known
rotational or reflective symmetry. The two methods that can be employed
to make use of this symmetry are shown pictorially in Figures 4 and 5.

In Figure 4 a model of a dipole magnet is shown where the Dirichlet and
Neumann boundary values have been used to imply the rest of the model.

In Figure 5 the whole model is shown but, because the potentials in the
2nd, 3rd and 4th quadrants have an exact equivalence to those in the first
quadrant, the potentials in the first quadrant are the only ones which

must be computed explicitly.
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The far field boundary shown in Figure 5 can be expanded to infinity because
there are no boundary connections between it and the magnet; the far field
boundary then has no effect on the problem whatsoever. This:is obvious for
real problems where the potential and its normal derivative to the far
boundary can be defined as zero. It is not immediately clear in the two-
dimensional infinite 1imit because the potential from a boundary side
becomes infinite at large distances. However the divergence of the
potential from a complete surface must be zero and therefore the contri-
butions from all elements of a surface will cancel to produce zero

potential at infinity.
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FIGURE 4 - BOUNDARY INTEGRAL METHOD MODEL USING NEUMANN AND DIRICHLET
BOUNDARY VALUES
4. APPLICATIONS OF THE METHOD

A two-dimensional magnetostatic computer program was written to test the
accuracy and efficiency of the method. The results for the program were
very encouraging. In the program the fields from infinitely long conductors
with polygonal cross section and curvilinear faces were computed using
existing analytic expreSSIons.(?) The boundaries between regions of
different permeabilities were subdivided into plane faces over which the
potential and its normal derivative were assumed to be constant. The
expression for the potential and field from such faces are given in

Appendix 2. The integrals can be evaluated for higher order basis
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FAR FIELD BOUNDARY

FIGURE 5 - BOUNDARY INTEGRAL METHOD MODEL USING EQUIVALENT ELEMENTS AND

SYMMETRY - THE FAR FIELD BOUNDARY 15 SHOWN BUT IT CAN BE AT
INFINITY

functions but this leads to problems at external corners because the

integrals have singular kernels. This problem can be solved but it was

simply avoided in the present program by computing the potentials at the

centroid of each element where the integral is well behaved. The program

can be run interactively on- the Rutherford Laboratory IBM 360/195 and in

this version an elegant data input package was used for specifying the

boundary data of polyhedra.

5. RESULTS

The results from two test cases are included in this section; a comparison
of analytic and computed results for the field in a hollow, infinitely
long, constant permeability cylinder in a uniform external field; and a
comparison of the GFUN and Boundary Integral Method computed fields for a

two-dimensional C magnet.

(a) Hollow Cylinder. The fields in a hollow infinitely long constant
permeability cylinder in a uniform field perpendicular to the axis of the
cylinder were computed using the Boundary Integral Method. The inside

radius of the cylinder was 5 cms and the outside radius 10 cms. The
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FIGURE 6 - SHIELDING FACTOR OF HOLLOW FERROMAGNETIC CYLINDER - INSIDE
RADIUS 5 CMS, OUTSIDE RADIUS 10 CMS, PERMEABILITY 100 - AS A

FUNCTION OF THE NUMBER OF INDEPENDENT BOUNDARY FACES IN THE MODEL.
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FIGURE 7 - SHIELDING FACTOR OF A HOLLOW FERROMAGNETIC CYLINDER - DIMENSIONS
AS FIGURE 5, PERMEABILITY 1000 - AS A FUNCTION OF THE NUMBER OF
INDEPENDENT BOUNDARY FACES.
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cylinder was approximated by many-sided polyhedra and symmetry was used

so that only potentials and derivatives in the first quadrant were
computed explicitly. In Figures 6 and 7 the computed shielding factor

of the cylinder is plotted as a function of the number of boundary faces
for cylinders with relative permeabilities of 100 and 1000. The accuracy
is very good, and most of the error is due to the polygonal approximation.
The field in the hollow centre should be uniform and in the computed cases
the homogeneity was always better than 2 in 10%. An interesting point to
note about the results is that the fields at points inside the cylinder
were obtained as accurately as the shielding factor, this is not true in

the GFUN program where eigenvalue solutions can be obtained.

(b) C-Shaped Dipole Magnet. The geometry of this magnet is shown in

Figures 8 and 9, Figure 8 shows the GFUN model and Figure 9 the Boundary
Integral Method model. The results in Figure 1 have shown that GFUN
gives accuracies of the order of 0.01% for the homogeneity of this type
of C magnet. GFUN was therefore used to compute the field homogeneity
of the magnet shown in Figure 8 for steel with a relative permeability of
1000.0. In Figure 10 the GFUN results are compared to those obtained using
the Boundary Integral Method (BIM) for several different models. Symmetry
was used and therefore only the upper Y plane was computed explicitly.

(In both these cases the far field boundary was at infinity.) The results
for this case are again good. Figure 11 shows a computed map of lines of
constant scalar potential for the 140 element BIM model.
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FIGURE 8 - GFUN MODEL OF A TWO-DIMENSIONAL C-MAGNET
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FIGURE 9 - BIM MODEL OF A TWO-DIMENSIONAL C-MAGNET
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ok FIGURE 11 - A MAP OF THE COMPUTED MAGNETIC SCALAR POTENTIAL FOR A
C~MAGNET
oo 6. CONCLUSIONS
The results achieved for two-dimensional magnet problems are encouraging
and appear to be competitive with other methods. The extension of the
R Boundary Integral Formulation to three dimensions is relatively straight-
forward and should in principle lead to a more efficienct algorithm than
-2.0 3 the one currently in use in GFUN. For example, the following table compares
200 SLERENV GRAGD; = SDLEBLINE: Bais JBIT (15K SKR) @ predicted computing time (seconds) for a range of problems, ie. for existing
180 ELEMENT |BM -+ By = 30357 ( 35 SEC) 2
-3.0 140 ELEMENT 1BM - g 8y = .3027T ( 15 SEC) @ GFUN, BIM and the Scalar Potential Integral Equation formulation. The
10 EEErENT 1A . By =3 & 50) table also gives times for computing a single field point.
4.0 =
Surface GFUN Scalar
- Vi iiie Magnetisation BIM Int.Eq.
5.0 4 " Method Me thod
© Elements = - -
Single Single Single
Elements Int. Field Int. Field Int. )
& in BIM Eq. i Eq. 53 Eq. Fleld
Point Point Point
T T ¥ L} T L T T T B
-5.0  -k.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 W0 5.0 216 216 114 2.16 12 0.36 k.2 | 2.16
X COORDINATE (CM) 343 294 450 3.43 30 0.49 18.0 3.43
FIGURE 10~ COMPUTED HOMOGENEITY OF THE FIELD UNDER THE POLE TIP 12 384 1488 2:12 n 0.64 35.0 5.12
OF THE C MAGNET SHOWN IN FIGURE 8. 730 L86 4320 7.30 133 0.80 162.0 7.30

10
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It can be seen that, as the number of elements increases, BIM compares
very favourably with the Scalar Integral Equation method both for the

main solution and for fields at single points.

Since the existing program is restricted to constant permeability problems
the best method for solving the non-linear problems must be established
- the multi-region option outlined in Appendix 1 Section 2 will be tried

first by modifying the existing two-dimensional program.

Finally, it should be emphasised that this method has a far wider range
of applicability than magnetostatics; for example, solution of current
flow potentials in association with eddy currents(s); also it may be
used to advantage in improving the efficiencies of programs already

developed such as GFUN for computing the fields at single points.
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APPENDIX 1

EXTENSION OF THE GREEN'S THEOREM APPROACH TO NON-LINEAR MAGNETOSTATIC
PROBLEMS.

There are two possible methods of extending the method to cover non-

linear problems; the first involves using a perturbation term based on
the volume integral in equation (1); the second would require the whole
of an iron volume to be subdivided into separate volume elements on the

surfaces of which the potential and its normal derivative are computed.

(1) Perturbation term method. The magnetic field H; at a point can be

divided into two parts - ﬁc due to currents and ﬁH due to the iron.

HT=HC+HM (7)
Since:

DivB=0
Then:

Div(uﬁc + uﬁﬁ} =0 (8)

(only isotropic materials are considered here)

iy
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From equation (8)

n

Div(uﬁM) (Vy) . QM + u(v.ﬁh)

1]

S 2u - - nioqE
(vu). HH uvev Dlv(uHc)

Since:
Div(uHc)= 0 then:

1 -
V2V = —Vu. H
v T (9)

Combining equations (2) and (9):

bvp) = [ L ow ) Ea 10 pyL ) g (10)
v L S

This equation could be solved numerically by calculating the contributions
of the volume integral when the solution for V and 2 is known., Using a

an

simple iterative scheme the values of V and %% could then be updated by
resolving equations (3) and (4) with the volume integral contribution

added to the right-hand sides and the continuity conditions modified.

(2) Volume subdividion method. The existing two-dimensional program can

be used to evaluate this method. The ferromagnetic regions of a problem
must be divided into small elements over which the change in permeability
is small. The equations to be solved are unchanged but an iterative method
must be used to converge the solutions for the permeabilities. This method
has several advantages; the matrix to be solved is banded and sparse and
has a similar structure to those obtained in finite element methods; a
numerical calculation of the gradient of u is not needed. It is hoped to
try this second method if present improvements to integral equation methods

do not fulfill their promise.

12
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APPENDIX 2

EXPRESSIONS FOR THE FIELD AND POTENTIAL FROM SINGLE AND DOUBLE LAYER
SURFACE CHARGES ON INFINITELY LONG PLANE FACES OF FINITE WIDTH

A typical region consisting of many boundary faces is shown in Figure 12.
All the expressions given below are for points in the local coordinate
system of a boundary face - Figure 13. The faces are infinitely long

and of the plane of the paper - in the Z direction:

(1) Potentials. The integrals to be evaluated are shown in equation (2).

The potential at a point p(x,y) is:

v,

v(p) = %; Dﬁ{za) + 2 531 (xtn (ry/ra) + b2n(rirg) - 2b + y8)]

where 2b is the width of the face.

(2) Fields. The field at point p(x,y) is:
H=- grad V(p)

Therefore:

s | il o d
H [\.fJ Y( —)

X 2w T12 T‘z"’
ﬂi {x (ﬂ - ﬂ) + E-ﬂ(!' /r J + b((x+b} _ (X‘b))
" l']z rs "12 F22
+ (.‘ZL = _Lz) ].‘J
r12 I‘22
1 -b) _ (x-b
Hy =7n [VJ' {‘(—_“x L . Jeh) 2)}

ro? r

v,
N NS B SRS A wyldah) | Gably o op
i rlz r‘gz r12 I’22 r7_2 rl""
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FIGURE 12 - GLOBAL COORDINATE SYSTEM,
A BOUNDARY SURFACE SUBDIVIDED INTO ELEMENTS

8

p(x,y)

FIGURE 13 - LOCAL COORDINATE SYSTEM OF AN ELEMENT
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Discussicn following paper:

(Yeh, Oak Ridge) Please elaborate on the matching of the number of

variables with the number of equations in your method.

(Simkin, Rutherford) If Neumann or Dirichlet boundary wvalues are
defined on every surface element the set of linear equations for the
unknowns is exactly determined by the Green's theorem equations for every
surface element. Where the potential and derivative are unknown on inter-
faces tlere must be an exact equivalence between elements forming surfaces
on either side of the boundary. For each pair of equivalent elements two
extra equations are cbtained from continuity of V and B across the
boundary. Thus for the pair of equivalent elements we have four unknowns
and four equations - see the section of the paper on eguation reduction.
(Rosten, CHAM Ltd) You mentioned the application of the IEM for comput-
ing the distribution of current within conductors. Would you elaborate

this point.

(Simkin)

in the volume of a general 3-D variable cross section conductor.

The IEM can be used to compute the current flow at any position
Having
computed J, the conductor fields still need to be calculated using volume
integration methods - see the paper by C J Collie on fields and potentials
from hexahedra in the Proceedings.

(Rogers, Southampton) We have used an integral equation method based on
Green's functions for each sub-region of the field. It has been success-
fully applied to the computation of functionals of the field (such as
inductance) but we have found considerable errors in the local field at
singular points. Do you have to take any special precautions to avoid

this problem?

(Simkin)

close to areas of the surface where the potential or surface tangent

The fields and potentials are well behaved except at points
changes discontinuously. At the moment the problem is avoided by displac-
ing such points a very small distance. In future higher order basis

functions will be used on our surface elements and it will be necessary

to investigate methods of overcoming these weak singularities.

Magnetostatics A2

({Ohiwa, Cambridge) Could you give me some idea of the accuracy of the

calculated field in terms of the number of mesh points, required storage

and computer time.

(Simkin) The results included in the paper give some of the figures.
Typically, for linear problems accuracies of the order of 1% can be
obtained using 200K of storage and 6 seconds CPU time on an IBM 360/195.
In solving the linear equations we have only used simple gaussian elimin-
ation and not made any use of the blocked and non-dense nature of the

coefficient matrix. The method could be made more efficient-
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A SCALAR INTEGRAL EQUATION FOR MAGNETOSTATIC FIELDS

Ch. Iselin
CERN, Geneva, Switzerland

Abstract

For the solution of magnetostatic field problems in three dimensions,

integral equation methods have been used mainly because of the following

advantages:

i)

ii)

The unknown quantities need to be calculated in iron only, i.e. the
domain of calculation is finite.

The boundary conditions at infinity are taken care of automatically,
and the magnetic field can be found correctly anywhere in space.

On the other hand, the following difficulties have been encountered

with integral equation methods:

i)

ii)

iii)

potential in iron by Galerkin's method.

The number of unknowns is large;
matrix.

it must be found by inverting a full

The condition number of the matrix to be inverted can be very large.

The magnetic field is infinite on iron edges. This makes it impos-
sible to use certain, otherwise convenient, approximations to the

magnetic field.

In this paper we propose to solve the integral equation for the scalar
It is believed that this avoids

the last two of the above problems.
1. BASIC EQUATIONS

where

The magnetostatic field obeys the two Maxwell equations

divB =0 €3]
arl H=73, (2)
B: magnetic flux density
e magnetic field strength
j: current density.

Magnetostatics A3

-+ -+
Furthermore, B and H are related by the material equation
-+ +

B = B(ﬁ) : (3)

We now introduce the magnetic field ﬁu of the coils alone, which obeys
the equations
div Hy = 0 )

-+
curl Hy = j . (5)

The field Hy can be found by the law of Biot and Savart
4y = f J?’-;-—r av . (6)
For any scalar potential ¢ the expression

A=, + grad ¢ (7)

fulfils eq. (2). Instead of using eq. (1), we can make use of the magne-
tization M of the iron

> > -
M=B-u H, (8a)
or
> >
M=M (Hy + grad ¢) . (8b)

Equation (8b) shows the functional dependence of M upon .

Equation (1) may then be replaced by

-+

Ho div grad ¢ = - div M . (9)

This has the solution

+ >
M-
r?

amigg = - [ av . (10)
iron &

It is clear that neither the potential ¢ nor the magnetization M is known

at this stage. In this paper we are trying to give a method to find the

scalar potential.

2. METHODS USED SO FAR

2.1 Halacsy's method

In the RENO computer programl), the unknown is the scalar potential.
It is found by the following procedure:

15
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i) Insert the definition B = 1H into eq. (1).
div B = div [u(H, + grad ¢)] =0 . an
ii) Combine eqs. (8) and (10) giving

(u - u,) @, + grad ¢) - T
dmugd = - f U av . (12)
T
iron
iii) Insert eq. (12) into eq. (11), yielding a rather complicated equation

for ¢.
iv) Solve the equation resulting from step (iii) numerically.

The equation for the scalar potential is solved using a regular rec-
tangular grid. This imposes important restrictions on the iron geometry.
The method is very difficult to adapt for anisotropic iron.

Note that both eqs. (11) and (12) uniquely determine the scalar poten-
tial, and that both have the same solution. This may be the reason why the
method often breaks down, due to an attempt to invert a singular matrix.

2.2 Magnetisation method

To our knowledge, the flyst authorsto use integral equation methods with
success was Trowbridge et al. 'The computer program GFUN solves the integral
equation

E O -
fi=H, - +— grad f M'Tay (13)
A, T

iron
combined with the material equation
M = M(H) (14)

in terms of the magnetization M or of the total magnetic field strength .
The method could easily be adapted for anisotropic iron. The GFUN program
has been used with considerable success in several laboratories, but it

still leaves some problems unsolved.

So far the program uses a piece-wise constant magnetization. The dis-
continuities of M on element boundaries can cause problems by allowing some
non-physical solutions to be generated and by making difficult an accurate
field calculation in the iron. One cannot use more sophisticated approxi-
mations for the magnetization, as long as they depend on values on iron
edges, since on iron edges the fields are discontinuous.

16
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Another disadvantage of this method is that its unknown is a
vector and that the number of unknowns is higher by a factor of three
compared with a method searching for the scalar potential.

3. THE PROPOSED METHOD

5.1 Basic idea

We note that the scalar potential ¢ introduced in eq. (7) must be
finite in all space. We shall therefore try to solve eq. (10)

dmugd + f M Tav=o0 (15)
T
iron
together with the material equation
M = M(H, + grad ¢) (16)
iteratively in terms of tﬁe scalar potential ¢.
Assume that after k iterations we have found a guess ¢(k). The mag-
netization is then
m - M[I—l + grad ¢(k3] an
Inserting ¢(k) and ﬁ(k] into eq. (15) we have
%, (k)
amige®™ + [ IEay - £ 40, 18)
T

iron
The idea is now to find a linear integral equation for the kth correction
a¢(k) by linearizing in the neighbourhood of our last guess:
£ L (00 gy 2p 00

7o [P® graa 2607
f v =0 . (19)

3
iron S

Here P(k) is the (3 x 3) Jacobi matrix of partial derivatives of the com-
ponents of M with respect to the components of il

3.2 Methods of solution

Let us now choose a suitable function space with the finite dimen-
sion N to approximate our scalar potential. In this space we define a
base

{,x,,2), N=1, 2,3, ..., N} . (20)
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In terms of our base the kth correction is approximated as

2™ = Y co (xy,2) (1)

n=1

Further, we define the set of functions
T - [P[k) grad ¢_]
dv

k+1)
() g
My meorif dmuod, + f = . (22)
i iron
This allows us to write eq. (19) as
N
£+ Y =0, (23)
n=1

We are left with a problem of linear algebra: that is to fit a function
f(k] in the best possible way by a linear combination of (hopefully!)

linearly independent functions wgk).

A solution to this fitting problem can be found by Galerkin's method.
We define the inner product of two functions by

(u,v) =fuv dv , (24)

the integral being taken over the iron volume only, or over the whole space,
whichever is more convenient for the functions concerned. We also select
a linearly independent set of trial functions

{tm{x,y,z), m=1, 2, 3, ..., N} . (25)

Then the relations
N
o ) + I <, (50400 0
n=1

provide us with a system of N linear equations in the N unknowns Chr

The simplest choice for the trial functions t is to use N Dirac func-
tions. The scalar products in eq. (26) then simply mean evaluation in N
different points, i.e. the correction is such that eq. (23) becomes true in
these N points.

A solution of eq. (23) in the least-squares sense means minimization
of

(600, £00

] = minimm . 27
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The trial functions are then L wn(lk]. This choice must usually be
ruled out, because the trial functions are non-zero in whole space, and
the computational effort to evaluate the inner products is prohibitive.

A compromise would be to take th = O Further investigations will
be necessary to find out if this choice is worth the effort.

4. CHOICE OF BASE FUNCTIONS

4.1 Linear base functions

For a first trial of the method the base of functions was defined in
a straightforward way. The iron was cut into small tetrahedra, allowing
a rather general geometry. On each tetrahedron the potential was taken to
be a linear function of position, defined by its values in the four ver-
tices of the tetrahedron. The magnetic field and the magnetization were
thus both constant throughout each tetrahedron, in a similar way to the
GFUN program.

The trial functions t, were taken to be Dirac functions centred on
the tetrahedron vertices, i.e. eq. (23) was solved for the tetrahedron
vertices. For simple problems, such as an iron cube in a homogeneous mag-
netic field, the results were rather encouraging. For more realistic pro-
blems, such as, for example, a race track coil surrounded by a cylindrical
iron shell, the potential values were still approximately correct in the
solution points, but very large oscillations of the potential appeared
close to the iron surface. This was because the tangential component of
the magnetic field should be nearly zero on the iron surface, which is only
possible if the potential is allowed to vary to a higher degree than linear.

The use of linear base functions seems not to be appropriate if the
number of calculation points is small. For a very fine subdivision of the
iron it may possibly give reasonable results.

4.2 Quadratic base functions

For the second test, the same subdivision of the iron into tetrahedra
was used. This time the potential was allowed to be a quadratic function
of position, defined by its values in the vertices, plus the values in the
midpoints of the tetrahedron edges. This made the magnetic field a linear
function of position in each tetrahedron. The magnetization was assumed
to vary linearly with position as well. Equation (23) was again solved
in all points with unknown potential values.

17
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The solution using quadratic base functions gave much better results
than the approach using linear base functions. Even for a rather coarse
subdivision of the iron, the results were comparable with results found
using the GFUN program, but there is still a problem left. Since the mag-
netic fields were only coupled through the potential, when going from one
tetrahedron to the next, they were not smooth on the interface. It remains
to be investigated whether a different method of numeric differentiation
of the potential gives better results. These investigations are under way.

4.3 Isoparametric base

Investigations are also under way on the use of an isoparametric re-
presentation as has been used in the finite element method*). This would
permit one to use a very general geometry and still to have a smooth mag-
netic field all over the iron. Unfortunately, due to the lack of time, no
numeric results can be presented yet.
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Discussion following paper:
(Trowbridge, Rutherford) What set of basis functions did you chose and
was the gain in efficiency expected with your method actually achieved?

(Iselin, CERN) I used three sets of base functions:

(1) tetrahedral elements with linear ¢ wvariation
(2) tetrahedral elements with quadratic ¢ wvariation

(3) 'isoparametric' (r, ¢,8) elements.

So far only case (3) gave acceptable results. The time for setting up
the matrix is comparable to GFUN, but the time for one iteration is cut
down to about 4%.
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An account for the use of the FEM for magnetostatic problems

S.J. Polak, A. Wachters, A. de Beer

N.V. Philips' Gloeilampenfabrieken, ISA-DSA/SCA

Abstract

The FEM is considered for magnetostatic problems involving
both soft isotropic and hard anisotropic

materials in this article. Special attention is paid to
existence and uniqueness aspects for these non-linear
problems. For hard anisotropic materials a new model is
introduced. The program package MAGGY contains this model and
has been used to compare calculated with measured data.

1. Introduction

In the last ten years numerous calculations have been
performed, using the FEM for the numerical approximation of
solutions of magnetostatic problems. These are e.g. mentioned
in [1] - [7]. In most descriptions no attention is paid to
the validity of this use w.r.t. existence, uniqueness and
convergence aspects. These do not trivially fit in the usual
theory because magnetostatic problems are non-linear. Only in
[2] a special approximation of the B-H curve is used for this
purpose, Here the FEM is considered for a very general class
of magnetostatic problems while paying special attention to
the above-mentioned aspects. For hard anisotropic materials

a new, simple and usable model is introduced. The model is
available in the program package MAGGY. Results from

computations with MAGGY are compared with measured data.
2. Basic notions

2.1. Suppose V an open simply connected region in R3 or R2

with closure V, §V=V\V. On V we have the usual spaces L, and

o

w% (see e.g. [9]). The space L,

and associated norm defined by

has the usual inner product

(2.1.1.)  (£,8) =/ fg dv, ||£]], = (£,©)F

Magnetostatics A4

[+]
The space wé has inner product and norm
ERt 2D (f,8)y=/ygrad f.grad g dv,||f]|w=(f,f)%

We will use Pk to denote some finite dimensional subspace of
29,
Wz.

2.2. For a magnetostatic problem on VCRs we have

(20T curl H j 5, H the magnetic field,
j the current density;

(202620) div B(H) = 0 , B the fluxdensity.

Suppose B an invertible vector function of H in the sequel,
B is continously partially differentiable w.r.t. H. We note
that !ij dv<e,

2.3. In this section 2.3. we consider the case where the
problem is two-dimensional for symmetry reasons and in
cartesian coordinates. We identify V with the accompanying

region in R,. Now j can have a component perpendicular to V

2
only and thus is effectively a scalar function. A vector

potential A is introduced with
f2w8ads) B = curl Aon V, A =0 on &V

which represents condition (2.2.2.). Because j is
perpendicular to V, A only needs to have one component,
perpendicular to V. Therefore also A is effectively a scalar
function. However where necessary A is to be interpreted as
the appropriate vector,

Remark: in this case we have |curl A| = [grad A| such that
Az0 on &V is sufficient to give: ||curl A|[ =0¢=A=0. Thus A
is uniquely defined for a certain B. The equation (2,2.1.)

then gives

(2.3.2.) curl H (curl A) = j on V, AZ0 on &V with jeLz.

19
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The FEM is usually considered as the minimisation of the

following energy integral:

B=zcurl A

(2.3.3.) E(A) = Tyl H(b).db - 2jA dv

over some Pk' This is termed the energy formulation of the

preblem. The Galerkin formulation of (2.3.2.) is

(2.3.4.) Iy H(curl A), curl f dv = Iy j £ dv for all feP

and f is interpreted as a vector perpendicular to V as usual.

In §5 it is shown that these formulations are equivalent.

2.4. For a three dimensional problem (2.3.1.) does not

uniquely define the vector potential. Thus we use a different

approach. A "source field" Hc is established with
(2.4.1.) curl Hc =

This is e.g. done with Biot-Savart's law in vacuum. For the
discussion of the FEM we assume this solution Hc with
Hc € L2 available. Then we use (2.2.2.) giving

1"
o

on V
0 on &V,

(2.4.2.) div B(H, + grad f)
£

m

The Galerkin formulation for this problem is
(2.4.3.) Iy B(Hc + grad f) grad g dv = 0  for all geP,.

3. B-H properties of various kinds of materials

3.1. Magnetic materials may be classified according to
different criteria, either in the classes isotropic and

anisotropic or in the classes of soft and hard. (see fig 1)
soft hard

isotropic Fig.1. classes of magnetic

anisotropic materials

20
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An isotropic material is characterised by the fact that a
virginal sphere has no preferred direction, Other materials
are anisotropic. Soft magnetic materials are characterised
by the fact that no field in the material can exist if no
external source for a magnetic field is present. Other
materials are termed hard.

Here we will only discuss the B-H properties of materials
belonging to the diagonal blocks of figure 1,

3.2. For soft isotropic materials the field dependence of the

flux density is well-known:
(3.2:1.) B(H) = p(|H|)H,

where the magnetic permeability p is a scalar, sothat B can
be interpreted as a scalar function of H (B-H curve), which

is differentiable and invertible.

3.3. For hard anisotropic materials the field dependence of
the flux density may be formulated as follows:

(8.48.44) B(H) = w(H)H + B,

where Br is the remanence and y(H) a tensor. In general p(H)
can not be obtained from available experimental data for
such materials. However, for sintered hard anisotropic

materials containing single domain particles one may take:

0 Yry

(3.3.2:) w(H) =y, = H.B/|B|

oy

where LYY cgn be obtained from the B-H curve and
url=1+§3/|HA[, in which MS the saturation magnetic moment
and [HA| the anisotropy field strength.

The approximation of w(H) by e.g. (3.3.2.) is justified by
experiments described in a paper of Zijlstra presented at
this conference, and a model calculation described in the

following sections.
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3.4. The field dependence of the magnetic moment of a single
domain particle can be obtained from a treatment similar to
the one given by Stoner and Wohlfarth [18]. Since the
anisotropy energy of a single domain particle is give to a
first approximation by:
(3.4.1.) Fa 2k Sin2 U
A 12
where k is a parameter depending on the temperature,wi is the
angle between the magnetization vector Mi and the easy axis
of the monocrystalline particle., In the presence of a
magnetic field H,which makes an angle oy with the easy axis,

the equilibrium direction of M; can be obtained from

£l < A 3 _ i B -
(3.4.2.) EEE(EA M; .H)=2kcosy, siny, ]Mi||H|51n(ui ¥;)=0,

sothat as shown in figure 2 the magnetization is directed

along the resultant of H and a hypothetical field HA i the
3
so-called anisotropy field of strength 2kcoswi/|Mi|.

Fig. 2. Dependence of magnetic
moment Mi of the magnetic
field H and the anisotropy
field Hy for a single

P i
domain particle

If Ms is the spontaneous magnetisation per unit volume the
magnetic moment Mi of a single domain particle per unit
volume is:

H+ H

(3:043:) My o= M A, 5 M| =M.

|H + HA,i|

3.5, The magnetic moment M per unit volume in a point in the
material may be considered as the sum of the magnetic moments
per unit volume of the particles, each with a volume Tos in a

small volume V surrounding the point sothat

Magnetostatics A4

H + HA

(3::5.44) M=% IM.r.=M_I T——————iiT T./V
i {11 sy H + HA,i i

If ri<<V the summation may be replaced by integration. For
spherical coordinates 8 and ¢ and the probability density
function f(8,4) for the distribution of the direction of
the particle magnetie moments

_ 2w H+HA(8,¢)
(3.5.2.) M(u,|Hl)=MSIDI

0 f(e,4)sin6dede/
|H+H (8,9) |

2m 7
IUIDf(6,¢)sineded¢,

where

o o
(3.5.3.) |HpC0,8) |=|H, |cose(o,4) IHAI=2k/MS 3
and due to (3.4.2.)

(3.5.4%,) cos¢(0,¢)sing(6,4) = lﬁ%— sin(a(8,¢) - w(6,9))
|8, |
% is the angle between H and the direction of the average

of HA(8,¢), which is the direction of the remanence.

3.6, For a uniform distribution:

1, for Dsesao and 0<¢<2n

3Bl Lwd f(o,9) ={
0 , for Bys6sm and 0sé<2w

the double integral of (3.5.2.) has been calculated by Gauss
quadrature, after determination of the appropriate root of
(3.5.4,), as function of H and @, Because of the appearance
of Bloch walls for |H| smaller than 0.5 H; a reversal field
H, was introduced (see paper of Zijlstra).

The results of the calculations show the following relations
for the compenents of M(a,|H|) parallel and perpendicular to

the direction of the remanence resp.

21
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(3.6.2.) M//(E,|H|)

(3.6.3.) M (o, [H])

"

M//(§;|H'I)for |H|cosu=|H'|cosa',

MS|H|sinE/([Hg| + ]H|cosEJ,(E,eo<&ﬂl

From these relations it follows that the magnetic
susceptibility, defined by M = yH + M_ is a tensor of
following form:

sothat ur// =

_ x//(|H]cosaJ 0

0

MS/(]H;| + |H|cosa)

i +x/!(|H[cosu) can be obtained from the B-H

curve if as argument the projection is taken along the

direction of the remanence. For u,, can be taken
+ |H|cosw) = 1 + MS/|H;1, since in practice

1+ M /C|H,|

lH]<<]H;| for the anisotropic materials of interest.

4, Basic inequalities

4.1, For notational ease we consider only 2 dimensional
problems in this §. This is no restriction because the

3 dimensional extension is trivial here,
The models presented in §3 are of the following form:

(4.1 B

= Z(H)H + Br

where Z(H) is a matrix and B, independant of H.
In the soft isotropic case Z(H) = u(|H|)I where I is the
identity matrix. For the hard anisotropic case we consider

(4.1.2.) 7

(H)

Wiz

0
o| 2 vy THoMps By )0 HgE,,

We note that there allways exists a d<c such that

(4.1.3.) U<dsusd-1 8 0<dsg g <a”? in the soft isotropic

case and 0O<ds

22

dB//

dH//

=d

=3

for the hard anisotropic case.
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The properties stated in the following lemma are used in §6.

Lemma (4,1.) If AH H(BZJ - H(Bi)

AB = 32 - Bl then
(4.1.4.) AH.AB 2 d71 |aB|? ,
(4.1.5.) sH.AB = d ~ |aH|? ,
(4.1.6.) |aH|s2d|aB| and |aB|s2d™|aH|

. 5 s 3 5 5 9B
proof: We first consider the jacobian matrix ((iﬁ))

In the soft isotropic case

(4.1.7.) (@2 = w([HDI-—25 27 + —2 alBl 7
|H| |H]“ a|H|
HZ H H
where 2Z'(H) = Y| is a semi-positive definite
HH H;

matrix. Also I - Z'(H)/|H|2 is semi-positive definite,using
9B L 3B 2
(4.1.3.) we therefore have |((§H))|—m§x((3§))x.x/]x] 2d>0 or

(4.1.8.) (3B x.x 2 a |x|?

From (4.1,7.) it also follows that

(4.1.9.) (8| s w+ St <2a

1

In the hard anisotropic case we chose a coordinate system
with x//Br and yi1B,. In this coordinate system we have

B
//
3B _ 0
((gﬁa) = 3H//
0 &

where with (4.1.3.) we have again (4.1.8.) and (4.1.9.).

e e s
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Using a Taylor development and ((%%)) = ((2By)™! e find

3H
(Bolol.) - (4.1.6.)

5. Equivalence of the Galerkin and energy formulation in the

two dimensional case,

5.1. For the proof of theorem (5.1.) we need the following

equality on VcRa

(5.1.1.)  f, curl H. fdv = fy H.curl £dv + f (AAXH).n do

For the two dimensional case we can still use this formula
by interpreting the vectors A, B and H as in (2.3.) and f£//A.
We assume the volume to have unit length perpendicular to
VCRZ and note that the contributions from top and bottom
planes cancel.

5.2, The operator T is defined by

(92149 TA = curl H (curl A) - j
Theorem (5.1.)

(5.2.2.)  E(A)SE(f) for all fef, &)
(5.2.3.)  (TA,£), = 0 for all fefl]

Proof: a. Suppose for a certain A and ] we have (5.2.3.),

then define

B

AE=E(A)-E(£)=/,/

¢/popp H(P).db - j.AA dv

where AA = A - f and AB = curl aAA.
We also have, using (5.1.1.) and AA = 0 on &V that

Iv j.aA dv = IV H.AB dv

Therefore
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B

AE = Jyfp_,p H(P).db - H(B).AB dv

which with (4.1.8.) gives AE<0.

b. Now suppose E(A)<E(f) for all feﬁ%. With (4.1.8.) we have

B

fg_ap H(b).db = H(B-AB).AB

B
therefore

Iy H(B-AB).AB - j.AA dv=/y H(B).AB-AH,AB-j.AAdv<AE<O

where AH = H(B) - H(B-AB) or using

IV H.AB dv = fcurl H.AA dv
we find
IV AH.AB - (curl H - j).8A dv =2 0

for all AA, Using a Taylor development for AH and taking AB
small enough this implies

ry (38 [aB|? - (curl H - 3).84 av 2 0

v

we write AA = eAA' and see that we have,ezp + e€q20 for all
e. Therefore q=0 or (TA,f) =0

6. Existence, uniqueness and convergence

6.1. In this § the theory from §2 of [10] is applied for the
magnetostatic problem, This theory is used in the following
form

Theorem (6.1.)
Let T be a mapping from ﬁ% into L2 satisfying

Q,: there existsa cg>0 such that
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(6.1.1.) (Tu = Tv, 2); s e | Ju-v||yl12Z]]y

for all u, v and Zsﬁ% and

Qz: there exists a 02 such that

2
(6.1.2.) (Tu - Tv, u-v); 2 e, | [u=v] |y

for all u, vaﬁ%
then the problems

R : (Tu,v)L= 0 for all ueﬁ% and
R, : (Tuk,v)L= 0 for all u eP, have unique solutions,and

(6.1.3.) [ lu-ully; s D inf {||z—u||w|zePk}
for some fixed D>0

6.2. The problem posed in (2.3.) is considered here again.

The operator T is defined by

TA = curl H(eurl A) - j
Then
(TA,-TA,,A5) =/ (H(curlA, )-H(curlA))curlA, dv
and (4,1.6.) gives
|H(curlA )-H(curlA,)|s2d|curl(A -A,) |
we find, using Schwartz inequality
(TAl—TAZ,Aa)L < ||A1—A2|Lw||A3HW
which is property Ql'
¥

(TAi-TA Al—AQ)L=fV(H(curlA J=H(curlA

2
curl(A1 A2) dv

23

2k
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and (4.1.5.) gives
H(curlA,)-H(curlA,) .curl(A,-A,)z d(curl(A,-A,))?
which implies property Qz.

6.3. In this section we consider the problem (2.4.). The

operator T is defined by
Tf = div B(Hc + grad f)

As in section (6.2.) we may conclude that properties Q; and
Q2 are satisfied, this time using (4.1.4.) and (4.1.6.).

6.4, Thus for the problems posed in (2.3.) and (2.4.) we may
apply theorem (6.1.). Convergence of approximate solutions
depends on the spaces Pk. It follows from (6.1.3.) that, if

Pchk+1 and 1im P

[11].

, is dense in ﬁ% then iim u =u, see e.g.
krw ]

7. The program package MAGGY

7.1. The package MAGGY offers facilities for the
approximation of 2-dimensional magnetbstatic problems. These
problems may be either in polar, cylindrical or cartesian
coordinates. Calculations are performed using isoparametric
bilinear quadrilaterals in either of these coordinates. The
previous existence etc. considerations only apply in the
cartesian case. The problem and algorithm information have
to be given in a problem oriented language, MAGLAN.
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The package contains an interpreter program which checks and
expands the input and also generates part of the calculating
program (e,g., dimension statements). Then a set of secondary
programs is available for plotting, printing and the
calculation of some secondary results. The package is
completely written in Fortran. MAGGY2 is an open package in
the sense that it is possible to give user chosen function
names for most numbers in the input. The accompanying
functions have to be given, immediately following the MAGLAN
input.

7.2. The checice of elements in the FEM was done with ease of
specification of the mesh as criterium rather then optimum
flexibility. However structures of complicated nature have
been analysed using MAGGY as can be seen in fig.3,5) In [3]
an easy way of specifying a quadrilateral mesh can be found.
Here an improved version is given.

A coarse quadrilateral mesh, topologically equivalent to a
square mesh, has to be provided. An example is shown in

fig. 4. The mesh is completed by the program with linear

interpolation.
2 5 Fig. 4.
5
1 23((0,6) (1,6) (5,6) (6,6)
18 3 18(€(0,3) (1,3) (4,3) (6,3)
2 i = 51(0,1) (2,1) (4,1) (6,2)
5 1 11¢0,0) (2,0) (4,0) (6,0)
10 + t + 1 10 20 30
T Yx0 1 2 3 &% 5 8
line nod 10 20 30

This mesh can be specified to the program by giving
x(1) = 40, x(10) = 2%2, 2+1, x(20) = 3*4, 5, x(30) = Ux6,
y(1) = 40, y( 5) = 3%1, 2, y(18) = Lx3, y(23) = 4x6.
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This is all the mesh information needed for MAGGY, is short
and readable.

,/’/aﬁﬁﬁ;_t:::trhh“mhx

T wOTORIdE

Fig. 5. :::: ::wn:r an @
/ near Mg

8., A comparison between computed an measured data

The flux, A(z,R)E2ﬂ£ B(z,r)r dr, in a cylindrical Ticonal
900 bar has been measured at a number of points in the axial
direction,.z. The flux also has been computed with MAGGY
using the model for permanent magnets discussed in §3.

The results obtained for three different meshes are shown in
Tabel 1, column two, three and four; Czl,rz}/(zz,r2)
indicates the total number of mesh lines in z- and
r-direction within a region of 200*130mm2 surrounding the
magnet, and the number of meshlines within the magnet of
44,875%10,875mm>
The measured flux is shown in the last column of table 1,

respectively.
Except for the last two points near the pole of the magnet

the results for the finest mesh agree with experiment to
within 1%, and the difference is almost constant.
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Tinocal 900 bar with radius of 10.875mm and half length of
44,875, Flux measured through a cylinder with radius of 11mm

is given in 1973

Table 1

Tesla.

Magnetostatics A4

Acknowledgement

Flux calculated by MAGGY

Flux

z-goond (11,11) (21,19) (43,37) measured

/(5,4) /(9,6) 7(19,12)

0.0 .382 «383 .386 392
2.5 . 396 .392
5.0 .396 392
7.5 w381 .395 +392
10.0 . 394 .390
12.5% .392 .389
15.0 374 . 386 .390 .388
17,5 .387 . 384
20.0 .380 384 .380
22.5 .379 « 375
25.0 . 349 .368 w373 +.369
276 . 364 .360
30.0 . 346 353 .3u8
J2+5 337 .333
35.0 . 284 .308 «+317 . 314
31h .2390 + 287
40.0 . 245 «253 , 248
42.5 . 206 .185
44,875 A1t 124 .130 .120
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Discussion following paper:

(Becker, Texas) The issue of loss of accuracy in obtaining gradients of
the finite element solution (by numerically differentiating the solution)
is a serious one in the analysis of stress and flow problems as well as

in the present context. Some techniques that have been used (with a mixed

degree of success) includes:

(a) Use of higher order Lagrangian elements (usually isoparametric)
with gradients calculated at appropriate interior points.

(b) Use of conjugate approximation or other projection methods (as
in the work of Oden or of Wheeler).

(c) Use of mixed or mixed-hybrid models in which the gradients are

solved directly.

Have you considered any of these techniques and, if so, how do you view

their usefulness?

(Polak, Philips, Eindhoven) The problem mentioned is often encountered
by us.

B values can be obtained by higher order Lagrange elements inside the

elements.

If fﬁ.ds has to be calculated over element boundaries I think that

Hermite elements with interface conditions would be a good choice.

I am not sufficiently familiar with conjugate approximations and there-
fore cannot give an opinion on their value for this problem. Then of
course in integral methods as in GFUN H is solved directly. However for
larger problems the full matrix involved will compare unfavourably with

the sparse FEM matrices.

As integral methods and GFUN are enjoying some prominence at this
conference it is worthwhile clarifying this point.

For an nxn problem, the FEM with Choleski and simple elements used kn®
operations. For the same problem the integral method would typically
involve only n?/5 unknowns which would require 1/3 (1/5n2}3 operations.
The factor 5 chosen here is problem dependent but there is always an n

for which the FEM becomes cheaper.

Therefore we can say that up to a certain magnitude integral methods
should be good for calculating H directly and in general using FEM

one has to use appropriate elements.
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PHYSICAL BASIS OF THE VARIATIONAL METHOD FOR THE
COMPUTATION OF MAGNETIC FIELD PROBLEMS

P. Hammond, Department of Electrical Engineering,

University of Southampton, England.

