Team Problem 20

3-D Static Force Problem

1. General description

The model is shown in Fig.1. The center pole and yoke are made of steel. The coil is excited by a dc current. The ampere-turns are 1000, 3000, 4500 and 5000 which is sufficient to saturate the steel.

The problem is to calculate the magnetic field and electromagnetic force.

2. Analyzed Region and Boundary Conditions

If a symmetrical boundary condition can be used, the 1/4 region shown in Fig. 2 is sufficient for analysis.

3. Mesh description

The mesh is not specified.

4. Nonlinearity

The B-H curve of the steel shown in Fig. 3 is to be used. The typical values of B(T) and H(A/m) are also shown in Table 1. The curve at high flux densities (B>2.3T) cannot be measured and is approximated by the following equation:

$$B = \mu_0 H + Ms \tag{1}$$

where μ_0 is the magnetic constant and Ms is the saturation magnetization (2.16T).

5. Ouantities to be Calculated

To compare results, please complete Tables 2, 3, 4 and 5. Fig. 4 shows the positions at which the flux density should be calculated.

6. Description of Computer Program

To compare formulations, variables, etc., please complete Table 6. The used memory in item No.16 in Table 6 is defined as the sum of dimensions declared in the program.

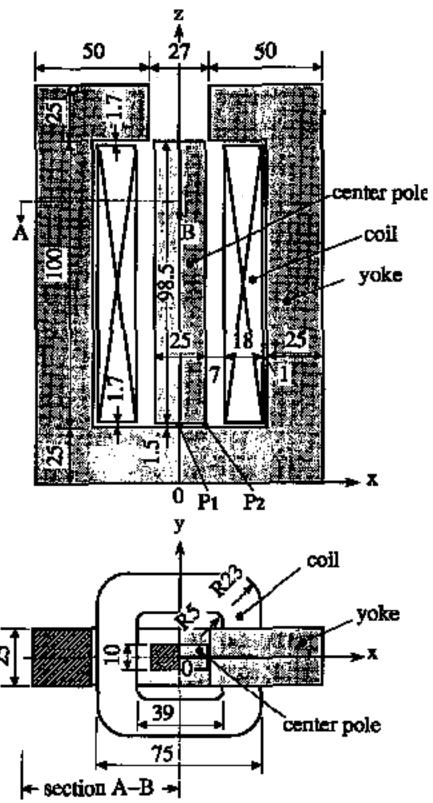


Fig. 1. 3-D model for verification of force calculation

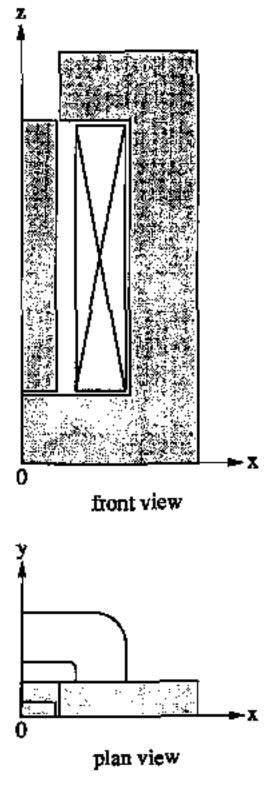


Fig. 2 Analyzed region

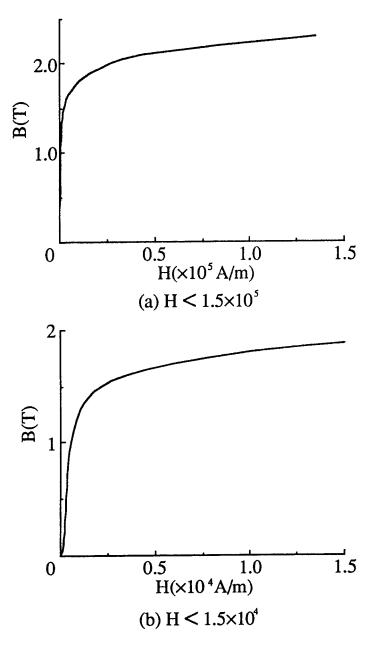
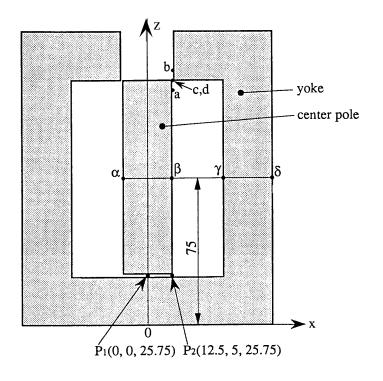



