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Abstract- The analysis of single and multiphase induction motors continues to represent a

challenge to researchers in computational electromagnetics due to the presence of  electric
fields. This contribution cannot be inserted into the Green's function for boundary element codes;
finite difference and finite element approaches are forced to hard code these effects,
compensating at high speeds with upwinding techniques. The direct computation of these affects
using transfer relations in a linear environment offers an analytical backdrop both for benchmark
testing numerical codes and for design assessment criteria. In addition to torque-speed
predictions, the terminal relations and total power dissipation in the rotor are computed for an
exposed winding three phase and single phase machine. 

Introduction

Rotational induced eddy currents involve a localized  electric field. This term can

be directly incorporated into finite element based analyses of induction motors as in [1],[2].
Typically these types of approaches display non-physical oscillatory approaches with have been
customarily handled using upwinding techniques [3],[4]. With boundary element codes, these
velocity effects are ideally handled through a modification of the Green's function. Burnet-
Fauchez [5],[6] was among the first to demonstrate the use of this modification for pure
translation; unfortunately, these techniques do not work for rotational induced eddy currents. 

This paper is written for two purposes. First, it directly aids the designer in optimizing the
performance of exposed winding machines. As superconducting field windings come closer to
reality, such machines have certain advantages over conventional slot embedded windings [7]. If
the iron is driven significantly into saturation, the need for the iron slots disappears. Because
these slots are typically grounded, the voltage of the excitation windings can be significantly
increased. However because the windings must sustain the magnetic forces, methods of support
for the windings must necessarily be altered.  Second and perhaps more importantly, the analysis
results should serve as a benchmark problem for those working with numerical field codes
suitable for such problems. The problem has been presented to the International TEAM
workshop [8] to fill such a role.

This paper combines techniques developed by Melcher [9] for analyzing induction motors
and finite width/depth windings. The techniques are applied to "real" windings rather than the
surface windings focused on by Melcher in his induction device analyses. Additional attention is
given to the prediction of torque in single phase devices using only power loss. This technique is
especially suited to the boundary element and finite element codes that do not explicitly account
for the rotational velocity . 

The Problem Defined
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Figure 1 Three Phase induction motor problem with a 45 degree winding spread per phase,
holding J constant at 310 A/cm2.

Two induction motor problems are analyzed. The first, shown in Figure 1, is that of a

three phase exposed winding motor. Each stator winding phase spans 45 . The current density is

maintained constant at 310 A/cm2 with a frequency of 60 Hz. The object is to predict the torque,
power dissipated, and stator terminal voltage induced for rotor angular velocities ranging from 0
to 1200 rad/s, roughly three times faster than the stator field angular velocity of 377 rad/s.
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Figure 2 Single phase induction motor problem excited at 60 Hz.

The second problem shown in Figure 2 is that of a single phase induction motor problem.
The winding is excited at 60 Hz. The objective is to compute the torque-speed curve for a rotor
angular velocity ranging from 0 to 358 rad/s (0.95% of peak field speed). In addition, the
terminal voltage and rotor dissipation are to be computed for both motors.

Fourier Decomposition of the Current 
Let N

A
 represent the turns density for the phase A winding in Figure 1 with I

A

representing the current in the phase A winding. Using a similar nomenclature for the phase B
and C windings, a Fourier spatial decomposition allows the current density for the three phase
winding to be written 

(1)
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Figure 3 Fourier component weighting for a three phase winding.

Assume that the three phases have the traditional time harmonic distribution with each phase
having the same current density NI,

(2)

Using Euler's rule to represent the cosinusoidal dependencies, (1) can be written
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(3)

where  is the real part. 

In this form, it is clear that the three phase winding yields two counter-rotating waves.
For this 3 phase winding, the components m=3,9,15, etc. are equal to zero. With IN=310 A/cm2

and , the components are weighted as depicted in Figure 3. The 5th,  7th, 11th components

have different slip frequencies than the fundamental. In a single phase machine, (3) takes the
form

(4)

Transfer Relation Analysis
The problem of Figure 1 consists of multiple piecewise homogeneous regions. The

solution can now be developed in each region using the transfer relation concept fostered by
James Melcher [10]. In non-conducting regions, the magnetic vector potential A is assumed to
have a coulomb gauge dependence and satisfies the Poisson equation, 

(5)

Solutions take the form A = {A(r,t) exp(-jm )} = { (r) exp[j( t-m )]}. It is best to

analyze the problem on a component by component basis for a fixed m. With J=0, the vector

potential satisfies Laplace's equation. Recall that . In terms of the vector potential's

value on the outer surface  and that on the inner surface , the vector potential at any radius

r is

(6)

This forms the relation between the vector potential A and , the transfer relation. From (6), the

relations for the vector potential in the air gap, stator back iron, and outside the stator (r>r
5
)

follow as 
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(7)

(8)

(9)

where , and 

(10)

(11)

In the winding region, r
3
<r<r

4
, A satisfies the Poisson equation, having both a homogeneous and

a particular solution. Using complex notation, the mth component of the current density is

(12)

If the current density has no radial dependence, Melcher has shown that the vector potential
solution for any component m in the winding region takes the form

(13)

where for m 2

(14)

The final region to be considered is the rotor in which eddy currents reside. The vector potential
satisfies the Helmholtz equation,

(15)
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or in cylindrical coordinates with a rotation angular velocity ,

(16)

Following the same nomenclature as (6), the solutions take the form on the outer and inner radii
of any annulus of

(17)

With this result, the vector potential for r<r
2
 is

(18)

(19)

where 

(20)

(21)

(22)

(23)

and J
m
 and H

m
 are the Bessel and Hankel functions of the first kind, and I

m
 and K

m
 are the

modified Bessel functions of order m.
The field solution must satisfy the requirements that the tangential components of H( )

and E( ) are continuous across a material interface. Combining (13) through (19) 

yields the matrix equation,
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(24)

Thus the vector potential and the tangential H field are computed on a component by component
basis by inverting (24). 