1. Introduction

The hallmaerk of good computational work is accuracy and attention to
detail. The skilled worker who has these gqualities in mind cannot easily
take a detached view of the computation as a whole., In particular he is
unlikely to question the need for the computation. Yet such questioning
is essential if the physical concepts are to be disentangled from the
algebraic and numerical techniques. Engineers who design such devices as
transformers and rotating machines are used to thinking in terms of
physical models. They use such terms as leakage flux and they represent
the device by equivalent ecircuit parameters. To determine these
parameters they need information about the magnetic field. Before the
advent of computers this information was difficult to obtain and crude
approximations had to be made. Now the opposite difficulty exists.
Engineers are often swamped with information, which is not only useless in
itself, but actually blocks the design process, because data-handling has
become the over-riding difficulty. Under such circumstances the designer
turns his back on computation and relies on intuition and experience, much
as & physician may do when presented with a large array of chemical test
results on a patient. This is of course a pity, but nevertheless it is a
real problem. This paper is a plea for better co-operation between
computer analysts and designers. It is a plea that the designer should
explain to the analyst what information he needs and that the analyst
should restrain his desire to show what the computer can do and
concentrate instead on providing simple and elegant programs for
particular needs. This does not necessarily mean that the big 'suite of
programs ' should be ignored, but it does mean that the analyst should
seek to understand that the pressing need is for solutioms to particular
problems rather than for information which may be useful one day. Of
course this is a big theme and cannot be dealt with in one paper. What
can be done here is to illustrate the theme by a particular example. The
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example which has been chosen is the method of the calculus of variations
which underlies the method of finite elements.
2. The variational method

The development of numerical methods for the solution of magnetic

field problems has in general started from a consideration of the
differential equations describing the field. These equations have been
discretised and by this means a finite-difference mesh has been generated
to replace the continuous field distribution. More recently the finite-
element method has become popular, which is based on a definite integral
or 'functional of the field energy. Algebraically both methods may lead
to similar computation schemes involving the solution of many simultaneous
equations. If these equations are taken as the starting point of the
computation the choice of method depends only on the past experience of
the analyst and the characteristies of the digital computer available.

One might conclude that the physical content of the two methods would
also be very similar, but a close examination shows that this is not so.
Indeed, the differences can be put to good use in certain cases. Let us
consider these differences. The finite-difference method starts with the
differential relationships which relate the local field curvature, i.e.
the divergence and curl, and the local time-variation of the field,to the
local source density. In order to obtain the field in a region the
numerical process scans the local source densities and then anchors the
mesh to the boundary by imposing given boundary conditions. The finite-
element method on the other hand depends on formulating an energy
functional and finding its maximum or minimum by a variational technique.
In this variational process the differential equation appears as the
Euler-Lagrange equation of the functional. If the object of the method
were to recover a known equation via an often unknown functional, this
would be a strangely circuitous route. A physical interpretation of the
functional is needed to make sense of the method.

To arrive at such an interpretation let us take the particular case
of a Poissonian field. The functional is known to be F = J[/ ¢ p dv +
% fIf ¢ € V2 ¢ dv, where ¢ is a scalar potential and p is a source
density. It is convenient to write this in 'inner product' notation

F=<¢,p>+é‘-<¢,a?2¢>

If p is taken as an assigned source density and ¢ as a variable, the first
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variation of F is given by
§F = <8¢, p> + <8¢, £ VZ¢>.
Thus for zero first variation, we have V2 + p = 0, which is of course
Poisson's equation. Thus the functional F is the required one. But where
did it come from? Its stationary value is given by
R = <6, 0> =% <h, 0> =3 <hy 0>

and this is the potential energy of a set of known sources p. The
potential energy is the 'inter-action' of the sources in terms of the
scalar potentiai $, which in elementary field theory is defined as
potential energy per unit source. It is therefore reasonable to start
from the functional rather than from the field quantity itself, because
the functional has physical significance in terms of energy.

But more remains to be said. Let us generalise the field equation
- € 92 = p by adopting the operator notation L$ = p. We then have

F =<4, p> -3 <4, L>
which can be recast into the form
P wd i, 95 Rioky T,

The first term gives the potential energy and the second term introduces
the constraint L¢ = p by means of the familiar method of a Lagrange
multiplier. The method, therefore, seeks the energy of the system of
sources p subject to the operator equation of the field. Since the
designer generally needs to know this energy rather than the field
distribution, the method is well adapted to meet his needs. It should be
noted that the functional is essentially a system parameter. It is of
course possible to divide any system into smaeller sub-systems, and if this
is done the method is akin to the differential finite-difference method.
But the functional can be of arbitrary size and does not need to be sub-
divided.
3. The adjoint problem

The meaning and the possibilities inherent in the variational method
become even clearer if a more general functional is considered. Let there
be two sets of sources designated by p and pa, and let their associated
field quantities by ¢ and ¢*. Consider the mutual energy of the two sets
of sources. This mutual energy is given by <¢, p%s = ¢¢a, p>. Consider
the functional

F =<4, p™> - <¢%, Lp - p>
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where p® and p are the assigned known values of the sources. To find
the stationary value of F we put
§F = 0 = <89, p°> = <6¢%, Lo - p> - <¢*, Lé¢>

If in the last term we transpose the operator L to another operator La,
such that

<¢%, Log> = <1 ¢°, &>
we obtain the two conditions

L¢ = p and L2 ¢% = o2,
The physical significance of this is clear. The first term of the
expression

F =<4, p> - <¢°, L - p>
givesthe inter-action energy of the sources p and p®. Hence the stationary
value Fs determines this energy parameter. The parameter is subject to
the two-fold condition that ¢ obeys L¢ = p and ¢a obeys L® ¢a = pa. The
second system is called the adjoint system. The adjoint sources p? are
associated with their own field ¢a and an adjoint operator 12, 1In many
cases, such as Laplacian and Poissonian fields, L = L% and the operators
are said to be self-adjoint. An important exception is tne diffusion
equation, which is not self-adjoint. If p = p? the stationary value of
the functional Fs gives the self-energy of the system. Otherwise F gives
the mutual energy of two systems.

On first meeting the adjoint field quantities one may regard them as
a peculiarity of the variational method. More than that one may even
decide that the appearance of the adjoint problem is a drawback of this
method. Such a conclusion is very wide of the mark. The adjoint problem
draws attention to the physical basis of field calculation methods in
general and provides valuable guidance for the formulation of effiecient
computation schemes. To understand what is happening it is necessary to
go back to the experimental basis of field theory.
Consider for instance the electrostatic field. The entire theory is

built on the experimentally observed inter-action of electric charges.
In the simplest case two charges act on each other and a mutual potential
energy can be associated with the system formed by the two charges. The
notion of an electric field only arises when the problem of inter-action
is separated into two problems, in which one charge acts as a source for
a field which then acts on the other charge. The field is no more or no
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less than a useful mental construct which enables the problem to be
separated into two stages.

It is therefore not surprising that information asbout a field
distribution is of use to the designer only as far as it can be made to
vield further information about such physical matters as force and energy.
To put it very bluntly, the designer does not require the field map at all.
This is at the root of much of the misunderstanding between computer
analysts and designers, which is so common in industry. Of course we are
overstating the difficulties, because to the experienced eye a field map
does present useful information. Nevertheless it also contains much
information which is not useful, namely the field distribution in a region
free of matter. Moreover if the information is presented in numerical
form, the problem of interpretation becomes well-nigh insoluble.

Since inter-action is the basis of both theory and practice in field
problems, it is not surprising that the variational method draws attention
to two field equations which have to be satisfied in order to determine
the mutual energy for the equilibrium condition. Unless there is an
adjoint source, there is no system. A single source by itself is an
abstraction which has no counterpart in the physical world. The adjoint
problem draws attention to the prineiple of reciproecity. The energy of a
system is always a mutual relationship. Thus the self-energy, as for
instance the self-inductance of a circuit is really a mutual energy of the
parts of the circuit. The self-inductance is not a property of the
material of the wire, but a property of the geometrical arrangement of the
parts of the wire relative to each other. In the integration process the
elements of the circuit fulfil the role of the adjoint sources as well as
the original sources. The adjoint problem therefore coalesces with the
original problem. If on the other hand mutual inductance is to be
caleulated each coil is the adjoint of the other.

L. The adjoint source as a probe of the field

The notion of mutual inductance leads to another important observation
about field calculations. Suppose we regard the 'secondary' coil as a
probe to be used in examining the field of a set of 'primary' coils. For
every position of this probe there will be a mutual inductance between it
and the primary coils. We can set up the energy functional as

F=<,J% - A%, LA-J>
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where J are the primary current densities and gé the current densities in
the probe. A and é? are the vector potentials due to these current
densities and L is the operative % V x V x which is also 1, 6F=0
leads to L A = J and A g? = g?. Suppose we require & map of the field
parameter A. In order to find A at a point, we need to shrink the probe
to an infinitestimal current element. However, the probe must carry
finite current in its infinitesimal cross-section, because if the current
itself were to be infinitesimal there would be no measurable inter-action.
Thus the current will have to have infinite density and can be represented
by a Dirac § function. Thus by requiring information about the local
distribution of A, we have decided that the probe must have the properties
of a § function. Similarly an electrostatic field map requires a probe
which is a charge of infinite density and zero volume.

The inter-action energy can be written as either <A, gf> or <§§,_§>.
The first form requires the use of the § function probe and the second
requires the use of the Green's function 5}. This may be the better
choice, but Green's function solutions tend to have slow convergence. The
trouble is due to the stringent requirement to find the field at every
point. All this information has to be paid for.

If the adjoint source is thought of as a probe designed to elicit
information about the field, we notice at once how important it is that
the designer should specify to the computer analyst what information he
requires. If, for instance, the mutual inductance between two windings of
a machine is required, the analyst can choose one of the windings as the
'probe'. Such a large probe will be insensitive to local field variations
and this will reduce the computational effort. It would be wasteful to
explore the field with a tiny probe and then derive the large-scale
energy parameter.

S An example of a self-inductance calculation

In problems of self-inductance the natural choice of probe is in
terms of the assigned current density itself. We then obtain the energy
in terms of the integral % <A, J>. This integral may be insensitive to
the actual distribution of A and it becomes possible to use a fairly rough
approximation for A which will still give a close value for the energy and
hence the inductance. As an example consider the internal inductance of a

T-shaped conductor in a slot in highly-permeable iron as shown in the
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figure. Y
1 2A _
'-ﬁ—_SJ
-1 f__
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. 2 A
- =S 0
2 %z
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/—'—-—-—J
A _
E; n =3 2 2 _J

The slot is open at the top and we have assumed that the magnetic field is
constant across the opening. There is a uniform current density Jz =J
across the section of the conductor, so that the total current is 10J.
The iron is essumed to be infinitely permeable, so that the tangential H
along the iron boundary is zero. Hence the tangential field across the
opening of the slot is R ea 10J/2 = - 5J.

To calculate the internal inductance we have to isolate the conductor
from the outide region. This can be done by assuming there to be a surface
current across the opening of the slot which gives the correct magnetic
field inside the slot and zero field outside. This means there is a
current I = Hx = - 5J at the slot opening.

The internal inductance of such a conductor has been carefully
investigated by various writers. Thus we have accurate values for
purposes of comparison with the approximate values we shall derive by

(1)

Mullineux and Stoll gives a method from which we deduce that the internal

means of the variational method. In particular a paper by Jones, Reed,
inductance is L = 0.570 Mo H/m.
For the variational method we set up the usual functional

relapedhl-tanm-p
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where the second term describes the energy associated with the surface
current at the slot opening. Thus

Fea iz -3 @ vxnaw
4 uo
= <A, J> + é,_];| --]2:- <B, B>
uo

The first variation of F is given by

OF = <§A, J> +

sa, II - £ <B, 68> =0

We note that A_ = A_ = O and therefore B_ = 0. Also B_ = % and
31\ x Y z X a

B =~ "2 . ¥

y 3
X

To find an approximate value for the functional and therefore for the
inductance we must choose appropriate functions for Az' A constant value
for Az gives zero magnetic field and therefore does not contribute to the
solution. We consider next Az = ax + by. From symmetry a = 0, so that

we have Az = by. This implies that B_ = 0 and Bx = Db is a constant. Then

F = <y, J> - |3b, SJ| - %'u <b2s

[}
2 +2 3 +1
1 5p2
=IJ .:rbydxdy/er J b ydx dy - 150 J dx - 2=
g =2 2 - -1 ©
2
=878 +53D <30 T 2
Yo
2
w w1 T e
Ha
For 6F = 0 we put %% = 0, hence - 17J - i0b =0 and b = - l.Tuo J

Substituting in F we obtain F = lh.hSuo Jg and L = 0.289u°, which should
be compared with the accurate value L = 0.570uo.

We have deliberately chosen a poor approximation in order to
illustrate the method. It will have been noted that our choice of Az
implied a constant magnetic field everywhere in the conductor. Since we
know that the field is zero at the bottom of the slot and that it has a
finite value at the top, our choice is a poor one.

Let us consider an improved trial function A_ = ay + by2, for which

B =a+ 2by. In the variational process we put 35 = 0 and %% =0 to

obtain a and b. This gives F = 21&.2514o J2 gnd L = O.hﬁsuo. This is

%1




Compumag Oxford, 31 March to 2 April

already within 15% of the correct value and may be sufficient for
practical purposes. The power of the method is shown by the fact that a
close approximation of the inductance has been obtained, although the
field pattern is highly inaccurate. For instance at y = O we know that

Bx = 0 but on approximation gives Bx =a= O.5Tu0 J. The reason for the
power of the method lies in the fact that it has been designed to find the
best value of the energy or the inductance and does not seek to find an
accurate flux map. If the designer needs the inductance it is unnecessary
and wasteful to find a field. Of course it is desirable to choose a
reasonable trial function for the field, but the method is not very
sensitive to the actual choice,

In this example we have used the variational method in exactly the
same way as it is used in the method of finite elements. The only
difference is that the shape of the conductor is somewhat unusual.
Moreover most finite-element calculations use a linear relationship for
the trial function. Clearly a linear relationship will give adequate
closeness of fit over smaller regions. In any case finite-element
solutions are not limited to linear representations of the potential. The
difference between our method and that of the usual finite-element method
does not lie in the mathematical technique, but in the approach to the
problem., The finite-element method is generally used to obtain a field
map and this, as has been mentioned before, implies a desire for
information about the distribution of energy in a region. Our approach on
the other hand is to regard the variational method as dealing with a
system and seeking the energy of that system in an equilibrium condition.

6. Upper and lower bounds for the functional

One objection which could be raised to the method illustrated by the
example of the T-shaped conductor is that the degree of approximation to
the accurate solution is in general not known. This is a common failing
in numerical methods and is similar to the uncertainty that exists in
manufacturing processes. The correct choice of tolerances comes with
experience. It is both expensive and useless to call for closer
tolerances than those that are needed. But happily the variational method
suffers less from uncertainty then many other methods. So far we have
used only the equilibrium relationship which sets the first variation of

the functional to zero. Further information can be obtained by
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considering the second variation. The sign of this variation determines
whether the functional is a maximum or a minimum. Thus the functional
F=<A, J> + |A, J| - %ho <B, B> is a maximum at its stationary value,
because only the third term contributes to the second variation and its
sign is negative.

It is a valuable property of the magnetostatic problem that a dual
functional can be formulated which has the same stationary value but asa
minimum. Thus the approximate functionals can be used to provide both a
lower and an upper bound for the correct value. This greatly reduces the
uncertainty. P

The dual functional is given by F' = Eg <H, H>. Reverting to our
example, the simple choice of Hy =0, H =~ % y J gives F' = 32.41y J?
and L'= O.GQSuD. This provides an upper bound for the inductance. It is
interesting to note that if we take the average of this upper bound and
the lower bound L = 0.485u° previously obtained, we arrive at
L= 0.56?yo which is within }Z of the correct value. For a fuller
discussion of dual upper and lower bounds the reader is referred to a
paper 'The calculation of inductance and capacitance by means of dual
energy principles' by the present author and Dr. J. Penman to be
published shortly in the Proceedings of the Institution of Electrical
Engineers.

7. Variational treatment of the diffusion equation

Finally it may be of interest to look at the treatment of diffusion
problems by means of the variational method. Consider an assigned
harmonic current distribution iejwt. In order to obtain a functional
independent of time we must choose an adjoint current which has a
-jut

*
negative time variation. Thus Je is a possible choice. J and J*

are complex conjugates. The vector potential and the adjoint vector
potential are chosen similarly. The operator equation LA = J is given
by % YxVxA+ qué = J where o is the coniuctivity and hence the
operators are L = 5 ¥ x9x+ jus, and L? = ¥ ¥V x¥ x - jus. The
complex functional is given by F = <A, _.f>--% <§, L A>. This functional
contains both the inductance and resistance. It is very interesting tha
in this instance the adjoint quantities use a negative time. But of
course this is exactly what is done by using the complex conjugate in
phasor calculations. Once again the adjoint problem is an essential

feature in the determination of the system parameters.
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8. Conclusion

In this paper a plea has been made for a better understanding between
computer analysts and designers of electrical machines. In particular it
is urged that the designer often needs large-scale system parameters
rather than the details of a field map. Variational methods are well-
adapted to provide this information economically.
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Discussion following paper:

(yeh, Oak Ridge) Could the variational bound approval be as useful when
the guantity of interest is not the energy of interaction but some other

guantity, eg the field in some region?

(Hammond, Southampton) The variational method seeks a functional, ie a
guantity which can be described by a real or complex number. Thus the
parameter of interest must be such a number if it is to be obtained by
this method. If it is desired to find the field at a point, then this
can be done by using a source which has strength unity and placing it at
that point. The interaction energy is then equal to the field at the
point. A scalar fiend can be found by a single functicnal, a vector
field needs a vector probe and in general will need three functionals.
The method is essentially an energy method, but this is not restrictive if
it is realised that energy is what fields are all about.

{Popovic, Belgrade) I should like to agree with Prof Hammond that
physical insight is often very important in making useful approximations
for magnetic field problems. Frequently we are inclined to write a paper
which should be entitled "A very general method for solving arbitrarily
large prcoblems with an application to a very small problem", when the

small problem could be solved with a much simpler theory.

(Carpenter, Imperial College) The method gives a very neat way of deriv-
ing what appears to be a surprisingly accurate solution by simple approx-
imations. But the accuracy depends on the upper and lower approximations
being equally displaced from the exact solution. Is this a fortunate
accident in the examples given, or can Prof Hammond obtain two solutions

generally which are merely egually displaced?

(Hammond) I suspect that one needs to acquire experience with the method
and I am still rather inexperienced. However, if the variable function is
expressed as a polynomial then the order of the polynomial should probably
be the same for the same physical gquantity in both the upper and the lower
bound. Thus in a linear magnetic material H and B should have the same
type of approximation. It is also important to pay attention to the
boundary conditions and use the same accuracy, or lack of it, in modelling

the two functicnals.

(Silvester, McGill) Would Prof Hammond care to indicate the extent of
applicability of this theory to non-linear problems?

35
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(Hammond} The method depends on the geometrical relationships of the
field, ie on its curl and divergence. It is independent of the constit-
utive relationships. An analogous statement for networks says that
Tellegen's theorem is independent of the linearity of the circuit

elements. All that matters is that both Kirchhoff laws hold. If hysteresis
is present, the problem would have to be specified by giving information

about the initial state as well as the shape of the hysteresis loop.

(Jevons, Birmingham) A practical example of approaching the accurate
solution from both sides and averaging the result, occurs in the use of
resistance networks to determine circuit parameters of fields problems.
Suppose a 'straight' analogue is made and the resistance measured, and
then the dual made by interchanging equipotential and flow line boundaries
and the resistance again measured. The average of the two measured values
is very close to the accurate value for even very coarse meshes. One or

two mesh refinements gives rapid convergence to the accurate value.

(Hammond ) I have no first-hand experience of resistance analogues and
am very greatful to Dr Jevons for confirming that the method works well

in such an application.

(Reece, GEC) The machine designer would wish to know not only the self
inductance of a tee-bar but alsc the AC resistance. Is it possible to
use the method described in dissipative situations, and hence to obtain

AC resistance?

(Hammond) Yes, the functicnal can be complex and embody both resistance
and inductance. This is briefly treated in the last section of the paper.
I do not think it is possible to cbtain a doubly-bounded solution,

however.

(Steel, CERL) Prof Hammond makes an important contribution to the
conference in that he reminds us that we should always be aware of the
questions which underlie the investigation of fields. This can be
illustrated by one of many classical examples in the literature. I

chose the determination of the maximum temperature of a thermally well
insulated conductor carrying an electric current. If the non-linear
relation between thermal and electric conductivities is taken into account

then it has been shown by Raymond Holm that
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(Steel, continued)

Tm
v2=18[p A ar
To

V is the potential across the
conductor
Tm is the maximum temperature

To is the end temperature.

Note that for pure metals p ) = T and the relation between Tm and V
is algebraic and independent of the shape of the conductor!

(Hammond) The example cited by Mr Steel is new to me. It certainly
reinforces Mr Steel's comments. It seems to me that the greatest
challenge to a teacher is how to foster the gift of physical understand-

ing with which some of his students are endowed.
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SOME TECHNIQUES AND APPLICATIONS OF THE FINITE ELEMENT
METHOD FOR SOLVING MAGNETIC FIELD PROBLEMS

Eric Munro

IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598, U.S.A.

1. Introduction

The finite element method! provides a powerful numerical technique for solving
magnetic field problems. The author’s work in this field has been concerned mainly
with using the method to calculate field distributions in magnetic electron lenses?:3, and
the computer programs developed for this purpose have recently been published®. In
this paper, the principles of the method are summarized, the derivation of the finite
element equations is explained, and techniques for solving the equations are discussed.
Extensions of the method for handling the properties of materials with non-linear
magnetization characteristics and permanent magnet materials are described. A
technique for calculating the fields due to toroidal deflection coils inside rotationally-
symmetric magnetic electron lenses is also presented. Each technique is illustrated by
typical computed results, to show the wide range of applications of the method.

2. Principles of the finite element method

The partial differential equation of the boundary-value field problem is first
replaced by a corresponding functional, whose minimization is equivalent to solving the
original differential equation. The entire region inside the boundary is then divided into
many small sub-regions called finite elements. These finite elements may be triangles,
quadrilaterals or more complicated shapes. The potential distribution within each
element is then approximated by some simple function of position, e.g. a first-order
polynomial (first-order elements), a second-order polynomial (second-order elements),
or a higher-order polynomial if extreme accuracy is required. Using this approximation,
the potential distribution within each element is then expressed as a function of the
potentials at mesh-points associated with the element. In this way, the contribution
from each element to the overall value of the functional is expressed in terms of the
mesh-point potentials. The requirement that the functional is to be minimized is then
used to derive a set of algebraic equations, inter-relating the potentials at adjacent
mesh-points. These equations are then solved to give the potential at each mesh-point.

3. Derivation of the finite element equations

The derivation of the finite element equations will be illustrated using the magnetic
electron lens shown in Fig. 1 as an example. This lens consists of a magnetic circuit,
polepieces and coil windings, which all have rotational symmetry about the axis XYZ.
If the field distribution is required only in the polepiece region ABCD, this can be
calculated using a scalar potential. If the fields are required throughout the entire
magnetic circuit region EFGH which includes the coil windings, then a vector potential
must be used. Each of these cases will be considered in turn.
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Fig. 1 Cross-section of a typical magnetic electron lens

3.1 Scalar potential formulation

The polepiece region ABCD contains no coil windings. The magnetic field strength
throughout this region can therefore be expressed as the gradient of a scalar potential

H
V,ie.

H = grad V (1)
V satisfies the differential equation

div (u grad V) = 0 (2)

where p is the permeability at any point. For linear problems, in which x is assumed to
be independent of H, the solution of (2) subject to prescribed boundary conditions can
be obtained by minimizing the functional

F= ff 3 varadv . graav a (3)

subject to the same boundary conditions. (A proof of this can be found in Ref. 2.) For
the rotationally-symmetric lens of Fig. 1, (3) becomes

2 2
F o= ff%p[{%—g—) + (%) ]znr dz dr (4)
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The functional (4) must now be minimized numerically by the finite element method.
To do this, the region to be analyzed is divided by a mesh into small quadrilateral
regions (Fig. 2). The mesh lines are chosen to coincide with the polepiece profiles. A
fine mesh is used where high accuracy is required; a coarser mesh is used elsewhere.
Each quadrilateral is subdivided into two triangular finite elements. This subdivision is
done in two separate ways (Fig. 3). A typical finite element is shown in Fig. 4. Let the
potentials at the vertices be denoted by V,(z.r)), Vj(zj,r») and V(zp.r.). Since in our
example we are using first-order finite elements, we make the approximaltion that the
potential varies linearly over the element. With this approximation, the contribution AF
from a single finite element to the value of the functional (4) is

I 2 3 2
Y7 (i£1 b"v") +(1‘£1 c1v1) )

where p = permeability of element, r, = value of r at centroid of element, a = area of
element, b;=r;-1y and ¢;=z,-z;. Differentiating (5) gives

] - [l B

= UL
Fis M 5 (b,il::j + cicj) (7)

where

Using (7), a 3 x 3 matrix F;; is calculated for every element of the mesh. Since Fj; is
symmetric, only six coefficients need be stored for each matrix.

The matrices F;; are now used to set up the finite element equations, by imposing
the condition that the functional is to be minimized. To illustrate how this is done, let
V, be the potential at a general mesh-point (see Fig. 3) and let V, VZ’ .+ s Vg be the
potentials at the eight adjacent mesh-points. The condition for minimizing the function-
al is

%"}0 - 0 (8)

Now, if Vy, is changed, keeping all the other potentials constant, then the corresponding
change in the functional will be due only to the changes in the contributions from the
twelve shaded elements E-E, in Fig. 3. Thus from equation (8) we obtain

aaF dAF : 3AF -
(ﬁﬁ) (ﬂﬁ) + ..+ (ﬂﬁ) =0 (9)
£y Es Eyz

By substituting equation (6) for each of the elements E|-E|, into equation (9), we
obtain a nine-point finite element equation of the form

8

$ PV =0 (10)
meg MM

where each coefficient P is the sum of appropriate terms of F;;. In this way, a finite
element equation is generated for every mesh-point which is not a boundary point.
Points which lie on the symmetry axis YZ in Fig. 2 are treated as a special case, and at
each of these points a six-point equation is obtained. The prescribed boundary poten-
tials on the boundaries AY, AC and CZ (see Fig.2) are then inserted into the equa-
tions. These equations are then solved, as described in Section 4, to give the potential

%6
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Fig.2 Finite element mesh for calculating the scalar potential
distribution in the polepiece region of the lens of Fig. 1
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Fig. 3 Subdivision of the quadrilateral regions into triangular finite elements

r
P\iifzi,ri]
rlb}l A..‘\
[ eVdziend
Vj{zj .l'j]' ,

o

Fig. 4 A typical finite element for the scalar potential formulation
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at each mesh-point. The scalar equipotentials can then be plotted out on a computer
graph plo}[er, as show_n in Fig. 5, and the field comonents at any point can be obtained
by numerical differentiation of the computed mesh-point potentials.

A similar technique is used for calculating two-dimensional scalar potential
chstn!;uuons in planar (x,y) coordinate systems. In such cases, instead of using the
functional (4), the following functional is used:

2 2
i 1 aV aVv
AN RN R N 1&3)
and equation (7) is replaced by

= —Ea
F‘ij 32 (b_?bj - cicj) (12)

where p = permeability of element, a = area of element, bi=y:-yy and ¢;=x,-x..In all
other respects, the analysis of planar fields is identical to the analysis of rotationally-
symmetric fields.

Fig. 5 Computed scalar equipotentials in the polepiece region of the lens of Fig. 1
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3.2 Vector potential formulation

To calculate the field distribution throughout the the region EFGH in Fig. 1, which
encloses the coil windings, a vector potential must be used, since a scalar pptential
cannot be used in regions containing currents. The vector potential A is defined such
that the flux density B is the curl of A, i.e.

B = curl A (13)
A satisfies the differential equation
curl (-III curl A) = J (14)

where p = permeability and J = current density at any point. For linear problems, in
which p is assumed to be independent of B, the solution of (14) subject to prescribed
boundary conditions can be obtained by minimizing the functional

F =fff(2%gr_1_g.cuﬂg - 3A) dv (15)

subject to the same boundary conditions. (A proof of this can be found in Ref. 2.) For
the rotationally-symmetric lens of Fig. 1, (15) becomes

2 2
iy fﬂ?—ul- [{g_i&) * (g_iﬂ"'&'?-') ] . Jeﬁe}hr dz dr  (16)

where Jj and Ay are the ¢-components of J and A respectively. The functional (16)
must now be minimized numerically by the finite element method. The procedure for
doing this is analogous to that used in the scalar potential formulation. The region to be
analysed is first divided into quadrilateral regions (Fig. 6). The mesh lines are chosen
to coincide with the profiles of the magnetic circuit and coil windings. A fine mesh is

E H
TLTRRARRAN,
[ELRVANARAN -+
= TTIE SRS
SEii
L 1 | 1 | | 1 1 | —-—
C 1 I T ' 1 1 | e — ::ﬁ!
XI | S | 1 | I [N S i ! z

Fig. 6 Finite element mesh for calculating the vector potential distribution throughout
the magnetic circuit and coil windings of the lens of Fig. 1

o
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Fig.7 A typical finite element for % \
the vector potential formulation [ 2Alzp )
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used where high accuracy is required; a coarser mesh is used elsewhere. Each quadri-
lateral is subdivided into two triangular finite elements. This subdivision is done in two
ways (Fig.3). A typical finite element is shown in Fig. 7. Let the values of A, at the
vertices of the element be denoted by A;(z,r;), Aj(z;ry) and Ay(z,r). Making the
first-order finite element approximation, i.e. assuming that Ay varies linearly over the
element, we find that the contribution AF from a single element to the value of the

functional (16) is

AF = }'S&( g b.A.)z +( 2 d.A.)Z - %Javr‘ua( g A1) (17)
Hal\j=1 T i=1 11 i=1

where p = permeability of element, r, = value of r at centroid of element, a = area of
element, b;=r.-r, and d;=z,-z:4+-2a/3r,. In obtaining (17) from (16), we have made
the approximation that JfzM"dzdr = z,™r "a, where (z,,r,) is the centroid of the
element. This approximation is satisfactory provided that the elements are sufficiently
small. Differentiating (17) gives

) - [0 -
i %g—{bibj + dydy)

and 6 = - 53, mroa

where F

(19)

Using (19), a 3 x 3 matrix F;; and a value of G; are calculated for each finite element.
We then proceed to set up the finite element equations, using exactly the same reason-
ing as for the scalar potential formulation. In this case, each finite element equation
has the general form

8
m=0 '

where each coefficient P, is the sum of appropriate elements of F;;, and Q is the sum of
appropriate elements of G;. The boundary conditions are that Ay = 0 on the outer
boundaries EX, EH and HZ (see Fig. 6), and Ay = 0 on the axis XZ. These boundary
conditions are inserted into the finite element equations. The equations are then
solved, as described in Section4, to give the vector potential Ay at each mesh-point.
The magnetic flux lines (lines of constant rAy) can then be plotted on a computer graph
plotter, as shown in Fig. 8, and the flux density components at any point can be
obtained by numerical differentiation of the computed mesh-point potentials.

3%
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Fig.8 Computed flux distribution throughout the magnetic
circuit and coil windings of the lens of Fig. 1

An analogous technique is used for calculating two-dimensional vector potential
distributions in planar (x,y) coordinate systems. In such cases, instead of using the
functional (16), the following functional is used:

: =ff%'z% [@qz s <g—§z~f]- JZAZE dx dy (21)

where J, and A, are the z-components of J and A respectively; the expressions (19)
are replaced by

e 1
F‘IJ = zl-l'g (b‘th + cicj} )

and G.I =“%’ JZ da

where p = permeability of element, a = area of element, b;=y.-y, and =Xy -X;; and the
magnetic flux lines are lines of constant A_. In all other respects, the calculation of
vector potential distributions for planar fields is identical to that for rotationally-
symmetric fields.
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4. Methods for solving the finite element equations oI 1 MT- coLLy g
Let there be 1 x J mesh-points in Fig.2 or Fig. 6, and let them be numbered aoH 1> (1, Dl:u'ij (1,3) SRS 5 (1,0)
sequentially, column by column, as shown in Fig. 9. Then, if the finite element equa- s
tions for each mesh-point are arranged in this same order, the matrix of coefficients will (2,0¢ . i
appear as shown in Fig. 10. This matrix contains nine non-zero diagonals, correspond- ] & (3,0
ing to the nine coefficients in each equation. This matrix will always be symmetric, (3,1)] '
because the constituent finite element matrices F;; (see equation (7) or (12)) are
themselves symmetric. Consequently, only five caefflments need be stored for the
left-hand side of each equation. The equation for the (i,j)" mesh-point can therefore g
be written in the following form: a3
ROW £—""
Pi-1,3-1,5 Vicn,g-1 T PiLg1e Vigger t Paen,gen,3 Vivga
. : c (1,1 0——9 @ (1,)
* P Vg Y PLsa Vst Mg Ve e e, - » :

Fig9 Numbering of the I x J mesh-points column by column

*Pia Ve f PrgaVign t o PLis Vg T G,y (23)
- IxJ \al

The most straightforward way of solving these equations is by gaussian elimination -_-I
and backward substitution, using a symmetric banded matrix subroutine®. This is the 8 -
% : 4 . T -ZERO ZEROS
approach adopted by the author in his programs®. As the gaussian elimination pro- PO e
ceeds, all the coefficients which lie between the outermost non-zero diagonals in Fig. 10 CORTTICIRNTS
become filled with non-zeros. Since the matrix is symmetric, it is sufficient to store EER N ———
only the upper half of the band. Thus (I+2) coefficients must be stored per equation, ‘j N
or a total of (I+2)1J coefficients for all the equations. Hence this method becomes e T ™ e N
very expensive on storage if large nuinbers of mesh-points are used. For example, the
maximum mesh-size which the author has used with this method is 70 x 100 mesh-
points. With each variable stored in double precision mode (8 bytes), approximately 4
megabytes of storage were required; this is feaSIble on a large computer, such as an
IBM 370/168, with virtual storage capability®. Despite the expensive storage penalty,
the gaussian elimination method has the great advantage that the solution is obtained - L]

?;rzz:llgih s; that there are no questions of convergence or choice of iteration parameters Fig. 10 The finite element equations written in m -

arV Q.

ZEROS

Polak’ has greatly alleviated the storage problem for the gaussian elimination Method No. of variables No. of arithmetic
technique by storing most of the band matrix on a disc file, and only operating on a to be stored operations required

small block of the matrix in main storage at any given time. 3

For very large mesh-sizes, it may be preferable to use some iterative techmque, Gaussian elimination (143) 10 Iy
such as successive over-relaxation®, the alternating-direction |mphc:l method , or
approximate matrix faclon?auon techmqueq, such as Stone’s method'? or Dupont,
Kendall and Rachford’s method!!., With such techniques, the storage required is Alternating-direction implicit method 7 1J 20 IJN
directly proportional to the number of mesh-points. The author has experimented with
these techniques, and the general conclusion is that they work satisfactorily if suitable Stone's method 14 1J 40 IJN
iteration parameters are chosen, but in all cases the convergence is slow and no rational
basis has been found for choosing the iteration parameters in the case of complicated Dupont, Kendall and Rachford's method 11 IJ 34 IdN
problems of practical importance. More study is required before the relative advan- ,
tages of each method can be satisfactorily compared. The storage requirements and Table 1 Storage and time requirements for various methods of solving
number of arithmetic operations for each method is summarized in Table 1. the equations (IxJ = no. of mesh-points; N = number of iterations)

Successive over-relaxation 6 IJ 192 IJN
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5. lllustrative examples of computed flux distributions = S on
A useful application of the vector potential formulation has been the analysis of /' el ; \
electron lenses wit_h supercqnducting polepieces‘%. Fig. 11 shows_ a typical example. / f e ;Tm
The superconducting polepieces exclude magnetic flux (the Meissner effect), thus \ i | i
producing a very concentrated focusing field in the centre of the lens. The Meissner \ ‘&& —|; ) ‘
effect is simulated in the program simply by setting the relative permeability of the N\ k ‘\‘ ,| .
superconducting polepieces to a very small value, e.g. 107, NN \ =
' ~ e
The vector potential formulation has also proved particularly useful in analysing a \ /
type of electron lens called a ‘snorkel lens’, which was invented by Mulvey!3. Fig. 12 INCIDENT ELECTRONS
shows a typical example, together with the computed flux distribution. A beam of '
electrons approaching the lens from the left is focused by the magnetic field in front of
the ‘snout’ of the snorkel lens. Since the direct influence of the coil windings on the — _
focusing field must be taken into account, such lenses could not be analysed by previous FOCAL PLANE 7 wh‘m |
finite difference methods which used a scalar potential formulation. The properties of _—= i : / “"«-h:-_-::.\_l |
a range of such snorkel lenses have been calculated by the finite element method, and i ! ﬁ
the results have been published in a recent paper'4. . i-— !I )
i e e : | L))
(5 = — ~\\\\“ *x\‘:‘“—_——’f;/—//’///

Fig. 12 Computed flux distribution for a snorkel lens

6. Solution of non-linear problems

The functionals (3) and (15) are valid only for linear problems, for which the
permeability p is assumed to be independent of the field strength H. In this section, the
method is extended to solve field problems involving magnetic materials with non-linear

POLEPIECE % 7 SUPEELE’;’%JCCE ING magnetization characteristics, such as shown in Fig. 13. We define two quantities U,
— N — ——— and U (see Fig. 13) as follows:
AXIS — A AXIS H1
Ur: {Hl} = fB dH = complementary energy/unit volume
0
(24)
B
u(s,) = lfH dB = stored energy/unit volume
0
B
g 1
I RARRCSES ST
N\~
|
\\\ |
Fig. 13 A non-linear magnetization characteristic, \ / :
showing the definitions of U and U, \ /?t
N\
S / |
N
. T : : . / % >H
Fig. 11 Computed flux distribution in a lens with superconducting polepieces H =
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Then the appropriate functionals to be minimized for non-linear problems are as -

follows:

For scalar potential problems, the linear functional (3) is replaced by

F =fffucdv (25)

and for vector potential problems, the linear functional (15) is replaced by

F =fff(u-i.g} dv (26)

(A proof of the validity of these functionals can be found in Ref. 2.) Since the function-
als (25) and (26) are non-linear, the resulting finite element equations are also non-
linear. These equations have the general form

%{T = FVVps o 0V) =0, i=1,n (27)
where F is the value of the functional, V; is the potential at the ith mesh-point, f; is a
non-linear function of the mesh-point potentials and n is the number of finite element
equations. These non-linear equations can be solved iteratively by Newton’s method.
To do this, an initial approximation to the solution is calculated using a constant
permeability. Let this initial approximation be denoted by [V;[] A set of residuals[r;]
and a Jacobian matrix[]ii]are then calculated, whose general elements are defined as

Ry = Bl ly e 5 (28)

3y %,fj» T e D) (29)
From equation (27), it follows that

SRR LR (30)

3y ggj—gv}(vll,vzl, V1) (31)

To calculate r; and J;;, we invoke the fact that if V; is changed, the resulting change in F
is due solely to changes in the contributions AF to the functional from the twelve finite
elements E,-E,, in the neighbourhood of V; (see Fig. 3). Thus from (30) and (31) we

obtain
_ (3aF (aaF) (aaF)
r., = + + .. 4 (32)
L (W'I_)El W?Ez Wiy,
2 2 2
3~ AF 3"AF 3 AF
sy = (i), + G, o v () )
1 Mydlgle NV HNgle, Py /e,

r; and J;; are calculated for each finite element equation using (32) and (33). The
changes fa“Vi to be applied to the mesh-point potentials are then calculated by solving the

matrix equation
[ [#] = - [n] (34)

Magnetostatics A6

The matrix [Ji‘]has the same symmetric banded structure as the finite element coeffi-
cients, and so (34) can be solved using any of the methods discussed earlier. Having
solved for [:&Vl], the new approximation to the potentials is given by

11 - I

"] - [ ]+ [‘“’1] (35)
[Vi"J is then used as the starting point for the next iteration. This cycle is repeated until
all the residuals are negligibly small. The resulting potential distribution is the solution
of the finite element equations (27). As an example, Fig. 14 shows the flux distribution
in the lens of Fig. 1 at a very high excitation, computed using a non-linear magnetiza-
tion characteristic. Comparison with the corresponding linear solution of Fig. 8 shows
that the magnetic saturation at high excitations produces non-linear flux leakage in the
back bore of the lens.

Fig. 14 Computed flux distribution for the lens of Fig. 1 under saturation conditions

L1
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7. Solution of problems involving permanent magnet materials

In Section 3, we described how to solve field problems involving magnetic materials
with linear magnetization characteristics of the form

B=ul .

where B = flux density, H = field strength and » = permeability. In this section, we
extend this method to the solution of problems involving permanent magnet materials

with magnetization characteristics of the form
= 37
B = u(H+H) (37)

where H, = ‘coercive field strength’, which is assumed to be a constant for the materi-
al. The type of magnetization characteristic corresponding to (37) is shown in Fig. 15.

.
d

Fig. 15 Magnetization characteristic
for a permanent magnet material

B -P[H + H.)

—
4—-—nuj

d

> H
/(__Hc_)

For the scalar potential formulation, we proceed in a manner analogous to that
described in Section3.1. The scalar potential V is still defined as in equation (1), but
since B and H are now related by (37) instead of (36), the differential equation (2)
must be replaced by

div I:u (grad V-+ gc}] =0 (38)
The functional whose minimization corresponds to the solution of (38) is
=ffflgu(grad‘-'i-gcl.(gr‘adv+ﬂc)dv (39)

For rotationally-symmetric systems, (39) becomes

< o (@

where H,, and H_, are the z and r components respectively of the coercive field H...
For a triangular finite element, the contribution AF to the value of the functional (40) is

3 2 3 2
AF = unroa{[zl( }Jlbi\'i) + Hzc] + [’Z%(.Elciv'i)+ Hrc] } (41)
i i=

where r, a, b; and c; are as defined for equation (5). Differentiating (41) gives

+ QL+ He }2] 2qr dz dr  (40)

2
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[%%15] - [F) ["f] + [ (42)
—2“5) {b b - €;C; L)

G, =
and i urrg (byH, . + ciHe)

The 3 x 3 matrix F;; and the 3-component vector G; are calculated using (43) for every
finite element. The finite element equations are Lhen set up using F and G; in exactly
the same way as described in Section 3.1.

where

] (43)

For permanent magnet problems in planar (x,y) coordinates, the expressions for F
and G; corresponding to (43) are

- u

and i ’ (44)

I JULWE, Cifye)

where b; and c; are as defined for equation (12), and H,. and H},c are the x and y
components of the coercive field H.

For the vector potential formulation for permanent magnet materials, we rewrite
(37) in the form

B.) (45)

_1
H=iilB- 8

where B, = pH_ is the ‘remanent flux density’ (see Fig. 15). The vector potential A is
still defined as in equation (13). However, since B and H are now related by (45), the
differential equation (14) must be replaced by
l - ] =
curl [u (curl A - B)) Jd (46)
The functional whose minimization corresponds to the solution of (46) is

Sf[A a2 @rin-s)-aa] @ @)

For rotationally-symmetric systems, (47) becomes

2 2
=[/{2%(§&+Bcr) +(3—Aﬁ-«rﬂﬁ.-B )]-JH}andzdr (48)

where B, and B, are the z and r components of the remanent flux density B.. Fora
mangular finite element, the contribution AF to the value of the functional (43) is

i 3 72 3 2 3
AF = Irga )| 1 1 ) -2
” { Za ZlbiA Ber| * |2 ifldiAi Bez[ (3™ 02 1.51A1' (49)

where r, a, b; and d; are as defined for equation (17). Differentiating (49) gives

] - [ 2] ¢ o e
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where
ol — m .+ d.d.
F1J 2ua (biba 4 :I)
d 2 (51)
an _ Tr _ _
6; = T (byBgy - diB,) 3 Jgmrod

The expressions (51) then replace the expressions (19) in the generation of the finite
element equations.

