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Spherical induction motor with anisotropic rotor  

 -  analytical solutions for electromagnetic field distribution, electromagnetic 

torque and power losses 

 

Abstract. The work deals with the problem of electromagnetic field analysis for spherical 

electromechanical converters taking into account its magnetic anisotropy in analytical way. 

The electromagnetic field is evaluated analytically using the separation method for the 

magnetic vector potential. The electromagnetic torque and power losses are calculated 

analytically for an exemplary spherical induction motor. 

Key words: Spherical motor, magnetically anisotropic rotor, analytical solution.  

 

1. Motivation 

 

The analytical solution gives better insight into the influence of electromagnetic circuit 

parameters on the operation than the numerical solution. However, the analytical solution 

(that is given by one or more closed formulas) usually requires simplification, of the real 

converter geometry. The fewer the number of the simplifying assumptions the more general 

solution is obtained. One of the most commonly used analytical methods is the separation of 

variables [2], [6], [7], [11], [13]. The separation method proposed in the paper leads to the 

analytical solution for the spherically symmetric field problem considering magnetic 

anisotropy. The aim of this contribution is to present an analytical solution for a spherical 

motor with magnetically anisotropic conductive rotor, which could be treated as a benchmark 

for numerical analyses. Let us consider an induction motor which rotor is spherical – Fig.1 

 

Fig.1. Spherical rotor - view 



The most appropriate this problem is the spherical co-ordinate system shown in Fig.2 
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Fig.2. Spherical co-ordinate system 

 

The stator circuits are supplied with currents which flow in the longitudinal direction – Fig.3 

 

Fig.3. Stator currents lines 

 

The stator currents constitute the magnetomotive force ),,t(s θϕΘ  (stator mmf). The 

magnetomotive force of the stator can be written in complex polyharmonic form as follows 

( )∑ +ϕωθΘ=θϕΘ
h

hhshs )constiphtiexp()(),,t( m ,                                  (1) 

where shΘ  denotes the magnitude of the h
th

 harmonic, ωh is angular speed, p is number of pair 

pole, ϕ longitude, θ colatitude. The stator mmf is exerted by the stator currents placed on the 

inner surface of the stator at r = R+g (R – rotor outer surface radius, g denotes air-gap width). 



 

Fig.4. Spherical induction motor - dimensions  

 

The rotor is built with an iron core (whose reluctivity is zero νFe → 0) and of a conductive 

layer – see Fig.4. The conductive layer is magnetically anisotropic as given in Eqn (7).  

Basing on these assumptions and neglecting displacement currents (due to low field 

frequency) the magnetic field distribution, electromagnetic torque, stored magnetic energy, 

eddy current power losses can be calculated analytically. 

 

3. Governing equations and analytical solutions 

 

The magnetic flux density can be calculated in terms of a magnetic vector potential as  
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Eqn (2) leads to the following relation in a spherical co-ordinate system 
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where θϕ 1,1,1r

rrr
 denote the unit vectors and satisfy the relation θϕ =× 111r

rrr
. 

For an induction motor with spherical rotor [2], [9], [14] the magnetic field is directed so 

as to enable turning a round a fixed axis (for some solutions the axis can rotate or change its 

direction). Often, a unidirectional (longitudinal) magnetomotive force (mmf) induces the 

magnetic field. In this case, the magnetic vector potential in a spherical coordinate system can 

be given in the form of  
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.                                                       (4) 

According to (4), the above assumption leads to the magnetic flux density in the form 
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Amper’s law  
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=                                                                 (6) 

and the constitutive relation for an anisotropic magnetic medium 
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lead to the following equation 
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Due to the assumption that currents flow only in θ-direction, the θ-component of current 

density (8) is as follows 

θθθϕ γ−=γ==
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where γ stands for the electric conductivity of rotor layer. 

Taking (7) and (9) into account it can be written 
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Now, a non-standard separation variable is proposed in the form given below  

FR)(F),r(RAA ⋅=ϕθ== θ .                                           (11) 

The separation variable method applied in other way are shows in Table 1. The four plausible  

variants of separation variables have been considered, but only the fourth one is acceptable.  

 

Table 1. Separation of variable methods 

 
separation  

method variant 
mathematical form description 

1 θ−ϕ−r  )Φ()R(r)Θ(AA θ ϕθ==  does not lead to solution 

2 θ−ϕ),(r  ))F(R(r,AA θ θϕ==  does not lead to solution 

3 ),(r θϕ−  ),R(r)F(AA θ θϕ==  lead to solution, but 

it is unacceptable physically 

4 ϕ−θ),(r  )θ)F(R(r,AA θ ϕ==  lead t to solution 

 



Using complex notation the time derivative is replaced by its multiplication by iω (i is the  

imaginary unit, ω is the angular pulsation). Thus (10) takes the following form: 
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for θ∈(0,π), and subsequently 
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For the function F(ϕ) it is assumed that the separation constant equals to p
2
 for the first mmf 

space harmonic h = 1 (for higher space harmonics of mmf p is replaced by ph) i.e. 
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with the general solution 

)ipexp(D)ipexp(CF ϕ−+ϕ= .    (15) 

Eqns (14) and (15) are adequate for rotating magnetic generated by the stator mmf. The 

angular field frequency ω is determined in comparison to angular speed of mmf space 

harmonic (± 2πf1/ph).  

