Team Workshop Problem 18

Waveguide Loaded Cavity

(First version July 25, 1992)
Reference: N.M. Kroll and X.T. Lin, "Efficient Computer Determination of the Properties of Waveguide Loaded Cavities", SLAC-PUB-5296, July 1990, pp.1-16.

Geometry:

Fig. 1 Square cavity coupled to a rectangular waveguide through a centered inductive iris. The inner height of the structure is b.

Statement of the problem:

Find the resonant frequency, the Q-factor and the complex reflection coefficient of a squareshaped TE_{101}-cavity coupled to a rectangular waveguide through a centered symmetrical inductive iris. The geometry of the arrangement and the coordinate system are shown in Fig. 1 above. The height of the structure is everywhere b. The waveguide extends to infinity in the z direction. Hence, it is considered to be matched at all frequencies and for all modes.

The waveguide is air-filled and carries a TE_{10} wave incident from $\mathrm{z}=+\infty$
The iris has a thickness $t=a / 32$ (note that this differs slightly from the dimensions given in the reference above).

Consider the following three cases:
i) All walls are perfectly conducting $(\sigma=\infty)$ (2D problem)
ii) All walls are male of coin silver $\left(a=4.7 \times 10^{7} \mathrm{~S} / \mathrm{m}\right)$ (3D problem)
iii) All walls are made of electrolytic copper $\left(a=5.75 \times 10^{7} \mathrm{~S} / \mathrm{m}\right)(3 \mathrm{D}$ problem)

Assume that in all cases the wall thickness is much larger than the skin depth.

Observables to be determined:

For the three cases specified above, find
a) the resonant frequency of the TE101-mode,
b) the total Q-factor of the cavity. (This Q-factor will be the external Q in the lossless case, and the loaded Q in the lossy cases),
c) the complex reflection coefficient (absolute magnitude and phase) at a distance $\mathrm{D}=2 \mathrm{a}$ from the iris wall $(\mathrm{z}=3 \mathrm{a}+\mathrm{t})$ within $\pm 10 \%$ of the resonant frequency,
for WR(90) ($\mathrm{a}=0.9 \mathrm{in} ., \mathrm{b}=0.4 \mathrm{in}$) and $\mathrm{WR}(28)(\mathrm{a}=0.28 \mathrm{in} ., \mathrm{b}=0.14 \mathrm{in})$ and for the following normalized widths of the iris: $\mathrm{d} / \mathrm{a}=0.5,0.65,0.70$, and 0.75 .

Extra credit:

At the resonant frequency, provide:
-2 D plots of E_{y} within the cavity and the waveguide between $\mathrm{z}=0$ and $\mathrm{z}=2 \mathrm{a}+\mathrm{t}$
$-1 D$ plots of E_{y} across the iris at $\mathrm{z}=\mathrm{a}+\mathrm{t} / 2$.

- Plots of the surface current density on the cavity walls, both sides of the iris, t and on the waveguide walls $u p$ to a distance $\mathrm{z}=2 \mathrm{a}+\mathrm{t}$