For problems involving permanent magnet materials in planar (x,y) coordinates,
the expressions corresponding to (51) are

1
— P s b. ¥ C.C,
s (b1bJ c1cJ} _—

= —1 - 1
G, P (b,chy c.B ) - 34,2

F‘ij

j 7 CX

where b;, ‘;i and J, are as defined for equation (22), and B, and ch are the x and y
components of the remanent flux density B,.

A typical application of this technique is shown in Figs. 16 and 17. It is a solution
in planar (x,y) coordinates of a magnetic circuit containing an outer soft iron yoke of
square cross-section, four tapered permanent magnets oriented so as to produce a
quadrupole field, and four tapered soft iron polecaps. This might represent, for
example, a permanent magnet quadrupole electron lens, or a permanent magnet
four-pole stator for am electric motor. Fig. 16 shows the computed scalar potential
distribution and Fig. 17 shows the computed vector potential distribution.

8. Calculation of the fields due to toroidal deflection coils inside rotationally-symmetric
electron lenses

The concept of deflecting an electron beam by a toroidal deflection yvoke located
centrally inside a magnetic lens (Fig. 18) as a means of reducing the aberrations of an
electron beam scanning system was first proposed by Pfeiffer!3. In such systems, the
rotationally-symmetric magnetic circuit of the lens has a significant influence on the
deflection field. A method which has been devised for analysing such systems!® will be
summarized here. The current loading in the yoke is first expressed as a Fourier series
of harmonic components, thus:

f(e) = (NI); sine + (NI)gsin30 + (NI)g sin 56 + ... (53)
where (NI) represents the number of ampere-turns in the n' harmonic. Then it can

be proved that the field components due to the n'P harmonic of the current loading
have the general form: .

= 3¢ = 2% ,
A 57 COS ne H'r‘ 5 Cos ne
1 (54)
- 3, 3¢ 3, 30 .
H, = = = I:W i) + E(ur*—az):l sin ne

where @ is a scalar function of z and r, and u is the permeability at any point. @(z,r)
satisfies the following differential equation:

2
__3_( gi) =4 E¢ + %{Fr:_:) = _h (NI)D a(r,z) (55)
r
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Fig. 16 Computed scalar potential distribution in a permanent magnet quadrupole lens
(the permanent magnets are indicated by cross-hatching)
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Fig. 17 Computed vector potential distribution in a permanent magnet quadrupole lens

(the permanent magnets are indicated by cross-hatching)
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Fig. 18 A toroidal deflection coil inside a rotationally-symmetric magnetic electron lens

Fig. 19 Computed distribution of #(z,r) for a toroidal-coil-in-lens problem

2

Fig. 20 Computed deflection field at the axis for the system shown in Fig. 19

Magnetostatics A6

where g(z,r) = 1 inside the cross-section of the deflection coil and g(z,r) = 0 outside
the coil, and ®(z,r) = 0 on the outer boundary and also on the axis. The functional
whose minimization corresponds to the solution of (55) is

j[{ur[ 28 +(!‘i) v (@ )J 200 (NL)y *9}drdz (56)
r

The functional (56) can then be minimized numerically using the finite element method
to give the function ®(z,r), and then the field components can be calculated using (54).

As an example, Fig. 19 shows the computed distribution of @(z,r) for the first
harmonic (n=1) of a typical toroidal-yoke-in-lens problem, and Fig.20 shows the
corresponding computed transverse deflection field at the axis.

9. Conclusions

The principles of the finite element method and some of its applications in solving
boundary-value static magnetic field problems have been described. The method can
handle complicated magnetic circuit geometries, finite permeabilities, magnetic satura-
tion effects and the properties of permanent magnet materials.
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Discussion following paper:

(Chiwa, Cambridge) In the field of electron optics, the guantities
required are the magnetic field and its derivétives with respect to Z
rather than magnetic potential. Therefore, it is necessary to carry out
numerical differentiation to obtain these guantities; losing sifnificance
in doing so. How do you cope with this? Could you give me some idea of
the accuracy of the calculated field in terms of the number of mesh points,

required storage, and computer time?

(Munro, IBM, USA) I have carried out the numerical differentiation with
respect to Z by using a cubic spline technique which ensures continuity

of the first and second derivatives. For most applications, I generally
have used a mesh of about 25 x 50 points, which generally enables the
axial field distribution to be calculated to an accuracy of about 1%.

For this mesh size, the storage required on an IBM 370/168 is approximately
250 kilobytes with all the variables stored in double precision mode, and
the solution time is of the order of a few seconds. The maximum mesh size
I have handled is about BO x 100 points. In any given application, the "’
accuracy of the results can be estimated by first solving the problem with
a relatively coarse mesh, and the repeating the calculation with twice as
many mesh points in each direction. 1In the latter case, the result will
be about four times more accurate than in the former case, and this

enables an estimate of the upper bound of the errors to be obtained.

(Diserens, Rutherford) When you calculate the fields from potentials do
you apply any smoothing at this stage? How many points do you use in

each field calculation?

(Munro) I have generally calculated the field distribution along the
axis using a cubic spline technique which ensures continuity of the first
and second derivatives. 1In this technique, I have not used any initial
smoothing of the potential values at the mesh points. 1In the case of
field componerts at internal mesh points, I have calculated the field
components at the centroid of each quadrilateral region using the computed

potential values at the four corners of the guadrilateral.

(Trowbridge, Rutherford) The calculation of magnetic lens aberrations
requires the integral of the field to be calculated through the fringe
field of the magnet - how did you ensure that the remote boundary in your

computer model was sufficiently far away?

Magnetostatics A6

(Munro) No special techniques were used, however the position of the
external boundary was varied to ensure that this effect could be made

negligible.

(Jacobs, CERL) Dr Munro illustrates some interesting comparisons of
various direct and iterative solution procedures. For the nine diagonal
coefficient matrix with its special symmetric sparsity layout, the
Strongly Implicit Procedure (Stone's method) would generally use a
factorization into lower and upper triangular factors each with only

five non-zero diagonals. Alternatively the factorization of the standard
five diagonal matrix would be used in conjunction with a ";odified“
iterative scheme, where in essence, the other diagonal coefficients are
relegated to the right hand side of the equation to add to the excitation
source term. The important attribute of SIP is the marked lack of
importance of accurate parameter selection. However, I believe the very
special form of the matrix enables Gaussian elimination to be used with
only very limited fill in. The method would eliminate the elements of the
lst column using the first row, then the elements of the (I + l)st column
using the (I + l)st row; etc. The total number of operations is then
proporticnal to IJ.

(Munxro) I appreciate your comments on alternative implementations of
Stone's method as it applies to nine-point equations, and I intend to try
out both your suggestions, namely using triangular matrices with fine non-
zero diagonals instead of four, and relegating the potentials at the
corner nodes to the right-hand side of the equation. As regards your
comments about the ability to perform Gaussian elimination of my banded
matrix equation in a number of operations proportional to 1J, I do not
think that this is possible, but I would very much like to hear a detailed
algorithm for your proposed scheme, since if what you suggest is in fact
possible, it would certainly represent a significant breakthrough in the

direct solution of banded sparse matrix equations.

(Fox, Oxford) (1) I would like to ask if you used any special ordering
in the equations for Gauss elimination. This is important, and for example
the "optimal" ordering of F A George involves much less computer time and
storage. (2) Following up Dr Jacob's remarks on the Stone method, it
appears that the parameters are less important than the B matrix in

LU = A + B, where L and U are your triangular matrices. It seems to be

desirable, in current language, for A + B to have second-order comparability

L5
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(Fox, continued) with A, and I am not sure whether or not you looked

into this. (3) You also mentioned a method -by Dupont et al. They virtually
put a parameter on the right-hand side of the equations, and Stone puts one
on the left. I have heard of recent work in Bmerica in which somebody is
trying to get the best of both werlds by putting parameters on both sides.

I haven't seen the paper, but I could give you a reference.

(Munro) (1) I simply ordered the equations by numbering the mesh points
sequentially column by cclumn. I had believed that this ordering would
result in the most efficient Gaussian elimination, because of its topo-
logical simplicity. However, if the method of George is more efficient, I
will be very interested to incorporate it in my programs. (2} Up till
now, my investigations of Stone's method have been somewhat limited and I
am not sure whether the B matrix I have chosen ensures second-order
comparability of (A + B) with A. I intend to investigate this as a
result of your comment. (3) The method of Dupont et al does in fact
allow for the possibility of variable iteration parameters on both sides
of the equation. I will be interested to receive the reference on the

recent paper published on this subject.
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NUMERICAL MODELS OF THREE-DIMENSIONAL END WINDING ARRAYS

by
C.J. Carpenter* and D.H. Locke*#*
Abstract

The three-dimensional magnetic fields in machine end regions can be
most conveniently solved in differential terms by computing a magnetic
scalar potential. The complexity of the end winding shapes makes it
difficult to translate the three components of the current density vector
into suitable field sources in a simple and systematic way. For many
purposes it is convenient to treat the field in travelling wave terms, and
it is necessary to extract the fundamental and harmonic components of the
sources. The paper examines the general problem of tramslating complex
current distributions into equivalent sources for a numerical scalar
potential computation, The method is applied to a turbogenerator end

region and illustrated by field solutions.

Principle symbols

B magnetic flux density 5 mesh coefficient matrix

F network branch m.m.f T electric vector potential (egqn. 1)
H magnetic field strength ¥  separation direction

J current density V  differential vector operator

m harmonic number ¥ permeability

R, real part of complx quantity @ magnetic scalar potential

r,8,2z cylindrical coordinates n,68,t local coordinate system (Fig. 1)

indicates phasor quantity T  indicates vector quantity

T', " T functions defined by equations 2 and 16 respectively

* Electrical Engineering Department, Imperial College, London, SW7 2BT

*% C,A. Parsons and Co, Ltd., Heaton Works, Newcastle upon Tyne, NE6 2YL.
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1  INTRODUCTION

The magnetic fields in the end regions of electrical machines are
generated by winding end-connections of complex shape, and these give a
three-dimensional flux pattern whose computation is of increasing
importance in the design of turbogenerators and other large machines,
The field in the vicinity of the windings can be predicted satisfactorily
by numerical integration using current elements and simple image sources
to model the nearest iron surface, and this method has long been used to
obtain winding inductances and conductor forces. It is much less well
suited, however, to the problem of predicting the fields and losses in
the stator core, and in other materials exposed to the leakage field.
Differential methods are then more conventient, preferably formulated in
terms of a magnetic scalar potentialls?, since this reduces the magneto-
static problem to the calculation of a single function with simple and
well-behaved boundary and interface conditions. Eddy currents are easily

incorporated?s3,

The use of a scalar function transfers attention from the problem of
making three-dimensional field calculations to that of describing their
sources. The current density vector J within the end windings has three
components defined by the machine geometry. Each component varies in a
complex manner, but not independently of the others. The extraction and
translation of this data into a form suitable for a numerical model is
tedious and prone to error. The sources can be expressed in terms of
travelling waves, thus reducing the field computation from three
dimensions to two, but this requires the extraction of the J components
as a function of position in the end winding cross-section. The analysis
can be carried out independently for many different sections through the

winding, but this is often unnecessary.

It is shown in this paper that the practical problems of providing
an economic description of the current density vector in an arbitrary
winding configuration, and of translating these sources into a scalar
potential computer program, are closely related. Although the principles
of the field transformation from a solenoidal to a scalar potential form
can be stated very simply in terms of a separation of field compoaentsl’z,

its practical application in a general purpose program, particularly one
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with irregular elements, requires an operational and systematic formulation
of the various ways in which the sources can be generated. The very
flexibility of the method, and the range of choice in applying it, can be
an embarrassment in preparing algorithms, and one objective is to combine

this flexibility with the statement of precise computational instructions.

For present purposes it is assumed that the currents are all specified.
The principles discussed are directly applicable to three-dimensional eddy
current problems, and some aspects are examined in a companion paper“.
The wider implications, however, require a more extensive treatment than

can be given here.

Outer covers.

Core
frame.
Stator end
windings.
Stator

core.

- Balance
ring.

Rotor end windings. Rotor shaft

Figure 1.. Turbogenerator end region.

2 CURRENT- DIS BUTION AN ESCRIBING FUNCTTON.

2.1 Machine geometry

The cross—sectional geometry of the machine, (Figure 1), including
both stator and rotor end windings, may be assumed to be inwvariant with
angular displacement &, but the current distributions within the two
widings vary with 6 in different ways. The stator end winding is formed

in a two-layer configuration in which all the coils usually, although not

Magnetostatics A1

invariably, have the same shape. The rotor coils are confined to a single
layer and form a concentric end winding, as illustrated in the developed
view shown in Figure 2. The m.m.f. distribution produced by both windings
varies approximately sinusocidally with © in the airgap, but the variation
in the end region depends on the actual coil shapes, and the separation of
the two layers of the stator end winding. The problem is to translate this
distribution of current carrying conductors into a numerical form in terms
of some arbitrary distribution of nodes forming a rectangular, triangular

or some other irregular two or three dimensional mesh.

2,2 Current describing function

The simplest describing function, T, is one defined by:

curl T = J svwes(l)
where J is the current demsity vector. T is an electric vector potential,
or analogue of the magnetic vector potential 4 (defined by curl 4 = B),
and, just as 4 provides a convenient flow function description in two-
dimensional transverse magnetic field problems so the vector I can be used
in a similar way by limiting it to a direction n normal to the plane in
which the current flows. That is, everywhere in the end windings a local
coordinate direction n is specified at right-angles to J and to the
axis, and T is limited to the n direction (Figure 1). This conditionm,
namely:

I'xn=40 cavaall®)

defines a particular T function consisting of a single quantity 7' from
which the three components of J can be derived. For example, J, and Je

are given by:

r
J,= -% %g_ cesa(3a)
3 r
Ja = -—a-'jt-- .---(3b)

with the coordinate sequence n, 8, ¢ (Figure 1), and the components of
the J vector derived in this way necessarily satisfy the current
continuity condition:

div d =0

T'" is constant outside the windings and here is assigned zero value.
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The requirement imposed by equation 2 is possible since the divergence where R, -—} denotes the real part., The harmonics give travelling waves

of T' is otherwise undefined. Taking the divergence of T' x n: when transformed to a stationary reference system. Because of the symmetry

V(T xn)=n. (9 xT')=T.(Vxn) =20 of the winding, the phase angle is not a function of 2, and there are no

. even harmonics, The first seven terms of Tr:?(a), together with the major
from equation 2. I''.(V x n) is zero, so that equation 1 and 2 together

require that:
na.d=0 vesnalA) .
I 4
a condition which n has been chosen to satisfy. The divergence of T’ is ™ 79

zero in the conductor interior where the winding is flat, but is non-zero 6:0-

. . sy s ~Fundamental.
at any bends in the winding and also at the winding surface. 5:0-

3
Actual
t for z) . 3.0+

207 Third harmonic.

tlorz)

Rotor end winding.

: o il J

109

Rotor ; pole.

Figure 2. Rotor end winding drawing showing idealised conductor
shapes and T'(8,z) map. Contours of equal T' plotted

: ™ Third harmonic.
for equal increments of T

054

2.3 Rotor end winding

A drawing of the rotor coil ends (Figure 2) can be interpreted as a -
[
map of lines of constant 7' as a function of £ (or 2) and 6, This map is 0- tlor 2)
valid for all n (or r) values in the winding, and T' does not vary in time ; . .
. b T Slot ripple harmonic.
in a reference system moving with the rotor. In practice the variation of

Seventh harmonic.

T'(8,s) in both the 6 and z directions is discontinuous in slope because ‘| — \Fifth ——
of the coil insulation, but T' is everywhere defined, -0-5-
A harmonic analysis of m.m.f. wave in the 8 direction for different Figure 3. Rotor end winding harmonic analysis.
' T (1)
values of 2 gives the magnitude T:;: or the m th space harmonic: T'(t) function and harmonics, T (t),

Tn'ffr,e,z) = Re{f};(z} exp(—jnﬂ)} m=1, 3,5 swwnaf)
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ripple harmonic (of slot frequency), are plotted in Figure 3 for a typical
rotor end winding., The two current density components, Jz (ox Jt? and JB
are given by equation 3 and this shows that, at agiven radius r, Jz is

proportional to T' but phase shifted;

(Jgm = =dnTp/r esses(B)
where J denotes a phasor. The T' and J 3z diagrams are thus nearly

interchangeable.

2.4 Stator end winding

The stator end winding is of more complex shape, but the n, t
coordinate grid can be chosen arbitrarily since it provides only an inter—
mediate step in the process of expressing 7' as a function of r and z.

The constant 7' contours pass across the winding cross—section along the
copper—insulation boundaries in the regions where Je is non-zero. This is
in the sloping section (Figure 1) where the directions of the 7' contours
are defined by a rectangular n,t grid in which 7' is independent of n. 1In
other parts of the winding 7' is constant. The T'(t) values can be
inserted from a knowledge of the T'(8) function in the airgap (calculated
from the airgap current distribution, using equation 3a), together with a
diagram of the end winding coil shapes drawn in a typical 8, ¢ surface
(Figure 4), As in Figure 2, the coil shapes define the lines of constant
T' in Figure 4, but the stator currents pulsate sinusoidally in time and
the T' values are instantaneous when viewed from a stationary reference
point. In general the actual coil shapes should be inserted in Figure &,
but a linearised winding outline such as that illustrated is sufficient

for most purposes.

If the coils all have the same shape, so also have the constant T'
contours, and T'(%) varies only in phase. That is, the typical term of
the Fourier series is now:

-~ )
I‘r;!(r-,a,ai = i;?;exp;i[‘pmrt) —ma] T ]

-

in which the magnitude T,:; is not a function of %, and is given by the
Fourier coefficients computed in the airgap. The lines of constant phase
¢ are given by the coil shapes, 6( ¢/, so that these shapes define ¢m(t).

The function is approximately piece-wise linear with few segments as
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Sinusoidally distributed winding currents.

lzero lpeak Jzaro

t
’ Figure 4. Stator end winding T'(6,t) map.
8
n

Contours of constant T' plotted for
equal increments of T'

indicated in Figure 4. Used in association with the n, tgrid, it gives

Tr;a in terms of r and =z

3 SCALAR POTENTIAL SOURCES

One of the roies of the electric vector potential T is that of a
current describing function for end widings of large cross—section., It
extends to these the concept of m.m.f., distribution which is
conventionally associated with current sheets, or with windings in air-
gaps. 7' is essentially the m.m.f. per unit thickness of the winding.

But it also provides directly the transformation from the solenoidal field
to a scalar potential equivalent. As the field H produced by the windings
is given by:

curl H = J iR

it follows from equation 1 that, for all T functionms including I'':

H=1T- grad PP G )
and the problem posed numerically is that of computing f. Since:
div B=0 s (10)
the equation to be solved is:
V. (u(T - v2)) =0 vewsil118)

Commonly T is non-zero only inside windings of non-magnetic material,

which reduces equation lla to:
v2q = V.I <aaa(11b)
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so that the equivalent magnetic poles, which are the sources of @, are

generated by the divergence of T.

One way to compute {} is to find the equivalent pole distribution from
T, and model this in the usual ﬁay as a Poisson—type field source in finite
element, or finite difference, terms., But this gives dome difficultly in
formulation, and is liable to lead to unnecessary numerical errors, as
div T 1is a discontinuous function confined largely to the surfaces of the
windings, whereas the Ppisson—type source function is usually assumed to be

continuous over the elements in which it is non-zero.

An approach in terms of branch quantities provides a different method
of deriving the node equations and a further insight into the nature and
accuracy of the @ model., It shows that, in two-dimensional problems in
which a first-order finite element, or finite difference description is
used, the accuracy is identical to that of a magnetic vector potential
calculation on a network of similar size; more specifically, one which is
the dual of that chosen for the 2 solution®, Since T can be regarded as a
nagnetic field component:

fg . dl = Fy, PPN ¢

is an m.m,f, which can be evaluated for each mesh branch b, It follows
from equation 1 that the sum of the Fy quantities acting around any mesh is
equal to the current enclosed, which is the current associated with the
corresponding node in the dual network. Hence the branch flow quantities
in the Q model are the same as the corresponding branch potential differ—
ences in its dual, or magnetic vector potential equivalent® (provided that

the problem is two-dimensional so that a simple dual can be derived).

Where Fy is zero, the network models the second term in equation 9 in
the usual way and we obtain, either by finite element of finite difference

methods, a set of nodal equations:

el
in which the off-diagonal terms of the coefficient matrix (S)represent the

branch "conductance" values of the network®, so that the equation for node

p can be written s (9 -Q.)=0
; pk''p Tk
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In regions where Fy is not zero, the effect of the additional m.m.fs. is

to change the branch quantities, giving:
S .0 -9, +)S . F, =10 P
% ok Tp 13 % vk pk (13)

as the discreet form of equation 11, Calculating the sources of @
requires the integration of T'' along all the element edges, or lines

joining adjacent nodes.

When using rectangular meshes, it is often inconvenient or impractical
to choose them in such a way that the winding surfaces intersect the
branches only at the network nodes. The branch-source methed is then both
the simplest and the most accurate way of deriving the source comnstant in
the node equations. The result expresses the very simple requirement that,
to define a scalar potential function, the current linkages with the net-
work meshes must be replaced by Fj sources chosen so that their algebraic
sum around every mesh is equal to the current linkage which is replaced.

7' ig one of any number of I functions defining a set of branch sources
which will meet this condition. A general rule for defining the sources

is to imagine that the current carrying conductors are separated from the
network by tearing. As the current is withdrawn, we place in each inter-
sected branch, an m.m.f. source F; €qual in magnitude to the current inter-—
secting it. These sources are the network equivalent of dipoles, and a set
of dipoles (of dipole moment T') defined in this way constitutes a magnetic
shell equivalent of the winding!,5, When the windings are replaced by
current sheets, F represents the magnitude of the potential discontinuity
across a current sheet (a quantity which has previously2 been denoted Afl;
however this notation is unsatisfactory when the current is spread out in

a winding of finite thickness).

4 SOLUTION OF TURBOGENERATOR END REGION FIELD

Pundamental travelling wave solutions have been computed in cylindrical

coordinates by the methods described in Sections 2 and 3, Equation 11

becomes: e - )
1 2 L1 - 3 I 7 m-
Fﬁ“r[ﬁ?“T;’] +EU{E Té] u;-z—fr‘. seswne(14)

since the sinusoidal variation of 2 with & demands no variation in u in

this direction. The travelling-wave term on the right-hand side of
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equation 14 can be treated as a source term in the usual way, and gives
network branches to ground. The remainder can be expressed numerically in

the manner described for equation 11.

The r, # plane mesh used for these solutions was square, with a node
spacing equal to one half of the machine airgap length., Eddy current
effects" have been omitted and all boundaries are assumed to be infinitely
permeable except for the rotor end cap, which is non-magnetic (the effects
of saturation in a magnetic and cap have been studied separately in a
three-dimensional mesh). When the machine is on load the amplitudes, and
relative angular positions, of the stator and rotor m.m.fs, vary with
changing load, but by ignoring saturation the effect of each winding can be
studied separately and the two load solutions combined linearly after
appropriate scaling and angular displacement. The rotor end winding field
is required in only one r, = plane since this winding generates a monophase
flux pattern (equation 5), but the stator end winding field has both real
and imaginary parts (equation 7). These three basic solutions are stored
and combined as needed to give the field under any given operating
conditions., Radial and axial flux densities are obtained directly from
equation 9, whilst in the circumferential direction the flux density is
given by: . .

B = jul veees(15)

Flux density components are commonly required for comparison with measure-

nents, but since all three componetns are complex (requiring six field plots

in all) there are difficulties in displaying them diagrammatically).

Figure 5 shows the Q equipotentials plotted in the plane of peak
winding m.m,f. (acting in the airgap) under short circuit conditions, when
the two windings act nearly in opposition. The flux density maps which are
reproduced in Figure 6 give the magnitudes of the three flux density phasors
when the machine is operating at rated load with rated terminal voltage.
These diagrams show contours of equal flux density, plotted without regard
to phase angle. Comparisons of flux density calculations such as these with

neasurements will be reported elsewhere.
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5  ALTERNATIVE SEPARATION METHODS

The zf vector has only one component in the local coordinate system,
but its direction changes with position in the stator end winding. This
complicates the computation of F, and the combination of I and grad Q
within the elements when ¥ is required, particularly when using a tri-
angular instead of a rectangular mesh, There are then some advantages in
separating the two roles for I'' using one T' as a current describing
function.and another, T", to provide input data for the field calculation.
Various possibilities are currently being explored, By withdrawing the
end winding current in a direction orientated relative to the r, z instead
of the local n, t coordinates, T" can be given a constant direction. The
current may, for example, be withdrawn in the -2 direction towards the
stator. Alternatively it can be withdrawn in the -r direction towards the
axis, and then in the -z direction through the airgap, giving some advant-
ages in accuracy! since I approximates to the required H field in the
airgap. There are also various advantages in reducing the winding to an
equivalent current sheet by first withdrawing the current inwards parallel
to the n, instead of the #, direction in Figure 1. This replaces the
distributed current by a simple scalar potential discontinuity, together
with additional sources whose effect is small, so that the accuracy with
which they have to be specified is much reduced. The current sheet
approximation provides a convenient idealisation of the winding in several
respects, and by carrying the withdrawal in the n direction further, the
two layers can be reduced to a single current sheet as the major field
source, together with additional sources whose effect is relatively

localised.

These possibilities require a more general method of general method of
generating T than that defined by equation 2, This is the only simple and
convenient way of generating a describing function, but for other purposes
the condition imposed by equation 4 is too restrictive., Because of the
freedom of choice in the divergence of T, any number of different functioms
can be defined to satisfy equation 1., The magnetic shell principle offers
useful guidance, but it is not easily converted into an algorithm for
constructing the scalar potential sources, The simplest way of providing

for a more general orientation of the T vector is to define a direction
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in which all the currents are withdrawn, using the tearing principle stated
in section 3. The direction ¥ can be aligned parallel to one coordinate
axis; for example, choosing w in the % or 0 direction generates the same T'
function as before. One consequence of equation 2 is that T' can be
obtained by withdrawal in any direction within the surface defined by the

n vector. This property we now relinquish.

The withdrawal concept shows that there can be no component of T" in the
withdrawal direction, as no network branch orientated in this direction is
intersected or "torn" by any current, That is, having chosen the direction
w, we define T" so that:

. w=20 oo eins(16)
This, coupled with equation 1, is both a possible and a sufficient
definition of a set of branch sources (from equation 12) equivalent to the
current linkages which they replace. Two comnsequences of the replacement
of equation 2 by equation 16 is that J can have any arbitrary direction
relative to w, and T now has two components, whereas it was previously
restricted to one in the local coordinate system., The modified definition
is particularly important in three-dimensional eddy current problems in
which the direction of the J vector is, in gemeral, undefined, but here

the treatment is restricted to magnostatic aspects.

From equations 1 and 16, it follows that:

dxw= (wv) I sanaaC1TY
and the Tg and T; components can be constructed by dividing equation 17 by

the magnitude of w and integrating:

Tf = Tg = Jzi x dw eenea(18)
Where J is zero 7" is constant, and islassigned zero value in the region
'upstream' of the winding, that is, before the displacement vector w inter-
sects it: T"”, and hence F, are then completely defined. Equations 16, 17
and 18 express symbolically the possibility of defining any vector T to
satisfy equation 1 by suppressing one component, leaving the other two
defined independently of each other by one-dimensional integration. If w
is chosen so that it is parallel to one of the coordinate axes (although
not necessarily the same one throughout the withdrawal process), the F

quantities are obtained directly in the branches of a rectangular network.

5k
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For example, if w is in the -3z direction in Figure 1, equation 3 is then

replaced by:

i

JP=--{133T3 veess(198)
"

Jo=~ 33'*; veees(19D)

(from equation 17), The T" function for the rotor winding is the same as
T', since Iy is zero, and when using a two-dimensional travelling wave
description, T" due to the stator winding consists of only one component,
T7, in the plane in which the solutien is computed. 7 depends on Jg,

which in turn, is given by equations 3 and 7:
= —a|3%m|my
Je J[T]Tm .-.-.(20)

where the ¢(%) curve is the coil shape shown in Figure 5.

Only one component, T; is needed to compute F. The other, Tg, affects
the H vector in the peripheral direction, and hence the travelling wave
term on the right-hand side of equation 14, This becomes:

u-ﬁ—%=u[§-é§5’é’] savien (21)
so that, in network terms, Tg is equivalent to generators connected in
series with the branches to ground. The withdrawal in the —2 direction
would normally be terminated at the stator lamination surface leaving a
current sheet which is represented by a simple scalar potential discon-

tinuity whose magnitude is everwhere specified.

6  CONCLUSIONS

It has been shown that the problem of describing a three-dimensional
current distribution economically is closely allied to that of translating
the field problem into magnetic scalar potential terms. The three
components of the current density vector can be replaced by a single
current describing function, 7', which corresponds to a (scalar) current
flow function when T' is appropriately defined. This extends to bulky
windings the simple potential-jump concept associated with current sheets,
and it assists the production of a numerical description of the current
distribution from the actual winding geometry. The sources of the mag-

netic scalar potential,?, can be derived directly from 7', but it is
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sometimes more convenient to use for this purpose a less restrictive way
of generating the T vector. Both methods can be stated concisely in

vector terms, and hence translated into algorithms.

The method has been used to compute turbogenerator end fields, and is
illustrated in these terms, but is applicable to all magnostatic problems
in which the current distribution is specified. The replacement of T' by
alternative T" functions is, however, particularly appropriate to three
dimensional eddy current problems in solids, where the direction of the
current density vector is not specified, as distinct from laminated

materials where T' is at right angles to the plane of the laminations".
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Discussion following paper:

(Trowbridge, Rutherford Lab) Does the computer program based on

your T junction method take into account iron?

Has the technique any advantages over other methods ie Biot Savart Law

interpolation in the special case of conductor fields ?

(Carpenter, Imperial College) Yes, the results described include the
effect of unsaturated iron surfaces, and we have made separate studies
of saturation effects in highly saturated parts. Here a full three-
dimensional mesh is necessary in place of the travelling—wave
approximation, which depends on linearity. Usually T is zero inside
the iron, but the only effect of removing this restriction is to add the

T vector in equation 9 when calculating B from the B/H curve.

When there is no iron present them I think there is usually no advantage
in any other method over the simple Biot—Savart (or Neumann) type of

integration.

Occasionally a T vector can be easily constructed which is a close
approximation to the required field, and the grad @ term then represents
a small correction. This has obvious advantages. Examples are given

in reference 1 of the paper.

(Polak, NV Philips) 1Is there any comparison between calculated and

measured data which gives an idea of the accuracy?

(Carpenter) Yes, we have made comparisons and we hope to publish these
shortly. It is very difficult to summarise them in any brief statement
because the results depend on the position at which B is measured, the

component measured, and on the magnitude and phase angle of this load on

the machine.
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AN ANALYTICAL METHOD OF CALCULATING

MAGNETIC FIELDS IN SLOTTED REGIONS

by

T.G. Phemister

C.A. Parsons and Co. Ltd., Newcastle upon Tyne

The magnetic field in slotted regions is defined by Fourier
series with unknown coefficients. Continuity of the field
at the top of the slots is used to set up infinite matrices
relating the unknown coefficients to the boundary conditions.
The infinite matrices are inverted analytically to give an
explicit solution for the coefficients. The method is rapid
and its theoretical accuracy is within the uncertainties in

the manufacture of large generators.

1 Introduction

The origin of the work to be described was a requirement to calculate
the three-dimensional magnetic field near the ends of large generators in
more detail than existing computer programs permitted. . The geometry of a
generator is complicated, with its slotted structure and cooling ducts,
and a program based on the straightforward application of finite difference
or finite element methods demands too much computer time to be an ordinary
design tool; the band-width of the resulting equations is uncomfortably
large. If, however, a rapid method can be found for calculating the
field in the slots and air-gap together, then an efficient scheme of

iteration can be set up between the magnetic and non-magnetic regions.

The method tc be described was designed for an iterative scheme in
which, with normal flux density as the boundary condition for the magnetic
regions, finite element methods were used to calculate surface magnetising
forces for the next stage of iteration. The problem was, therefore, to
calculate rapidly the magnetic field in the slots and air-gap when the
surface magnetising forces were known on all boundaries. The method
adopted was based on Fourier analysis. Systems of equations were set up
for the Fourier coefficients and the matrix of left—hand sides was inverted
analytically. The method is explained by applying it to the simplest

problem in which its value is apparent; the problems in extending it to
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more complicated geometries are discussed afterwards.

2  Specification of problem

The simplest problem to which the method has been applied was a
calculation of the two-dimensional magnetic field in the centre of a
generator, To avoid obscuring the algebra by inessential detail, the

following simplifications will be made.
(a) The generator is a perfect two-pole machine.

(b) The rotor is cylindrical and the currents in its windings are
represented by a distribution of magnetic scalar potential on

its surface.
(c) The fields are two—dimensional.
(d) The stator slots are rectangular.

(e) Curvature will be neglected at the top of the slots and a
rectangular system of coordinates in each slot will be assumed

compatible with polar coordinates in the air-gap.

(f) The air-gap length is greater than the width of the stator slots,
the width of the tooth tips is not much less than the width of

the slots, and the slots are deep with respect to their width.

None of these simplificaticns except (f) is necessary for the sucess
of the method. A related method has been developed for geometries in

which (f) does not hold.

The problem can be summarised as follows. A two-dimensional mag~
netic scalar potential is specified on the surface of a cylindrical rotor,
on the stator tooth tips, and on all sides of the stator slots. Currents
are specified in the stator slots. The magnetic field is to be calcu-

lated in the slots and air-gap.

3  Coordinate system

Polar coordinates r, 6 will be used in the air-gap. The surface of

the rotor is at r = ¢ and the stator tooth tips lie on » = 3.

The centre of the stator slot numbered 7 lies on € = e, and the top
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corners are at r = g, 0= e, ¥ dn' Rectangular coordinates z, down the N Zdn ©
i .
] o+ —— - . .
slot and y, across the slot will be used. Thus, at the boundary between nzi g K[e bn},_; 4 an ank ’
= §=2,
the slot and the air—gap,xn = ( and ¥, = s(e -e dn)' The width of the
slot is w, = 2Sdn' There are N slots in-a half circumference. in which
4 Schematic solution K= 2k -1,
The first step in solving the problem is to impose an arbitrary i cos K dn
distribution of scalar potential on the boundaries between the slots and Qnik = —
2.2
air-gap; the simplest is a linear variation between the corners of each dnz x2 - I
2
slot. Unique solutions for the magnetic field can then be found in each 4dn
slot separately and in the air gap separately. Since these regions are
of a simple shape, the solutions can be obtained expeditiously by jm sin K dn
traditional methods. If these solutions are written as R%jk = A
dZKZ P Sk
" 4d 2
H=H=[H,H]inslotn, : { n
- =n xn® Tyn
and A = ﬁé = {Hér’ Héé} in the air-gap, The limit is to be understood when the denominator is zero. The odd

and even coefficients are treated separately because the terms to which

then the complete solution can be expressed as: they are attached behave differently.

Q‘=_§h - V@n in slot »
A solution of this form satisfies all the boundary conditions except
and H =~§é ~ V% 1in the air gap, ’ continuity for H, between each slot and the air-gap. Fourier analysis
of this remaining condition gives the equations required for calculating
phars
® Yy —LmL the unknown coefficients a_. and b _.. It will be found that a_.= OLi J
where ¢ = Z a . sin " exp «d =5 ne " ne
n . ni w w and b_. = O[J ]. Using this, it is straightforward to prove that the
i=1,3 n n ng
order of summation in the series can be changed.
- 7Y, ~Jnx
+ ) A sin ” exp ”
g=2,4 ¥ 7 n Up to this point, the method has been similar to work previously
Pe % published, for example, by Midgley and Smethurst (1963) and Jones et al.
o &3 - Eﬂ (1969). As far as the writer is aware, however, what follows is new.
and & = ) 7 Vi
I Y )
t) s 5 Explicit equations for the unknowncoefficients
N ad I Equating the normal flux density across the top of each slot by
X — 208 K(G - J E a . & .. Fourier analysis gives a set of equations which can be expressed in
s nj,5 5 ntonik
“ L]

matrix form as:
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. - ~ - r -
Byl Fip Ey,  Fio [a ] [s J .
‘ ‘ P 1 €08 KL 3 (om) - Yo ) 4 Blx) 1
B b . L TTTa mHeles) ~dglan —an) + 2R 015, 0 < <,
Gi1 A G2 Hig [MJ LlJ] k=1 a a )
Ey1  F oo Eyn  Foo cen . {a } (s i] where g(x) is the second generating function of the sine and cosine
- 2p 2 . 1 7 i
o1 Gos  Hap [b J = (t ’J integrals and |S(x)|<0-04. Wow gl(x) = =Zt0 ey and so, if n#m
29 2J and the teeth are not greatly narrower than the slots, this part of
. constant . . . .
E . can be approximated as —T3 . The series with P, , which is
e e . ves ces e ces nmip %p k
rapidly convergent, can also be so approximated, even when n = m.
U N L 4 L i Thus the submatrices Ehm can be written approximately as
where £, F ., G  H (n =1, N and m = 1, V) are infinite square e
nm®> “wm? “am® Twm o= | 4
matrices, [a } and {b are infinite column matrices of the unknown nm 2 P :
mp m i°p
coefficients, and [s .| and [£ .| are infinite column matrices which
n I It can be shown similarly that, approximately
come from Fourier analysis of H&n - ng at the top of slot #. ’ ’
: Foo= {ﬁﬁ. for all n, m
fE . is the 7, p element of £ _, then nm 2 >
nmip nm i°q
2dndm E Yrm
=k 5. K[1+P]cosK[c—c]Q- Q. ¢ = |- for all n, m
P . ’2 > 3
nmip nm - ip in? ke k 7 mj nik “mpk nm i
2 hnm
where Pk = and # = |—_ n # m.
o \dg

In the present application,an and Gnm are, by symmetry, null matrices

By expressing Qnik Q%pk as three partigl fractiomns, and by using their

properties as Fourier coefficients, it may be shown that

whenever 7 = m but in general they can be expressed approximately in the

forms given above even when n = m.

o 7

; g ~ . - . . . i1 g
2 b K cos F[cn %W]ink Qmpk The submatrices Enn and Hnn must be studied in more detail With

the extra % that has been mentioned

cos K (cn—cm+dn+dm} + cos K(cn~cm—dn—dm]
P o 1 + cos 2Kd
© |+ cos K{c -c ~d_+d ) + Co8 K[c -¢ +d _—d ] E . =8, ~— 42 7 : L
-p n m nm n_m n m nnip p  nd (1 +p) -t Tn pr
; ) ; k=1 |K + 55| |K +
og 4 [ET_,BT ) 154 (x + 20 )[x + 2Z- " - o 2d
nomi2d " 2d 2d 2d i "
("7 m L n m
. m KP, cos? Kd
o . ) . . C p k 7
Uniform convergence ensures that this remains true in all cases, except + e z 7
“ 1= $22 2.2
n =mand ¢ = p in which ¥ is added. dn k=1 (KZ - E_EE, ¥2 - 2_;;
[ ad ad ?

Phemister (1672) has chown that
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Since Pk tends exponentially to zero and rapidly to zero as ]n - m! increases. The simplest way to calculate

them 1s to set

T =
Zdn >> 1 Cm Enm11’
. ) f =2Fr __,
the second series can be approximated by nm nwmlz
, 34?2 = T = a1
— x XP, cos? K4 .
T 1 -
izp g k=1 K & hnm 8Hnm22 ’
The first series gives with suitable modifications for € and hnn' By using asymptotic forms,

this can be done rapidly,

- Zp[ln[% + gl(pm) - g(z’w)_l
14 4 COUSLART negligible terms.

72 (22 - pz) 712p The equations can then be expressed explicitly as
im{ . ) % : L. . N - -1 7 r
The formula ., glix) - g(px)J = — In|=| has been used in obtaining this . f
WP . . nm nm
and g(x) has been expressed asymptotically when its argument is large. = = [am ] [37%}
ip) |7q v
diag (A,B,A,B, v....) + =
Thus, if 4 is the matrix whose 7, p element is g h
_rnm _nm b (£
.2 .2 ( mq} L an
P p— A [iJ (pr) - g(in) T
.- ni=i + glpn) - glin)y, L ~ - L J L |
W 22 L p2) p
the stbmatrix Ern can be approximated as 6 Solution of the equations for the unknown coefficients
i
eym} It has been shown by Phemister (1972) that an asymptotic form for
Vi ———
a* ’izpj. the 7, p element of A7! when 7 and p are large is
22 - ]
It may be shown that, if B i1s the matrix whose j, q element is s " P oy 7 zJ

3

oo (12 - )

1 Lo dg .
§, - > > Ln{%} - glgn) + gl(in)|,
79 'rrzgf - q} t that B~! has the same asymptotic form, and that 4~} and B7! can be
the submatrix Hnn can be approximated as approximated by the matrices ( and D, where the 7, p element of C is
1 1
13 3
oy 2p l:(}—] - [E-} —I
B+ 5 s 4 \p 4, 0:014718 p _ 0°001893 p
Ja ip /3 (52 - 2 i
™S (2% - p%) i) (ip)3

The matrices 4 and B are independent of the geometry and omnly the

. . .. . and the j element of D is
constants . etc., are required to give an explicit formulation of the Js 4
equations for the unknown coefficients. There is only a finite number

of these coefficients and not many of them are needed, since they tend
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I
[

o] oy

z
(§q)®

The numerical constants were obtained by a least squares minimisation

of the elements of CA — T and DB - I, where I is the unit matrix.

The equations can be solved by expanding the reciprocal of the square
matrix on the left hand side, to give, as the first two terms of the

binomial series,

) =3 | e
nt 7:?.p 7:.‘Zq A mp
= {u-ul M
() {i’m rm (%)
7*p 3%q) ?
L . .
where M = diag (C,0,C,D, +v...). Thus the unknown coefficients have been

expressed explicitly in terms of known quantities.

The matrices 4 and B are those that arise in the problem of a single
infinitely deep slot in a semi-infinite slab. The binomial expansion is
the equivalent of solving first for each slot separately as if the stator
bore were the only boundary and no other slots existed and afterwards

correcting for the effect of other slots and other boundaries.

7 Types of ayg, etc.

The solution that has been found is still expressed in terms of
infinite matrices and would be difficult to handle as it stands. Phemister
(1972) provposed, and Drumm (1973) confirmed, that the column matrices

3 +
s and (¢
(’”PJ { g
linear combination of four different types:

2 B o (2} =

(S

could each be expressed to the required accuracy as the
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2y

er that the products O}

It was established furt e & could each
(mp mg
ear

L

mbination of four

different types of column matrix:

be expressed to the required accuracy as a lin
-3 (] A ‘
e 1) 8,405 |8, and ) fzj’ 6ujJ'
e

It follows that the products C[fgzq C[Smp) etc. can each be expressed as
/7

L

Wt

a linear combination of the same four odd or four even types of column

matrix. Hence {ani) and (bnj} can also be so expressed.