Post Processing for Output Quantities
The average torque per unit depth is found by either integrating the Maxwell stress tensor

 force around the air gap or through a knowledge of the power dissipation in the rotor. Using

the former approach just in the air gap outside r
2
 gives

(25)

The electric field commensurate with the mth component of the vector potential A
m
 in the z

direction is

(26)

The total power dissipation per unit depth in the rotor is

(27)

By contrast the power dissipation just in the aluminum shell of the rotor is

(28)

The final quantity of interest is the voltage induced in the phase A winding. In particular we seek
the voltage induced per unit depth per turn. The winding is assumed to be comprised of n turns
per unit cross-sectional area. The flux linking the phase A winding is
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(29)

The  integration can be carried out directly to give 

(30)

The vector potential can be solved at any point in the winding as [11]

(31)

The particular solution  solves  or in cylindrical coordinates

(32)

For m not equal to 2,

(33)

J
m
 was defined as  in (3) for the three phase machine or (4) for the single phase motor. The

contribution from the + and - going waves must be superimposed. The voltage follows from the
flux simply by multiplying by j ; performing the radial integration in (30)  yields

(34)

where

(35)

(36)

and h
m
 is defined in (14). It is emphasized that the contribution from both the + and - going

waves must be included in this summation.
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Results
 Having an analytical expression allows design flexibility by way of optimization, which

was one of the objectives of this document. The second objective was to realize a benchmark
design for researchers to index numerical codes against. With that in mind, it is necessary that
much of the data be presented in tabular format. The calculations were performed using as an
upper limit for m of 50 for the three phase calculations and 100 for the single phase results. The
primary quantities, torque, voltage, and power dissipation for the three phase motor are displayed
in Table I. The fourth column represents the total rotor loss in both the aluminum and the rotor
steel. All quantities are computed on a per unit depth (1 m) basis. The final column represents
just the rotor steel loss due to I2R dissipation. The induced voltage in the phase A coil is
computed as if the stator winding were comprised of a single turn. 

Table I Three phase predictions of torque, voltage, and power dissipation.

  (rad/s) Torque
(N/m)

Voltage
/turn

(V/m/turn)

Rotor Loss
(W/m)

Steel Loss
(W/m)

0 3.825857 0.637157 1455.644 17.40541 

200 6.505013 0.845368 1179.541 16.98615 

400 -3.89264 1.477981 120.0092 1.383889 

600 -5.75939 0.76176 1314.613 17.87566 

800 -3.59076 0.617891 1548.24 16.88702 

1000 -2.70051 0.575699 1710.686 14.32059 

1200 -2.24996 0.556196 1878.926 12.01166 

Researchers who have attempted to work with single phase induction motors know of the
difficulties of obtaining an accurate torque prediction; this torque results qualitatively from the
subtraction of the effect of two counter-rotating traveling waves. Table II( shows the torque,
voltage, and power dissipation for the single phase machine.
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Table II( Torque, voltage, and power dissipation in the single phase motor of Figure 2. 

  (rad/s) Torque
(N/m)

Voltage
(V/m/turn)

Rotor loss
(W/m)

Steel loss
(W/m)

0 0 0.536071 341.7676 3.944175 

39.79351 0.052766 0.537466 341.2465 3.933111 

79.58701 0.096143 0.541495 340.4618 3.900878 

119.3805 0.14305 0.548603 340.0396 3.848117 

159.174 0.19957 0.560074 340.225 3.767681 

198.9675 0.2754 0.578808 339.2994 3.635357 

238.761 0.367972 0.609649 333.6163 3.404092 

278.5546 0.442137 0.658967 317.9933 2.999715 

318.3481 0.375496 0.728552 288.079 2.355622 

358.1416 -0.0707 0.790068 256.6437 1.674353 

Verification
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Figure 4 Three phase prediction of torque and voltage for the motor shown in Figure 1.

These results have been checked perfunctorily using a boundary element numerical
analysis code. With the three phase motor, the problem can be analyzed at the slip frequency to
derive these results. Figure 4 shows the comparison of analytical and computed torques and
voltages. The last curve results from first numerically computing the power dissipation in the
rotor at the slip frequency and then dividing by the slip frequency differential (difference between
the synchronous speed and the mechanical rotation)[12],

(37)
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Figure 5 Computed Torque for the single phase induction motor using rotor power loss.

A similar confirmation was performed for the single phase machine. Numerically, this
torque must be computed through the computation of the rotor power dissipation at both the +
and - going wave speeds as

(38)

Conclusions
A transfer relation technique has been outlined and applied to the study of exposed

winding 3 phase and single phase induction motors. The results may form analytical backdrop for
optimization studies. In addition they serve as a benchmark for indexing the performance of
numerical codes for these types of problems. 
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