Fig. 3 B-H curve of steel

Table 1 Typical data of B-H curve

No.	B(T)	H(A/m~	No.	B(T)	H(A/m)
1	0.0	0	22	1.50	2130
2	0.01	27	23	1,55	2670
2 3	0.025	58	24	1.60	3480
4 5	0.05	100	25	1.65	4500
5	0.10	153	26	1.70	5950
6	0.15	185	27	1.75	7650
7	0.20	205	28	1.80	10100
8	0.30	233	29	1.85	13000
9	0.40	255	30	1.90	15900
10	0.50	285	31	1.95	21100
11	0.60	320	32	2.00	26300
12	0.70	355	33	2.05	32900
13	0.80	405	34	2.10	42700
14	0.90	470	35	2.15	61700
15	1.00	555	36	2.20	84300
16	1.10	673	37	2.25	110000
17	1.20	836	38	2.30	135000
18	1.30	1065			
19	1.35	1220			
20	1.40	1420			
21	1.45	1720			

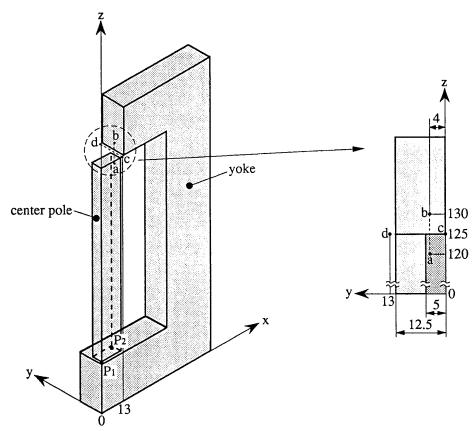


Fig. 4 Position at which the flux density should be calculated (see Tables 2, 3, and 4)

Table 2 z-directional components Bz of flux densities at points P₁ and P₂ (see Fig.4)

	coordi	nates (mm)	ampere-ti	urns (AT)		
position	X	ly	z	1000	300Q	4500	5000
P ₁	0.0	0.0	25.75				
P_2	12.5	5.0	25.75				

Table 3 z-directional component in center pole (-) and Bz of average flux densities yoke (-) (see Fig.4)

coordinates (mm)				ampere-turns (AT)			
position	X	у	Z	1000	3000	4500	5000
_	-12.5 x 12.5	-5.0 y 5.0	75.0				
_	38.5 <i>x</i> 63.5	-12.5 y 12.5	75.0				

Table 4 x-directional components Bx of flux densities along lines a-b and c-d (see Fig.4)

	coordi	nates ((mm)	ampere-tı	ırns (AT)		
No.	X	у	z	1000	3000	4500	5000
1(a) 2 3 4 5 6 7 8 9 10 911(b)	13.0	4.0	120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0				
12(c) 13 14 15 16 17 18 19 20 21 22 23 24 25 (d)	13	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	125.0				

Table 5 z-directional components Fz of force

ampere-turns	electromagnetic
(AT)	force (Nm)
1000	
3000	
4500	
5000	
2000	

Table 6 Description of computer program

No.	Item	Specification
1	Code name	
2	Formulation	1. FEM (Finite Element Method) 2. BEM (Boundary Element Method) 3. IEM (Integral Equation Method) 4. FDM (Finite Difference Method) 5. combination (+) 6. others ((Please write references in item No.17)
3	Governing equations	
4	Solution variables	
5	Gauge condition	 1. not imposed 2. imposed (a) impose the condition on governing equations directly (b) penalty function method (c) Lagrange multiplier method (d) others (+) (Please write references in item No.17)
6	Technique for non-linear problem[2]	☐ 1 Newton-Raphson method [2] ☐ 2. Modified Newton-Raphson-method ☐ 3. Incremental method ☐ 4. SOR[3] ☐ 5. others ((Please write references in item No.17)
	Convergence criterion for non-linear iteration	