If all the algebra is performed on these types of infinite column
matrix, then [Smp} and (tmq] can each be represented by a column matrix
of only four elements, which are the parameters of the different types of
infinite column matrix arising from Hxn - Hé?. Similarly, {ani] and
[bnj) can each be represented by a column matrix of four elements. C and
D can be represented by 4 X 4 matrices whose elements are known absolutely
and are independent of the problem. Similarly, any of the four products
C{zgm]D etc. can be represented by the product of the appropriate scalar,

f%m etc., with one of four 4 % 4 matrices whose elements are known

absolutely.

Thus, if (a;u] and [b;u], u=1,4, =n=1,N, denote the four-
element column matrices of parameters of the different types of (ani]
and {b .], respectively, and if {s;v] and (ﬁ;ﬁ}, w=1,4, m=1,N,
denote the four-element column matrices of parameters of the different
types of 8y ) and {tmq]’ respectively, then the solution can be expressed

in the simple form:

N
[a;zJ = [S;v} Z °n { &7] * j%m F*[t;v}’
() -

% L B[k
% I © smv] * o ® [tmv}’

<l

‘l)

where C*, D*, E*, F*, G*, HY are 4 x 4 matrices whose elements are known

absolutely.
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(1) The constants 2 Since they

i

depend only on the the calculation need be performed only

once.

(2) ¥or particular boundary conditions the fields g% and Eg or the related

vector potential must be calculated where required. The parameters,

(s# o . v { % ist al be f d.
Lsmv] and Ltva’Of the types of {SmpJ and [ mq] must also be found.

/’2 a1 1 i " * } b#* f . ‘_d ’ ,}
{3) The parameters, [anuj and [DnuJ’Of the types o [anﬂ] an {bngj can
then be calculated by, at worst, 80 N2 multiplications in total. In

practice only about 300 N multiplications are required because mest

interactions between slots are negligible.

(4) The magnetic field or the related vector potential must be calculated

where required from [a” | and |57 .
: i M

(5} Local correcticne must be made by numerical methods to allow for

irregularities in the slots, such as wedge notches.

Step (4) needs further description. Within each slot, series such as

. } . .
appear, where z 1s complex and ]z} < I. On the stator bore series such as

OZC gliz)
1=1,3 i%

appear. Phemister (1972) and Drumm (1973) have established simple

expressions for the functions defined by these series.

The time taken ou an IBM 370/145 computer when the method was applied

to a generator stator with 21 slots inm a half circ

(£0.0C

ge
2} for the initiel calculations of Step (1)

N

the calculations of Steps (2) to (5) inclusive.
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IO £ A - = ol 5 3 > 1
nd D for A7! and F7! can be determined by

»

)

¢f CA - I and DB - 1. The largest element of

CA —- I is 0+0001816 in the 3, 3 positiom. Since the column matriz sfq]
Qe

. ; N [ .
which it multiplies behaves like Eg-for small values of p and is

np)
O{MZJ
P

for large p, this is roughly equivalent to an element one ninth as great
in column 1. The greatest element in column 1 is 0-0000208 in row 5.
The largest element in DB - I 1s 0°0000475 in the 4, 6 position and the
largest element in column 2 is 0-0000097 in row 6. The error in using
¢ and D for A™! and g1 is, accordingly, much less than 1074,
h s i 1aci (Cmm) e, and i

e errors in veplacing the matrices Eﬁm etc by {isz ete. and in
stopping at the second term of the binomial series were investigated
extensively by Drums (1973). Within the range of air-gap lemgths, slot
widths, and tooth widths foreseeable on large generators, it was found
that the worst error would be 2°5 x 107" and that the probable error was
about 107%, The error in expressing the infinite column matrices as

linear combinations of four types was similar.

The error in ignoring curvature at the top of the slots was difficult
to estimate but was less than 1073, If this error proved troublesome in
applications to smaller machines, it could be absorbed either by the local

correction for the wedge notch or by a method discussed in Section 10.

There is an inconsistency in using expressions for the field which
assume singularities of oxder é at the corners of the teeth (correspording
to an infinitely permeable right-—angle) when the boundary conditions arise
from saturation and the angle is nct exactly a right—-angle. Taking the
correct angle would make the ovder of the singularity about 0:328 and

would certainly reduce it by less than 27, The magnetic field tends to

be rearranged reduce saturation mnear the corners and magnetising foress

to
- (= . o
of the order of 10°A/m exist only very near a corner. For right-angles

of constant permeability the ordev of the singularity remains greater
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than 0+3 in absolute value for relative perméabilities as low as 21.
Moreover, the singularity camnot be allowed for exactly in the finite
element solution in the teeth, since its nature is undefined. It seems
almost certain for these reasoms, though it has not been verified, that
the error caused by the inconsistency is local to the corners and smaller

than the error of the finite element solutions in the teeth.

To gum up, the errors in the method are almost certainly less than
those in the accompanying finite element solutions and less than the
uncertainties in the manufacture of the machines. TFor example, the
rotor can sag by more than 3 mm between the main bearings in the longest

generators.

10 Extensions of the method

Including the slots in the rotor is straightforward but the inter—
actions between stator and rotor slots change as the rotor turns. There

is no limitation to two-pole machines or to a cylindrical geometry.

Three-dimensional fields which vary exponentially or sinusoidally -
most can be expressed as a linear combination of such fields - can be

calculated in the same way by altering the constants € m etc.

Non-rectangular slots or compensation for curvature at the top of the
slot can be treated either by local corrections or by incorporating a
numerical solution within the slot in the general solutionm and so altering
the constants o etc.

For slots that are not deep or are insufficiently separated, a related
method can be employed which has proved successful for calculating fields
in the end regions of generators. This will be published as early as

possible.

The method cannot be applied without further development to slots in
which the wedge notches are so close to the corners that effectively they

change the nature of the singularities.

Magnetostatic A8

11 Comparisons with measurements

Calculations by computer programs based on the method have been
compared regularly with measurements on large generators. They have
mostly agreed within experimental accuracy. For ome machine, however,
they differed by as much as 15% in the S5th harmonic on short circuit, a

discrepancy which has never been explained.

12 Conclusion

A rapid and accurate method has been developed for calculating

magnetic fields in slotted regionms.
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Discussion following paper:

(Fox, Oxford) There are numerical methods which solve problems in
adjoining regiong and then satisfy the conditions at the interface.
They effectively work ocut a few columns of the inverse matrix
corresponding to the finite difference operation, and these are
analagous to the Green's function at relevant points of the boundary.
Is there any relation between this numerical method and your analytical

method?

(Phemister, Newcastle-upon~-Tyne) There is a relatiom. The functions
used here for correcting the first simple solutions are limits of sums
of Green's functions, with the properties:
@Y, They satisfy Laplace's equation everywhere: except at the
interface.
(2) They are continuous everywhere,
(3) They have defined discontinuities of their normal
derivatives at the interface.
(4 Four of the functions are chosen in such a way that they
account for the singularities of order z 1/3 at each corna
The method is, therefore, the amalytical counterpart of the numerical
methods which Professor Fox describes, provided that the numerical method

also accounts for the singularities.,

(Moses, Wisconsin) Would the method of Schwarz—Christoffel trans-—

formations be applicable to field computation for slots?

(Phemister) Yes, in two~dimensional problems it can sometimes be
udsed as an approximation., The author's experience, however, has been
that field calculations from Schwarz-Christoffel transformations are

cumbersome if the boundaries are neither equipotentials nor flux lines.

Magnetostatic A8

(Rogers, Southampton University)  The singularities introduced by the
corners of the slots do give rise to involved calculation if the lccal
field is required. Very often in machine problems only an average field
is mecessaryand in such cases the infinite matrices may be truncated

drastically with very little loss in accuracy,

(Phemister) One result of the work that has been described is that
singularities need not give rise to involved calculations. The seemingly
difficult functions, defined by infinite series, have all been approxi-
mated in simple forms, Certainly truncation of the infinite set of
equations is sometimes justified~ in a calculation of the total magnetic

energy, for example, the contribution of Ahi would be of order i_lo/B.

(Lindholm, Ampex Corp) The method appears similar to that of FAN used
to analyze the field of a two-dimensional recording head with Fourier
series, Although the potential is developed in a Fourier series, the
magnetic field being the spatial derivative of the potential, is singular
on the corners of the magnetic material, Consequently, the magnetic
field on the corners cannot be represented by a finite Fourier series.

The question is: how is this singularity treated in the present method?

(Phemister) The singularity is treated by using four infinite Fourier
series for each slot; cocllectively they can account for the singularities

»
of order - 1/3 at each corner.,
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The calculation of forces and torques within numerical
magnetic field calculation methods

K. Reichert, H. Freundl, W. Vogt

AG Brown Boveri
Baden/Switzerland

1) Forces and torques in magnetic fields

Magnetic fields give rise to localy varying force densities ¥ in mag-
netizable and current carrying bodies and consequently to body forces
F and torques T:
F- Sfd\.-' () r-= erfdv (2)

These actions are of great importance in all kinds of electromagnetic
devices such as electrical machinery and magnetic levitation systems
(Fig. 1). The more complex magnet fields in such equipment is nowadays
computed by means of numerical methods as finite difference or element
methods. It is therefore desirable to have available a simple method

to compute forces F and torques T from discrete field-quantities ob-
tained from these computations.

2) The general expression for the force density £ [1,2 4]
There are several possibilities to derive expressions for the force
density f. Usually one starts from the power balance and then applies
the principle of virtual displacement.

The power balance of a magnetic system (displacement current®D/dt = 0;

electric energy density gEdD = 0) can be written in the form for rigid
bodies:

S{div (Ex H) + SH : dB+E-J+%§—-f}dV=0 (3)

o

with: E

el. field strength, H
magn. induction,

magn. field strength

m
1]

current density

6k
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B

S H - dB = magn. energy density
0

E-J = Jjoule power

%% = = mechanical power

div (EX H) = inflowing power

Using Maxwells equations:

rotE=-%+rot (v xB) (4) rotH=4J (5)

We can transform:

div (EXH) =H - rot E-E - rotH=-H -:—%‘%-E-J+H - rot (v xB)
and get
3 B
d B d
Sdi-fdv-g{u ﬁ-EgH'dB-H-rot(va)}d‘u’ (6)
0

In (6) the velocity ds/dt can be interpreted as a virtual velocity w.

If the magnetic material is modeled by
B=yH+M (7)
the first two terms on the right-hand side of (6) can be transformed as

follows:
B
OB d
0

, H

v=S{H-:é—'%-%t—(H -B—SB-dH)}dV=
0

HdH+%E-H}dV=

H

H
B 9
SRR
0 0
H
= - Sv . {r‘otH X Mp + HdivMp + g gradjx HdH } v (7)
0
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with {a—Ju = -y - gradJJ -y div v 3) The ca]cg'lation of forces F and torques T by means of surface
Ch integration [4.. 4]
oM The calculation of forces and torques by means of eg. (1) and (2)
Dt = rot (v x Mp) - v div Mp using (11) in numerical field calculations is inadvisable and ineffi-

cient because:

@j} vdf = 0
- Eq. (1) and (2) require volume integration

gfdivv dv

gH - rot (v X Mp) dV

Sdi" (Hx (v xMp) dv + S(“' X Mp) - rot HdV - in non linear cases (y = f (H or B)) the magnetic history should

be known, otherwise (10) can not be evaluated i.e. several field
o Sv " arakHixhe) Wk L(8) calculations )

The termH - rot (v X B) in (6) can be similarly transformed:
The solution to this problems is

SH-rot (v XB) dV = - gv-(rotHXB) v (9) . _ _
- calculation of F and T by means of surface integration

Introducing (5) in (8) and (9), (8) in (7), (7) + (9) in (6) we get ) . .
- surface integration in y = const (air).

Sv °fdv=gv -{JX(B—Mp) - HdivMp - Sgrad}; HdH }d\r' (10) . .
The volume integrals (1) and (2) can be transformed into surface inte-

0
grals as the integration of a surface stress p over an arbitrary sur-
and thus the expression for thﬁ force density f: face enclosing the body (Fig. 2) should result in the same forces and
torques as the volume integration over the body using the force den-
£=J%(B-Mp) - Hdip - Sgradf HaH  (11) 4 9 ¥ B0
= sity f (11). i.e.:
by comparing the terms on both sides of (10). F = gf v = ép dA (12)
v A
The different terms in the force density (11) can be interpreted as
follows: T = erF dv = érXp dA (13)
v A
- J % B is the force on a current carriing conductor in air
- HdivMp is the force on a permanent magnet (J = 0, grad_}J = 0) By defining the tensor d] : F = div ¢ the volume integral can be con-
H verted into a surface integral using gauss integral formulae. This re-

- Sgradf HdH is the force in iron (J = 0, Mp = 0) sults in:

[}

H
p =H (n - ) -m SJJHdH (14)
but in general it is not possible to so assign the terms of (11). 0
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with n the unit outward vector normal to-the surface A. If the inte-
gration surface A is outside the material the expression for the sur-

face stress p (14) can be simplified to:

p=yo(n'H}H~%yoH2n=jJ—o(n --B)B-;_P—OBZn (15)]

66

It is interesting to note that in eq. (15) the non linear character of
the body which is enclosed by the surface A is not directly expressed.

Eq. (15) together with (12) or (13) is best suited to the calculation
of forces and torques of discrete field values resulting from numeri-
cal field calculations because

- only surface integration is required

- in nonlinear cases (p = f (B or H)) one field calculation is suf-

ficient if the integration surface A is in air.

- Any integration surface A will result in the same force if the body
is fully enclosed.

However this method also has some limitations:

- The result is always a total force F or torque T acting on a simple
connected body.

- Fictive air gaps are not allowed if they are disturbing the field.

- The method does not provide information over the body stress as
eq. (11).

- The body has to be rigid.

4)

4.1

4.2
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The calculation of forces F and torques T within numerical field
calculations

Procedure in general

The calculation of a body force F or torque T by means of eq. (12),
(13) and (15) is straightforward.

- Calculate discrete values of potentials (vector- or skalarpotential
A, @) or other descriptive field quantities, by means of finite
difference, finite element or other numerical techniques using a
grid or element distribution.

- Define the integration surface A around the body. Any A should re-
sult in the same force and torque as long as the body is enclosed.
Therefore simplified integration surfaces A can be chosen (Fig.2,3).
The surface A should pass through the centers of the elements.

- Calculate the magnetic field strength Hi or the induction Bi in the
elements i crossed by A.

Calculate the surface stress P; (15) in the e1ement1.

]

Calculate the force F and the torque T:
N
(16) T=) AT, =2 v, xp, AA, (17)

i=1

N
F=) AF, = 7 p, AA
i=1

Procedure for some typical elements

Two-dimensional rectangular element: p = (px, py )

With the vectorpotentials Ayus Ay g Ay g 1 Pyt ke

in the corners of the rectangular element (Fig. 4), one calculates
the components of the induction:

x _ MokertHe el A

$+1, k
Bik = Z hy
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A PO S NN PO S I 3 PO S O M O PO

xy _ 1  ox Yy 2 X2
Pk "o Bk Bk P = g (Bl - B

.S I (R S . Yy
SRS = Lonf ooy s ARY
Q is the length perpendicular to the xy plane.

Form = e, we get:

Pk =‘]2}I" B}"z - Pk (18)
X )(

BB R o m

AR - £ o s AR = E- P My

b) Two-dimensional triangular element: p =

(%, ) (Fig. 5)

The path of integration can be:

1-s-2, 1-s-3, 2-s-3 or any others.

In a first-order element the induction B is constant and given by:

’a ZC"‘; By“__:]Z_F.Zbiﬂi

i=k,n,m

c)
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with bk=ym-yn 3 Cp =, =X
bp =Y =¥ 3 =X T Xy
B = Yk ~¥m 3 ST Xy T X
= Fliche A
The normal vector to the integration path 1-s is:
) y Xo + Xy
oy, o By - g oy
n =
Is X + X 2 Yo * Yy 2!
(x, - o Wy P
= ant .
Oy * Bl * 3"%(5

The contribution AF
therefore:

E Els

Is of the integration path 1-s to the force F is

Fig = (n}g B+ Y BY) (B +38) - 5 (8% + BYD).
i, gl
2 T
. 1 X + Xk Y + _yk
with En e e B A ey

Similar expressions can be derived for the contributions of 2-s and
3-s.

Complex field quantities

If the variation of the field is quasistationary sinosoidal, the situ-
ation can best be described by complex quantities:

X - Re g oWt (20)

67
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Where E} is complex: = Bxeg(?x' Introducing this in eq. (18) we re-
ceive for the components of Pi k

s .
o}, - %FE-{Re BXedt . pe BXe IVt | pe pYedWt pe pedty (21

Pk ™ g Re Bedt - e el (22)

withmn = ex - ey

If Z] and 22 are to complex numbers we have the relationship:
Re (Z)) Re (Z,) = Re (Z; + Z,+12, - dig

* means conjugate complex.

Using this relation we receive for p?{k:

This means that the method is also applicable to sinosoidal fields,
if we use a complex potential A:

A = Refed"t
with A

1]

AR +j Al we can calculate:

x 1 2.,
By k= EF;-V(Aki,k+1 ARGk T AR T ARy )T

T

: o 2
FOAL e+ AL AL T AL )

and B?,k in the same way if we have a rectangular grid.

Magnetostatic A9

5) Application

A system of subroutines has been written to compute forces and torques
from discrete field quantities based on a certain element type. The
method has been applied to a number of magnetic field and eddycurrent
problems.

Fig. 6 shows an example, the magnetic field in a cross-section of a
magnetic levitation system. The main problem was there the calculation
of the forces F* and F¥ between the rail and the magnet especially for
different off-set positions x/b because in this design the magnet is
also supposed to keep the train in the middle of the rail. Using a
rectangular grid, the vector potential approach and the finite element
method the discrete field distribution was calculated considering
saturation in the iron. From these quantities the forces F* and P
were derived by means of surface integration. The results (Fig. 7)

did agree very well with measurements.
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Fig. 6 ! Magnetic field in a cross—section
of the magnetic levitation system

Fig.5 ! Two —dimensional triangular element
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Fig. 7 . Force F and F in the
magnetic levitation system
versus displacement x/b
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Discussions following paper:

(Hammond, Southampton Univ)  Dr Reichart has drawn attention to the
simplification which results from drawing the surface for his stress
calculation in air. Does he think that useful information can be
obtained by drawing a surface in iron or does he think that this is not

possible in principle?

(Reichert,/Freundl ) In general the introduction of an artifical airgap
is not allowed whilst using the surface integration method because it

may change the original field distribution and thus the total force.

But if the modification of the field by the airgap is small-or has con-

siderable influence on the force this trick can be used.

(Carpenter, Imperial College) May I first elaborate a little further
the question of force distribution? The energy argument leads to

forces acting on the iron surfaces - surface tractions - tending to pull
the surface layer off the material behind, and the physical significance
of these forces is very doubtful. The same argument applied to electric
forces on dielectric fluids leads to negative hydrostatic pressures,

The energy argument presupposes continuous media, whereas in attempting
to separate "magnet" from "mechanical" forces inside the material we are
driven to examine its physical - i.e. Dipole - structure. It is not
difficult to show that, using an idealised model, Dr Reichert's equations
give the forces on half-dipoles, and that we obtain a wholly different
force distribution if we consider whole dipoles (whether using energy
arguments or otherwise). The problem of defining any force distribution
which has any real physical significance is fundamental since the
"magnetic" forces are a part of the particle interactions which determine
the mechanical properties of the material, so that inside the:irom the
distinction between 'magnetic' and 'mechanical" forces tends to become
meaningless. We need an operational definition of "stress', which is
not a quantity which is directly observable. If we observe strain,

then magnetostriction assumes a key role. In my own investigations

(both in 1960* and since) I have found that, once we agree on an opera-

*Carpenter, C J "Surface Integral fethods of Calculating Forces on
Magnetised Iorm Parts"” Proc. IEE 106C 1960.
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tional definition, all methods lead to the same result. Moreover, if we
define "Stress" in any looser way, then I have found that, where the
stresses are large enough to be of importance in engineering applications
(i.e. near failure) then the differences which we obtain by using

different models are too small to be experimentally significant.

I suggest that simple energy arguments can be misleading in these

contexts and that deriving the Maxwell stress equations this way can imply
unnecessary limitations, because of problems associated with energy loss
in eddy currents and hysteresis. I am sure Dr Reichert will agree that
surface integration will always give the force on whatever is enclosed

by the surface, whether the energy is conserved or not.

Dr Reichert referred to the need to make air gaps around the part of the
interest as a limitation of the method. 1 regard it, on the contrary,
as an asset. 1f the force which we compute is to be observable (and
therefore meaningful) we must be able to separate the part from the rest
of the device. In practice we always have air gaps, however, small

they may be, and the method draws attention to any peculiarities, such as
domain effects which may be associated with iron surfaces (nearly) in

contact with each other.

My final point concerns the shape of the surfaces which we choose to
integrate over. These do not have to conform with the iron surfaces, and
there are sometimes substantial advantages to be gained by choosing other
shapes, particularly when calculating "sideways" forces, as in

Dr Reichert's two C-cores. The possibilities can be illustrated most
clearly by tracing a simplified example. The sideways force on a slot
carrying a current (Fig A) can be shown, usually by energy arguments, to
be the same as if the conductor where placed in the gap and the slot
filled in. This is difficult to show by an integration surface which

passes straight through the gap or by one which fallows the slot surface.

But, the integration surface Shown in Fig A gives the force by inspection:

Falg@-n=1h %8 gy
1~ 1 L2
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Fig A Conductor in Slot

kReichert}Freundl 5] Our eq (11) gives the force density in an

infinitestimal volume element-dV. Therefore we cannot distinguish
between different forces. The situation is different if one is
interested in the force on a finite volume. A permanent magnet for
example can be modelled either by surface charges or by mpere's
currents. The total force in both cases is the same but the stress
inside is different. Therefore, we agree that the distinction

between magnetic and mechanical forces inside is "model depending" and

therefore meaningless.

(Perin, Cern) 1. Does your method assume that all the magnetic flax

which crosses the integration surface passes through the ferro-magnetic
body?

2. How close has the surface in air to be to the body?

(Reichert) 1. No, any field situation can be handled.

2. The path of integration has to in air, it has to be closed but it

can be arbitrary within this limit. The resulting force is independent
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of the path of integration but can depend on the accuracy of the discrete

field quantities as calculated by the FE-method.

(Chevalley, Cern) Have you ever looked at the contributions of the

differcult terms in the equation?

In a particular case I found that the integral [ grad p HdH is small

(v 3%) and could be ignored.

(Reichert) The contribution of the different terms in the volume
element force equation is problem dependent. Therefore a general answer
cannot be given to the answer. In an electric machine for example the
term F x pH is only important if the conductor is exposed to the field

H (open slot).

(Armstrong, Rutherford) How do you deal with the singularity at the

corners of the surface of integration?

Your general method is given in J Strattan, Electromagnetic Theory
(McGraw Hill 1941).

(Reichert) In a FE solution a singularity does not show up unless the
element size is not zero. The result is always a finite magnetic field
distribution in the grid, even at the corners. With reference to your
statement there are a number of textbooks which are describing the method
in general, but to my knowledge up to now nobody has mentioned the

application of the method within the FE = or FD - method.

Magnetostatic A9
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CALCULATION OF THE MAGNETTC SYSTEM' ELEMENTS OF THE
TSOCHRONOUS CYCLOTRON BY THE GRID METHOD

Yu.G.Alenitsky, S.B.Vorozhtsov, N.L.Zaplatin
Laboratorv of Nuclear Problems
Joint Institute for Nuclear Research,Dubna,USSR

T. Introduction

The calculation of magnetic fields by the grid method
in systems containing ferromagnetic and current elements
allows one to analvse the effect of iron saturation and mag-
netic flux distribution when induction is varied in a wide
range. By using the available programmes for calculating
the two-dimensional configuration, ref./l’z’s’d’S/, one can
obtain good gquantitative results.By separating the cross
section for calculations from the whole three-dimensional
configuration and choosing for it some realistic boundary
conditions one can obtain the results coinciding with the
experiment to an accuracy of (1:5)%.
IT. Short Description of the Programme

The TRIMA programme system, a modified version of the
TRIMD/Z/programme which in its turn had been written basing
on ref./l/, has been developed at the Laboratory of Nuclear
Problems, JINR.

The programme solves the nonlinear differential equa-
tion of elliptical type in private derivatives presented
in the finite-difference form. The equation is as follows:

For the Cartesian system of coordinates (x,y)

ll.l_“u“‘-‘)h f I-]- Ju[!i.:\_-'")

2 ==04r)(x,y)
dx i x Lody dy I (xy

For the cylindrical system of coordinates (r,z )

AT B PR [ --rw- —-—[r u(r,z)ll == 0,dad(r, 2)
(32 pur oz -

where U is the wector potential of the magnetic field
(G x cm),/uu u(p) is the permlablllty of ferromagnetic,
J is current density (a/cm }, U and J are the normal planes

(x,¥) or (r,z).
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Fig. 1 shows the diagrams of possible boundary conditions
The Dirichlet zero boundary condition is set at all boun-
daries (fig.1-A) in usual cases. If the axis y=0 is the
symmetry axis, the Neumann zero condition is set at this
boundary. For the cylindrical system of coordinates with
r —= 0 the vector potential is found from the condition
rU(r,z) = a(z)xr2 which results from the fact that at the
r=0 axis the field is an even function.

The TRIMA programme approximates the /u{Bz) depend-
ence by the analytic expression proposed in/ﬁ/. As a re-
sult of the optimization of the programme part, the time
consuption for calculations is reduced about 4 times, the
number of grid points was increased up to 1600 (without
using the external computer memory). The programme has
been written for the BESM-6 computer.

ITI. Calculation of the Magnetic System Elements
/7/, the amplitude of the

magnetic field variation of spiral shims is fairly well

As has been shown in ref.

described by the infinite system of rectilinear ferromag-
netic bars. To choose preliminary the azimuthal width

and the height of the spiral shims of the "F" facility
some experiments have been performed by using 4 pairs

/%/

A similar mathematic modelling may be performed by

of rectilinear bars

using the computer programme. Fig. 2 shows the experi-
mental lay out with ferromagnetic bars in the electromag-
net gap and the calculation region shown by the dashed
line. The results of calculations are presented as a fun-
1= F(B), where

0.5/ B(0,0) - B(X _ ,0)/

ction of B

By

B

0.5/ B(0,0) + B(Xmax,{)} / i

For the programme calculation of the configuration of
this type a scheme of boundary conditions is envisaged,

which is shown in fig. 1.B.

=]

\n
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The left and right boundaries of the calculation region are
set by U(0,y) = constl, U{xmax,y} =Iconst2 which indicates
the absence of the flux going through these boundaries. At
the y = 0 boundary the Neumann zero condition is possible,
when y = 0 is the svmmetry axis or the Dirichlet zero con-
the Neumann zero condition or the
Ymax) = £(x).

The calculation of our rectilinear bars was made for

dition. For v = vy
max

Dirichlet condition is possible U(X,

the following boundary conditions:

au ) =
U(ﬂ,}‘) = 0, U(xm -._f.’_‘:.l_ 0

9'.\"'} = BOx xmax: ay y=0

ax
at the y = S boundary the following two boundary con-
ditions were set:

u( x, Ymax) - B 0% g, SSegmshes / =0

In this case the calculation results remained the
same., This may be explained by the fact that the upper
boundary is located sufficiently far so that no redistribu-
tion of the magnetic flux at the pole causedlby bars located
in the electromagnet gap, at the upper boundary of the cal-
culation region occurs.

The caleculation shows fairly well the state of ferro-
magnetic elements and the redistribution of the /u magnetic
permiability and the magnetic fluxes when the field level is
changed., Fig. 3 shows the flux distribution for run I (fig.2)
at the average induction level in the gap (1.0T, 1.3T, 1.6T).
As the calculations show, with the average level of the in-
duction B = 1.3T, the rectilinear bar approaches saturation,
the induction inside the bar is B=(2.0-2.1)T. For the cal-
culation of B1(B) (800 mesh points, five induction levels)
twelve minutes of the BESM-6 computer time are required.

The comparison of calculation and experimental depen-
dences (fig.2) shows that the curves are identical,

The difference of the value 2B, obtained by calculation

1
from that obtained experimentally is (1-3)% and may be ex-

plained by the finiteness of ferromagnetic bars used in the
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experiment, by the decrease of the field in the flat gap of
the electromagnet and the discrepancy of the /u(B) proper-
ties of the applied ferromagnetic and calculation approxi-
mation.

An example of the calculation of the electromagnet
pole edge is shown in fig. 4. The mesh of 1500 points is
used, the BESM-6 computer time is about 10 minutes. The
boundary conditions differ from those used above only at
the upper boundary which is distributed into two parts
(fig. 1-C).

1) X=X is the constant flux,

2) x=x is the flux determined by the potential of

k
the magnetic dipole.

As is seen from Fig.4, in the radial region of the
where r

r=r is the radius of the electromagnet pole, the

k? ke
difference of calculations from the curve obtained experi-
mentally by using the electromagnet (#1200mm) does not ex-
ceed 0.5%. However, the great divergence of the experiment
and calculation curves for r=r, is seen. This means that
the boundary potential given as a dipole potential differs
from real conditions at the electromagnet.

It is necessary to mention that when using the boundary
conditions of this type, it is desirable to fulfil the
following correlations:

zma;.:--z hM, ST 1.2 LSV

When developing the magnet system for the U-120M
isochronous cyclotron it is important to select such a
configuration of spiral shims which could provide the
minimum relative changing of the magnetic fields when
varying the induction level.

/9/

As has been shown in ref. , one may achieve this
for the central region of the magnetic system by varying
the angular width of spiral shims and using the axial
grooves in them.

The general schematic view of the cross section along
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the spiral axis line of the U-120M magnetic system is shown
in fie. 5, the dashed line shows the calculation region. The
boundary conditions are given as shown in fig.1-B.

The results of calculations for the shims with grooves
and without them at two limit induction levels are shown in

6,7/1%/

figs. Comparing figs. 6-C and 6-D, one may see the
essential increase of the horizontal component of the flux
at the low induction level, which results in field increase
in the median plane at small radii (fig. 3-A).

As is seen from figs. 6-A and 6-C, the vertical grooves
reduce the fraction of the flux hitting the centre from
large radii at low induction.

Thus, in the case of shims with grooves (figs.06-A,B ) one
observes less essential change of the pattern of magnetic
flux distribution with increasing the induction level.

Figs. 7-C and 7-D show the distributions of magnetic
permiability for shims without grooves. With B = 1.0 T
(Fig.7-C) a sharp increase of permiability is observed with
decreasing the radius. The gradient is d/u/dr=—250 cm_lwith
r =7 cm, therefore, the magnetic flux lines are directed to
the centre. At large induction levels B = 2.2 T(fig. 7-D)
the shim is saturated, and /u at a larger shim section does
not exceed 10 and nearly uniform distribution of permiabil-
ity is observed. In this case the gradient d/u/dr=—210cm_1
over the larger part of the central shim region. Consequent-
ly, the horizontal component of the flux is reduced which
results in field increasing at small radii.

A similar /u distribution at the same induction levels
for shims with grooves are shown in figs. 7-A and 7-B.Com-
paring fig.7-C and 7-A relating to low induction one observes
the following:

1)the distributionsyu, at the pole are of similar kind,

2)the central part and the shim teeth are not saturated,
axial grooves in the shims prevent the passage of the hori-
zontal component in the teeth region. Such unsaturated

teeth promote the uniform passage of the flux through the
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shim and pole contact region. This is proved by the re-
duction of the pole permiability in the regions opposite
the teeth and the increase of the pole permiability over
the grooves (the reflection effect).

3. The general state of the shim section under the
grooves is described by a lower average value of the per-
miability /u = 15 at the same excitation level which im-
pedes the defelction of the magnetic flux lines in the
horizontal direction.

4. The radial gradients /u of the shims under the
grooves are considerably smaller than those in the shims
without grooves.

With large induction levels (fig. 7-B) the shim teeth
are saturated approximately equally with the lower part
of the shim. Horizontal fluxes similar to the case with
shims without grooves are impeded. Special attention should
be paid to the region of larger /u in the shim body di-
rectly under the grooves as well as a more noticeable ef-
fect of reflecting the teeth at the pole.

The calculational distribution of magnetic field inten-
sity in the meédian plane for the case under consideration
are shown in fig. 8-A. The curves are matched in pairs at
the field level for r = 16 ecm. For the shim with grooves
(curves 3 and 4) the field difference in the radial range
of 3-10 em is reduced about 300 Oe, and the field peak
due to the horizontal component of the flux disappears.

Fig. 8-B shows the experimental values of the field
peak for configurations and exciation levels under con-
sideration. The comparison with caleculational data shows
the coincidence of the dependences. However, in the range
of r= (30-35) cm noticeable distortions are observed which
are caused by artificial conditions of flux absence through
the right-hand side boundary taken in the calculation
scheme.

In conclusion it is worth mentioning that the given

calculations do not claim for complete quantitative

K3
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description of 3-dimensional structure of the magnetic svs-
tem and are just a model for clearing out the physical
phenomenon in this part of the magnetic system. The calcu-
lation model makes it possible to determine the variations
of magnetic field intensity and the redistribution of /u in
iron when varving the shim geometry.

The calculations 6f the chosen parts of the magnetic
system performed by using the TRIMA programme do not con-
sume much computer time. Hence, this method can be exten-
sivelv used when modelling complicated magnetic svstems.
Despite the fact that the accuracy of calculations (1+5)%
is much poorer than that for field shaping (0.02%)required
for accelerators, such calculations are the only method
permitting the analysis of the magnetic state of ferromag-
netic when varying its configuration and the level of the
external magnetizing field.
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1) Boundary conditions: a) Cartesian system of coordinates

b) cylindrical system of coordinates.

Fig. 2 .

Experimental procedure and the calculation of the recti-

linear bar system. The dependences Bl( B ) .
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Cross section of the U-120M magnetic system, the dashed

line is the calculation region.
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The distribution of the magnetic flux lines

A, C-B =1.0T
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Fig., 7
Distribution of magnetic permiability
A, C-B, =1lo0T
B, D - B = 2,27 T
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Fig. 8
Magnetic field intensity in the median plane
A- calculation , B -measured magnetic field in the hill
1,2 - shims without grooves
3,4 - shims with grooves
1,7 -B =1.0T

(o]

2,4 - B =2.27 T.
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The method for the H

ON THE COMPUTATION OF THREE-DIMENSTIONAL MAGNETOSTATIC
FIEIDS 8Y THE INTEGRAL EQUATTON METHOD

V.Ts.Banchev, S.B.Vorozhtsov

Joint Tnstitute for Nuclear Research,Dubna,USSR

The integral equation method for the computation of 13-
dimensional magnetostatic fields in the presence of iron has
been mostlv developed during the last yearsf1_3/. In this pé—
per the polvhedron of an arbitrarv form is suggested to be
userd as a region with uniform magnetization., Two numerical
methods for the solution of the resulting system of simulta-
neous nonlinear algebraie equations were tried.

Dividing a masnetic body into polvhedral regions with a
constant magnetization vector in each one, the problem of
finding the magnetic field intensity inside the magnet iron
is reduced to the solution of the following set of simulta-

neous nonlinear algebraic equations (the Gaussian system of

units). .
i N
Jata T&?; (J‘%’f)f;,?%’* fox (0%ag, 1D 8ag,, .., PFag,)=Hgea, (1)
where §=x:%£; a=14,2,...,N ,

Ha=fa (VI Ha (2)

is the known permeability curve of the specific magnetic

Dgaﬂ =§a_§qij i=1;2;, se0y, M,
i denotes the vertex number of the "q" polyhedron,

material,

a denotes the number of the polvhedron for the central point
of which equation (1) is written, N is the total number. of
polvhedrons, ng is the demagnetization coefficients or

the field strength component H§ in the "a" polyvhedron pro-
duced by the magnetization component MJ = 1.0 of the "g"
polvhedron. The procedure for the calculation of fiﬂ has

/4

H§m55 the magnetic field of the magnet excitation coil at

been described in ref.

the "a" polvhedron centroid in the absence of the magnet iron

3-dimensional configuration has been given in ref. .

Hffl&q

the polvhedron centroids. Their total number is 3N. The

are the known field intensity components at

nonlinearity of system (1) is due to the nonlinear depend-
ence in (2). )

In order to reduce the number of equations and unknowns
in the cases, when the magnet configuration has planes of
symmetry in a properly chosen coordinate system, set (1)
is written only for the polyhedrons in the first octant.For
the calculation of the contribution to the second term and
the right-hand side in (1) from the remaining part of the
magnet, situated in the other octants, it is convenient to
express the coordinates, the field components and the cur-
rent densities in these octants by the corresponding quan-
tities in the first octant. If there is only one plane of

symmetry (fig.la) this is achieved by means of the trans-

formations
Xig = I Xg (3)
Fﬁg szg'lk'ﬁa % (4)
Jos=NsIx fo, (s)

where X, = ( g ) is the radius vector of a point in

the first octant, X{g is the radius vector of the point

. reflected in the coordinate plane, which is normal to the

§ axis,

f—zo‘;§ 0 0
Li={ i t-2dye D (6)

0 0 =28 |,

where

5 {, X=% | (7)

a computation for a coil of an arbitran,
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1 in the case of reflection of the field vector in the

st specified plane, ; (8)

-1 in the case of antisvmmetry,

; is the current density vector. The sign of reflection in
the current transformation is opposite to the sign of field

reflection according to
ff= 4jf/ﬂ'rnt 3 (0)
Reflection in two coordinate planes is characterized by

the following transformations:

:‘(2\5-=Ixx'.x’.g ’ (10)
Hzg=/V5‘N§;'Ixx'ﬁé, (11)

J_‘;f =/V5 '/Vsi_'fxx J; ’ (12)

where:gl is obtained from § by evelie permutation according
to the following rule

X == Z = Y = X

(1-20e)1-2058) 0 0
Lix = 0 (t-2dy)-2bg) 0 (13)

| 0 0 (+-26; ¢ Y02 0c),
In this case the reflection in the specified planes of
symmetrv is carried out at first according to (3)-(5) and
then according to (10)-(12) (fig.1lb).

For the reflection in all coordinate planes we have

;{35' = Ixxx "Xo, (14)
H.’if = Nx '/Vj('/vz '—Z:\’XX °Hg’ (15)
Jég =—/VX-A/5,.A/Z-1”X-J9; (16)

where

Im=(1—2J;§)(f—2cf;§)(z—20§§). (17)

The reflection is carried out successively accord-

ing to (3)-(5) and (10)-(12) in all coordinate planes and
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according to (14)-(16) in any, but only one symmetry
plane (fig. lc).

Some remarks on the numerical solution of the system
of nonlinear equations (1) will be made now. The strong
nonlinearity and the great number of the unknowns, in
general, make the problem of finding a solution to system
(1) a difficult task even when using powerful computers.
Therefore, the choice of a suitable numerical method with
fast convergence which requires small storage and allows
comparatively crude initial approximations, is of great
importance. In this connection the method of conjugate
gradients (Klessig-Polak's algorithm/é/) and a modifica-
tion of the Gauss-Newton method, the so-called autoregu-
larized Gauss-Newton iterative process (ARP-F), imple-

/7/

ods are computationally stable. The method of conjugate

mented in the REGN subroutine , were tried. Both meth-
gradients requires smaller storage (of the order of the
number of unknowns, i.e. about 3N) than the Gauss-Newton
process,which requires storage of the order of 9N2{note
that by the method of conjugate gradients the sum of re-
siduals of equations (1) was minimized). But the second
method converges faster than the first one. Moreover,the
automatiec choice of the regularization parameter, depend-
ing on the behaviour of iterative process ecriteria, is an
advantage of the second method as well. The demagnetiza-
tion coefficients ﬁﬁ} and the right-hand side H gca were
calculated in advance and were kept in the external memory
of the CDC-0400 computer. The solution was considered to

be found when s 3N 3 /9
max [Ei[<10" and Zc%i <70 (18)
L =f

2
where gi are the residuals of equations (1).
The numerical experiments showed that the method of
conjugate gradients converges much more slowly and re-
quires greater computer time than the autoregularized

Gauss-Newton process. This has led to the conclusion that
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that its application for the solution of system (1) is in-
expedient, though it reqguires smaller storage than the Gauss-
Newton method, Besides, for the solution of (1), when the
number of the unknowns is great, the autoregularized Gauss-
Newton iterative process can be modified with the help,e.g.,
of the method described in ref./R/, for the inversion of
large matrices with the use of the external memory.

Finally, mention that in some particular cases, e.g.,
when iron is saturated, svstem (1) can be solved by the me-
thod of successive approximations, which does not require
large storage (as to the conditions of its application,

/97y.

Here are the results of some numerical experiments,

see ref.

carried out with the use of the REGN subroutone (an autore-
gularized Gauss-Newton process). As a test problem, a pair
of ring-shaped shims, placed in a uniform external magnetic
field with the following components Hx =0, Hv =0, H =
12050.7 Oe, was chosen. A part of this system situated in the
first octant was divided into 4 polyhedrons, as shown in
fig. 2. The calculation was made by taking into account the
field svmmetry with respect to the planes X0Z, YOZ and its
antisvmmetry with regard to the X0Y plane. The right-hand
side of set (1) multiplied by 0.1 was used as an initial ap-
proximation. The solution of (1) for this problem was ob-
tained in 7 iterations for 0 seconds CDC-6400 computing time.
As a verification the same configuration was calculated by

710/

in the cylindrical coordinate svstem with the boundary con-

the difference method implemeted in the POISSON program

ditions shown in fig. 2. In the absence of the ring-shaped
shims these boundarv conditions produce a uniform field
having the components Hx =0, HY =0, Hz = 12050.7 Oe.
In both calculations the distributions of the fields at
z = 0yreduced to the same external field level,coincide
everywhere, except the region of 10 em<r<13 cm with an

accuracv of 1% from the contribution of the shims to the
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field. The difference in the results near the boundary
(Ar = const.) is due to the calculation error in the
POISSON program which arises from the artificial locali-
zation of the field by the boundary conditions. Magnetiza-
tion inside the shims computed by the difference method
varied within the limits 4JLM_ = 14.0-16.6 kGauss. By
the integral equation method it was found to be 4ﬂ?M;:
14.3 kGauss. This is a satisfactory coincidence keeping
in mind the small number of polyhedrons. The results were
additionally checked by computing the field of a pair of
ring-shaped shims, whose magnetization was 4ﬂ[Mx =0,
4L M = o, 4ﬁ:Mz = 14.3 kGauss by the method described in

4
/ll/. The result obtained nearly coincides with that

ref.
of the calculation by the integral equation method.