The solution (15) for a unidirectional rotating field (C = 0, D=1) leads to 
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with the following analytical solution for an anisotropic region [5] ( p. 363 Eqn (B110 (3)) ): 
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The solution in the form of (17) confirms that the proposed non-standard separation (11) is 

correct. The Eqn (13) for the non-conductive region (e.g. the air-gap γ=0, νrϕ=νϕr=0) takes the 

simpler form of 
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and νrδ, νϕδ the mean radial and tangential (latitudinal) reluctivities for the air-gap. The 

solution of (19) is 
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The analytical solution for the spherical motor can be presented in terms of separated 

functions R(r,θ) and F(ϕ) obtained with the help of separation proposed by Eqn (11) - see 

Table 2. The general solutions presented should be combined with the boundary conditions 

for particular geometry conditions.  



Table 2. Solutions for differential equations for magnetic flux density 

Region anisotropic layer (index a) gap (index δδδδ) 
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4. Boundary conditions 

 

There are four conditions defined for the electromagnetic field vectors. They enable to 

calculate the four unknown constants aa, ba, aδ, bδ. The boundary conditions result from 

physical laws [6], [12].  

a) The magnetic field strength disappears at the inner layer surface (r = R-a) 

0BBH rr =ν+ν= ϕϕϕϕϕ
,                                                  (22) 

as a consequence of the fact that magnetic reluctivity of the rotor core is assumed to be zero.  

b) The continuity of the normal (radial) magnetic flux density (r = R) 

rar BB =δ
,                                                              (23) 

and  

    c) the tangential (longitudinal) component of the magnetic field strength (r = R) 

rara BBB ϕϕϕϕϕδϕδ ν+ν=ν .                                              (24) 

    d) The magnetomotive force of the electromechanical converter stator currents leads to the 

following condition for the tangential (longitudinal) component of magnetic field strength at 

the stator surface (r = R+g) 
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derived under the assumption that the magnetic field strength vanishes on the outer side of the 

winding surface (stator frame iron is infinitely permeable) [1], [12], [13]. Table 3 presents 

constant values of aa, ba, aδ, bδ for the first space harmonic of the stator mmf. 

 

Table 3. The boundary conditions for magnetic field 

Boundary  

condition 
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The electromagnetic field problem can be evaluated analytically with the help of the equations 

provided in Tables 2 and 3.  

 

5. Example – spherical induction motor 

Based on the magnetic field vector potential distribution, both the magnetic flux density 

components and the electromagnetic torque components can also be evaluated analytically. 

The Maxwell stress tensor leads to the total electromagnetic torque by means of the well-

known formula 
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where r is the radius of the integration surface placed in the air gap r ∈ [R, R+g ]. Based on 

the magnetic field vector components presented in Table 2 for the air-gap region, the 

electromagnetic torque can be given as follows: 
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The total electromagnetic torque can be also evaluated by means of magnetic coenergy as 

follows  
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where WC denotes the magnetic coenergy of conducting and magnetically anisotropic rotor. 

The volume integral for motor rotor takes the form of  
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Taking into account the solutions put in Table 2 it can be written 
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and analogously for Hr and Hφ, hence it is satisfied   
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Torque evaluated by means of Maxwells and coenergy method are equal each other  

eCe TT = .                                                              (29) 

The electromagnetic torque component forced by the rotor currents can be evaluated with the 

help of the Lorentz force density as 
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Applying the magnetic field vector components presented in Table 2 for the rotor layer, the 

Lorentz torque can be rewritten in the form 

∫ ∫
θ
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Both torques are equal 

eLe TT = ,                                                              (31) 

for either magnetically isotropic or normally anisotropic (νϕr = νrϕ) rotor.  

Exemplary is considered spherical induction motor with mmf harmonics given as 

follows Θ1 = 559 A,  Θ5 = 50 A,  Θ7 = 0,  Θ11 = 41 A,  Θ13 = 43 A,  Θ17 = 26 A, and  R = 0.03 

m,  g = 0.0005 m,  a = 0.01 m,  γ = 30·10
6
 S/m (Cu-Fe composite conductor),  p = 2, f1 = 50 

Hz,  θ1 = π/4 rad,  θ2 = 3π/4 rad  for reluctivity matrices given as follows 
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Fig.5. Torque-speed curves for anisotropic rotor νr > νϕ   

Maxwell and coenergy methods (solid line), Lorentza method (dot line) 
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Fig.6. Torque-speed curves for different rotor anisotropy: a) νr > νϕ  - solid-diamond line,  

b) νr = νϕ - solid line,  c) νr > νϕ  - dot line  (for all cases νrϕ = νϕr = 0) 

 



7. Power losses calculations  

The power losses constitute an important parameter from the thermal point of view. 

Power losses caused by the induced currents are 
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are shown in Figs. 7 and 8 (h is order number of the h
th

 space harmonic of stator mmf). The 

power losses can be means of Poynting vector as follows 
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where hS
r

 means h
th

 harmonic of Poynting vector.  
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Fig.7. Power losses vs. rotor speed for anisotropic rotor νr > νϕ   

Poynting method (solid line), Joule method (dot line) 

 

8. Conclusions 

 

 The Maxwell equations in a spherical co-ordinate system are solved analytically. The 

mathematical form of the non-standard separation is given by Eqn (11). The analytical 

solution has been obtained for a magnetically anisotropic and conductive region.  

 The presented model of an induction motor (with multiharmonic stator magnetomotive 

force) has been used to calculate the analytical solution for an electromechanical converter in 

operation. 

The electromagnetic torque calculations are provided with the help of the Maxwell 

and Lorentz methods. For the analytical solutions obtained, the power balance was checked. 
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Fig.8. Power losses vs. speed for different rotor anisotropy: a) νr > νϕ  - solid-diamond line,  

b) νr = νϕ - solid line,  c) νr > νϕ  - dot line  (for all cases νrϕ = νϕr = 0) 
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