Table 6 Description of computer program (continued)

No.	Item	Specifi	cation	
7	Approximation method of B-	<u> </u>	spline	
	H curve	\square 2.	Akima[4]	
		\square 3.	straight lines	
		☐ 4.	others()
			(please write references	,
			in item No.17)	
8	Technique for open boundary		truncation	
	problem [5]	\square 2.	mapping	
		\square 3.	ballooning	
		□ 4.	Zienkiewicz's infinite element[1]	
		☐ 5.	Tong's infinite element[6]	
		□ 6.	BEM or IEM	
		\square 7.	others ()
			(please write references	
			in item No.17)	
9	Calculation method of	<u> </u>	Biot-Savart law (analytical)	
	magnetic field produced by	\square 2.	Biot-Savart law (numerical)	
	exciting current	☐ 3.	taking into account exciting current	
			in governing equations directly	
10	Property of coefficient matrix	1.	~J	
	of linear equations		(la) sparse	
			(lb) full	
		2.	3	
			(2a) sparse	
			(2b) full	
4.4		<u> </u>		
11	Solution method for linear	<u> </u>	ICCG	
	equations	\square 2.	ILUBCG	
		<u></u> 3.	ILUCGS[7]	
		4.	SOR	
		☐ 5.	LDL ^T	
		☐ 6.	LU	
		□ 7.	Gauss elimination method	
		□ 8.	others ()
			(please write references	
	Canadanaa aiitaii aa fa		in item No.17)	
	Convergence criterion for iteration method			
	niciation method			
<u> </u>		<u> </u>		

Table 6 Description of computer program (continued)

<u> </u>		Tption of compan	or program (continu	<i>104)</i>	
No.	Item		Specification		
12	Element type		1. tetrahedron 2. triangular prism 3. hexahedron 4. triangle 5. rectangle 6. others (erences .17))
			1. nodal element (2. edge element (
13	Number of el	ements	2. edge element (cuges)[0]	
14	Number of no	odes			_
15	Number of u	nknowns			
16	Computer	name			
		speed	(MIPS),	(MFLOPS).	
		main memory (MB)			
		used memory (MB)			
		precision of data (bits)			
		CPU time (sec) total			
		solving	g linear equations		
17	References o	n Nos.1 to 12, etc.			

7. References

- [1] O.C.Zienkiewicz "The Finite Element Method (Third Edition)", McGraw-Hill (1977).
- [2] P.P.Silvester, H.S.Cabayan & B.T.Browne "Efficient Techniques for Finite Element Analysis of Electrical Machines", IEEE Trans. PA&S, PAS-92, 6, 1274 (1973).
- [3] J.H.Hwang & W.Lord: "Finite Element Analysis of the Magnetic Field Distribution inside a Rotating Ferromagnetic Bar", IEEE Trans. Magnetics, MAG-IO, 4, 1113 (1974).
- [4] H.Akima: "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures", Journal of ACM, 17, 4, 589 (1970).
- [5] C.R.I.Emson "Methods for the Solution of Open-Boundary Electromagnetic-Field Problems", IEE Proc., 135, Pt.A, 3, 151(1988).
- [6] P.Tong & J.N.Rossetos: "Finite-Element Method (Basic Technique and Implementation)", MIT Press (1977).
- [7] P.Sonneveld: "CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems", Report 84-16, Department of Mathematics and Informatics, Delft University of Technology, The Netherlands (1984).
- [8] A.Bossavit & J.C.Verite "The "TRIFOU" Code: Solving the 3-D Eddy-Currents Problem by Using H as State Variable", IEEE Trans. Magnetics, MAG-19, 6, 2465 (1983).