A serious test for the developed system of programs was
the computation of a real C-shaped magnet, the configura-
tion of one quarter of which is shown in fig. 3. The first
octant of the magnet was divided into 48 polyhedrons with
constant magnetization, as shown in fig. 3. Most of the
elements of the division were situated near the working
gap of the magnet at 2z = (0. The initial approximation
was H_ = 0.001 Oe, 5=x,vy,2, a=1, 2, ..., N. The
calculation of this problem required about 6 hours of the
CDC-6400 computing time and about 200 iterations. The re-
sults of the computation of the magnetic field in the
z = 0 plane along the mid-line of the magnet pole x = 0
is given in fig. 4, in comparison with the experimental
curve for the same Ampere-turns Iw = 11085. As is evident
from the figure, the field dependence on "y" has wavy be-
haviour in accordance with the structure of the magnet
pole division into polvhedrons. In order to obtain the
computed field close to the experimental one, the gap be-
tween the magnet poles being so small and the magnetiza-
tion distribution inside the magnet iron being strongly

non-uniform, it is necessary, apparently, to increase the
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number of elements, into which the pole is divided, approxi-
mately twice. However, as it follows from the experience
gained during the calculation of the magnet divided into

4% polvhedrons such a problem cannot be solved with the use
of the CNC-6400 computer because. of the central memory and
computing time limitations. Its solution requires the use
of a computer of CDC-7600 type. In fact, it turns out that
with the help of the created svstem of programmes 3-dimen-=
sional configurations with a comparatively large working
region, free of iron (e.g., magnets of bubble chambers),
can be calculated using the CDC-6400 computer.

The authors are pleased to thank E.P.Zhidkov and
N.L.Zaplatin for their continous interest and encouragement
during the preparation of this work. The authors are also
indebted to T.N.Dudareva for her help in carrving out the
calculations and designing the results. .
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MAGNETIC FIELDS AND POTENTIALS OF LINEARLY VARYING CURRENT OR
MAGNETISATION IN A PLANE BOUNDED REGION

C J Collie
Rutherford Laboratory, Chilton, Didcot, Oxon, OX11 0QX

ABSTRACT
In magnetic field problems solutions are obtained using the integral
equation method by discretising the material and by assuming the

functional form of the source (current or magnetisation) in each
element.

The assumptions made here are that the source density is a linear
function of the coordinates and that the elementary volume has plane
sides (that is either a polyhedron or its limiting cases of plane
polygon and infinite prism). The potentials and field are then
expressed as a summation over the faces, edges and corners of the

elements involving only elementary functions, and all the coefficients
are tabulated.

It is also shown that the same technique is applicable to integral
boundary method problems making the same assumptions.

1. INTRODUCTION

1.1 Task. The task of this paper is to calculate the effect of current

or magnetisation sources at a point in terms of the density of the

sources: which is the central task in solving magnetic field problems

by integral equation methods. This cannot be done explicitly in general

so simplifying assumptions must be made. Those used here are:

(a) The material is divided into elements with plane sides. In the
general case treated in paragraphs 2-3, 5-7, this is a polyhedron.
The special cases of a plane polygon, eg. a current sheet, and an

infinite prism are examined in paragraphs 4 and 8 respectively.

8e
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(b) The source density is a linear function of the coordinates. This
includes constant density as a special case and the method could be
extended to higher order polynomials, In paragraph 7 the parameters of
the linear function are assumed to be the values of the source at the

corners, elsewhere this is immaterial.

1.2 Notation. This is exemplified in Figure 1.2.1, which shows a typical
face and edge of the elementary volume. The field point x has Cartesian

coordinates xi (i =1, 2, 3) and a typical source point x' has coordinates
x;. Most of the analysis is performed in terms of the relative coordinate
Ui - x; T X The summation convention is used throughout. Thus for
example:
9A
(v5ﬂ}f = Eijk R with £l ik the totally antisymmetric form.
J
r = (UiUi}i = distance between x and x'
R = (uiui)* (i =1, 2) used in paragraph 8.

(£, n, ¢) are the coordinates in a rotated frame with the £ axis normal
to a face and the n axis perpendicular to an edge. The differentials of
volume, surface normal, and 2-dimensional edge normal are denoted by dV,

ds;, dLi’ Other symbols are defined as they are introduced.

1

‘corner
1
]
\
]
51
1
r2 . P ‘\\ - \
“‘uﬁ s q \
‘h ~\ * ‘
™ ~ . \
g L S \
x' (source point) - o ¥ \
- ""‘ P \
______._-_—-- . ~. \\\‘ 1
----- ~~s )
~ - - - ~Nh g
_____ N
X
: -
FIGURE 1.2.1 - THE VOLUME ELEMENT (field point)
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2. FORMULATION OF POTENTIALS AND FIELDS IN 3 DIMENSIONS

The integral forms for relating current and magnetisation to potential

and field may be found in (1) or (5) e.g. In Sl units they are:
Vector potential due to current:

Mo 1
Ai(x) = ﬁ;-f Ji(x') {?} dv (2.1)

Field due to current:

aAk 11o Ei
B, (x) :sijk—&?=eijkﬁf.lk(x'){rg}d\)‘ (2.2

Magnetic scalar potential due to magnetisation:
-] Ui
U(x) =/ Hi{x'){;]dh‘ (2.3)
Vector potential due to magnetisation:
-uo Uk
= D [
A (x) =2 [ ek ML - }dv (2.4)

Field due to magnetisation:

3A
N k _ . Aux)
B0 =eom; (= o g
i 3U.U, =
- x% f Hj[xl) <A éli} dv (2.5)
r r

Evaluation of these integrals is to be carried out for the volume
described in paragraph 1 for the case when the sources Ji and HI are
linear functions of x'. Since Ui = x; - X the sources are therefore also
Tinear functions of U. The integrals needed are thus just the terms in
braces in (2.1) - (2.5), and Um multiplied by these terms.

3. REDUCTION OF VOLUME TO SURFACE INTEGRALS
All the integrals which are shown to be needed in paragraph 2 can be
obtained by successive differentiation of the source point - field point

distance r. To avoid confusion with the components of some vector ry we

Magnetostatics A12

denote this by R and indicate differentiation with respect to U, by a
subscript. That is Rij means a2R/auiauj. We then obtain the following

scheme:
R=r= (u;ui){s
Differentials of R
General Forms Contractions
U.
R, =—
I r
=U. U, 8, .
SR I R i R =2
(] 3 r ii r
5 _ 3Uiquk ) G[juk ) ﬁiji i Ekin R . ZUi
ijk - 3 3 w3 | Ui r3
3UiU. Gi.
Rivp, = 2{——L - 113 R.... == 816 (r)
i jkk 5 3 iijj —

TABLE 3.1 - DIFFERENTIALS OF r. (&(r) IN THE THREE-DIMENSIONAL
DIRAC & FUNCTION)

Since all the integrands of paragraph 2 are either entries in Table 3.1
or combinations of them, and all the entries are differentials of the
lTine above, their integrals are immediately expressible as integrals over
the surface. Rij is given as an example to explain the method and

notation, and the results for all of them are tabulated in Table 3.2:

[ Ripav=[ /30, (R)) dv=[ Rds; = [ (U/r) ds, (3.2)
Since the surface consistsof plane faces, the direction of de is

constant over each face. Introducing new axes so that the new Us axis

is parallel to dSi, (that is along the outward normal) the face will have
the equation U3y = £, where £ is the distance from the field point to the
face (see Figure 1.2.1). The rotation is carried out using the rotation
matrix aij defined so that the relation between the new (starred) axes

and the old is:
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fe_ . = ® 3 o= . =08, 3.3
B ey ¥ % = Sty Ml T % T =

Then (3.2) gives:

%
- . U a3 dS (3.4)
IRU. av=_z [ Q/a, U aj3 dS
Where dS; = d5 and a.3 are the direction cosines of the outward normal to
% E
the face. A two-dimensional vector V. = [Uy7, Uz ] is introduced and

&

U3" = z. (3.4)then becomes:

v
f"ij =z [as3(a, %+aip ) ds (3.5)
faces ( p=1,2 only)

Note that a, V = {ui o ai3c) and is invariant under rotations about the
. i . .

U3" axis, which leave a,3 unchanged. a; is therefore a two-dimensional

vector. In Table 3.2 the integrands of the other R's are similarly

decomposed into £ and Vp parts.

Term Integrand of dS for face with normal along aj3
Ri aig r
Yo
ij ai3(aj3?+ ajp r }
L
Riv | ¥
vV §
: Pa ., _k
- = a - a, a + )
Rigk | 2i30725a%s 75 T35 3%%q 3 T Yipka T3 T
2
Rijj ai3(;)
. EE)
.3 (-2a, - 2a,
Rijkk| 23 ( %8 3 jp .3
Ry -2 & (integrates to = 2 x solid angle subtended by the face)
iijj .3

TABLE 3.6 - FIRST INTEGRALS OF THE DIFFERENTIALS OF R
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The entries in this table are not unique since it is only over a closed

surface that the integral theorem:
3% &
fa_uid”‘ [ ¢as,

can be applied. Thus the entry for Rij is not symmetrical, and it would

even be possible to write perversely:

o>

fRiJ.j v = [

=

Rig=f (-—dsdly g
j J £3 r J

% B3
FEG ta, = + ais(-s +2) ) ds

instead of:

2
T95, =/ a

R... dV =— R,. dV =
i

JJ au. jj

) ds
] 3 ¥

The forms chosen are the simplest ones.
4. SURFACE INTEGRALS IN THREE DIMENSIONS

The expressions (3.6) may arise without immediately deriving from
integration of (2.1) - (2.5). Thus in solving problems by Green's theorem

methods the starting point will be Green's second theorem:
I 1 8¢ (x") b
brg(x) = - [v2g — d\(+f?——---dsi + [ ¢(x") = 9, (4.1)
ax! r

i
relating the value of the potential ¢(x) to its value and normal gradient
on the surface of the volume. For linear problems the first right-hand
side term is zero. The solution of the simplified equation so obtained may
be attempted by approximating the surface by a set of plane facets and
assuming constant or linearly varying behaviour for ¢ and a¢/ax'7 on each

facet. When this is done all the required integrals occur in (3.6).

Another case is the idealization called a current sheet. A surface current

density Ki‘ has potentials and fields corresponding to (2.1) - (2.2):
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u
1
Ay =g K, (x') {7} ds | (4.2)
BAk My Ei
Bi = si_’k '5';_—1‘ . Eijk -G J’ Kk[x') r3 ds {l‘.3)

Again, on the assumption of linear variation for Ki' all the integrals are

in (3.6). A magnetostatics program based on (4.1) is described in(z) and

(3)

the eddy current program of includes current sheets.

5. REDUCTION OF SURFACE TO LINE INTEGRALS

The integrals of (3.6) may be integrated further by an extension of the
technique of paragraph 3. Corresponding to R we now need two generating
functions denoted by M and Q and defined in (5.1)

M =r3/9 + z2r/3 - 13~ |z]3 Tog (z + |2]) 5 r= (v, + 2)*
Mo=r Vi/3 + 22 V,/3r - |2]3 v, /30 (r + |2])

Q =|z| log (r + |z])

o =151 i
Yrlr+ lg)) (Definitions of M and Q)
Hii =r =P (Definition of P)
_—
=
V.V, S, .
o =ML gl )
B g
P = Ei + l 0 = Ei
(N r3 r il I'3

.. -0Q,.) = lr =T (Definition of T)

TABLE 5.1 - DIFFERENTIALS OF M AND Q
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Every entry in (3.6) can be expressed as a combination of those in (5.1),

so they can all be integrated. Pij is given as an example:

/ Pij ¢S = [ 9P;/aVdS = [ P di; = I, dL; (5.2)

Since the boundaries of the face are the edges of the polyhedron, the
direction of dL. is constant for each edge. |If aij is chosen so that the
Vo axis is along the outward normal to edge, then the equation of the edge
is Vg = nwithn = ajzuj, a constant. Call this new rotation matrix
bi_i

fixed only the 3-axis in the transformed system. For convenience ©iJ is

; it is a particular aij which is completely determined while aij

introduced to connect aij and bij:

Ui = bijuj = Ckiuk = Ckiajkuj
with
k% * *%k
Us7" =U3 =2, Uy =n; c3=c3 =383, (5.3)

O0f course only bij’ the fully determined form, can occur in the results.
Note that there is a ij for every edge in every face. (5.2) to (5.3)

give:
e - W n
IPide = I j’cik——r c, dw g (Cil T+ —r) €42 dw
(5.4)

*
where w = V; = bilui is the remaining variable. The w axis is along the
edge and the perpendicular from field point to the edge has w = 0 (see
Figure 1.2.1).

The tables which follow give firstly the separation into n and w parts for
the entries in (5.1), secondly the expressions for the first integrals of

R in terms of the differentials of M and Q, and thirdly the second integrals
of R.

&9
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Integrand | Integral for edge normal to bEz

2 3
r L n- Ll*n
it NPy _3r¥r+1'c"|7

P. c, r
i iy
n W
. c. —+c¢c., —
tl =2(J2?' J1 f)
P.. 3
ii r
cl n
Qn rir+|z
T JLi . &l .n
r rir+|g
T g o
I I 1

TABLE 5.5 - INTEGRALS OF M AND Q DIFFERENTIALS

Integrand Integral
Ri 3 pr
i ai3 (ajarT & aijp]
i et
Rijk aia(ajaaka(ZT-P )+ {aJ akp+ak ];Tp + ajpakquq
Rijj (21)
Q
Rigke | ig0Rag, e 22T
Riij) 2 %

g0

TABLE 5.6 - FIRST INTEGRALS IN M Q FORM
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TERM INTEGRAND OF dw FOR EDGE NORMAL TO bjp
ij blsbeadn & T(JI'_*-_*_TT) * b r

Rii 1L ?%%%%ETT

Rijk bi3( ks(? G 2 * (bjabk2+bk3bJ2)£"+ bjz(bkzl']ﬁbkl%))
Rijs | bry & - ﬂ%ﬁ:‘;"}f

Mgk | iy 205, T R 2y, P

i3 2 i

6. FORM OF RESULTS

6.1 Third Integration.

To complete the derivation of cl

TABLE 5.7 - SECOND INTEGRALS OF THE DIFFERENTIALS OF R

osed expressions

for integrals of all the required forms it is necessary to give the

definite integrals of the 4 functions appearing in (5.7) or (5.5) and to

show that the original symmetries are restored when the sums over the

edges and faces are performed.

Taking the integrals first we have simply:
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4] (ry + rz) q” (rl +rp + L)

{zr ik L ((ry = r2) +42) +_ log T"““;Tz‘_:_ﬂ' -sing cos6 -sin%g 0 -sin8' cos8' sin2e! 0
cos?28 sinBcos 0 | - [cos?8!’ sing' cosd' 0
0 0 1 0 0 1

(4] dw rp +ra + ¢

| ¥ = log ey

Lo 1 2

(5] (6.1.1)

f Ydr=ry - r

= y ~rg
L2
9] 3] 2

n = -1 jul _ -1 Ll
LGN 2o ey e e En G+ ]

Where & ,E, are the w coordinates of the end points of the edge, L = £1- E2

y

2
is the length of the edge, and q = (z + n )% is the distance of the field L T > >
point from the line. (See Figure 1.2.1). The last expression in (6.1)
i FIGURE 6.2.1 - RELATION BETWEEN ADJACENT c,.
|z|/z x the solid angle subtended by the area P12 in Figure 1.2.1. Note 1
that the log term in (6.1.1) is unbounded on the edge. Rijkk and Ti are
the only forms containing this term without a protecting factor. which is symmetrical on interchange of 1 and 2. The same argument shows

the symmetry in jk of the last term of Rijk in (5.7), since the bij for

6.2 Restoring Symmetry. The only apparently unsymmetric form in (5.5) is different edges in the same face are different clj multiplied by the same
Pij which is: aij'
! P..ds= £ f[ec, (e, D4c. B dw A different argument is required to restore the symmetry in i,j of the
i i r r
’ edges 2 et B terms in (5.7). Thus the last term in R, is by (6.1.1).

rp+ro+ 2

Only the second term in this is unsymmetrical. Its value by (6.1.1) is 5 T log (_.___+ — 2.) b. b. (6.2.2)
(rl-rg} The same value of r as rj occurs in the adjacent side of faces edges EhTe '3 2
the face (see Figure 6.2.1) as ry. So each corner coordinate occurs in a
combination 1ike: The same log term will thus occur twice for each edge, with the t'flabj2
for the two faces which join along the edge. Now the b.2 in this case are
¢, ¢, =-¢ci ¢ (6.2.1) not independent: since b is is normal to the face, the edge bJ --b}l mus t
L "z be parallel to {Ej ), and bJ is (Eja A E‘jl)' Carrying out the
Now €j rotates simply in the plane of the face. So (6.2.1) is of the vector products gives
form: ' v 3 ,)
b. b. + h' bi _ bis bj3+bj3b15 (b k ){h13bJ3 ® biabjs
i3 2 iz ]2 (1 -(b ]z)r (6.2.3)
ka ks
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which is symmetrical in i and j. The only remaining case is the symmetry
between i and k of Rijk' It has been shown to be symmetrical in j and k
when the summation is carried out over all the edges on a face, by the
argument of (6.2.1), and in i and ] by that of (6.2.2) when both contri-
butions to an edge are summed, from which it follows that it must be

symmetrical in i and k when the whole summation is complete.

7. SINGULARITIES IN THE RESULTS

The integrals of (6.1.1) contain a solid angle term, which is discontinuous
on the surface, and a log term which is unbounded on the edges of the
volume. Inspection of (5.7) shows that these terms only occur without a
protecting factor in Rijkk and its trace Riikk’ which derive from the

magnetisation field (2.5), and these only from the constant term in Mj(x').

This means that a method based on constant magnetisation within each volume

(4)

element, such as GFUN can obtain the field within the iron only by an

indirect averaging process, analogous to the Lorentz averaging by which H.
is derived from Bi within material, as described for example in(S). Since

a linear dependence for Hj(x') also contains a constant term it might appear
that the same is true for this case, but in fact these singularities and

discontinuities can cancel out on internal edges and boundaries.

To see this it is necessary to look more fully at the linear magnetisation
supposition. While any polyhedron can be used as element in the constant
magnetisation case, the linear magnetisation case is likely to be used only
with a tetrahedral element, the 4 corner values of magnetisation being just
sufficient to determine the 4 parameters of the linear function ag + aix;.
Thus on defining xé = 1, the supposition of linear magnetisation within the

element amounts to saying that for some constants NaB

= 1] -
Hi(x') = Mo, NquB (a,B summed from 0-3) (7.1)
I
with Mui = Hi(xa); its value at the ath corner. Setting x = Xy in
(7.1)
HYi = Mui NaBXYB
L NuB XY= Say (7.2)

g2
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Substitute (7.1) into (2.5) and obtain:

i 3u.U. e
1y = 0 SR SR i |
Bi{x ) II_TTI Muj NUB {UB + xB) { i r3] dv (73)
where U ' =0, x = 1.
[+] o

The coefficient of [ Rijkk dv (see (3.7)) in B, is therefore:

u
E% Haj Nog¥e = W(x) (definition of W) (7.4)

Imagine the field point x approaching the corner xy, that is

XBEKTB+E

(7.2):

8 (ao = D), where € is an infinitesimal vector. Then by

u
Wby +e) = g2 (My, + Mag N oeg) (7.5)

B 8
Referring now to (5.7), consider the contributions to the field of the
common face of 2 adjacent elements. The b. are along the outward

normal and thus simply change sign and the solid angle also changes sign.
The bj2 are equal since they are the outward normal to the edge, and

the log term is the same for the two elements. The My contribution in
(7.5) will thus exactly cancel, and the contributions from other corners
are 0(e).

Now imagine x approaching not a corner but an edge. That is Xg = (pxyB

+ qxé

o * ss) with p + q = 1. Then similarly to (7.5) we have:

8 EB) (7.6)

u
W + + = 2 ¥ 5 F
(pxy + gxé + €) B {pﬁyj + qHSJ + H“JNa
Again, considering adjacent elements, it is only the common corners which
make finite contributions to W, and these exactly cancel. Similarly the

field is continuous on crossing a face.

So the only troublesome points are on external corners and edges where
physically iron will be saturated. Some special procedure must be adopted

to deal with these, such as radiusing the corners or placing the nodes of
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the mesh a little inside the material boundaries. Elsewhere the linear

magnetisation supposition should provide directly values for the field
within the iron and as (5.7) shows, requires the evaluation of exactly
the same transendental functions, and no others, as constant magnetisation.

A given mesh will generally contain fewer nodes than elements, so it should

also be economical.

8. THE TWO DIMENSIONAL LIMIT

8.1 Formulation in two dimensions. A case of considerable practical

interest, because set ups which approximate to it allow considerable
computational savings, occurs when there is no variation of any quantity
in one direction, so that the volume of interest becomes an infinite
prism. The form the results obtained take in this case is not immediately
apparent because such systems only approximate to reality when they are

balanced. Without this restraint (2.1) diverges.

It is easier to start again with the relationships which connect sources,
and fields in this case. They are ), with subscripts indicating 2 vectors

throughout.

Vector potential due to current:

u
A (x) =-f:— [ 3;(x') log R/a ds (8.1.1)
Field due to current:
= - i i s
B(x) €1 3% = 37 Sij / J; (x") = ds (8.1.2)

i
(There is also the case when jy exists, but exactly the same integrals

occur, so it is omitted.)

Magnetic Scalar potential due to magnetisation:

u.
U =55 [ M (xt) =L ds (8.1.3)
R
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Vector Potential due to magnetisation:

H '
AG) = -2 [ e, ”‘:2’ u; s (8.1.4)

Field due to magnetisation:

i 2U.U [
B.(x) = ¢.. BA(X) ==y aU(X} =_0 M. (x') (_I__i ) ds 8
! ij axj o 3x, 71 / ] ™ Rz} (8.1.5)
In which the constant a in (8.1.1) is quite arbitrary and is the trace of

the fact that only balanced systems are meaningful, when it will cancel.
The evaluations are to be carried out for J;(x') and M. (x') linear

i
functions of x', or U. The area of integration is tne polygon of Figure

8.1.1, with the prism extending to * infinity in the x3 direction.

] - &2
% |
(source point)t /
1 1
]
\ Ry
\ [ id
\ s

x (field point)

FIGURE 8.1.1 - REGION OF INTEGRATION FOR THE TWO-DIMENSIONAL LIMIT

8.2 Reduction of surface to line integrals. Analagously to the treatment

of paragraph 3, all the required integrands can be derived in differentials
of R? and R? log R, according to the scheme of (8.2.1), setting the

arbitrary constant a to 1.
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X =R log R, Y=~R?
(Definition of X and Y)

X. =2U, =2 U,
i

i log R + Ui Y

u.u.
X, =2 24y Gij (1 + 2 log R)’xii =h + 4 log R, Yi.=1+

ij R2 !
u.u.U U u. U,

.20 (g Sl Ryg Kyg Lpg =l

ijk RY iJ p2 Jjk p2 ki 2

X,..= b —

11] R2

= y-2 Ay Ay ox o =8rs
Ko™ W2 G Rz) v Xty (R)

TABLE 8.2.1 - DIFFERENTIALS OF X AND Y

(8(R) is the two dimensional Dirac § function)

Again analagously to paragraph 3, a two dimensional rotation matrix is
introduced so that in the rotated system, a particular edge has the equation

Up = n = a constant. Then (3.3) still holds with sums understood as from

1 to 2 and the analogue of (3.4) is

[X..ds= %

dL {8.2.2]
J edge

®
log R + Um) a

[@u,

5 a,
im “ja2

U-I, this becomes, since dL = dl,

1]

Introducing V

[%..ds= 1 [ 3,

(ai (2nlog R + n) +a; (2 V log R + V) dV
J edges z *

(8.2.3)
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Carrying out a similar procedure for each item in (8.2.7) gives Table

8.2.4, choosing the simplest of the non unique forms as in (3.6)

Term
X 3, (n? log R + V2 log R)
Y. a. (n? + Vv2)
I 12
x,l;j a2 {ajg (2 n log R+ n) *ag, (2 Vieg R+ V)
xii 2nlogR +n
Y1 Zn
2
) a, (2&, 3 S=w2a a Wizs a. Wy W
ijk i2 J2 kg g2 Ja k1 g2 k2 j1 p2 1k g2
+ ij (1 +2 log R))
XU.J. ai2 (4 + 4 log R)
vV
X.. a; % g e b 2
ijkk in J2 g2 J1 g2 )
2

TABLE 8.2.4 - FIRST INTEGRALS OF THE DIFFERENTIALS OF X AND Y

The singular and discontinuous forms arising in (8.2.4) are:

/

L2

t1

V'l
—=1leog R;/R, and
R2 g B1/ihg f

n

R2
T2

— = -]%[- X |angle subtended by edge|

(8.2.5)

Gl

which can be shown to give rise to continuous fields internally for linear

magnetisation in the same way as in paragraph 7.
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Non-divergent Vector Finite Elements for
Magnetic Field Calculations

Z. J. Csendes

General Electric Company
Schenectady, New York 12345

Abstract

In this paper, a novel set of two and three-dimensional
approximation functions are derived which satisfy the condition
that their divergence equals zero. These functions are useful
for approximating operator equations involving non-divergent
magnetic field quantities. The application of these functions
to two-dimensional finite element analysis is presented and the
procedure is illustrated with the two-component vector magnetic
field solution of a stranded, slot-embedded conductor.

1. Introduction

A large number of magnetic field problems are formulated
in terms of non-divergent vector field quantities. Often the
most convenient representation of these quantities is in terms
of an operator equation in which the non-divergent nature of
the field is not specified. For example, in three-dimensional
magnetostatic problems, the vector potential must independently
satisfy both a vector Poisson equation and the Coulomb gauge,
and in magnetic field induction calculations [1,2], the current
distribution must separately satisfy both a vector integral
equation and a zero-divergence condition. For this reason, the
numerical solution of vector magnetic field problems has re-
mained limited to a few isolated cases [3,4], and most numeri-
cal work in magnetic field analysis has involved only the
direct solution of one-component field guantities.

In this paper, a complete set of interpolatory polynomial
vectors are derived which satisfy the condition that their
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divergence equals zero in a rectangular region. These poly-
nomials form a natural set of approximating functions for non-
divergent magnetic field quantities and eliminate the diffi-
culty of imposing the zero-divergence condition on a numerical
solution. Coupled with solution techniques derived from the
finite element method, these polynomials constitute a powerful
method of solving many two and three-dimensional magnetic field
problems.

The remainder of this paper is divided into three main
parts. Section 2 contains the definition and the derivation of
interpolating non-divergent vector polynomials as well as a
brief examination of some of their properties; Section 3
presents the application of these polynomials to the finite
element method; and Section 4 describes the numerical solution
of the two-component magnetic field distribution in a stranded,

slot-embedded conductor.

2. Non-divergent Polynomial Vectors

2.1 Definition

The finite element analysis of a two-component non-diver-
gent vector field requires the evaluation of polynomial vectors

of the form

= py4(x¥) I+ qy 4 (x:¥) T& (1)

in which pij{x,y} and qij(x,y) are polynomials of minimal order
satisfying the following properties:
(i) pij(x,y) and qij(x,y) are product separable, i.e., it

is possible to write pij(x,y} and qij(x,yl in the form

pijIX.y) =X; (x) Yj(y} (2)

-Wi(x) Zj(y) (3)

qij (X; Y)

(ii) The functions pij(x,y} and qij(x,y) interpolate on an

m by n grid of points (ai,bj):
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_ k&
plj(ak'bz) = dij
i,k =1,...,m

T = Ypusesn (4)

qu(ak,bg) =0

It is assumed throughout that ai#aj and that biyébj
if i#j.
(iii) The vector a (x,y) has zero divergence

ulj(x,y] =0 (5)

2.2 Admissible Forms

Conditions (i) and (iii) may be combined to yield the

following equations

X, (x)
—55— = MW, (%) (6)
3%, (y)
= Ay ) (N

Equations (6) and (7) provide the divergence condition in terms
of the functions X(x), ¥(y), W(x) and Z(y).
magnitudes of X and Y and of W and Z are arbitrary, without

Since the relative

loss of generality it is possible to set A = 1.
Since pij(x,y) and qij(x,y) are polynomials, the functions

Xi(x) and Zj(y) may be represented as

M i x
Xi(x) = 3 a; X (8)
=0
o ik
25(y) = ! By (9)
k=0

where M and N are the orders of X, (x) and of Z, (y), respec-
tively, and the coefficients a; and Bk are to be determined.
According to eguations (6) and (7) the functions Wl(x) and

Yj(yJ are polynomials of order one less than the polynomials

Xi(k} and Zj(y), respectively.
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The interpolation conditions (ii) may be stated in terms
of the functions Xi[x), Yj(y), Wi(x) and Zj(y) by substituting

(2) and (3) into (4). This gives

X.(ay) = 8

ik ik
¥y (bg) = &,
W, (a,) = 0 (10)
Z;(by) = 0

These equations imply, respectively, that (a) the points x =
ay ., k=1,...,i-1,i+1,...,m are the roots of the polynomial

X;(x); (b) the points y = by
of the polynomial Yj(y): (c) the points x

k=1,...,3-1,j+1,...,n are roots

k-1,...,m are

]

a
kf
roots of Wi(x); and that (d) the points y = bk’
roots of Zj(y). Thus there are M+m+l free parameters Xy in

k-1,...,n are
xi(x] and M+m+l free parameters Wy in Wi(x). Equating the
derivative of xi(x) to Wi(x) results in M-1 equations in 2M-2m
unknowns. (The value of a; Bg is set in the normalization =]
j(ai,bj)=l). A unigue solution of this system is therefore

possible if and only if

M = 2m-1 (11)
A similar reasoning with Yj(y) and Zj(y) implies that
N = 2n-1 (12)

2.3 Explicit Representation

Evaluating the derivative of Xi(x) at the points x=ap and
setting the result equal to Wi(ap) leads to the eguations

]

X, (%) (x=;) A, (x) (13)

].
m
1
l'l'l

Wi(x) A; {x} + h&ﬂi)hi(x) (14)

where Ai(x) is the derivative of Ai(x) and

0 2
Al(x) = kglucak) (15)
K#i
A.(a.)
. SIS |
X328 Yoy (16)
alz o i
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In the same way, it follows that

= gl ¥ B ' 17
Z5(y) = By (¥-by) By(y) (17)
(y) = BI B, 0.) B! (18)
Yj(y) By B]{yl +(Y-ojl Bj(y}
where
I : (19)
B.(y) = T (y-b)
] k=1 &
k#1

One final condition needs to be imposed on the polynomials.

This is the condition that
pij{ai,bj} =1 ' (20)
Evaluating the expressions Ki(ai) and Yj(bj) and substituting
into (20) gives
£ 2 A!(a.)
W T,y s
: T (L [t

One possible set of solutions of this equation is

ui B Ai(ai)
= A?{a.]
11
(22)
8= T
N Bj(bj

2.4 Further Properties

One of the most interesting properties of non-divergent
vector interpolation polynomials is their relationship to
Gaussian guadrature formulas. Since the polynomial Xi(x) is of
order 2m-1, it can be integrated exactly by the quadrature

formula

m
fw(x)xi(x]dx = 151 Xi(ag)c? (23)

m
where w(x) is a weighting function and the c, are guadrature
weights with a degree of precision 2m-1. Taking the points a;
to coincide with the nodes a, used in the gquadrature, (23)

reduces to
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m
fw(x)xi(x)dx = Cy (24)

A similar reasoning with Yj(y), Wi(x) and Zj(y) gives

_.n

fw(y}Yj(y)dy =C

fw(x}Wi(x)dx =0 (25)
fw(y)zi(y)dy = 0

Thus, there obtains the following remarkable result: the
application of a Gaussian quadrature formula to a two-dimen-
sional scalar field is equivalent to approximating the scalar
field with one component of a two-component non-divergent poly-
nomial vector field, the integral of the second component of
which is zero.

In three dimensions, non-divergent vector interpolation
polynomials are obtained by taking

Yiq(Foyez) = X (x) ¥ (y) ¥y (2) T, -
+ W 00 Xy () - 23] Y ()T - Wy ()W () 2y (2) T,

Furthermore, in the cylinderical coordinate system, the follow-
ing three-component vector is both interpolatory and non-
divergent

— = 1 —
Yijk{rlzrs) = ;xi(r) Yj(z) Yk{e)lr

1 (27)

+= wi(r)[ﬁj(z)-zj(zﬂ YR[G)I;-Wi(r)Wj{z)zk(e)Te

3. Vector Finite Element Formulation

3.1 Variational Expression

In a number of magnetic field problems, a two-component
vector field V

Vi

v = (28)
v :
y
must be both non-divergent

av av
_—.x =
T ny 0 (29)
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and satisfy the operator equation
(£+ NV =F (30)

where )\ is a constant, F is a two-component forcing function

and £ is the operator

It is well known that an energy functional corresponding to the

operator equation (30) is given by [5]

i}(?) = [ T (+42)Van - 2 [ V°F 4 (32)

where I is the region of integration. Applying Green's first
identity to equation (32) results in

i;(ﬁ) = - [ (T (cNan + » [ T van

(33)
—T—
-2 [ V'F da
where G is the matrix
3/3, 0
3/3 0
¢ = "y (34)
0 /8,
0 B/BY

Consequently, an approximate solution of the operator equation
(30) subject to the divergence condition (29) may be obtained
by extremizing the functional f;(ﬁ) in equation (33) in the

space of non-divergent two-component vectors V.

3.2 Non-divergent Basis Functions

An arbitrary, non-divergent two-component vector V may
be approximated in a rectangular region by the vector

m m

n n
Vix,y) = i£1 jleijaij(X'yJ + izl jzl Lijsij(x,y) (35)
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where Kij and Lij are arbitrary coefficients and Eij{x,y} and
@ij(x:y} are the vectors
B Pij(x,y)
aij(x,y) 5 (36)
_qij (x,y) }
B qji{x,y)
Pji(x:y)“

Substituting equation (35) into equation (33), differentiating
£;(V) with respect to Krs and setting the result equal to zero
yields

-1 3 K“Ifapij Prs , PPij Pps 2945 0%, 2944 i T
i=1 j=1 3 ax X 9y 3y 9x ax dy Yy
m n i
+ i i
RIS [(pss Prg * a3y apgtan ok
m n
= L ! Fx I{Pij Prg * qij qrs}dg

i=1 j=1 %ij

where F_  are the coefficients of the x-component of F. A
1]

similar equation is obtained for Lij'

3.3 Vector Notation

Introducing the vector notation

X (%) = (X, () Xy(x) ... X (0]
(39)
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equation (38) may be written in the matrix form

2 Ty K Jdyy = Ixx X Jyy = Iyy K gy

Ak
+ A KJYY-l-I K J

ww X Izg) (40)

T T
Ixx Fx Jyy * Tyw Fx Y22

Ixx

where I, and J,, are the integrals

I, =/ aT(x) A(x)ax
_ ~ (41)
3y =/ AT(Y) A(y)ay
and a(y} and V(x) are the vectors
U - Y (y) :
U(y) 3y (42)
3 _ B%(x)
Vix) = X

Finally, applying the vec operation to both sides of equation

(40) gives (vec M = [Mg " ME]T where M, is the iEE column

of a matrix M)

(2 Ty DTy + Ty gy + Jzz(’DI'xrv]"e""
A (JYY®IXX + JZZ®IW)vec K (43)
= (JYY®IXX N Jzz®1ww)ve° Py

where (:) denotes the Kronecker product A (:) B = (ai. B) [6].
A very similar development differentiating & (V) with

=

+

respect to the coefficients L__ results in the equation

- (2 T 1y + Ty B4, + Ty @1y vee L
A @ @)1, + Tgy ®Tyy)vec L (44)

= (JWW®IZZ + Jyx ®1yy) vee Fo

Equations (43) and (44) provide two uncoupled matrix equations

to be solved for the unknown coefficients Kij and Lij'
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4. Application to Slot-Embedded Conductors

4.1 Discretization

Figure 1l(a) provides a descriptive picture of a slot-
embedded conductor including the adjacent air-gap region, in-
dicating the locations of the conducting strands and the
regions of insulation. A finite element discretization
corresponding to this conductor using rectangular elements is
presented in Figure 1l(b). This Figure also presents the
boundary conditions which need to be satisfied by the magnetic
field components Bx and B_.

Assuming that there are no source currents, the magnetic
field in a slot-embedded conductor satisfies eqguations (29) and
(30) with V=B, F = 0 and A = -jwpo in the conducting regions,
A = 0 in the non-conducting regions. Consequently, the analy-
sis in the previous sections may be applied directly to solve
the slot-embedded conductor problem in Figure 1.

The lowest order non-divergent polynomial vectors occur by
taking m=n=2 in equation (4). 1In this case, letting the
interpolation nodes correspond to the corners of the rectangle
-a <x <a, -b<y<hb, the interpolation polynomials become

xl(x) = X, (=x) =(x—a)2 (x+2a)/4a3
¥, (y) = Y, (-y) =(y-b) (3y+b) /4b°
Wy (x) = W, (-x) 3(x-a) {x+a3/4a3

(45)
(y+b) (y-b) 74b>

2, (y) = Z,(-y)

Vi (%) = Vy(-x) = 3x/2a°

U (y) = Uy(-y) =(3y-b)/2b°
Using these polynomials, the integrals IAA and JBA in equations
(43) and (44) are easily evaluated; the numerical values ob-

tained are presented in Table 1.



Compumag Oxford, 31 March to 2 April 1976

Table 1.

Numerical values of the matrices I
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(or of J

AR with

AR

a replaced by b) evaluated using the interpolation polynomials

in equation (45).
IAA(l'Z) and IAA(2:2) = Im(l!l}.

The matrices are symmetric with IAA(Z,I) =

Bx =0
u By = fz(x)
! J
| ! Bx =0
| | | 3By =0
| ax
| J
1 1
N | |
B.=20
| X
B =0 _
X r By f3(x)
ﬂy: 0
ax

n
o

000 000
000 000

B, =0
fq(x)

By

(a) (b)

Figure 1. (a) Typical slot-embedded conductor geometry showing
the conducting strands, the liquid cooling ducts and the adja-

cent airgap.

(b) Rectangular finite element subdivision of the slot-embedded
conductor geometry in (a) and a description of the boundary

conditions satisfied by the magnetic field.

A IAA(lfl] IAA(l,Z)
X 26a/35 9a/35
Y 4a/15 -a/15
W 3/5a 3/5a

z 8a3/105 6a>/105
v 3/2a° -3/2a3
U 2/a -1/a

4.2 Solution

For the purposes of the present .investigation, a computer
program was written to assemble and solve eguations (43) and
(44) for the x and y components of the magnetic field for the
problem in Figure 1. The program accepts as data the slot
width and the slot depth, the airgap thickness and the tooth
spacing, as well as the locations of the conducting strands.

Taking the boundary condition fbrcing functions to be of
the form

fl (y) = Clx+C2
f2 (x} = =1.0

(46)
f3(xJ =.=0:37

fdix) = -0.10

where Cl and 02 are constants, the magnetic field distribution
in Figure 2 results. In this Figure, lines of equal magnetic

flux magnitude have been plotted, since this plot is easier to
comprehend than separate plots of the x and y components of the

complex-valued magnetic field.
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M

=1

Figure 2. A.plot of the equi-magnitude lines of the magnetic
field for the problem in Figure 1.

5. Conclusions

A finite element method has been developed for the solu-
tion of magnetic field problems involving non-divergent vector
field guantities. The method is based on the use of non-
divergent vector approximation polynomials, which are derived
in this paper. Although the finite element formulation pre-
sented is specifically designed to solve two-component vector
field problems, extension to three-component vector fields is
straight-forward since three-component non-divergent poly-
nomials may be obtained from the two-component non-divergent
polynomials, as shown in Section 2.4.

As a simple illustration of the application of the vector
finite element method, a two-component vector solution of the
-magnetic field in a slot-embedded conductor is presented in this
paper. Although the procedure emploved treats the x and V-
components of the magnetic
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field independently, non-divergence of the solution wvector
is assured by the choice of the non-divergent vector basis
functions.

Compared to alternative analyses of the slot-embedded
conductor problem, the vector finite element method has two
advantages. First of all, in both the classicial analysis of
the slot-embedded conductor problem [7,8,9] and in the more
recent numerical work [10,11] the magnetic field is described
in terms of an axially directed vector potential. Since the
magnetic field is defined as the curl of the vector potential,
this implies that the error in the computer vector potential is
exaggerated by the process of differentiation used to obtain
the magnetic field. This limitation is not encountered with
the method presented in this paper since the magnetic field is
solved for directly.

The second advantage of the non-divergent vector formula-
tion presented in this paper is that the approximation func-
tions are "pre-screened" in order to eliminate undesired diver-
gent behavior. The alternative possibility of solving the
vector field problem and the divergence condition simultaneous-
ly (as, for example, described in [4]) presents much larger

matrix equations and, hence, greater computer costs.
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A GENERALIZED FINITE DIFFERENCE METHOD

FOR THE COMPUTATION OF ELECTRIC ‘AND MAGNETIC FIELDS

by G.B. Denegri, G, Molinari, A, Viviani
Electrical Engineering Department, University of Genoa

Viale Causa 13, 16145 Genoa, Italy
1+ Abstract

A generalized form of the finite difference method is proposed to
solve boundary value problems of the elliptic type, such as stationary mag-
netic or electric field problems,

The new method allows us to use grid forms of the type usually adop-
ted by the finite-elements method.

In such a grid, the internal elliptic equations and the boundary and
interface conditions can be discretized by expressing the potential V by a
Taylor series expansion stopped at the N-order terms around any gridpoiﬁt.
The particular procedure used produces an algebraic system which is better
conditioned with respect to the ones typical of traditional finite-dif-
ference problems, and is very similar to those common to the finite-elemers
method, The new methed eliminates completely the difficulties usually pre-
sented by the finite-difference method in the treatment of boundary and in-
terface conditions. A comparison with the finite-elements method can give
various results, because both methods present various implementation forms,
However, the proposed method seems to warrant higher precision, especially

when interface conditions are involved.
2. Introduction

At the present time, as far as the numerical solution of field pro-
blems is concerned, the finite-elements method is generally considered more
powerful than the finite-difference one, This is essentially due to the
fact that the finite-elements method allows us to introduce a non-order=d
set of gridpoints; on the contrary, the finite—diffe;ence method requires
a set of gridpoints arranged at the intersections of two or three orthogo-

nal sheaves of straight lines, Almost any other advantage of the finite-
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elements method devends on this fact. It allows us to optimize the grid-
points distribution on the basis of the geometry of the problem, Besides,
it eliminates the cumbersome interpolation procedures required by the fi-
nite-difference method at the boundary and interface conditions, which
cause difficulties in inverting the algebraic system obtained by the discre
tization, owing to the increase in the matrix band amplitude,

The introduction of curvilinear grids into the finite-difference me-

1,2

thod reduces the difficulties in adapting the grid to the problem, though
the interpolation procedures at the boundary and interface conditions are
still necessary,

As a consequence, the finite-elements grid structure remains more ver
satile, especially when complicated boundary shapes are concerned,

However, the finite-difference method turns out to be inadequate espe
cially because it is applied in a restrictive version, which wastes some of
the method's features,

A generalized form of the finite-difference method is presentéd here,
which can be considered on the same level as the finite-elements one, and
can be more suitable ts particular problems,

For the sake of simplicity, the generalized procedure is described in
the case of bidimensional problems requiring only scalar potentials, Its

extension to tridimensional problems is an easy matter,

3e The definition of the problem

Let us consider a boundary value problem defined at any continuity
point of a set D in the x-y-plane by a second order linear partial differen

tial equation of the elliptic type, given in the form:

2 2 2
3 + a i ¥ a oV +a 3y + a 3V + a.V=Ff (2.1)
a —— e = — '—' e
2032 0232 Li 1034 013y 00 0
where 320’ see ao0 and fD are constant or given functions of x, y. On the

boundary of the set D, the following general conditions are imposed:

av '
DV + Dy = £ (3.2)
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where b1, b? and f1 are constant or given functions of x, y, and n is the
inward normal to the boundary, The set D can be divided into partial sub

sets Di' On their interfaces, the following conditions hold:

Vi = Vi + £2 (3.3)
v oV

J
Pjan-i ¥ Cka“k ) FS (3.4}

where i and k are subscriots referring to regions D, and D ; c,,cC
J J

£
k k''2'"'3
are constant or given functions of x, y, and n__l.nk are the inward normals

to the boundaries of D, and Dk'
J

4, The discretization of the partial differential problem

The generalization of the finite-difference method proposed requires
the introduction of a grid of the type used in the finite elements proce-

dure (Fig. 1).

Fig. 1 - M-point star around an internal gridpoint P (case with N=3,M=9)
At any internal gridpoint P, the potential V can be expressed by a
Taylor series expansion, stopped at the N-order terms, of the form:

1 3y 1 m
D el (= 2 G

xToy
Then, the potential must be computed at M=(N+1)(N+2)/2-1 gridpoints
around P, generally at the M gridpoints nearest to P (Fig. 1). At the

gridpoints P (i=1,M), we have:
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(Xpi - xpyl(ypi = .},P)I'.I! (4.?)

1 any
Vo = Vp = Erm i L L
B R AR D anlay |

Eqs. (4.2) form a system of M equations in the M unknowns
b“V/Taxlay“q1|P. This system can be solved and gives the M potential de-
rivatives as functions of the potential values at the M gridpoints aroundP

v
bxibym

= Ef:i Almifvpi - Vp) (4.3)
'P

Then, eq. (3.1) can be discretized by using eqs. (4.3), Substitution

into eq. (3.1) gives an algebraic equation of the form:

Vp = {?_ji ByVp; + By (4.4)
vhere
VIR
By & T 1 1im=n 1m“1mi (4.5)
£
Bg Gn (4.6)

= s
a Y VP
Z;“ 1§=n 1m Z’L imi = “00

The coefficients Alm are functions of the coordinates of the arid-

roints x_, X Y
pi' et p V!

computed as functions of the above coordinates and of the values of alm

and conseaquently the coefficients Bi and Bo can be

and £ at P,
o

5s The discretization of the boundarv conditions

The boundary conditions of the type (3,2) can be imposed provided
that a suitable number of gridpoints are arranged on the boundary lines
(Fig. 2). The discretization procedure, which must be applied to any boun-
dary gridooint where b? % 0, is similar to the one described in the pre-
vious Section,

By means of the expansion (4.1\ applied to a boundary gridpoint P,

we can compute the potential at M-1 gridooints Pi fi=1,M—1\ around P, qe-

e Y
)
\Ji
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Fig., 2 - (M-1)-point star around a boundary gridpoint P (case with N=3,M=9),

nerally at the M-1 gridpoints nearest to P (Fig. 2). This procedure gives
M-1 equations of the type (4.2). A system of M equations is obtained by in

troducing the following expression of the normal potential derivative:

9-\{ —9.‘-" .b_;-t +§X y —.ajnq.y (51)
3nlp = x|pam|p T By|p dn|p  Bx|p ay|p“Y o

where ﬁ:(nx,ny) is the unit vector normal to the boundary at P (Fig. 2).
The inversion of the system made up of eqs, (4.2) and (5.1) gives the M po-
tential derivatives as functions of both the potential values at the M-1

gridpoints around P and the normal derivative:

v H;-‘l , v
— - ‘ ﬂlmi(‘fpi - VP) + almH_ (5.2)
ax1dym P 1 on p

The substitution of eq, (3.2) into eq., (5.2) gives:

any M-1 (f )
=3 . Ay (Ves = Vo) + Ayl = V: 5.3
s ay“']p 205 Ami(Vps p) + Ay T (543)

with

Rreae® Asartl (5.4)
1mM = AimM B, 544

Finally, the substitution of eqs, (5.3) into eq, (3.1) gives an alge

braic equation of the form:
M=1

Vp = 2;:i BijVp; + Bg (545)
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where the coefficients Bi (i=1,M-1) are defined by relations of the Fform

(4.5), whereas B_ is given by:

0

£
1
Zin 1§: 21 mA1mM 5 fo

4i=n
a tA1mi = 2
Zf::; 1£n m ﬁ:x 1mi = 200

The above coefficients are functions of the coordinates of the grid-

BO=

(5.6)

int d of th 1 E . . d b t P.
points and o e values a  , 010, and b, a
When b2=0, the condition (3.2) reduces to a Dirichlet boundary condi-

tion, which can be directly introduced into the system.

6., The discretization of the interface conditions

The interface conditions (3.3). (3.4) must be imposed by introducing
a suitable number of gridpoints on any interface line (Fig., 3). Due to eq,

(3.3), which introduces a discontinuity into the potential, any interface

Figs 3 - 2(M-1)-point star around an interface gridpoint P (case with N=3,
M=9).

gridpoint P must be replaced by two separate gridpoints Pj and Pk' belong-

ing to the two regions Dj and Dk separated by the interface line, The dis-

cretization procedure, which must be applied to any couple of interface

gridpoints, follows directly from the one described in the previous Sectim,
By means of the expansion (4.1) applied to an interface gridpoint Pj

(or Pk), we can compute the potential at M-1 gridpoints Pij (or Pik} (i=1,

M-1) around Pj (or Pk). generally at the M-1 gridpoints nearest to Pj (or
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Pk], all belonging to Dj (or D). A system of M equations is obtained by

k
means of M-1 equations of the type (4.2) and of one equation of the type

(5.1), obtained by suitably defining the normal derivative as function of

the unit vector # = . =
nJ (nxj'nyj) or nk (nxk'nykj normal to the boundary at

Pj (or Pk) (see Fig, 3). The inversion of the system gives the M potential

derivatives in Dj (or Dk) in a form similar to the one of eqs. (5.2). Then,

the substitution of these equations into eq, (3.1) gives two equations of

the form:
=1
av;
5;? i ;i Cij(Vpij = Vpj) + CmjVpj + Coj (641)
)
. ® ; i Cix(Vpix = Vpx) + CaxVpx + Cox (642)
k1P

where, with reference to eqs, (5.2), it is, for j:

in 1Z 231m3AImi

Cij =- AM=1 (643)
;n 1§:n 21miA1mi;

Ong = - 200 : (644)
ijn 1_;'-“ almjA;.UMj

Coi = foi (645)

J
1
Z?n L%n 21mjA1mj

and analogously for k.
The substitution of eqs. (6,1), (6.2) into eqs, (3.3), (3.4) gives
the algebraic equations:
M=1 M=1
Vo= Ei Bj;Vpij + ‘L:i BixVpix *+ Bp (6.6)
Vpk = Vpj - £2 (647)

where:

CaCss
By = —g - (6.8)
cj ti Cij + cx ti Cikx - c3CMj - cxCmk
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_ 1 Cix
Bik =~ ] (6.9)

€j ;i Cij + ok ?1 Cix = ¢jCM5 = cxOmx

c;Coj + cxCox + cx gi Cixfo - cxCOuxf2 = f4

By = (6.10)

= M=
cj ;i Cij + Ck;i Cix = ¢3Cm5 = cxCux

The above coefficients are functions of the coordinates of the grid-
points, of the values of alm and fo at Pj and Pk’ of c::j at Pj' of S at Pk’

and of £2 and £ at Pj (or P which is the same),

3

7« General features of the proposed method

On the whole, the algebraic equations (4.4),(5.5),(6.6) and (6.,7)

form an algebraic system of the type:

[B] [v] = [F] (7.1)
whose solution can be found by various methods, depending on the properties
of matrix [B]. Such properties are quite various, depending on the shape
of the grid used; however, they generally seem very similar to those result
ing from the finite-elements applications, The large number of implemen-
tation forms make difficult a general comparison between the new method and
the most commonly used ones,

Once the solution of the system (7.,1) has been obtained by direct or
iterative methods, the new finite-difference scheme is particularly suit-
able to evaluate the field everywhere in the space, The potential and the
field components at a given point Q can be computed by using the Taylor
series expansion (4.1) and its derivatives relevant to the gridpoint P
nearest to Q, The partial derivatives present in that series can now be
evaluated as functions of the potential of the gridpoints near P by means
of eqs, (4.3),(5.3), and so on,

The above potential and field computation procedure, which is valid
for points not belonging to the grid, presents the same degree of approxi-
mation as that typical of the discretization procedure, and is particular-

ly suitable to compute field values near a boundary or interface line,which
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can be of notable interest and are usually computed with some difficulties,

8. Some remarks on the arid form

The method proposed can be implemented in various forms, depending on
the grid chosen for the discretization.

The simplest form can be obtained in the case of a Taylor series ex-
pansion (4.1) stopped at the second order terms (N=2, M=5), In this case,
the internal equations (4.4) involve five gridpoints Pi' in addition to the
central one, P (Fig. 4). The boundary equations (5.5) involve Ffour grid-

points (Fig., 5), and the interface equations (6.6) involve eight gridpoints

® ®
s [
®
)
& P o
® ® [ ]
@
L e
®
] L °
@ ® [ ]

Fige 5 - 4-point star around a boundary gridpoint P (case with N=2,M=5)

(Fig. 6). However, if £_is zero in eq. (6.7), only six gridpoints are ne-

2
cessary instead of eight, In this implementation form, if four gridpoints

are placed on two orthogonal straight lines passing through the central

108

Magnetostatics A14

Fig. 6 - 8-point star around an interface gridpoint P (case with N=2,M=5),

gridpoint P, the equation (4.4) degenerates into the form typical of the
traditional finite-difference method, and the coefficient of the fifth
gridpoint tends to zero, It must be noted that the difference between the
discontinuity equations and the internal ones is much smaller than in tra-
ditional finite-difference methods, where the equations involving normal
derivatives are derived from interpolation procedures which need many grid
points, for instance,six in the boundary equations, and twelve in the in-
terface ones, precision being equal,

An application of the new method can be limited to the introduction
of the boundary and interface conditions involving normal derivatives, In
this case, the internal equations remain unchanged with respect to the tra
ditional finite-difference ones, and the new method is used only to simpli
fy the discontinuity conditions,

Less simple forms of the method involve a Taylor series expansion
stopped at higher order terms, This choice yields higher precision of the
results with a smaller gridpoints number, For instance, it is possible to
take into account second, third and fourth order terms in the expansion by
taking N=4 and M=14, Then, the internal equations inveolve 14 gridpoints,
the boundary ones 13, and the interface ones 26; the difference between

the equations increases notably,
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9, A comparison with traditional numerical methods

The new method proposed presents such a variety of implementation
forms that a comparison with previous methods should now be untimely., How-
ever, we can outline the problem as follows,

With respect to traditional finite-difference schemes, the new method
seems to be much more powerful, It coincides with the traditional method
only in its simplest form (N=2) applied to a Cartesian grid, and only in
the internal equations, The discontinuity equations are already simpler,and
allow us to reduce notably the iteration number required for convergence
by overrelaxation iterative methods, owing to a reduction in the band ampli
tude of the matrix B ,

The differences between the proposed method and the finite-elements
one are not easily definable: both methods may be applied in many different
ways, so that their comparison deﬁenﬂs essentially on the particular imple-
mentation used,

Both methods introduce an approximate expansion of the potential in
the grid, Probably, the finite-elements method can use a larger number of
different approximating functions, However, in the autho}s‘ opinion, the
new finite-difference method can generally warrant higher precision of the
results, This assertion is first based on the complete form of the Taylor
series expansion, stopped at the N-order terms, which is used in the method,
and then on the high precision with which the boundary and interface con=-
ditions are locally imposed,

Besides, the new finite difference method seems to simplify the im-
plementation for various differential problems, and for various degrees of
approximations, Finally, it seems to allow us a very simple and accurate
procedure of potential and field evaluation at points,not belonging to the
grid,

Anyhow, most of the drawbacks of the finite-difference procedure

with respect to the finite-elements one seem to have been eliminated,
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10, Examples

The implementation of the new method proposed is presently under way,
As an example, in the following we shall apply our method to a simple case
where a comparison with a theoretical solution is possible,

The problem is one of computing the magnetic field produced by a rec
tilinear wire of circular cross section carrying a time-constant current I,

The problem can be solved by the introduction of a vector potential
A with only the axial component Az different from zero,

To obtain a comparison with a finite-elements solution of the same
problem, we resort to a computation, carried out by means of first order
triangular elements, which is available in the literaturea. Indeed, to fa-—
cilitate the comparison, we have used the same gridpoints also for our fi-
nite-difference application, The grid used is shown in Fig, 7, where we
have indicated, at any gridpoint, the composition of the relevant star by
means of segments directed towards the gridpoints involved in the discre-

tized equation. We have used a second order discretization (N=2, M=5),

;
7
FF

a

7?”7"';

A

A A

e S e A

ST

SEL AN
=
g

Fig. 7 = An example of field computation by the method proposed, The grid-
points coincide in both the finite-elements and the finite-dif-
ference computation,

which is the most consistent with the finite-elements solution considered,

The boundary conditions imposed have been Az=100 on the internal
circle of Fig, 7, ﬂz=0 on the external one, and aAz/Bn=0 on the two radii
which delimitate the definition set of the problem,

In Fig., 8, we show the relative errors on the potential obtained by
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Fig. 8 - Comparison between the absolute value of the relative errors on

the potential for the problem of Fig. 7.

Continuous curve: finite-difference solution,

Dashed curve: finite-elements Sclution3.
the method proposed (continuous curve) and the ones of the finite-elements
solution (dashed curve), They are relevant to the gridpoints placed on the
symmetry axis of the problem (horizontal axis in Fig. 7).

Analogous results, relating to the magnetic field on the same symme-

try axis, are plotted in Fig, 9.

ABZ A
3!'\

T T T —
5 6 7 : 8 Emﬂ
Fige 9 - Comparison between the absolute value of the relative errors on
the magnetic field for the problem of Fig. 7.
Continuous curve: finite-difference solution,
Dashed curve: Ffinite-elements  solution>,

As we can see, the new method gives satisfactory results in the ex-

ample presented above, They exhibit a non-negligible improvement with re-

110

Magnetostatics A14
spect to the ones obtained by the finite-elements method, especially as
far as the field is concerned,
Other examples carried out by the authors have also provided good
results, In particular, the new method lends itself to grid optimization,
and in this connection the present authors have already obtained very

satisfactory results, which are described elseWhere4.
11. Conclusions

The introduction of a finite-elements grid form in the finite-dif-
ference procedure seems particularly useful to blend the best features of
the two methods and to obtain a new powerful field computation procedure,

This has been accomplished by means of a discretization procedure,
which has allowed us to use irregular grids and to obtain various orders
of approximation, depending on the truncation errors in the series expan-
sion of the potential around any gridpoint,.

The new method exhibits too many implementation ways to allow an
immediate, conclusive description of its features, However, the results
obtained seem to show that the old disadvantages of the finite-difference
procedure with respect to the finite-elements one have been eliminated,
Indeed, some advantages should be obtained, such a; higher precision of
the results, an easier implementation procedure, and a better flexibility
in adapting the method to various problems and to various computation re-
quirements, especially when derivatives of the potential are necessary,
It is too early to give a positive statement of the qualities of the new
method, However, there are indications that the good results obtained so

far may be confirmed in the future,
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FINITE ELEMENT APPROXIMATION AND ITERATIVE METHODS OF

SOLUTION FOR 2-D NON-LINEAR MAGNETOSTATIC PROBLEMS

R. Glowinski - A. Marrocco
Univ. PARIS VI - IRIA/LABORIA
I. INTRODUCTION
The numerical analysis of the magnetic field in a tetrapolar alter-

Figure |
nator is presented here. The actual problem is a tridimensional one, but

Tetrapolar alternator
in this paper we study only the middle cross-section of the machine and
the problem is reduced to a two-dimensional ome. (see fig.l). The approxi-
mation is made by the technique of finite elements (conformal P1 finite
element). For the engineer this choice corresponds to the following appro-
ximation : in the iron (stator or rotor), the magnetic permeability will
be constant over each element. The numerical solution of the resulting al-

gebraic (non-linear) system is carried out by different methods (lineari-

zation, Newton-Raphson, point over-relaxation method, penalty-duality).

II. STATEMENT OF THE PROBLEM B hdtes)
The Maxwell's equations (for magnetostatic) are the following
vi = ] 2.1) : L
-+ 3
B =yl (2.2) .
veB =0 . (2.3)
where 15h

. His the magnetizing force (or magnetic field intensity), Tiguxe &

T p ; . 3 —
. ] is the current density vector and (2.1) is the Maxwell-Ampere relation, Stator B-H characteristic

. B is the flux density (or magnetic induction) and ¢ is the magnetic per-

. . . . = - 1
meability (scalar function for isotropic material) l.

Equation (2.2) gives the relation between magnetizing force H and flux den- H (omperes/metres )

- e
sity B. This relation is linear in air where we have u=u =4mw 10 7 MKSA, i - : .

; ; i o S § 0 10000 20000 30000 40000
but it becomes non linear in iron because the magnetic permeability is a

- + . -
function of |H] (or a function of |-ﬁ'|) This dependence of | versus ﬁ or
2
B can be extracted from caracteristic curves - see fig. 2 and 3 - (the With this relatiom,(2.1), (2.2), (2.3) is reduced in :
hysteresis effect is not considered). With (2.3) it is classical (see VX(\JVXK} =—__:i- (2.5)

Durand (1)) to introduce the potential vector A such that

|
L

y 1
i i luctivity (v=
3= vx2 (2.8) where v is the magnetic reluctivity ( 5
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In our 2.D problem the potential vector K and current density I have a par-
ticular structure
A = (0,0,a,)
i = (0,0,3,)
where A3 and j3 depend only of X ¥y
In this case (2.5) may be written in the following way.
_Zz-a_(‘.._}s’ or = Ve(UWeA)) = ] (2.6)
=1 Bxi Bxi I3 3 I3» '
(2.6) is the partial differential equation we have to study. This equation
(2.6) (or 2.5) is theoretically given for the whole space. In practice we
take a bounded domain § and the potential vector must satisfy suitable pro-

perties on the boundary. See fig. | for the domain considered.

There is an air-region in the outside of the stator and on its
boundary we take A3 = 0. The physical meaning of this, condition is : all
flux lines are in the domain shown on fig. 1 (there is no magnetic pheno-
menon outside ). The numerical results show that this condition AB =0
could be prescribed in fact on the stator boundary.

From a theoretical point of view, we study the problem in the
domain  with homogeneous Dirichlet condition ; for computatioms it will be

sufficient to take only a quarter of circle.
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IIT. MATHEMATICAL MODEL
III.1. Partial differential equations

The domain ) is a disk in Rz, and we denote by [' the boundary of -
The magnetic field determination is equivalent to the solution of the par-

tial differential equation

-3 A, _ 3 3Ay _ .
3 (V(x,4) ax]) = (V(x,A) axz) j ingQ

(3.1)
A|l..= 0,
where A is a function of X5 ¥y The reluctivity v is a function of the
space variable x = {xi'XZ} and also of the function |§] in the iron. In
-+
2.D we have IEE = |V x K| = |V A | if R = (0,0,A), so thaty is also a

function of A.

If we factorize the reluctivity v by

N Uo Vo
J . __l—:? MKSA is the reluctivity of air and v, is the rela-
Yo 4mio
tive reluctivity with respect to air, in iron v. is a non linear function

where v_ =
o

> i g g > 2 2
of ]B| ; it is more convenient to express V. as a function of |B|“=|grad 4l

and we can write (3.1) as

] 2, %A ] 2, 0A Vi
= QET(Vr(X:|Srad AlD 5;1)- g;; (Y (%, |grad A]%) g;; ) = H,j in &

(3.2)
Alp =0

II1.2. Energy functiomal

Solving (3.2) is equivalent to the minimization in a suitable space

of the magnetic energy given by
-
|8l [
Fa) =|. [ Vp (x,b) bdb|dx ol i jeA dx (3.3)
2" o Q °

where |B| = |V x&|, £ = (0,0,A) (see for instance CHARL-SILVESTER (2)).
The Euler equation of the optimisation problem gives equation (3.2). With

our choice of v_, if we denote by y the function such that :

B x,[3]%) = v x5
a|B|? 1%l 8 | } (3.4)
$(x’0) = 0,
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then the energy functional becomes

FQ) = %J. y(x, |grad A]z)dx - JQ uoj.A dx (3.5)
f

III.3. Reluctivity approximation

Let us take the B-H characteristics of stator and rotor. We assume
that thesecurves are single-valued (no hysteresis effect). We take points
from these characteristic curves and put these points in a (|§]2,ur) space.

The distribution of these points in the ([ﬁlz,vr) space, the physi-
cal properties of v  lead us to approximate vr(|E]2) by a function belonging
to the family defined by

o
X

(x) = e + (c-g) (3.6)

v
€,a,c,T
L x +T

(with constraints of positiveness on parameters e,x,c,T).
The approximation is made by a least-square method. A typical set of value

(e,0,c,T) obtained for stator characteristic approximation is

€ =5.163619 10"
¢ = 0.175775
a = 5.419241
T = 8,758756 10°

The mean ;elative error when comparing to the experimental data is
3,57 (see fig. 4 and 5).

Remark 3.1 : § defined in (3.4) will be in fact the primitive function of

v 5
E,0,¢,T

IV. THEORETICAL RESULTS

IV.1. Rigorous formulation
Let Hc]’(Q} be the classical SOBOLEV space defined by :

H;(Q) = [v|veL2(.Q), ﬁe Lz(ﬂ) i vlF =0} (4.1)

with Hilberts' norm

2 J‘ 2
(vl =| |grad v|® dx. (4.2)
1110(9) Q
The precise formulation of our optimization problem is :
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Find a function A such that A eHl(Q), and

F(A) < F(v) for every v eH;(Q), (4.3)

where Fis given by

F(v) =%J- P(x, |grad vlz) dx -j My jev dx.
194 ) Q

¥ 0
a0 WU RELATIF
107
3 Figure 4
107
] Reluctivity approximation
1 (stator)
107
<4
10 LN A LN L LB A A 0N LRI AL L UL AL NI L L ALL R B L]
0. 2,00 4,00 6,00 8200 10,00

Bxm2 EN MKSA

- STATOR RESULTAT DU LISSAGE
ALPHA  0.54132E01
[ 0. 17579E00

T 0.8T383E04
EPS 0.51636E-03
LABORIA= As MARAOCCO

IV.2. Existence and uniqueness results for the problem (4.3)

Theorem : The optimization problem (4.3) has a solution and this solution

is unique

Very briefly this result comes directly from the following pro-
perties

a) F is strongly continuous on HL(Q),
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o [ WO RELATIF | If A is solution of (4.3) we have
1 -
] Mzﬁ Vt>0,VveHl(Q)
At the limit we have
(F'(@),v)20 Vel @
10‘1: In the same way for t <0, we have
F(A),v)s0 Wve H;(Q)
It follows that
" . (3'®),v) =0 WeH @ (4.4)
Yigure ) 10
Reluctivity approximation ] so that we have :
(vetox) FUA) =0  (equalitydn H (D).  (4:5)
The explicit form of (4.4) and (4.5) are respectively given by (4.6) and
107 .
1 4.7
] v_(x,|grad Alz) grad A+grad Vdx =| p j.v dx =0 (4.6)
i Q F qQ ©
1
YveHl (),
9 o
9~ 2, BA = .
= p g ox, (\Jr{x,|grad Al X, ) Mol = o
10 e e =] i i 4.7)
0. 2,00 4400 6200 8,00 10.00
Al = 0.
. ROTOR HESULTAT DU LISSAGE . ; s
Apw - 0. is6001 Actually A is completely characterized by (4.4), because F is strictly
s uiosereoe convex.

LABORTA-  As PARROCCO

V. FINITE ELEMENT APPROXIMATION

b) Fis strictly convex, V.l. Triangulation of {} and notations (see fig, 6)

-
¢) F(v) > += when [|v]| Hl(m i The triangulation "51: will be a set of triangles T such that
i ; 3 ; : . U Tecfl (5.1)
IV.3. Relations between the non linear partial differential equation formu- Te
lation (3.2) and the optimization (or variational) formulation (4.3) h
§ 1
Theorem. - A, solution of (4.3) is the unique solutiom of (3.2) in HO(Q}. 1f Tl and TZ € teh we. have
T] n ’[‘2 =f
Proof : F is gateaux-differentiable, i.e.
or T, and T, have a common edge (5.2)
1 4 T =]
Vue Ho(m’ here: exiars 37 (w)'eR "(R) such: that either Tl and T2 have a common vertex.
i':i;g .‘_F(u+tv2'- F(uw) _ (F' () ,v) As usual, h will be the largest edges' lenght of q_'
t0  for each ve H(L(Q} ’ We define
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Figure 6
Triangulation of the
domain
°
o= L) 7.1, =90 : (5.3)
Te ﬂh
W= {P]|P€Qh, P vertex of T, T eﬁh} (5.4)
Yy, = {P|PeT,, P vertex of T g‘l?h} (5.5)
':’h =Wty (5.6)

Remark.

With the triangulation used, the boundaries between air and ironm,
air and cooper, never cross a triangle and are unions of edges of triangles
which belong to 2;1 .

V.2. Approximation of H(I)(Q)
H:’(Q) is approximated by

o
Vou = {vh|vhec @), d°vp <1 on T, Te'q.l, v,=0 on rh} (5.7)

116

Magnetostatics A15

Remarks
. dim voh = Card(mh) and Y svoh is completely determined by the

values it takes on mh ; we shall denote

vy = vh(Mi) 5 VMiemh (5.8)

. As classical, V., may be considered as a subspace of H;(SI) ob-
tained by extending vhcvoh by 0 on Q—ﬂh

. grad v, is constant on each element T sfb, so that " which is

h
; 2. .
a function of |grad vh| is also constant on each triangle.

V.3. Formulation and solvability of the approximated problem

Problem (4.3) will be approximated by

Find Ah such that
3(Ah) < E(th Vvh € voh
A

(5.9)
1€ Voh

where F is given by (3.5).

Theorem
The problem (5.9) has one and only one solution characterised by:

9F .
'a'"—,i'— (Ah} =0 (5.10)

V.4. Convergence of ah when h+0

Theorem
If:
i) R-Rh+ 0 when h+0 (i.e. VKcf, K compact, we have Kcﬂh for

h small enough).
ii) The angles of all Te ©

n are bounded below by some Bo >0,

80 independent of h, then

Ah+ A strongly in H;(R) when h + 0. (5.11)

VI, NUMERICAL SOLUTION OF THE APPROXIMATED PROBLEM

VI.l1. Solution by linearization

A variational formulation of the approximated problem is
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f Gr(x,|grad Ah|2) grad Ah'grad vy dx =‘[

Ja
A.he Voh'

Then it is natural to use the following algorithm

0 08 j'vh dx Vvhevoh
(6.1)

o : : -
Ah given in voh {Ah-O for example) (6.2)

A; know, AE+i is computed by solving the linear problem

n 2 n+l v
JR \;r(x.| grad A’hl ) grad Ay grad 12N -JQ by devy dx Vvhe voh

n+l (6.3)

£ Voh

If we make use of an iterative method for solving the linear system
(6.3) (overrelaxation method for instance), an obvious variant is to make
only one cycle to find A§+l, using as initial value ﬁE. For both techniques,
convergence is obtained only if j is small enough (j Sjo = 0.5 Afmmz}. For
these values of j we have not magnetic saturation in iron and the problem
is only a practically linear problem with non constant coefficients. For
small values of j we have small flux density B in the machine and the rela-
tive reluctivity Vv 1is quasi-constant, and this lead to a linear problem.
When we take greater j, the process does not converge any more and oscil-
lations appear (the value of V. may change very much from one iteration
to the following). A remedy for this oscillation is to under-relax the

reluctivities, for example in (6.3) we replace
ﬁr{x,ﬁﬁ} by v evaluated by
n n-1 n n
Vi) = o VTG + (1mp) VEGAD , 0<p <1 (6.4)
or by

V) = T G0, AR+ (1-p) A (6.5)

Such algorithms can be found for example in ERDELY and FUCHS [3] .
The parameter pn is chosen independent of n (value 0.1) and the overrela-
xation factor is 1.3 for Ah' but theoretical results of convergence for

such an algorithm are known.

VI.2. Newton-Raphson method

The explicit form of the Newton Raphson algorithm is the following :

Magnetostatics A15

o - . 0.
Ah glven in voh (Ah.-ﬂ for example),

we suppose A; known and we compute A:+l by solving the linear system

f [Gr(x,|grad AE|2)+23;(X,|grad A;]z)'lgrad AE'%]grad A;+I'grad Vo dx

Ja

sy ~ n 2, n 2 n,
=J;2u° iy dx+2J}2v;(x,]grad Ahl y*|grad Ahl grad Ah grad i dx
(6.6)

n+l
W‘rh'E voh’ Ah & voh

3

5 vr(x,!grad ﬂ'z).
3lgrad Al

U1 (x,|grad Al =

A variant of the Newton-Raphson method is to make only ome cycle

. ¥ 4 n+l
of point, overrelaxation to find Ah .

VI.3. Solution by non linear point over-relaxation

We denote N = Nh = dim voh and w5 = (vl,vz,...vN), so we have to
solve
1 ;
o (AI,AZ,...AN) =0 R B R (6.7)
i
Algorithm SNLI
Aﬁ given in Voh (AEE 0 for example) (6.8)

A; known, A§+l is computed, component by component by

9 n+l  n+l n+l -n+l .n Ac
'g;—‘* (AI ,Az ...Ai_], Ai ,ﬂi+],-..AN) =0
: (6.9)
n+l _ .n T+l _.m o T
Ai = Ai + w(Ai Ai) y 1=1; 2N DSWw W 2

The convergence of this algorithm can be proved using theoritical

results obtained by SCHECHTER [4]

Algorithm SNL2

A; given in V (Ag = 0) (6.10)

known, A:+I is computed component by component by solving

s

n+l n+l ,n+l n L, _ a%
1 ""Ai-l’ﬁi ’Ai+l'“AN) (1-w) avi(

™] ,n

ber AT LATLLAD) (6.11)

An+] AT
i-1"1

]
dv. (a
i
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D<w<?2 i=1,2...N.

The convergence of SNL2 is not proved (if w#l), but practically it
runs like SNLI. For problems completely non linear, SNL2 seems more robust
than SNL1. In SNL! we have a relaxation of the variables and in SNL2 a rela-

xation of the equations. This is the same for the linear case.

Some remarks on SNL! and SNL2
The use of SNLI or SNL2 leads to solve for each i, a non linear
equation (non linear in only one variable K?+l or A2+l).

In this condition it is patural to use the well known Newton method

(in only one variable). To solve

f(x) = 0 we use

X, given
. e f_(xm) (6.12)
m+1 m £'(x)
m
. . ]xn+lﬁxm| -4
The iterations are stopped when ——T;»——]—- <10 (if xm+]¥0)
m+ ]

In our particular problem, the use of (6.12) gives the results in
only 2 or 3 iterations for the starting point
x = AT,
) o i
These remarks lead evidently to consider a variant of algorithms SNLI and

SNL2 :

1 1

—n+ n+ ; ) ; :
we take for Ai or Ai the first iterate of Newton algorithm with

an initialization by A?, then we obtain the same algorithm, which will be
denoted by EGSN (extrapolated Gauss Seidel Newton).
The explicit form of EGSN is given by

AE given in V__ (Azsc}). (6.13)

35 n+1 n+l n ,n n

i B, Ap wewelyl ok A peediy)

n+l n+l .n .n n
7 (Ai ""Ai—l’Ai’Ai+1"°AN)’
i

0 < ww,,< Ve L3 e D |
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The proof of the convergence of this algorithm can be obtained by
using SCHECHTER [47.
The numerical results we obtained prove that EGSN is more efficient

than SNL1 and SNLZ2.

VI.4.Penalty-duality algorithm.

We apply here a penalty-duality method which is proposed for example
in R. GLOWINSKI-A. MARROCCO [5].

We have to minimize on voh the functional
Fv.) = [ wix,|grad v, |® dx = [ p jov, ax ; (6.14)
h 2 0 » h JQ ] h 2

grad Yh is constant on each Tc q%f we denote by Xp the characteristic

function of T and define

2
L = 2 zp Xp 2peR D (6.15)

T 51%

We define the application J : V_ xL ~+ R by

G = [zh1zh

3wz, = ]—rﬂlb(x,lzhlz) dx —Jguo jov, dx (6.16)

4

The optimization problem on Von is equivalent to

J(Ah,yh) < J(vh,zh] Vzh el Vvh € Voh’
(6.17)
grad Vo By 0, (Ah,yh) erhXLh, grad Ah-yh-U.

For the problem (6.17) we can introduce the Lagrangian

!(vh,

zh;ph) = J(vh,zh)+JQ uh (zh-grad vh) dx.

By dualization and penalisation of the constraint grad vh—zh=0, we intro-

duce, for € > 0,
I (v sz = 3s2) + L[ |z -grad v, |? ax (6.18)
e Vhrn U L i %

and then an augmented Lagrangian

iiﬁvh,zh;uh) = Jz(vh,zh) +J?}ph (zh-grad vh) dx. (6.19)
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For the penalisation (6.18), it is in fact more convenient to define JE

by

JE(vh,zh) = J(vh,zh) + éJ;zn(x)|zh-grad vh|2 dx (6.20)
with n(x) >0 on &

In the numerical applications, N(x) will be a function constant over
each triangle and will permit a homogeneous penalisation. For the engineer
this function N(x) is more important, it has the same signification than
the relative reluctivity V., and could be estimated by him ; if this esti-

mation is good, the following process of resolution converge very quickly.

Algorithm of penalty-duality method

o

An

11}
il

G,yﬁ o,xﬁzo (6.21)
n i n
Ah s Y oo Ah known

° +1 . . .
1) A; is solution of the linear problem.

exl
n+l o Ty h n
j n(x) grad Ah grad Vb dx = ZJ‘ woitvy dx f[ (~5-+n(x) yh)
Q Q2 Q
sgrad Vi dx (6.22)
n+l
Vvhsvoh A Ah chh
2°) We compute y§+l by solving the non linear equations
” n+l n+l 2 n+l n+l
J "r(X,|Yh I)Fh 2, dx+ E.[ n(x)+(y, -grad A )z, dx
Q2 Q
n (6.23)
+| Az _dx =0
Vi el : n+l L Q hoR
s LS
3°) We compute Ai“, triangle by triangle by
n+l N n+l n+l
Ah,T kh,T + pnT(Yh,T grad AhT ) (6.24)

™ |r

If we take p = in (6.24) we can prove the convergence of this algo-

rithm as in MERCIER [6].

Magnetostatics A15

The non-linear problem (6.23) is in fact a system of Card th non linear
equation, in only one variable, and these equations are independent.
If we denote by qu| the modulus of a on Te Qaﬂ the non linear equa-—

tion we have to solve for each triangle is

+1 n+l
n o aAE ] 2n, oA 2
s 2 T ‘/ T n [z [N .n
lag] = ¥ (x, lag| D+ —)= [_..E B 11'"‘1,1: o= 5 |T p.p| (629

It is possible to use Newton's method to solve (6.25) but we have to
i e . - = 2
handle this algorithm with care (because the function q--q-(ur(x,q )+20)

has a derivative which is not monotone).

For this penalty-duality algorithm we have to solve a each step
. a linear problem (always the same)
: Card(ish}n.l.—equation (only one variable)

. 2 Card ﬂh instruction

With this decomposition of the problem it is easy to implement this

new algorithm on a parallel computer.

VII. NUMERICAL RESULTS

For a quarter of alternator, the triangulation has 812 triangles and
384 interior nodes.

The stopping test for all algorithm described in VI is

N
|a%* g, |

2

Res(n) = N ,
2: lAn+]I (7.1)
i=1

Res(n) = E.

We choose € = IC!-5 in (7.1) ; this test is very strong. To obtain

10_6 of 10_? it is necessary to compute with double precision.

The algorithm VI.! (linearization) gives acceptable results for only
j=0.5.

VII.l. Results for Newton-Raphson algorithm.

The linear system at each step is solved by a direct method (CHOLESKY

BAND - a renumerotation of nodes is made to reduce the band width).

119
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n+l
h
See on table VII.| the results obtained with Newton-Raphson algorithm. The

The computing time from AE to A is 13 s. on CII IRIS 80 computer.
algorithm is started with AEE 0.
For large values of the current density j, the starting point aﬁ:zo

: ’ . n
is a bad one, and we observe large oscillations of Ah.

; RES 5.10° 1074 5..10'5 1;”5
0.5 2 it 3 it
- © 3 it & it 6 it
k2 : 6 it Fide 8 it and oscillation
F 3 8 it 1 it 14 it 22 it
I i 9 it 12 it 15 it 19 it
F s ©o10 it 14 it 16 it 22 it
7.5 9 it 12 it 14 it 19 it
10 D13t 17 it 19 it 28 it
15 51 it 55 it 56 it 62 it
20 ' big oscillations
|

TABLE VII.l. : Newton-Raphson results.

On fig. 7, we give the variation of RES(n) (7.1) when using Newton-—
Raphson algorithm.
For large values of j we can use the following process (interpolation

or under-relaxation).

ﬁﬁ = 0 given

AE known, A;+I is computed by

1°) AEH solution of (6.6) }
o n+l n -n+]l ,n (7.2)
2) Al = AT+ @A) 0<w<1
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aooﬂsmnéus j=s
200[-
j=05 -
j=1
j=2
j=3
j=7.5 100
j=10
) TR T (Y et IO [y Tes e e [
180 185 190 195 u

Fig. 8 - Iterative variant of Newton-
Raphson

ITERATIONS j=10
00

1 T k
FETL I N UTURTH ) TR AR NI ARN O R

0 10 20 30 ITERATION | SR

0

Fig. 7 - Newton Raphson algorithm Fig. 9 - Iterative variant of Newton-
Raphson

We choose w =0.5 in (7.2), this is not optimal, and we obtain the
results shown in table VII.2.

Another variant of the algorithm is the following : if we take the

+ 3
linear system (6.6), A; I is obtained from AE by only one cycle of point
7 2 2
over-relaxation process. The computing time from A: to A: : is 0.9 s. on

CII IRIS 80 computer. With the starting point AEE 0, this variant (iterative
variant of Newton) is always more efficient than Newton-Raphson method for
large values of the current density j (which leadsto a strongly non-linear
problem). We can see on fig. 8, 9, 10 the variation of the number of cycles

needed for the convergence, for the current density j=5,10,20.

VII.2. Non-linear point over relaxation

For EGSN process the computer time from A; to AE+‘ is 0.65 s. on CII

IRIS 80. For SNL1 and SNL2 this time is not constant and depends on the in-
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RES 5.107 TR 5.107° 107
J
0.5 11 it 14 it 15 it 16 it
2 11 it 14 it 15 it 18 it
7Tib 13 it 19 it 23 it 31 it
15 17 it 22 it 25 it 34 it
20 16 it 21 it 24 it 34 it
TABLE VII.2. Newton-Raphson with under-relaxation w = 0.5
mDITERATlONS j=20
Fig. 10 - Iterative variant of
Newton-Raphson
of ] ! !
1.80 185 190 195 “
ternal Newton process. We can see on fig. 11, 12, 13, 14, 15, 16, 17, 18
results obtained with SNL2 and EGSN.

These algorithms, in particular EGSN, are very efficient and do not
need very much storage on the computer. We have also solved the problem for
the complete machine. The number of trianglesis then 3240, the number of

5

interior nodes is 1597. This algorithm was run on the middle size computer
CII 10070 (128K words), without auxiliary memory . For j=10, w=1.93 and
e=10

in (7.1), EGSN needs 162 iterations_and the computing time is about
16 mn. (less than 10 mn. on CII IRIS 80).

VII.3. Results obtained with penalty-duality algorithm

This method need more computer storage, but presents the following
interesting particularities

Magnetostatics A15
s J
10 ’
o 1
8 \ RES
= \
- \ ggohmme SNL2
= !
| |I J =10
= I'J 1 (F5) =19
1 2w =1925
B ] 1w =194
Nt
100 | |
1
- |
- |
1
i
i i = Figure 11
o ‘ .
E E Variation of RES (7.1)
5 i
il
HEl
4
10" | ii'n
; i\
L LA
S b
: i
L, 1
: | l
1]
b i' :
| H
! \
' \ ITERATIONS
1(]"s L) ! 1 1 1 1
0

100 200 300 400 500 600 700

a) each step of the algorithm (6.22), (6.23), (6.24) is easy to solve,
since we have to solve

a linear problem (with a fixed matrix)

a set of non linear independent equations
o a n+l

explicit calculation for A

b) This algorithm is easy to implement on a parallel computer

¢) The electrical engineer has the possibility of choosing the function
n(x) which has a concrete signification for him (he can estimate the so-

lution of his problem in term of flux density repartition).

The results presented here are made with constant value of n(x)

in air (the value is 1) and in stator, and in rotor the value is [k* mini-
mal value of v ]in respective material, with k> 0.
r

The number of iterations necessary to achieve the convergence is

shown in fig. 19-29, We give the variation of the number of iterations in
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122

Figure 12

Variation of RES (7.1)

H I algorilhme SNL2
2 J =05 "
=197
=1.9725
=1.975
=1.963
=1.9635
=199

EEEEEE

ITERATIONS

L i L]

107 —r
-\ RES
L J =10
L 1 ) =19
z w =192
B 3w =19
107 L
10t L
-
-
ITERATIONS
10" {1 | ! 1 1
0 100 200 300 400 500 600 700
1w
0 L
Figure 13 L
Variation of RES (7.1) -
0 L
107
0

100 200 300 400 500 600 700
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10 :
: |
N clgorithme EGSN |
| J =0.5 r
. 1 w =197 -
2 w =1972 :
- 3 w =1975
[ w =198
107 L
: Figure 14
i Variation of RES (7.1)
107 L
]
ITERATIONS
10" 1 1 L 1
0 300 400 S00 600 700
v 2
o w B L‘)
195 L 195
L
19 | 1.9 |-
J (A/mm?) J (A/mm?)
| . L ’ | ’ | :
0 4] 5 10

5 10

Figure 15

Optimal choice of relaxation parameter

for EGSN algorithm.

Figure 16

Optimal choice of relaxation

parameter for SNL2 algorithm.
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function of the penalisation parameter €. We give in table VIL.3, computing
time on CIT IRIS 80 for different values of parameters €, k, j. The stopping

test in (7.1) is IO-S.

400 400

ITERATIONS ITERATIONS

o o \\//
g

1..J=10
it -10 100 - 1_J=7.5
! o= 1. =5
o2 : : ; Lo had=2
1 d= =
EGSN _lest 10" s 0 oo SNL2 test 10 5. =0.5 2=
1] VN IR S 1A P T o Q..J 4] | P L MU
1.9 195 2 1.9 1.95 v
Figure 17 Figure 18
ITERATIONS j=03 k=1
-
150}
100

50

Figure 19
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Current density: j = 0.5

k=1 k=10 =20 =50
le=2 2 it. 17sje= 3 20 it. 5ls
e= 4 it. 49s
€E=5 it. 56s
Current density : j = 2.
£=0.1 152it.363s/€=0.75 60 it.126s 77 it. 40 it. 95s
£=0.2 90it.215s|e=] it.115s 53 4it. 38 it. 91s
€=0.3 111it.258s|g=2 it.156s 63 it. 45 it.106s
Current density : j = 7.5
£=0.075 137it.329s|e=0.4 it.126sle= 0.5 67 it. 74 it.154s
£=0.1 131it.265s8(£=0.5 it.105s]e= 0.75 53it. 54 it.113s
€=0.2 133it.267s|€=0.75 it.140s 56 it. 65 it.142s
Current density : j = 20
£=0.1 114it.232s/£=0.3 53 it.ll6s 57 it.123s
€=0,2 93it.1918|E=0.4 47 it.104s 43 it. 95s
€=0.3  124it.248s]|e=0.5 it.115s 65 it.136s

TABLE VII.3. Results with duality-penalty algorithm.

We give in Figure 30 an example of repartition of flux lines, for current

density j = 10,
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ITERATIONS ; j=20 k=10
150

‘100

- Figure 28
50 |-
0 l Il i
wi 04 1 e 10
ITERATIONS j=20 k=50
150l
Figure 29 e

sm'r

Figure 30

Flux line for j=10 Almmz
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MAGNETIC FIELD CALCULATION FOR A SALIENT-POLE HYSTERESIS COUPLING

M.J.Jevons
The University of Aston in Birmingham, Birmingham B4 7PB, England

1 The hysteresis coupling

One form of salient-pole circumferential-flux hysteresis coupling is

shown in fig. 1 (1) The stator is made of soft magnetic material and each
pole has an exciting coil supplied with dc. The rotor comprises a thin

annular ring of hard magnetic material on a non-magnetic arbor.

colL

STATOR

ROTO
RING

Fig. 1 Salient-pcle hysteresis coupling

As the relative magnetic permeability of the ring is low, the airgap flux
density waveforms - illustrated in fig. 2 for the outer surface of the
rotor — are quite different from those of conventional salient-pole

machines and the usual design procedures are not applicable.

0-02

-

FJL/? |

0
RADIAL PERIPHERAL
COMPONENT COMPONENT

Fig. 2 Airgap flux density waveforms

The waveforms exhibit large peaks in the vicinity of the pole—tips, and the
size of the peak in the radial component at the lagging pole-tip largely
determines the torque/excitation characteristic of the coupling + The
gize can be estimated from the values obtained from an actual machine
without a rotor and the rotor saturation magnetization. The problem is to
predict this value, and the total permeance as part of the design.

A gualitative theory has been based on a 2-pole idealized machine in
which the stator is assumed to be infinitely permeable and the magnetic
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field to result from surface polarity and not current sources. FPFnd effects
have been neglected to permit a 2-dimensional approach. Two mathematical
models have been used to predict the airgap flux density waveform. The
first simply comsists of two equipotential circular arcs which represent

the pole-faces (see fig. 3).

POLE ARC 106°

ZOﬁSme/’C'—“*\

~

A N YOKE
25 mm /f/ V™ \‘-_____ K
1 I

/75‘41'25mm

b S

MODEL 1 MODEL 2

Tig. 3 Mathematical models for the idealized machine without a rotor

The complex magnetic potential and the vector magnetic field are evaluated
from an inverse elliptic function transformatiozfg)(see App.7.1). Although
the waveforms are apparently of the required shape, detailed comparison
with observed resultes shows the need for an improved model. In the second
model (see fig. 3) the yoke has been simulated by including another pair of
equipotential circular arcs formed by the inversion of the first pair about
the axis of the machine. The radius of inversion egquals the radius of the
yoke. There does not appear to be a tractable solution for the Laplace
equation in this case and the magnetic field has been evaluated numerical-
ly. Differences still exist between the predicted and observed waveforms,
but are to be expected in view of the initial assumptions.

In the numerical solution adopted - the method of sub-elements - the
surface polarity is assumed to vary in a known manner over short lengths
(sub-elements) of the replica pole-arcs. A finite number of simultaneous
equations are then formed which relate the potentials of the several
surfaces to the values of surface polarity. Once these are known, the
magnetic field can be calculated at any point in the model. In particular,
values of the radial magnetic field strength (or flux density) can be
calculated along the circumference of a pitch circle corresponding to the
outer surface of the rotor and the maximum value found.

Various aspects of the method of sub-elements are considered in this
paper, all with reference to the models described above. Working formulae
for two different representations of the surface distribution are derived

and their relative merits discussed. Results for both models have been
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included; for although the first is an oversimplification, numerical
results can be checked against theoretical values, and comparison of the
different field distributions enables the practical effect of the yoke to

be assessed.

2 Basic theory
There is no simple expression for the distribution of surface polar-

ity (m) over the pole-face (fig.4a). The shape of the curve is predictable:
away from the pole-tips m changes only slightly, it exhibits a minimum at
the pole centre-line and is symmetrical about this line; at the pole-tips
m is theoretically infinite.

C-TYPE V-TYPE

cL, ] m
m | WS

i | |
I ' ] I i !
: I I | I !
L 1 1

~—— POLE ARC —
(a) (v) (c)

Fig. 4 Burface polarity on the pole-arc

To facilitate numerical evaluation of m, each pole-arc is divided into
sections (sub-elements) over which m is assumed to have a known variation.
For example; m could be constant - MMy ..(fig. 4b); or vary linearly -
m1m2,m2m3, ..(fig. 4c). These are the approximations considered here and
are subsequently referred to as C- and V-type. Both are inadequate near to
the pole-tips, because of the singularity, but this difficulty has been
overcome by assuming m to vary as x (see App.7.2) in V-type sub-elements
which include the pole~tipss. The widthe of the sections need not be the

same and are chosen to anticipate a good fit.

2.1 Evaluation of potential
Bach of the magnetized sub-elements contributes to the total potent-

ial of a given sub-element, but because of the discrete approximation of m,
the potential is not constant over the width. If constant values of m have
been assumed then the potential of a sub-element is taken as the value
calculated at the mid-point of the width (see fig. 5a).

ann %An 1
g =.§_ - 1n(E+X°-2R X cos(£_+ £))Z ar (2.1)
4,

The summation includes all of the sub-elements on each arc of the model -
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(2 % otual e nima,ge

determined at 4n (n even) or 4(n+1) (n odd) points as there are only these

), but because of symmetry the potentials are only

distinct values of m. The product |ann| is the same for a sub-element and
its image. Eg. (2.1) is integrated numerically using Bode's quadrature

formula 4 y except when fn=0 and Rn=x. Then the integral is evaluated as

(3 2 By -1 Aiq

A [1n(3R A )-1- % L el - (2.2)
n nn e 22.:1+1 n (2q+1)!

where B2q—1 is a Bernoulli number. Usually 2 terms of the series give

sufficient accuracy.

Fig. 5 Meaning of symbols used in equations (2.1) and (2.3)

When a linear variation of m is assumed, the potential is calculated
at each end of the sub—element. If the mid-point were used then the
solution of the equations for m would become unstable as the number of
sub-elements is increased. Sub-elements which include the pole-tips are
treated similarly except that the potential is calculated at the 'finite!
end only. The potential equation corresponding to (2.1) is (see fig. Sb)

A

g - é- H;‘%Ln( 1= in)v 1n(F+x°-2R X cos( £ ¥ £) VEas (2.3)
m A L

_ g_ ani n %}; 1n( HiJ'XZ)%J'%jO( 1_-g)v1n( 1—Gncos( f‘n; tﬁn)]d‘tl (2.4)

where m is the value of m at one end of the sub-element, v is either 1
(linear) or —& (pole-tip) and Gn=2ﬁnx/(Ri+X2). The singularity which
occurs with —ve v is removed by integrating by parts, when

1 v -
Rm A (1-t)Ve sin(f FtA )
. _.ann 2, y2_ - n n n
p!p_é . [ln(ﬁn-{-}( 2R X cos(£,))7 éanjo T

(2.5)
These equations are also integrated numerically using Bode's formula,
except when fn=0 and Rn=X. Then the integral in eq. (2.3) is evaluated as
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1 2 (—1}k
& N ] 1n(R A }+P{1 +19(2+V)] é“% gq_1 n = (2n—k) Ikl (1+k+v)(2'6)

where ¥(j) is the digamma function.

At distances large in comparison with the sub—element widths the
surface polarity could be considered concentrated into magnetic poles at
the ends of the sub-elements and the calculation simplified. This has not
been done in the present work.

Because each of the discrete surface distributions contributes to
the potential of every sub-element, the coefficient matrices are dense.
The equations are poorly conditioned and ill-suited to iterative solution
schemes, as eq. (2.7) for 3 sub-elements of equal width (over half of the

pole—-arc) shows.

1.0 917 346 148 |[m, m,=58.2 Afm
1.0 | = %"1?;' 651 615 265{im,| whence m,=48.6 A/m (2.7)
1.0 577 531 467 my m3=46.9 A/m

This is for Model 1 - 120°Pole—az-c and V-type sub-elements. The coefficient
matrix is unsymmetrical because the symmetry of the model has been used to
reduce the number of equations. Multiplication by the transpose would make
it sgymmetrical but would not improve its poor condition.

As there is no need foralarge number of equations with the present
simplified models, Gauss elimination has been used in the computer programs

to evaluate the n'nknot-m surface polarities.

2.2 Dvaluation of magnetic field strength .
The radial component of the magnetic field strength at p (fig. 5b)
is deduced from H = —?ﬁ and eqe. (2.3) as

4 =
Rm n - R -
H=S-LR (1-2)" |1 - ~ ar (2.8)
T étmx 0 An

2 2 -
R +X"-2R X cos( ¥ £)

Again the summation includes all of the sub-elements. The assumption of
C-type sub-elements leads to poor results and is not pursued.

In the present application Hr is calculated close to the pole surface
and this can cause lossof accuracy inthe numerical evaluationof eq. (2.‘{),
because X—+R and 2RnX—-(Ri+K2). Simpson's % formula is used in the
computer program, with the panel width automatically ha.lved(S)un'til the
relative error between successive computations is less than a given value.

This is based on a compromise between accuracy and fast running time -
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[0.5! X 10_3 has been found suitable, together with a maximum of 7 halving
cycles.

()R X , =

2n

1 - coa(fn+f) v Vo= 1- coa(fn+ An}

. 2
New variables x, (R -X) /2RnX

[}
1]

Y1n
are defined and the integral (eq. (2.8)) is evaluated in the form

(1) +ve v (e.g., v=1)

A
3{1—53 +f-1-r—'[ (1-%) af (2.9)
T+v X5 Xon o A 1n+3t2

(ii) wve v (e.g., v=—>5)

A
A x x n N ¥
--2|:1 s -..-ln_:| + ﬂj (1__ Vi_ In - 2n de (2.10)

v YontXon n h’1 FXon  Yon* ¥on

At the pitch circle radius the maximum value of Hr ocecurs just under
the pole-tip and is located in the program by testing the slope of the Hr
curve at predetermined positions. Values of Hr are calculated at the
pole=tip and at angular increments of 0.2° toward the pole centre-line. A
change in the sign of the slope locates the maximum within the last two
angular increments. This smaller section of the E:- curve is then examined
using an increment of 0.1°, The process is repeated twice more.

3 Computer results
Details of the models reported on are givenin Fig. 3 and the chief

results are tabulated in App.73. The numbers of sub—elements referred to
are for half of the pole-arc.

3.1 Surface polarity

The principal use of the first model was to assess the correlation
between numerical and theoretical values. In this respect the permeance
shape factor (SP - App.7.3) is a useful concept, being numerically equal to
half the total surface polarity on one pole. It does not provide a check
on the correctness of the distribution.

Both methods of representing the surface distribution were used in
the calculations. There was close agreement for the surface polarity on
the centre-line of the pole even with 4 sub—elements. However considerable
error was noted in the shape factor for the C—type distribution when used
with equal width sub-elements. This was not so with the V-type, and the
advantage of a simple computer program in the first case is diminished by

the larger number of sub-elements necessary and the increased running time.
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The distributions for Medel 2 using 8 sub-elements are shown in Fig. 6.

cL. np cL. e
300 300
MODEL 2 E| MODEL 2 H
200] C-TYPE 00| V-TvPE !
’
E /
100 —_4//'
gl u ¢ uu

Fig. 6 Surface polarity using 8 equal width sub—elements

The almost constant value of polarity near the centre of the pole
arc suggests that the widths of the sub-elements could be progressively
increased from the pole—tip toward the pole centre-line. One example of
this is shown in Fig. 7. The accuracy of the solution has been increased
without increasing the number of equations, but there is a limit as the
linear representation of the distribution just away from the pole-tip is
inaccurate and introduces error. Further increase in accuracy then requires

an increase in the number of equations.

cL TIP cL. TP

300 300 f
E| MODEL 2 E |
3 § MODEL 2 i
200] C-TYPE 200| V-TYPE h
|

£

100

k

0 L U T T 1 2 | 0 I R S T S B |

Fig. 7 Surface polarity using 8 wvariable width sub-elements

3.2 Magnetic field strength H
The variation of Hr along the rotor pitch circle is shown in Fig. 8
for Model 2, using eq. (2.9) and (2.10) with 8 equal width sub-elements.

The shape is similar to that of the surface polarity because of the
proximity of the pole-arc. In the interpole region Hr falls almost to zero,
exhibiting a sign change with Model 2 but not Model 1. The position of the
peak is slightly away from the pole~tip toward the pole centre-line. There
is good correlation between the numerical and theoretical wvalues of the
peak obtained with Model 1 for a small number of sub-elements. The effect
of the yoke, introduced in Model 2, is to increase the peak value by about
5% at this radius. The calculated position and size of the peak depend
principally on the assumed variation of m near to the pole-tip, i.e., on
the size of sub—elements and on the value of v (eq. (2.5)) for the

Magnetostatics A16

sub-element at the pole-tip. A ln/ln graph of m. and pole-arc measured
from the pole—tip shows that as the number of sub-elements is increased the
assumed variation (v:-‘%-) is substantially correct up to 19 of arc. A
decreased value of v would slightly decrease the peak value. In practice
the presence of pole-gides and a definite angle at the pole—tip will reduce
the peak value.

[ TIP
150

E| MopEL 2

-

100] V-TYPE

1 5

x

504

0

Fig. 8 Variation of Hr along the rotor pitch circle

4 Conclusion

The method of sub-elements is attractive because the surface polarity
can be represented by simple functions; because the number of equations
which have to be solved can be kept small by varying the widths of the
sub—elements; and because the magnetic field strength can be caleculated
anywhere in the air region. It is clear fromthe present work that a better
representation of the machine geometry would not lead to an unmanageable
problem. The main disadvantage is that the coefficient matrices are ill-
suited to iterative schemes and direct methods of solution must be used.

Certain improvements to the method are being examined. Representing
the surface polarity over a sub-element by a polynomial may enable the
number of egquations to be further reduced, but at the expense of a more
complicated computer program. A present weakness is that the potential is
calculated only at points where the polarity is defined. Calculations
based on the potential at the mid-points of V—type sub—elements were
unstable, but the use of a weighting factor could give improved results.
The extension of sub-elements to 3-dimensions - sub-areas - iswell knawn(s)
but the author is not aware of literature describing the use of V—type
representations of surface poia.rit;.r or charge density.

Even without these improvements the calculated peak value of Hr is
sufficiently accurate for design purposes. The permeance shape factor for
the improved model is high, but this can be modified empirically to allow

for the pole-cores.
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7 Appendices — x —
T«1 Analysis of Model 1 Fig. 10 Mathematical treatment of the pole-tip
~ P Near to the pole—tip the variation of the magnetic field is
K approximately the same as that of an isolated corner
v .
— B —_— @ =Cr""" sin(1+v)0 + constant terms (7.5)
Using H = -V and noting that H, = Hsin® + Hycos
Z-PLANE W-PLANE X-PLANE
H = ~(1+v)Cr’ cosvo (7.6)
Fig. 9 Inverse sn transformation
_é.

5 + 1
The field due to two oircular arcs on a pitch cirole of radius R in 4 ¥heipolertip angle isds than. we-g and Bz T

the z-plane is transformed to a uniform field in the X-plane (see fig. 9) Equating the derivative of Hy with respect to x, to zero shows that the

by the transformation peak occurs for

B pA
sy ok _']Ht z: (7.1 x, = ycotm (y constant) (7.7)
2[R -2

2 or at an angular increment
where k = tan“($A) = modulus of the Jacobian elliptic function

- Loot L
K'= K(k') = associated complete elliptic integral of 88 = geot 5T (7.8)
the first kind (see fig. 9). from the pele-tip
Delae A= —\Tﬂ _% 2 For v:-%, 6A=0.320T.. . This compares with a theoretical value of 0.3219
H - jH, = ‘je_‘]gQE = je-‘]g U—_%m) (7.2) from eq. (7.2) and a practical value of 0.322.. for 8 sub-elements.
T e or 2RK* sn'X
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7.3 Results

The chief results are given below for the two models.
are —=1,+14, and the units of Hr are A/m.

Pole centre=line — H

(i) pole surface R=41.25mm
number of sub-elements

model 1

4

17.198

(ii) rotor pitch cirele  R=40.85 mm

number of sub-elements
model 1
model 2

Peak values of H
e ok

(i) piteh circle radius  40.85 mm

number of sub—elements
model 1
model 2

(ii) pitch circle radius  40.45 mm

number of sub—elements
model 2

Permeance shape factor - Sp

(i) C-type sub—elements
number of sub—elements
model 1
model 2
(ii) V—type sub—elements
number of sub—elements
model 1
model 2

2.191
2.683

2.270
2.793

17.298

8
17.485
17.567

114.563
123.94

2.232
2.731

2,273
2.783

16
17.319

16
115.092
122.67

16
86.259

16

24253
2.761

16

2.274
2.781

The potentials

(theory)
17.324

(theory)
17.493

(theory)
116.135

(theory)
2,274

(theony)
2.274
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The Use of Divided Differences in Finite Element Calculations
M.J. Long and K.W. Morton

Department of Mathematics, University of Reading

Summary
Divided differences are used to calculate gradients of functions
computed by finite element methods. On regular elements the
finite element equations can be interpreted as finite difference
equations with local truncation errors. Examples of this are
given together with the results of numerical trials for gradient
approximations.
1. Introduction
The work presented in this paper was prompted by considering
the relationships which exist between finite difference and finite
element methods. The use of divided differences for calculating
the gradients of functions which have been computed by finite
element schemes provides an opportunity to pool the advantages
of the two approaches. This is of great practical interest since
in many cases it is the gradient of the calculated quantity which
is most useful - e.g., electric and magnetic fields obtained from
their scalar and vector potentials. With higher order finite
element methods, these quantities are often carried as nodal
parameters, but we are concerned here with lower order methods where

they are normally obtained by actual or approximate differentiation.

In [3] we consider quite general boundary value problems and finite
element methods on regular meshes: we shall in this paper, however,
concentrate on specific second order problems in the plane -
typically, Poisson's equation (-V2y = £) with homogeneous boundary

conditions. In weak form this problem becomes

alu, vl = <f, v> (1.1
where
du v du @
alu, vl [{EK + Ea—:]dx dy (1.2)
Q
<f, v> = [ fv dx dy (1.3)
Q

and @ is the region of interest (with boundary TJ). We limit our
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attention in the main to cases where T is a polygonal boundary
such that @ can be exactly subdivided intec a regular mesh of

finite elements and this can be done for a sequence of mesh sizes
characterised by element diameter h, with h < hy and tending
to zero. We consider nodal finite element approximations to u

of the form
aMex, v = Z[j] ug 450x ¥) (1.4)

where the parameters Uj are function values or derivatives of
uh at nodes labelled by the index j. The basis functions ¢j
are polynomial in each element, with support localised to the
elements neighbouring the point j - they span a space of
functions which includes all piecewise polynomials of degree less
than k. The specific finite element approximation to the solu-
tion u of (1.1) is determined by the Galerkin equations

afuh, d,) = <f, ¢j>, for all ¢j N (1.5)

J

and standard error analysis (see [4]) gives

1
EH -
flu - o"lly =0t ., fatw =", u-dM1 =0,
(1.8}, (1.7)
where ”U[L = <v, v>: [(1.7]) expresses the lower order of accuracy

of the derivatives of uh.

Now let us suppose we can define Dh' a difference operator
approximating the differential operator D(= 3/3x or 3/3y) to
formal order of accuracy k: then in [3] we have shown that

h Y

th u' - ouly = otn™y . (1.8)

The proof of (1.8) develops after applying the triangle inequality

to th a" - Du!h several times: if we firstly define the inter-
polant of a function vix, y) to be

Vix, y) = Ligy V3 4300 90, (1.9)

where :G is the value of v (or one of its derivatives) at node
i, then



Compumag Oxford, 31 March to 2 April 1976

h h I I I
lo, v - oully < Ilo, u” -0, u'lly + llo, v - ,w|

+||[Dhu]I - Dully + lIppgu = bully » (1100

The third and fourth terms are D[hK] from the approximating
properties of the basis functions and the local accuracy of Dh;
the second term is D[hk] for suitable choices of Dh - examples
of these are given in section 3; the first term is the most inter-
esting: due to the ellipticity of the initial problem, this term is
0(h*) 1f we can show that

a[uI - uh. uI - uh] = D[hZK} " (1.11)

Now alul, ¢,) - <F, 64> = 02T (1.12)

J 3
where Tj is the truncation error of the finite difference scheme
to which this Galerkin egquation is equivalent. Thus

a[uI - uh. uI - uh] = h2 E[j] EJ Tj (1.13)

where ey = U, ~u the finite element error in U The proof of

(1.8) ther&?uie hiiges on the structure of the Galargin equations and
their corresponding truncations errors. In section 2 we examine
some important particular cases to illustrate certain special
features of these equations. In section 3 we summarise the

results of numerical trials for a simple model problem. Finally,
some consideration is given in the last section to the use of

divided differences when irregular elements are used. Few
theoretical results are then possible but the difference technique

is still almost as simple to apply and a practical test has shown
encouraging results.

2. Explicit forms of the Galerkin Equations

We consider Poisson'’s equation defined on a region in the plane.

A regular square mesh is superimposed on the domain - a typical
'patch’ of elements is shown in figure 1. In this section we look
at some examples of individual Galerkin equations obtained using a
series of standard two dimensional s=lements; we shall ignore
boundaries and examine typical internal nodes and their associated

finite element equations.
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1 3 5 7
A
y
4 9 3y -
1517 17 19 21
v b *
; 39 3 2;/ 4 %} L h
23 3, 33 35
7 1 2
e
“ y * 3}’ b 47 b
43 45 47 49 :
< s - e Figure 1
L
(a) Bilinear on a square:
The nodal parameters are the function values at the P

mesh points. There is only one type of node and corresponding

Galerkin equation - typically node 31 of fig. 13 the equation here
is

+u *u +u

a5 )

ﬁ
- §[u15 +u

I.llrltﬂ

47 * U3z T Ugg * Uy

= <fy §g,> o (2.1)

31 28 43

I
By expanding alu’, ¢31J = <f, ¢31> in a Taylor series expansion
about node 31 we obtain

= il N
T31 48[3uxxxx + 14uxxyy + i~11.|}'iws|'}3,l + 0Ch') [2:2)

where uxxxx = d"u/ax*, etc. As the degree of approximation for
this element is k = 2, the order of accuracy of T31 corresponds
to the standard error estimate shown in (1.6).

(b) Quadratic on a right triangle:

For this element the nodal parameters are again
just function values but there are now four types
of node - typically, points 31, 32, 24 and 25 in fig. 1. The

corresponding Galerkin equations are respectively
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4u31 _ Eiugg * gy . s 4 u24] " E[uzg * ugg * Uy R u1?] those for the-reduced system are of fourth order.

(c) Quadratic on a square:

= < > .
£ 93 ks This element is at first glance very similar to

12 s %[ lUgy * Ugg * Ugg * Uye) = <Fs b4, (2.4) the previous one except that there are only three

types of node, that corresponding to the middle of the
16 4 \ i

P} = >

Y24 3[u23 *lgy tUyg * u,l?] <f, ¢24 (2,5) square being omitted. The Galerkin equations however take the more
16 4 complicated form
—u,. - =lu,, + U, * U, *+ U, ) = <F, ¢,.> (2.8) ”
3725 3 724 32 26 18 25 ZDBua,l ?’4(t.|3El *ugg *oUgy * u24] + 45{”29 *lgg toUgg * u_”.]

Thus for mid-edge nodes one has the familiar second order, five- U e

-23(u22+u U, U, U 18 i.lﬂs

point scheme. The truncation errors of these difference schemes B L3 48 4 28

are T Uy T Ugg T g, u1g1 = 45<F, ¢31> (2.11)
_h? " 208u,, - 74(u,, + u,,) + 16(u,, + u,.)
T31 - ﬁ{uxxxx + uyyyy]31 + 0(h*) (2.7) 32 31 33 18 46
~ B, il il F L) SR,
2 »
T, =-Dqu+wu ), +0M,  § =32, 24, 25. (2.8) L e S8
J 144" “xxxx yyyy'j i (2.12)
The order of accuracy of this element is ordinarily k = 3 but the with a similar equation using ¢24. The ERireation srvers sse
truncation errors are one order lower. The Galerkin equations can 2
= )
however be combined into a reduced set relating the nodal parameters T31 350[25uxxxx : gzuxxyy : zsuyyyy] +.0(h*) (2.13)
at points of type 25: by combining equation (2.7) with a linear il h2 I
T‘._,‘:2 _ﬁﬁﬂtsuxxxx + 48Ux><yy + ZDuywy] + 0(h*) (2.14)

combination of the surrounding equations of type (2.4), (2.5), (2.8],

it is found that Unlike the previous example, none of the nodal parameter sets can

be eliminated, but combinations of the eguations can yield a system

10 2 1
“Yz5 ~ Jluzg *Ugg * Uyy * ugy) Tglig * Ugy * gy * Ugg) where all the truncation errors are of fourth order.
' = <f, @253- o (2.9) (d) Hermite Cubic on a square:
With this element there is only one type of node
where
3 1 (typically node 31) but there are three types of Galerkin
5 = 45 * Flogy * 9y * b5 * b4g) * Flyy * b3q * dgg * 4] equation associated with each one of these points, The parameters

1 at each node are the function value and the x- and y-derivatives.
* 750010 * %15 * %30 * %38 T %a0 * a4

* byg * 8gp) (2.10)

The Galerkin equations are

4416u,, - 696(u,, + U, * U,y *+ U,.) - 40B(u,. + u,, *+ u
Equation (2.9) is the familiar nine-point difference scheme; its L & 45 83 7 45 &

= + B x
truncation error [Tzs] combines 3(=1 + 4»%- + Ex%-gl times (2.8) U‘EEI] ¥ h[uﬁ

47

o iR y o o_ oy
3~ Upg * up; ~ Upg)

with 1[=42%] times (2.7), and because of the symmetry we obtain i B[Jh[ufg 5 U:S 5 U:7 & u:3 + U{g - uﬁ? + L'?!‘S = "3;3]
T25 = 0(h*). Other combinations of the original equations

= < > .
(2.3)-(2.8) relate all the remaining nodal parameters to this reduced 14B0<Ts ¢31 Cfunction valuel (2.15)

set. It follows that all the nodal errors are of the same order if
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x

2 X X X X X X
h E2?2U31 48(ugy * Upg) + 32[u17 ¥ uge) + 2[u15 + Upg
x X
U, t u,lg]] = h[EEu33 ) ”29} + EUEU,IS
_ X
= U ¥ Uy u43]] = 1260<f, ¢5,>
[x-derivative] (2.1B]

- ; v _ X 4V
with a similar equation for 631 ¢31, ¢31, ¢31 are the three
types of basis function at node 31; uj and uj are the parameters
associated with the x- and y-derivatives at node j. In all cases
I * = * = 6
alu™, ¢31] <f, ¢31> 0(h®),
(2.17)

* = A v .
¢31 ¢31’ ¢31' ¢31
However, only the first of these three equations is consistent with
-v2y = ¥; the other two are consistent with =-(u +u ) =F
. P Yy X
and -[ux + U ] = fy respectively.

xy YVy
The first three examples given in this section are generalised in
[3] to produce the theoretical arguments in proving (1.11). The
last example is a case where we would not really expect to use
divided differences, though in the next section this element
provides a comparison with the accuracies achieved by differencing
with lower order elements.

3. Numerical results for a simple model problem

Numerical experiments were conducted with Laplace's equation

v2u = 0 on the square 0 = x, yv £ 3 with the natural or symmetry
au

boundary condition 3y =0 along y =0 and u set equal to the
solution 2nl(x - %—]2 + y2] on the other three sides of the
square. Computations were carried out with hﬂ1 =1, 2, 3, 4 and &

so that convergence tests could be made for overall and pointwise
errors. We use the same elements as discussed in the previous
section.

(a) Bilinear elements (k = 2):- we begin by checking whether (1.11)

is approximstely true for this element and compare the results with
the error alu - uh. u-uM [e.f. (1.7)1:
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ht o 1, 2 3 4 5

M) 0.025 0.0248 0.0243 0.0%47 0.0320
Convergence between last pair : 0(h3+8)

h

I h I
alu" -~ u, u -u

) 1.1 0.29 0.13 0.017 0.04B

Convergence between last pair : 0(h2+0)

" h
alu-u, u-u

This table confirms our expectations of the asymptotic behaviour

of the error.

Three pairs of difference schemes were used for the gradients -

these are all suitable for internal gradient approximations:

El(”v = [vix + h, y) = vix = h, ¥y)1/2h ,

b4
(3.1)
1) _
Dy v =[x, y + h] - vix, y - h)1/2h ,
(2)  _ h h
D v = [vix + =5 ¥) = vix = 5 yli/h ,
(3.2)
(2] h h
Dy v = [vlx, vy + §J - vix, v - EJ]/h .
(3) h h h h h h
va=[v(><+§—, y+—2-]_+\.rt><+7,y-§]-v[x—ﬁ,y+51
h h
- vlx - 5 ¥ - 54]/2h (3.3)

and similar expression for D;S)U(x, y); each is second order

accurate to their respective derivatives. In table 1 we give the

. -1 .
maximum error for h =1, 3, 5 over points which are the "natural

centres for each scheme for all three values of h. Thus for

Diqj and D(1} the points considered are (1, 1), (1, 2), (2, 1),
(2, 205 for P they are (4, 1), (11, 11, (21, 1), (4, 2),
(13, 2), (24, 2), and for 012, (1, 13, (1, 1), etc.; for D'
and DKB] they are the centrgs of the nine unit squares which A
make up f. In the final columns of the tables are given the

worst convergence rates over the same set of points, calculated

from the errors for h_1 =3 and 5.
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Table 1 ¢ Maximum errors for difference approximations to derivatives

using bilinear elements.

h_1 Conv h-1 Conv

I 5 |Rate 1] 3 |5 |Rate

Di” .046 | .0244 | .0215 |2.0 n;” .16 | .020 |.0272 [ 1.8
nf) .080 | .0241 | .0215 |2.0 D;ZJ .15 | .020 [.0274 [ 1.9
p® | .0a1| .0%2 [.0233 | 1.8 D;SJ .13 .0277|.0230 | 1.8

There would seem to be little to choose between the accuracies of

the schemes, bearing in mind the differences between the points

considered. However, by further comparison over the whole of @,
the most compact schemes D[Z! and D;ZJ appear to be the most

reliable. It should be noted that the maximum error for the
function values over the same set of points for h-1 =5 is
0.0374, The differencing errors are somewhat larger than this,
but at (1, 0) the function error does increase to 0.0238.

(b) Quadratic triangle elements (k = 3):- the Galerkin equations

studied in the previous section suggested that the nodal errors
for function values should converge like 0O(h"): +this is in fact
confirmed by -the numerical experiments. One cannot expect this
order of convergence between the nodal points where it drops to
0(h3) = this is an example of the phenomenon of superconvergence
(c.f. [11). Similarly, we expect a[uI - uh, UI - uh] to -
converge like 0(h®) and not at an enhanced rate - the table
below indicates the actual behaviour:

h 1 2 3 4 5

catdt -, WF - d™ 0.0238 0.0327 0.048 0.0%42 0.0537

Convergence between last pair : 0(h%+3)

N ey 0.073 0.0%94 0.0%23 0.0380 0.0334

Convergence between last pair : G(ha'al

alu - u

The only difference schemes we have considered for the gradient

are the usual fourth order approximations
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Di4lv{x. y) = [Bv(x * %. y) = Bulx - gy ¥l = vix + h, y)
+ vix - h, y)1/Bh (3.4)
and a similar expression for D;qjv(x, yl. In table 2 we give

the errors obtained for h“lI =1, 3, 5 at the central point

(1%, 1%), which is one of the reduced set, and the maximum over
the subsidiary points (1, 1), (1, 2), (2, 1), (2, 2). Except
where noted convergence rates are calculated for the last pair of
errors.

Table 2 : Maximum errors for difference approximations to derivatives

using guadratic triangle elements.

_-‘.I ...1
h Conv b onv
1 3 5 Rate 1 3 5 Rate
(13%,13) n)[:” .0%89 |.0%23 [.0%32( 4.3 Df{‘” .0%89 | .0%11 [.0812/4.3
Subsid. ni’” L0251 |.0%74 |.0%11] 3.7 05[;4] .0228 | .0527 |.0518/4.6

* between h-1 =1 and 5§
Clearly superconvergence also occurs for these gradient approxima-
tions, but the error increases between the nodes to give approxim-
ately the 0(h3) convergence rate predicted by the analysis.
(e) Quadratic square elements (k = 3):- the results of numerical

experiments were very similar to those for the previous element,
all the function errors actually being 0(h*). We give only the
difference approximation errors, which were substantially larger,
in table 3. The same difference schemes (3.4) were used.

Table 3 : Maximum errors for difference approximations to derivatives

using quadratic sgquare elements.

_" _1

h Conv 2 Eonv

i a 5 Rate 1 3 5 Rate

(14,13) Di“ .0%235 |.0%44 |.0557| 4.0 D;‘” .0274 |,0623 |,0831(6.2*
(4) 3 I (4] 2 N 5

Subsid.|D_ .031 |.0335 |.0%37] 4.4 0, 0268 |.0%55 |[.0573[4.0

* between h_1 =1 and 5
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(d) Hermite Cubic elements (k = 4):- the numerical results showed

that both function and derivative errors at nodes converged like
0Ch). However, one important point arises: ower the four

points (1, 1), (1, 2), (2, 1), (2, 2), the divided difference
results for quadratics were EEIE_accurate than the direct derivative
approximations achieved with this element.

4. Concluding Remarks

To be of practical utility, the divided difference technigues
described above must be applicable to a finite element solution
obtained with irregular elements. Very few theoretical results are
then possible, though in one-dimension certain hypotheses can be
deduced. Basically, there are two general rules hers: (1] there
needs to be a smooth variation of the mesh over the domain; (2] the
step length and difference scheme used at any point should be
determined by the most closely approximating uniform mesh. Many -
automatic element generators start with a basic mesh which is
regular over large regions and incorporate smoothing algorithms to
be applied to irregularities introduced at boundaries, interfaces,
etc.; 1in these cases the rules should be easy to apply. A simple
practical example in the computation of surface velocities over an
aerofoil has-produced encouraging results (c.f. [2]1). More
computational experience is needed, however, before being too

definite or attempting to obtain theoretical results.
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DETERMINATION OF MAGNETIC FIELDS
AT THE CONDUCTOR FOR SOLENOIDS AND TOROIDS

R. W. Moses, Jr. and R.L. Willig
University of Wisconsin, Madison, Wisconsin, U.S.A.

ABSTRACT

Superconducting magnets must have the magnetic field smaller than
the ecritical field the conductor is designed for. For optimal use of
material the maximum field should be known everywhere along the length
of the conductor. Here large single layer solenoids with superconductive
energy storage applications are considered. An analytic expression is
given for the midplane field correction due to conductor separation.
Similar expressions are presented for sectored toroidal tokamak coils.
Numerical examples are given to demonstrate the large fields found at
the ends of single layer solenoids. Optimization procedures are used to

redistribute conductors to reduce the end fields to acceptable levels.

INTRODUCTION

In most discussions of the magnetic fields and forces for solenoids
and toroids it is assumed that the current flows in a continuous sheet
at the surface of the magnet. Although this simplifies many computations
it does not account for field variations near individual conductors.

Also large radial fields at the ends of a solenoid are often neglected.
These effects and some means of compensating them will be examined in
detail in this paper.

First let us consider a solenoid or toroid with current distributed
uniformly over the surface in a thin sheet. There are N turns of conduc-
tor carrying a current I. For a solenoid of length % and diameter D,
the aspect ratio is defined as f = &/D. When P is large the internal
field away from the ends is B = uDNIfR. For smaller values of B the
maximum field on the midplane, BM' is at the inner surface of the wall

and is expressed as follows
= L]
B, = U NI K'(B)/%. (1)

K'(B) is a correction factor between 0.5 and 1 (Moses, 1975).
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The field in a toroid with uniform surface currents is expressed in
terms of the radius, as measured from the major axis, R. Once again

taking N turns of current I one gets
B = u NI/27R. (2)

The purpose of this paper is to present corrections to Eqs. (1) and
(2), accounting for the use of conductors of finite size and separation.
We also discuss the reduction of the end fields of solenoids. These can
be substantially greater than the expression given in Eq. (1) (Walstrom
and Lubell, 1973). As an example it is commonplace to see field in-
creases of more than 1007 over Egqs. (1) for energy storage magnets.
When the conductor critical field is exceeded anywhere in a supercon-
ducting magnet part, if not all, of the magnet goes normal. For this
reason it is essential to know the maximum field at each segment of
conductor and be able to design magnets free of unnecessarily high
fields.

MIDFLANE CORRECTION

We now consider a single layer solenoid made of a circular cable of
radius c. The number of conductors per unit length is n = N/%, then the
center to center separation of the cables is s = 1/n. The fraction of
magnet surface covered by conductor is defined as the ratio vE 2c/s.

To obtain the correction for the discrete conductor field, consider
an infinite plane of straight parallel cables next to a conducting
sheet, see Fig. 1, The maximum field, Bm, is on the leftmost edge of

each conductor, and it is given by

1
j=—o ¥y Mj

==}
]

l.x
pu::“I[IZ * T

uonI[l + K"(Y) 1. (3)

Equation (3) can be solved for K"; the results are plotted in Fig. 2.

An approximate expression of K" is also shownm,

wo _Lgmy 1
et B (%)

This is accurate to 10% for y< 0.7.
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Fig. 1. Cross section of a set of Fig. 2. Discrete coil correction

straight conductors parallel to a factor as a function of Y.
uniform conducting sheet.

Equation (3) is arranged to define K" as a correction to the field

between two parallel conducting planes, uonl. Most of the value of K"

is attributable to conductors close to the point where Bm is measured,
thus the cables of Fig. 1 could be wrapped into a solenoid without
changing the meaning of K". Now Eq. (1) is rewritten to give the maximum

field at the conductor on the midplane of a solenoid
By, = W,aL[K'(B) + K"(M)] . ()

This and Fig. 2 make it clear that single layer solenoids with y < 1
have maximum midplane fields substantially larger than those found in
the continuous sheet model, Eq. (1). Throughout the paper Bm defines
the maximum field on any segment of conductor while BH defines the

maximum midplane field.

END FIELD
If a thin walled solenoid is wound with turns evenly distributed
along its length, very large radial fields are obtained at the ends of
the magnet. A computer program was written to give the field on the

inner side of the conductor at all points along the length of a solenoid.
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Figure 3 illustrates these results for solenoids formed by continuous
sheets of current. When a solenoid is infinitesimally thin there is a
logarithmic singularity in the end field. This is shown for a variety

of aspect ratios in Fig. 3.

2.0 T T T T

0 | | 1 1
0 1 2 3 4 5
z/1

Fig. 3. Magnetic field along the inside surface of an
infinitesimally thin solenoid with a uniform continuous
current distribution.

As in the case of Eqs. (1) and (5) the conductor fields change for
single layer solenoids made of discrete circular cables. Approximate
values for the maximum field at each conductor are plotted for a B = 0.3
solenoid with several values of Yy in Fig. 4.

The data in Figs. 3 and 4 make it clear that end fields can be very
large in thin single layer solencids. Such devices are particularly of
interest for energy applications (Boom et al. 1974, 1976). Single layer
magnets with nearly a thousand closely spaced turns are envisioned, cer-
tainly matching the severe field conditions shown in Fig. 4.

By ﬁarying the spacing of conductors along the length of a

solenoid it is possible to manipulate the fields of Figs. 3 and 4 to
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more desirable distributions. Since we are primarily concerned with
energy storage, we want to store the maximum amount of energy with a
given amount of conductor. In a solencid one always maximizes the
stored energy by placing the conductors as close together as possible.
This is limited by the boundary condition that the critical field cannot
be exceeded. Assuming there is one critical field, the stored energy is
a maximum when the field at each conductor reaches the critical value
(or a specified design limit).

2.0

0 | 1 1 1

2 3 4 5
z/1

Fig. 4. Maximum field at the conductors of a single layer
solenoid with current uniformly distributed in round conductor
(N = 200). Here By in the midplane maximum for the current
sheet model.

A smooth current distribution can be obtained by placing flat
conductors close together. This gives a good mathematical model but is
physically unrealistic. It is anticipated that large energy storage
magnets would have a single layer of round superconducting cable embedded
in a high purity aluminum stabilizer (Boom et al., 1975). Since the

current is concentrated in the superconducting cable, we neglect the
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stabilizer. The variable current distribution is obtained by control of
the conductor spacing s = 1/n.

A computer program was written which expresses the current per unit
length, nI, as a Fourier series. A midplane maximum field, B

M
selected and the Fourier coefficients were adjusted to make a least

s was

squares fit of Bm to BM along the solenoid.

Solenoids made of continuous current sheets were studied first and
the results for several values of R are given in Fig. 5. The current
per unit length is normalized to the specified mid-field maximum,
uonI/BM. Typically the rms deviation is <0.03% for ten expansion co-
efficients. As expected, only a reshaping of the ends is required to
bring the conductor field to a constant value in long solenoids, B = 5.

On the other hand, very short solenoids are grossly reshaped.

2.0

Fig. 5. Current distribution required to make the magnetic field
constant along the inside surface of an infinitesimally thin
solenoid.

The case of discrete round conductors was also studied and results
are given for B = 0.3 and several values of 3 8 in Fig. 6. Here ¥y = 2c}so
only represents the midplane value of Y. Each conductor carries the
same current introducing a self field that is the same for all conduc-

tors. This leads to the radically different nI values in Fig. 6. Here
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the end effects alter a much larger portion of the magnet than in the

case of a continuous sheet conductor.

2.0 1 | I |

current sheet model

——— e
ISE ——— =

Fig. 6. Current distribution required to make the maximum magnetic

field the same at every turn of a single layer solenoid.

Numerical computations for Fig. 6 were more difficult with rms

errors of <1%. Detailed information on the numerical techniques will be

published at a later date.
To quantify the above results we note that the ampere meters of
conductor required to store a given amount of energy at a specific

maximum field are (Moses, 1975)

235243

Is = Q E°'°/B,

Alsc the radius of a solenoid is given by the expression

r =GE

1/3,. 2/3
,’BM

The quality factor Qis and the coefficient G are presented in Table T
for the solenoids described in Figs. 3-6.

(6)

(7)
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Table I

Conductor and radius factors for solenoids with constant field
distributions as compared to those with constant current distribution

Constant Current Constant Field

Qis N Qis B

) PRI VT R L v QR U WV R T
$ . 0.1 604 0.0185 624 0.0205
3T o3 576 0.0112 582 0.0119
a¥ o 592 0.00922 593 0.00954
é 3 10 651 0.00731 646 0.00732
2% 2.0 759 0.00590 751 0.00578
S 5.0 974 0.00437 966 0.00428
g Y

27 o2 806 0.0220 1009 0.0402
§‘ﬂ 0.4 675 0.0154 807 0.0255
BE 06 627 0.0133 706 0.0193
% :3 0.8 606 0.0124 645 0.0159
= 1.0 599 0.0121 622 0.0144

It must be emphasized that BM represents the maximum midplane field
in all cases. However, the end fields will be larger than By when the
current distribution is uniform, Figs. 3 and 4. BM for uniform current
distributions is given by Egs. (1) and (3). These formulae were used in
earlier studies to establish values for Qis and G. It was assumed that
end fields would be compensated at a later date. Now Table I shows the
minimum adjustments required to keep the field at all conductors within
the limit of BM'

It is very unlikely that a practical magnet would be built to the
specifications outlined above. However, we have placed lower bounds on
the conductor requirements, Qis’ and given an indication of the overall
current distribution to strive for.

The problem of end fields may be partially solved by adding more
superconductor in the ends of a magnet. That is, the field design limit

of the composite superconductor is brought closer to the critical field
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in the end turns. A tailored conductor design along with a compromise
between the conductor and field distributions of Figs. 4 and 6 may give

optimal results.

TOROIDAL FIELDS

Although toroidal magnets do not have the end field problems asso-
ciated with solenoids, there can be a substantial field correction due
to the discrete nature of a conductor. Equation (2) can be corrected in
a manner similar to Eq. (1). A toroid can be treated as a solenoid with
a component of toroidal curvature. Such a procedure gives very accurate
expressions of the magnetic force on a sectored toroid (Moses and Young,
1975).

The midplane cross section of a toroidal field magnet is shown in
Fig. 7, and a horizontal view is given in Fig. 8., Here p is the radius
of curvature of the conductor which can vary along the coil, and the

angle ¢ describes locations on the coil.

¢

,0
b
G §

+ —
TR
Rz
Fig. 7. Midplane cross section of Fig. 8. Horizontal view of a

a toroidal field magnet. toroidal field coil.

Equations (2) and (3) provide the basis for the expression of

conductor field, but we add a correction for solencidal curvature

Ul gq L:284R
2mp cN ?

see Moses and Young (1975) Eq. (14). Incorporating the equations listed
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above one can approximate the field on the inner surface of a conductor

as follows

U _NI
__o© w Ne R 1.284R
Bm 2TR S (ﬂR) * Np fn cN

1. (8)
Here R is measured from the major axis to the inside surface of the con-
ductor where the field maximum is to be determined.

As an example, the maximum conductor fields were calculated numeri-
cally and with Eq. (8) for a toroid of 18 circular coils. The major and
minor radii are 1.5 m and 1 m respectively while ¢ = mp/N = 8.73 cm.

Here I is taken as 106A. A comparison of the results is shown in Table
II. The numerical data are accurate to better than 0.01%; hence, Eq. (8)

has an error of < 2% here.

Table II

Analytic and numerical expressions
of B on an 18 coil toroid.

¢ R/m Nchrn Bmf'r
analytic numerical
0 2.413 0.2072 1.090 3.25 3.31
/2 1.500 0.333 0.540 3.74 3.80
ki 0.573 0.851 0.0752 6.44 6.51

With the expression of Eq. (8) one now has a simple accurate
formula for the maximum field on toroidal coils. This can serve as a
replacement for many of the extensive computer field computations pre-

viously required to get the same data.

CONCLUSION
In this paper we have outlined semianalytical techniques for ob-
taining local fields in solenoids and toroids. A systematic reduction
of the severe end fields of thin walled solenoids was presented. The
results given here should enable the magnet designer to approach pre-
determined conductor field limits with greater precision and optimum use

of material.
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A FORTRAN PACKAGE FOR SOLVING LINEAR ALGEBRAIC EQUATIONS WITH A LARGE
DENSE MATRIX USING DIRECT ACCESS DISK STORAGE

M J Newman
Rutherford Laboratory, Chilton, Didcot, Oxon, 0X11 0QX

1. INTRODUCTION 1,2,3,4
In solving the non-linear integral equation occurring in the GFUN

magnet design program, a requirement arose for solving large linear
problems with a general dense matrix of coefficients. The matrix was

too large to be held in main memory, and was stored on a direct access
disk dataset. The method to be described uses Gaussian Elimination and
Back Substitution. The matrix is partitioned so that only a fraction of
the whole matrix need be in main memory at any time. The method has been
optimised to minimise the total elapsed time required for solution. To
solve a problem of order 1000 on an IBM 360/195 computer using 516k bytes
of main memory and 4M bytes of a 3330 disk took 19 minutes, of which 5.5

minutes was central processor activity.

The computer package is coded in Fortran and all input and output is
handled in a single routine. It should be a simple matter to implement

the package on any computer.

An additional facility is provided whereby having solved a system Ax = b,
a similar system Ax = ¢ can be solved very economically using the -

factorised matrix which is stored on the disk.

2, METHOD

Since,for the particular problem in hand,the matrix had no convenient
properties such as symmetry or sparseness, the method used is Gaussian
Elimination with Back Substitution. The complete matrix is partitioned
into square sub-matrices. Each sub-matrix forms a single record on the
disk. The order of the sub-matrix can be chosen by the user subject to
a maximum of 32767 bytes (order = 90) imposed by the Fortran Direct Access
system. At any time, four sub-matrices are present in main memory. It
is convenient to consider the complete matrix A (of order n) being

partitioned as follows:

el
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A= a1 a2 a3 ... a

asy as 823 .. ?2“1

dml  am2  am3 Smm

where a. is a square sub-matrix of order p. Then m = n/p. At a general
stage in the elimination process the four sub-matrices in main memory will
be: '

1. A Pivotal sub-matrix a, (1 €1 ¢m1)
2. A Sub-Pivotal sub-matrix a; (i <kgm
3. A Cross-Pivotal sub-matrix a, (i <2<m

4, A Cross Sub-Pivotal sub-matrix a

Suffix i ranges from 1 to m-1. For every value of i, suffix k ranges
from i +1 to m. For every value of k, suffix & ranges from i + 1 to m.
For each new value of i, when k = 1 + 1, the two sub-matrices an and

a,; are searched to find the element in each column below the diagonal
which has the largest modulus. The row number is stored in work space
provided by the user and that row is exchanged to become the pivotal row.
The search for largest element has been restricted to two sub-matrices in
order to restrict the number of disk accesses. For the application in
mind it was thought to be extremely unlikely that this limitation will

be noticeable. As a precaution the package prints out the maximum
multiplying factor used as an indication of how effective this restricted
search has been. Values are typically between 1 and 2. In the event of
no non-zero elements being found an error diagnostic is printed and the
program stops. As elements which lie below the diagonal are eliminated
they are over-written with the appropriate multiplying factor. As many
operations as possible are performed on each sub-matrix before returning
it to the disk. The complete. algorithm can be best understood by

referring to diagrams 1 to &4,

In order to reduce the accumulated rounding error, each sub-matrix is
stored with double precision (64 bit) accuracy in main memory. However,

to reduce the number of disk accesses, each sub-matrix is truncated to
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single precision (32 bit) accuracy before storing it on the disk. The

total number of disk accesses is:

Z[Bn® - 302 + 13m - €]

for an order of 1000, where m = 12, this is 2257. The average number of

truncations is:
] 5_6
glim - 3+ 2 - o]

which for the same problem is 7.5 truncations. Since the number of
numerical operations is approximately % % 102, it will be seen that the
saving In the number of disk accesses does not introduce an unacceptable
decrease in accuracy. |t should be noted, however, that troubles may be
expected 1f the facility for resolving similar problems with the same

matrix Is used for iterative refinement.

Since on most machines the residuals could only be calculated with 64
bit accuracy, this may not be sufficiently greater than the overall
accuracy of the factorisation,and the refinement procedure may not

converge.

3. EFFICIENCY
The efficiency of the package is best illustrated by some statistics from

sample runs.

Order of Order of Total No. Disk Main
main matrix | sub-matrix | of sub-mcs. space memo ry
n p m (Mbytes) | (Kbytes)
200 20 100 0.16 7o
500 50 100 1.0 194
1000 90 144 4.67 516

Magnetostatics A19

Solve Ax = b Resolve Ax = ¢
Grderof CPU time 'Lapsed Total No.| CPU time| Lapsed |Total No.
mals wetni% time | of disk time | of disk
(mins) | (mins) access (mins) | (mins) access
200 0.0766 0.856 1304 0.00342 |0.0737 110
500 0.801 5.25 1304 0.0136 0.55 110
1000 5.56 19.10 2257 0.0509 |0.302 156

The elapsed time for a solution will depend on the number of disk
accesses, the size of each record, and the intensity of activity from

concurrent jobs on the shared channel to the disk.

4. USER INTERFACE

The matrix must first be stored on a disk dataset in the required format.
First, p, the order of each sub-matrix should be chosen as large as the
main memory allows. The maximum value which p can take is 90. This
results in a record size of 32400 bytes. MNext the value of m must be
calculated. This is n/p rounded up to the nearest integer if necessary.
The package allows for m not being a factor of n. The dataset is then

created with code similar to the following:

REAL*4 C4 (90,90)
D01 J=1,M
DO2T1I=1,M
[ﬁere fill Ch array with appropriate coefflcienté]
NREC = (J - 1)*M + I
WRITE (KSTR1'NREC) Ch

2 CONTINUE
1 CONTINUE
sTOP
END.

Next, in order to solve a system Ax = b, the user must call subroutine

DSKSOL. The argument list is as follows:

ihs
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No.| Name Type Dimensions Purpose

1(C11 Real*8 array (MD,MD) Work space for a sub-matrix

2 [c21 " " woowoaw
3|ci2 " " U "

4 [c22 i L " " % Bl i

5| Ch Real*h array " Work space for a record

6 | MD Integer variable - Dimension of above arrays

7 | soL Real*8 array (10RD) Contains solution on return

818 L L Contains vector b on calling

9 |USED |Integer*2 array (MsQ) Work space(see note 1 below)

10 [IPIV I (10RD)  |Work space

11 [KSTR] | Integer variable " Stream No.of datset with matrix A
12 | KSTR2 " i e n WUfor factorised matrix
13 (M L - Order of sub-matrix

14 | 10RD L Order of complete matrix

1. MSQ > M2
2. MD = M

3. B must contain the values of the vector b before DSKSOL is called.
These values are destroyed by DSKSOL,

k. The dataset on KSTR2 must be identical in structure to that on KSTRI.
If the original matrix A is not required after the solution is
obtained, set KSTRZ = KSTR1 and only supply one dataset.

In order subsequently to solve a similar system Ax = c, the user must call
subroutine NEWRHS with a very similar argument list. This routine will

destroy the values in the array c.

5. CONCLUSIONS

This package allows the solution of linear problems for which the
coefficient matrix is larger than that which can be held in main memory.
It is optimised towards minimising the total elapsed time for a solution.
The accuracy obtained is close to that when the whole problem is solved

in main memory with a word length of 64 bits.
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HAIN FLOW D1AGRAHM PERFORMING ALL POSSIBLE ELIMINATION OPERATIOMS

ON REDUCED MATRIX WITH & AS LEADING SUB-MATRIX

Perform all possible

elimination operations on
reduced matrix with 21
as leading sub-matrix

Operate on new

sub-pivotal set

YES
Perform elimination on NO
final sub-matrix LJ.
Write 2
Perform back substitution
DIAGRAM 2

DIAGRAM 1

(1]
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OPERATION ON NEW SUB-PIVOTAL SET

. i OPERATIONS ON A NEW PAIR a,, AKD a

Read g s
YES
k= § +1
: ?
o Read a
Pivot and 3 e
Read a
ki
Factorise a factorise a,
YES
k=141 _i
L= 1
NO Pivot and cross=-
. multiply a and a
it ki
Cross multiply a
Operate on a new pair :
Write a
of a0 B, ¥ 3
Write a,
YES
YES
k=1 +1
[
Pivot and cross-
NQ multiply RH sides
Cross multiply
RH sides DIAGRAM &
Write g
DIAGRAM 3

148



Compumag Oxford, 31 March to 2 April 1976

COMPUTATION OF THE INTEGRATED MULTIPOLE FIELD COMPONENTS IN A
SUPERCONDUCTING QUADRUPOLE MAGNET WITH CONSTANT PERIMETER COIL ENDS

T. Tortschanoff
CERN
Geneva, Switzerland

INTRODUCTION

Several attempts have been made to calculate the multipole field com-—
ponents produced by a quadrupole geometry including the contribution of the
ends of windings. In particular, at Saclay and Rutherford Laboratory the
constant perimeter geometry has been extensively treatedl’z). However, none
of these calculations can be adapted to treat the geometry of the coil ends
as they are actually manufactured at CERN and which represent a practical

approximation of the ideal constant perimeter geometry.

For this reason, it was necessary to develop a special computer pro-—
gram to calculate the multipole components of the geometry which describes
the quadrupole magnet in question. This calculation is especially important
for the optimization of the space between each end of winding for the com-
pensation of higher multipole components: by variation of the straight
lengths, which determine the position of the ends of winding, one can elim—
inate a number of integrated multipole components which equals the number
of coils per pole minus one. Thus, in the case of three windings per quad-
rant, the 12- and 20-pole components can be eliminated theoretically. In
practice, however, this will not usually be feasible and other criteria for
the optimization of the straight length have to be taken into account. In
our case, the sum of the integrated gradient errors and the sum of their

absolute values inside the useful region were taken as criteria.

1. METHOD OF CALCULATION

The method applied in these calculations is first to separate the
straight part and the ends. The ends are treated as a series of very short
straight parts by cutting them into a great number of thin slices perpen-—

dicular to the longitudinal axis of the magnet.

According to the complex variable methodB’a), for the two-dimensional
case of a cylindrical geometry, the magnetic field produced by a sector

winding can be written:
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m

“F‘“=a+is=-§:ca+b>z“‘1 z=x+ iy (1.1)
v x ey n n ’ ] B

where, in the case of quadrupole windings, the contribution of each block

of winding is (see Fig. 1]5):

. 2-n 2-n
4 oo i \r -
I NGRS (sin n ¢, - sin n ¢;)
n#2,n=6, 10, 14,
2y T
Qi 2 . '
ap = — s in ;;- (sin 2 ¢ = sin 2 ¢7) (1.2)
2 n+2 n+2
4 uo ]0 r, =Ty
hn 8 —n 2 D) (sin n ¢, = sin n ¢y)

R
n=2,6, 10, 14, ...

jo is the current density in the longitudinal direction

R is the inner radius of a p = « cylindrical iron screen.

2

n

Fig. 1  Scheme for computation.

In order to extend these two-dimensional formulae to our three-dimen-
sional problem, the a_ and bn values have to be multiplied by the straight
length, 2%, and by the thickness of the thin slices, As, into which the

ends are cut.
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The geometry of the straight part of the coil is determined by the
conductor which, in our case, is solid with rectangular cross—section. As
shown in Fig. 2, the lateral sides of the blocks are parallel. Therefore,
the blocks must be approximated by a suitable number of concentric layers
which are treated as sectors. For each layer, the angles ¢; and ¢, can

easily be determined from the design data (Fig. 2).

Fig. 2 Cross-section of straight part of coil.

By adding up the contributions of each layer of the straight part and
each layer of all slices into which the ends are cut, one obtains the inte—
grated multipole field components for each winding at a distance p from

the longitudinal axis:

* o ng 0y ]
fﬁ ds--ﬁz:(a +b)+£-.s§ E (a +b) 0%t (1.3)
n n nf. n n/..
il i=1 1 j=]_ i=1 J
where n, = number of concentric layers per block of winding, and

n = number of slices into which the ends are cut.

2, THE ENDS

The shape of the ends is determined by the condition that each turn
of conductor must have the same circumference. It is obvious that in wind-

ings of considerable thickness this condition cannot be fulfilled for all

150

Magnetostatics A20
. . 1 . . .
wires in the block ). For the calculation of the constant perimeter it
seems, therefore, advantageous to take the centre vertical layer as a ref-

erence, which in the straight part is at an angular position w.

It is also obvious that this constant perimeter layer has an inclina-

tion at the end, which is pointing to the inside of the coil (Fig. 3).

straight part ! end

dly Bini |

Fig. 3 Coil end cut along the 45° plane.

When making a constant perimeter end, one is free to decide at which
cylinder radius of the coil the windings are describing an arc of circle.
If it is intended to have the largest possible inclination to dilute the
current density at the ends and thus decrease somewhat the magnetic field
inside the winding, the arc of circle has to be at the outer surface of

the cylinder (r;).

For the layer which is on the inner cylinder (r;), the end has the
shape of a developed semi-ellipse with the centre displaced by the inclina-
tion B (Fig. 3). This end inclination, which produces the constant peri-
meter for the vertical layer of conductor, at the angular position w in
the straight part, ise):

(2.1)

tan B = > w .

&=

The plane separating the straight part and the end (by definition)

passes through the centre of the arc of circle describing the smallest
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winding (No. 3 in Fig. 4) at the outer layer of the coil cylinder. Thus,
if one starts to cut the end at a certain distance s from this separation
plane, the cross-sections appear as shown in Fig. 5. If the cross-sections
of the blocks of conductor at these cuts are subdivided into concentrie
layers, these cross-sections of blocks can also be approximated by a suit-

able number of circular sectors.

stroight part end

R

\ view A
developed
1
5
o
o |

view B
developed

=/

Fig. 4 Developed views of the coil end.

Cul at 7Smm- from end Cut ot BSmm from end
ol the siraight part

ol the straight part

Fig. 5 Sections across the coil end.
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Knowing the inner and outer radii of these sectors, the cut positionm,
s, the parameters of the ellipses (on the developed surface of each concen-
tric layer) and the displacement of the ellipse centres according to the
end inclination B, one can easily calculate the approximated ¢; and ¢,

angles for each circular sector.

Where the width of block is increased at the ends to a value w (by ‘
placing specially shaped spacers between the conductors), the parameters

of the ellipses have to be corrected accordingly.
For each cut, one has to check:
- how many windings are concerned;

- whether the cut is performed in a straight or partially straight part of

one winding;

- whether the peak of a winding is touched or partially touched ("tangen-

tial cut').

For each sector element, an average current density in longitudinal

direction must be computed and applied in formula (1.2).

Now, the contributions of all sector elements have to be summed up

according to formula (1.3).

4.  COMPUTER PROGRAM ENDEF

A computer program was written to do the step-by-step integration a-—
long the quadrupole magnet. The input, consisting of 5 cards only per case,
contains the basic geometric parameters of the coil as shown in Figs. 2

and 3, the current density for the straight part, the useful radius of

aperture, the number of order (n) to which the multipole components will
be calculated, the number of concentric layers (ng) into which each block
of winding has to be divided and the distance between cuts (As) performed

in the end regionm.

The computing time depends mainly on the last two data. With three
windings per coil, 30 concentric layers per block of winding and 1 mm cut-
distance, As, in the end region, the time needed is about 6 seconds for

the CERN CDC-7600 computer.
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The output of the program consists of the integrated field components

at the radius of the useful aperture, of the relative multipole field com-—
ponents and the relative gradient errors. Further the sum of the gradient
errors and that of the absolute values of the gradient errors are given.
All these results are separately printed out for the straight part and for

the total quadrupole magnet.

4., RESULTS

For the superconducting quadrupole for the CERN Intersecting Storage
Rings (ISR), the optimization was performed by variation of the straight
length 1, and 15, while the length of the smallest block, 13, was kept con-—
stant. The sum of the gradient errors and the sum of their absolute values
for different straight lengths 1 and 1, are shown in the diagrams of

Figs. 6 and 7.

dly 1y
-4526 -1088
3 1080 H s Sum of gradien errors
(F %2 0100 integeoted vaes )
wi2 e L
a5 <3513 2007 0857 079
0 w050 . s s & L A
o
y Lex
3945 2456 -1062 As T ame
51060 . . 5 / L
=290 1474 -qof.;/ 137 2778
0 W00 . n . 5 3 A

1882 0447 / 0882 2396 795
15 1020 . - . - -

Conductor » 2.05 x 185 mm
Straight lengih of winding n*1 : 530 mm

p e Smm
Q180 1620 A0es
S 1000+ . . .
080 170 1080 1090 100 3
»n @ 45 50 Lol daly
Fig. 6 Optimization of straight length

It can be seen that decreasing one length requires also a smaller
length for the other block. A compromise had to be found which was compat-—
ible with the additional constraint that a certain free distance had to be
kept for mechanical reasons between the ends of the blocks of windings.
The straight length of the small blocks was kept at 990 mm, the other two‘

blocks were finally chosen at 1010.6 mm and 1077.5 mm.
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diy Iy
5% 0 L?‘! ll.u Su:: ol absolute gradient errors
{ 'E’ I s—:[ 2107 ; integroted volues )
S076 1567 2408 o 5060
0 w0 . . . . - .
V 5816
7
s ol 250 134 145 /u.n 7%
21588 1540 ms/ 5268 E530
o Wl e . . . .
/ s 7279
w wnf W ".“/ e e Ay
2676 /ﬂlﬁ 5379
48959
L 4 / A ™ * Conductor » 2052 1 8% mm
Straight length ol winding n* 3 990 mm
/ P+ TSmm
130 aTe (351]
5 1000 . . .
060 1070 1080 1050 6o I
E &0 &5 50 L1 diy
Fig. 7 Optimization of straight length

The inclinations of the end were calculated to be By = 29.17°,

By = 18.54° and B3 = 9.12°.

For this geometry, the sum of the integrated gradient error at a

radial distance p = 75 mm is:

{--1
:[ G g5 42 =

S G o dz

-_‘{ Gp=0 dz

The sum of the integrated absolute values of the gradient errors

(indicating the error outside the median plane) was calculated to be

5.00 x 1073,

Table 1 shows the parameters for the final quadrupole geometry

(notations - Figs. 1, 2, 3 and 4).
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A PRACTICAL METHOD FOR THE DETERMINATION OF STATIONARY
TWO-DIMENSIONAL MAGNETIC FIELD

B. Zelenko

Poduzeée R.Koncar, OOUR Elektrotehnic¢ki institut,
Zagreb, Yugoslavia

ABSTRACT

A method for the determination of magnetic field in a sector of
an annulus with usual assumptions about magnetic properties
of materials is described. The grid in a two dimensional polar
coordinate system may be chosen according to the configuration
of magnetic materials and each rectangular element of the grid
may be divided in two triangular parts. A set of nonlinear
equations is obtained by means of integral of the magnetic field
strength along a closed curve around each node . This set is
solved iteratively by the method of overrelaxation of potentials
and underrelaxation of reluctivities.

Some node potentials may be corrected by the addition of an
amount which is in accordance with the nonlinear equations.
The method is successfully applied to practical problems.

1. INTRODUCTION

The magnetic field in electrical machines is very often simplified and
investigated in a two-dimensional region. The following equation

L

3% + T3y =-17 (1)

holds for a stationary two-dimensional magnetic field. The variable A
is the magnetic potential, J is the current density. We neglect the hy-
steresis effect so that the reluctivity ) is determined by the flux
density only.

In this paper we consider the magnetic field in a sector of an annulus.
This region is chosen in accordance with many problems on electrical
machines.

In a polar coordinate system (r,?) the region (fig. 1) is covered with
a net of circle arcs r = const and straight lines ¥ = const. The con-
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figuration of magnetic materials in
this region can be irregular and
therefore we suppose that a rectan-
gular part of the net can be divided
in two triangular parts (fig. 2).
Of cause this division may be per-
formed in two ways: from node
(i, j) to (i+l, j+1) or from (i+l, j)
to (i, j+1). We wish to determine
4 the magnetic potentials belonging to
’ the nodes. The potentials at other
& points of the region shall be interpo-
lated linearly or bilinearly by means
of its values at the nearest nodes.

Figure 1. Sector of an
annulus in a polar co-
ordinate system

The equations between potentials at
adjoining nodes are obtained by a
line integral along a closed path.
These equations are nonlinear if relu-
{ ek, il ctivity depends on flux density and
I+ J J"r s .

they can be solved by an iterative

process only.

Figure 2. Division of a
rectangular part (i, j)
in two triangular ones

2. OBTAINING THE SET OF EQUATIONS

The value of the magnetic potential A is to be determined for each node
of the net (fig. 1). Then the potential is approximately known at each
point of the region by means of a bilinear interpolation:

A=a+bP+cr+dr?. (2)

In a rectangular part (fig. 3) the coefficients a, b, ¢ and d are

determined by four potentials Aij’ Ai+] i Ai-l-l,j+l and Ai+1,j'



Compumag Oxford, 31 March to 2 April 1976

In a triangular part (fig. 2) d equals to zero and the values of a, b,
(i+, jo)

ff'.Jr.*H

Figure 3. A rectangular
part of the net

and ¢ are determined by the three
potentials in the nodes of that part.
Due to continuity of the potential at
the boundary of two adjoining parts,
the curve that divides a rectangular
part in two triangular ones has to be
an Archimedes’s spirale i.e.
r=e+ ff . By means of such a
subdivision of the net in triangular
parts a good representation of the
magnetic material configuration can
be obtained.

The equations which include the value
of potentials at the nodes can be ob-
tained by considering the adjoining
parts of a node.

Figure 4 shows a node and a curve KLMN which goes by the middle of
those parts. The points L and M lie on the dividing spirales. The curve

Figure 4. Node (i, j)
and its adjoining parts

KLMN is composed of arcs r = const
and ¥ = const so that the following
integral can be easily calculated:

JH . d-1 (3)
KLMN

Here I is the current surrounded by
this curve, H =VB is the magnetic
strength, and the components of the
flux densitu B are

A = d A
B!":I‘ 9@: and B'I° = - T
If the potentials at the boundary of the
region are given, then equation (3)
gives as many equations as unknown
node potentials exist. These equati-
ons are nonlinear if in some parts

there are ferromagnetic materials. The variable reluctivity in the inner
of a certain part is approximated with a constant amount determined by
the mean flux density in that part. The current density J for each part
of the net is known and therefore it is easy to determine the right hand
side of the equation (3). One equation connects 9 potentials of the neigh-
bouring nodes (fig. 5) if all the four parts are nondivided. If some of

Figure 5. Neighbouring
nodes in a net

what different from (3). In the case of rectangular parts, a negative
potential can be obtained at a node although the neighbouring potentials
are not negative and J = O. This is not phisically acceptable. Similar
results have been obtained with the method described in this paper, but
because the equations (3) are physically clear and can be explained
to every engineer, the finite element method has been avoided. An
accurate comparision of these two methods is complicated. It is po-
ssible to prove the decrease of the difference between the equations

Figure 6. A simple tri-
angular division
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them are divided in two triangular
parts, the corresponding potentials
at nodes 3, 5, 7 or 9 do not appear
in the equation.

Similar relations appear at the appli-
cation of finite element method when
the basis of the vector space, the
set of functions w,,, is chosen in

the following manner. Each function
w = wij(r‘ % ) is equal to zero at

all nodes exept at node (i, j) where
wi,j is equal to 1. wi,j is interpo
lated linearly or bilinearly by means
of the amounts at the neighbouring
nodes in other points of the region.
The equations obtained by means of
the finite element method are some-

obtained by these two methods if
4¢ and 4T tend to zero in the sim-
plest case of triangular parts without
current. Speaking more precisely;
if the biggest coefficients of the two [
compared equations are equal to 1, '
" then the differences of the

corresponding coefficients tend to zero
with the same order of magnitude as

A and AT.

-3
n
I
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3. SOLVING THE EQUATIONS

The equations (3) are nonlinear and therefore they have to be solved ite-
ratively. The well known method [1] with overrelaxation of potentials
and underrelaxation of reluctivities has been applied. The overrelaxation
factor w :
= - (A -
A new = Biog t o ¢ (Ai5010) 2 (4)
(A obtained from (3))

was determined by computing experiment at each particular problem. In
large nets, e.g. with more than 2000 nodes, cv had to be as small as 1.5.

The reluctivity y is stored for each part of the net and after a complete
potential iteration (4) it is corrected to
- 4 -
(Vi new = ("ij)om (V7 = V) g F o (5)
(y’ corresponds to the mean calculated flux densities
of that part ).

The underrelaxation factor F was also experimentally determined. In
large nets F is large, e.g. 30.

Beside the iterations (4) we also apply an additive correction of poten-
tials in analogy to [3] for the net of rectangles. Namely, by adding some
of equations (3) it is possible to obtain a new one which is very simple
and which has a.similar physical meaning as (3) :

fi.a-1. (6)
The convergence of the iterative process can be accelerated by means of
this procedure, e.g. in cases that nonmagnetic materials are surroun-

ded with magnetic ones.

According to figure 7 one determines

L= § H.d, 07)
KLMN

1= § Hed, (8)
KLMN

The calculated magnetic field strength H is determined with the appro-
ximated values of A and ) after an iteration step (4), (5) for all the
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nodes. The fictitious magnetic

force strength H 0 is calculated

with the same ¥ as before but with
A =1 at nodes inside the curve
KLMN and A = 0 at other nodes.
Then the potentials at nodes insi-
de the curve KLMN have to be
corrected with a common additi-
ve constant

I -1
A - SR €))
: : 2 1
Figure 7. The integration path 0
for adlfhtwe e where 1 is the total current sur-
potentials

rounded by KLMN .

This procedure corresponds to adding some of equations (3) as follows.
Let
x=Cx+b (10)

represent the linear system of equations (3) with constant reluctivi-
ties. x is the vector of unknown potentials A ., and C is a matrix with
diagonal elements equal to 0. We choose a vector z which has the com-
ponents equal to 1 for nodes inside the curve KLMN, and the others
equal to 0.

If an iteration vector x(n}is already known, by means of (9) we find
the vector d =A z which is to be added to the vector x? :

x'=C x(n) + b, (11)
so that a new iteration vector is obtained :

x(n+1)=x’ +d. (12)

Let zT be the transpose of z. Then from (9) we have

s (856 -y T G - ) Ky s 5 g - )
The procedure (11), (12) is linear:
x(n+1} 2 Dx(n) + Eb (13)

where
T 2 . T
Dx=Cx-(z (C-C")x)/k*z, Eb=b+ (2 Cbh) /k* z.

Hence the additive correction corresponds to adiong some of equations

(3) .
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T .
Here z is the transpose of z and I is the unit matrix.

It would be advantageous if z were an eigenvector of C with an eigenvalue
not equal to 1. Then z would be an eigenvector of D with eigenvalue o.
But unfortunately we can choose z approximately equal to an eigenvector
of C in some cases only. This is fulfilled in the above mentioned case of
nonmagnetic material surrounded with magnetic one.

Some of such additive corrections can be tied together because of the
proximity of the corresponding curves. If these curves are ill chosen,
the additional corrections may even prevent the convergence of the
iterative process. This may happen if we choose for example two addi-
tive corrections according to figure 8. If we first correct in the region
KLMN and then in the region
K’L’M’N’ it may happen that the
iterative process does not converge.

Figure 8. An example of ill
chosen paths for additive
corrections

4. CRITERIA FOR THE TERMINATION OF THE COMPUTATION

The magnetic field computation may serve for determinationing of flux
densities locally or for global determination of the m.m. force. The
very amounts of the magnetic potential is by no means important. There-
fore any criterion for the termination of the computation should not be
based on the amounts of the potential only.

According to our computations these criteria have been:
- small maximal correction of flux density
- small maximal correction of reluctivity
- the m.m. forces over various integration paths:

=0 da (14)

have to be in mutual accordance. For example in regions without
current the m.m.f. can depend only on two end points of a curve
along which £ is calculated.
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We emphasize that the result @ in (14) is calculated in full accordance
with equations (3) and formulae (6) to (9).

In practical applications the correction of flux density may be decreased
at about 0.0l T. The correction of the reluctivity may be decreased so
that the corresponding flux densities differ in amount of o.o00l T only.
The m.m.f. along various paths with the same end points may differ
from 2 to 5%.

5. APPLICATIONS

The described method is used for the determination of the flux density
and m.m.f. in core backs of rotating machines. The holes are bored
for the cooling improvement in the core back and they influence the flux
density- distribution, the thermal losses and the m.m. force.

In practical problems the number of nodes varies up to more than 2ooo0.
The computed m.m.f. § differs in most cases from the m.m.f. 2]
determined by usual calctilations. ] is sometimes much greater
and sometimes much smaller than @ ~. Up to now the measurements
have conformed our computations, anc‘fiJ the magnetizing current calcula-
ted by means of @ ., was greater than the measured one while the cu-
rrent calculated by means of &  was much smaller than the measu-
red one. 2

The computed maximal flux density in the core back was in accordance
with the measured one.

Figure 9 shows the cross-section of a part of a stator core back with
holes. For this core back it was computed @1 = lloo A and @0 = 500 A.

Figure 9. A part of a stator core back with holes
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The calculating net for this example had looo nodes. The magnetic field
computation lasted 6 minutes on Univac 1l1lo computer. This time includes
320 iterations with all results, tables and figures.

6. CONCLUSIONS

A practical method for the determination of stationary two-dimensional
magnetic field is described. This method is based on clear physical
representation of used equations. The setting of the configuration is not
complicated since the net in the sector of an annulus is based on circle
arcs and straight lines. Practical applications give satisfactory results
until now.
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A METHOD FOR COMPUTATION THE SUPERCONDUCTING MAGNETS
WINDING CONFIGURATION TO CREATE A PRESCRIBED HAGNET
FIELD DISTRIBUTION
B.N. Zhukov, V.N.Lebedev, I.A.Mozalevsky
D.V.Efremov Scientific Research Institute for
Electrophyaical Apparatus

A number of ways is known to generate a given magnet field
distribution in a given aperture by choosing adequate winding
configuration. We shall discuss briefly some of these wayse

I. HOMOGENOUS CURRENT DENSITY WINDINGS
(IDEAL WINDINGS)

1. It is well known that homogenous and linear field distrie
bution can be obtained in a system of intersecting circular or
elliptical current blocks. In this case the region fres of cur—
rents, where the specified field exists, is wider than the aper-
ture, the later being commonly circular or elliptical. The sto-
red energy and the superconductor weight are, therefore, greater
than those in a winding lying close to the aperture boundary.

2. In the work [1] the computation method is deseribed in
which the pet of parameters of the winding configuration is the
sulution of the system of nonlinear equations representing re-
lation of the multipole field coefficients and these parameters.
This method can be easily modified to enable the computation of
the winding configuration for noncircular apertures and unsatu-
rated circular iron shell. The approximate solution of the ay=-
stem is obtained by modified Newton method which takes a lot of
computer time and ia very sensitive to the choice of the initi-
al approximation.

3. In the work [2] the configuration of the closely lying

winding is the approximate solution of the oystem of equations
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derived from condition of continuity of the vector potential on
the outer winding boundary.

The real magnet windings are wound of the conductor of rather
large cross-section to satisfy various technology and economical
demands, and hence the above discussed methods are not applicable
to real magnets design, the field error going up to few per cent
if the ldeal winding is simply "stuffed" with conductor.

II. WINDINGS OF REAL CONDUCTOR

1. One of the possible real winding configurations is an ap=
progimation of a harmonic current distribution with the set of
current blocks of constant radial thickness and varying angular
width. Such windings do not fit from economical point of view;
besides, in case of noncircular apertures the solution analogo-
us to harmonic current distribution cennot be easily obtained.

2. A lot of methods for discregte closely lying winding com=-
putation is developed based on minimization of some functional
of field. (For instance [3] ; the energy stored in the aperture,
on condition that the field magnitude (or gradient) in the apertu-

re center is kept fixed, has minimum, when the higher harmonics
are equal to zero), The minimization is proceeded by one or anot-
her gradient method requiring big computers.

We have developed a group of methods for computation the re-
al magnet winding configurations to create any specified field
in arbitrary aperture, with or without unsaturated iron shell.
All of these methods are various modificetions of a simple and
fast working algorythm of computation an ideal winding for the

circular aperture.
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Basic algorythm description

Let us consider the algorythm for calculating the outer boun=-
dary of the ideal winding lying close to the circular aperture
of the ironless magnet. Let the required field be

K/(Z)'-'-H#';‘H,:‘Z_;‘axzn, (1

where {a..}“e K is a finite set of given multipole coeffici-

ents. For instance, we want to create a homogeneous field H(Z)=z H,

80 we shall require a =H , and @;*@,@,:2,=0 +to obtain small
enough field error., We add the condition &.,=0 , if the regui-
red field symmetry differs from the aperture symmetry, and thus
garantee the zero total current.
We choose the initial approximation for the outer boundary

“t¢)z=7, , 7, being the aperture radius. The work of the al-
gorythm is the successive approximate compensation of the field
disturbing harmonics. Let the outer boundary be, after the n-th

n
step of iterations, T"(p)= T, + |“.¢_'Hc:, cosxeL)y | ’
and the current density aj‘"’ be
) &e "
The winding produces the tield H“'(Z)= Z‘;a:" Z , where
K=

re ™ w)

2
a:nl=_a_2/J'f"’wS(K»jj,dOflp/ 'z""of'?.l rad. (2)
a Te

Formula (2) can be derived by exanding the Poisson integral
HZ) = -azj,gr;;o/S/g‘-Z.: » into Taylor series. As it is
known [4] , the field disturbances a@y’'=Q,-2L”  would

be compensated, if we put current with the surface density
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G"”’(V]-‘- Zc;"“wsf"*.{) WJ

xeH

"= a2l f02 % (3)

onto aperture boundary. This compensation can be approximated

by altering the winding outer boundary

i)

ned) i 6" e
7 W;:z".('z‘:“;c,’v? )eostredyp | = zo,)fg_"xc: “Lq&{x‘ﬂwf (4)

and this accomplishs the n-th step of iteration. We have distri=-
buted the current with the demsity o “(¥) along the strip
of width depending on ¢ and carrying constant current densi-
ty | a” .
The iteration is repeated until the field deviation
max falf""t’z.lfbacomes less than permitted. The field error of
o 0.01% at 7,=7, is achieved in 142 minutes

with the BESM-4 computer (2-104 op.per sec).
Nonecircular sperture. Round iron shell

With the iron shell presence the field 4 “"(Z)  and the
compensating current G‘'¢(yY) are calculated with the shell
contribution teken into account [' 5], and the iron inner radius
Rsm is determined at each step by the condition mg,lem;R;ﬂf?iﬁl:
= Ha » where Hp is a given value less than
iron saturation field.

If the aperture boundary is described by equation z=7%,(¥)
we have to substitute <=,(¥) instead of 7, into (2) and into
the formula for <z‘™(y) . The compensating current O""”{y:)

in (3) is calculated for more or less arbitrary z,, the later
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becoming a pearameter, having no geometrical significance,
The ideal winding configurations computed as discussed above
for various types of field, aperture shapes and values of lc'ji

are shown in figs 1 and 2.
Real windings

The real superconducting windings are wound of cable of fini-
te cross-section and, as a rule, are provided with some spacers
and chennels of cooling system. The commonest types of windings
are pancake and shell windings. Both types are cheracterized by
the number of layers N and the number of turms W4 in each i-th
layer. To define these parameters we "£i1l"™ the idesl winding
with the conductor at each step of iieration according the cho-
sen winding structure. The coefficients &’ are calculated
following actual conductor position; it can be easily done for
simple shapes of the conductor cross-section [5]. After that
the iteration step is completed according formulae (2), (3); tjl
value in (3) should be taken equal to dg, - the average cur-
rent density in winding.

The available field forming accuracy (i.e. the error magni-
tude does not decrease when one turn is added or removed) de-
pends on conductor eize and is sbout 0.140.01% if the current
in a single conductor is in the interval 500 to 5000 amps. The
computer time is 143 minutes for BESNM-4 computer,

Fig.3 represents the real windings computed for both win-
ding structures of a dipole magnet of the accelerator-storage

unit [6].
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Magnet field in current region

Such characteristics as forces in the winding, stored energy,
residual field, etc., are of importance when the magnet is de=-
signed. These values can be easily obtained if the field dist=
ribution in winding is Jmown. However, the direct summating of
the elemental fields of each conductor for every point of win-
ding tekes too much computer time., Luckily, we can approximate
the magnet field in real winding with the field in the ideal
winding producing the same field in the aperture and carrying
the current density d’: d'w .

The field in the ideal winding can be easily found:

Hez,Z)=Hc) »az:g;f- . (5)

Here ft'Z} is analytical in current region, ?=f(2') being

the aperture boundary equation; ﬁ‘ (f ) is the analytic con-
tinuation of H(Z J into current region. aghe above mentioned
continuation obviously exists if Hezy = 'ZJ,Q- Z" » Where

all but a finite subset of Cf, are equal to zero. If the dl.»ac-
ribed }'(Z) existe also, then formula (5) realy represents the
magnet field in current region, for He 2‘: ? ) satisfies there
the Maxvell equation JH(Z,Z)/dZ =027 and is
continuous on the aperture boundary. The function J(Z) can
be explieitly written down for simple shapes of the aperture.
In case of the circular aperture we have zZ ='Zpa/ Z , end for
elliptical

- o+ 2ad 2, /2
zﬂa;.—FZ—a‘—{l z,“a g 5
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a and b being major and minor radii of ellipse respectively.
So, for circular aperture the field in the winding is
— ~ —
HIZ,Z)=//tZJ*Qe.?TJ(Z-'Zf/ZJ g
(6) %
and for elliptical aperture —=
- 2, 2
= a®+ 2ad ,/ﬁ—*“
HZZ )= HiZ)+02mj (2~ o 2o g Z7-at+ 6% ).
d
g Fig2 Ideal s Tor an ellipti riure A = 3.7 cm,
= B=24cm

a— dipole ag = 45 kOe, {aH/0) lrg = 3 om < 10*: b - quadrupole

ay =10 k0eem’’, (aH/ny ) |, L3 o <10, For a rectangulor

aperture: ¢ — dipole ay = 45 kOe, (aAH/ag) | _.q.m <107,

- d — quadrupole a; = 10 kOe:m‘!.iannﬂ‘fm.g:m <10?
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