Team Problem 13

3-D Non-Linear Magnetostatic Model

1. General Description

The model is shown in Fig.1. An exciting coil is set between two steel channels, and a steel plate is inserted between the channels. The coil is excited by dc current. The ampere turns are 1000 and 3000 AT which is sufficient to saturate the steel. The problem is to calculate magnetic fields at various positions.

2. Analyzed Region and Boundary Conditions

If the symmetrical and periodic boundary conditions[1] can be used, the $1 / 4$ region shown in Fig.2(a) is enough to be analyzed. The analysis of $1 / 2$ region shown in Fig.2(b) using only symmetrical boundary condition is also acceptable.

3. Mesh Description

The mesh is not specified.

4. Nonlinearity

The B-H curve of the steel shown in Fig. 3 is to be used. The typical values of $B(T)$ and $\mathrm{H}(\mathrm{A} / \mathrm{m})$ are also shown in Fig.3. The curve for high flux densities ($\mathrm{B}>1.8 \mathrm{~T}$) should be approximated by Eq.(1):

$$
\begin{array}{ll}
\mathrm{B}=\mu_{0} \mathrm{H}+\left(\mathrm{aH}^{2}+\mathrm{bH}+\mathrm{c}\right) & (1.8 \leq \mathrm{B} \leq 2.22 \mathrm{~T}) \\
\mathrm{B}=\mu_{0} \mathrm{H}+\mathrm{Ms} & (\mathrm{~B} \geq 2.22 \mathrm{~T}) \tag{1}
\end{array}
$$

where μ_{0} is the permeability of free space. The constants a, b and c are $-2.381 \times 10^{-10}, 2.327 \times 10^{-5}$, and 1.590 respectively. Ms is the saturation magnetization (2.16T) of the steel. Equation (1) shows that the steel part is assumed to be completely saturated when B is higher than 2.22 T .

5. Quantities and Distributions to be Calculated

5a. Points where flux densities are compared

To compare results, please complete Tables 1, 2 and 3. Fig. 4 shows the specified positions for average flux density in the steel and flux density in the air. Fig. 5 shows the recommended points to be compared. The points (1) to ${ }^{(4)}$ are for comparison between various numerical methods of analysis. The points
where large errors may occur, such as due to large flux density changes, are chosen. The points ${ }^{5}$ to ${ }^{8}$ show the recommended points to be compared with experiment. Around these points, flux densities can be measured accurately because the gradient of flux density is not so high.

5b. Distributions of flux density vectors

Distributions of flux density vectors on the $x-y$ plane at $z=63.2 \mathrm{~mm}$, and on the $y-z$ plane at $\mathrm{x}=0 \mathrm{~mm}$ are to be presented.

6. Description of Computer Program

To compare formulations, variables, etc., please complete Table 4. The used memory in the item No. 17 in Table 4 is defined as the sum of dimensions declared in the program.

7. References

[I] T.Nakata, N.Takahashi, K.Fujiwara \& A.Ahagon "Periodic Boundary Condition for 3-D Magnetic Field Analysis and its Applications to Electrical Machines", IEEE Trans. Magnetics, MAG-24, 6, 2694 (1988).
[2) O.C.Zienkiewicz "The Finite Element Method (Third Edition)", McGraw-Hill (1977).
[3] P.P.Silvester, H.S.Cabayan \& B.T.Browne: "Efficient Techniques for Finite Element Analysis of Electrical Machines", IEEE Trans: PA\&S, PAS-92, 6, 1274 (1973).
[4] J.H.Hwang \& W.Load : "Finite Element Analysis of the Magnetic Field Distribution inside a Rotating Ferromagnetic Bar", IEEE Trans. Magnetics, MAG-1O, 4, 1113 (1974).
[5] H.Akima : "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures", Journal of ACM, 17, 4, 589 (1970).
[6] C.R.I.Emson "Methods for the Solution of Open-Boundary Electromagnetic-Field Problems", lEE Proc., 135, Pt.A, 3, 151(1988).
[7] P.Tong \& J.N.Rossetos : "Finite-Element Method (Basic Technique and Implementation)", MIT Press (1977).
[8] P.Sonneveld "CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems", Report 84-16, Department of Mathematics and Informatics, Delft University of Technology, The Netherlands (1984).
[9] A.Bossavit \& 3.C.Verite : "The "TRIFOU" Code : Solving the 3-D Eddy-Currents Problem by Using H as State Variable", IEEE Trans. Magnetics, MAG-19, 6, 2465 (1983).

(b) plan view

Fig. 1. 3-D nonlinear magnetostatic model

(a) $1 / 4$ region
(b) $1 / 2$ region

Fig. 2. Analyzed region

Fig. 3. B-H curve of steel

Fig. 4. Specified positions for flux density (see Tables 1 and 2)

Comparison between various numerical methods:

- the points where the flux densities change suddenly
- the point where the permeability changes suddenly -- -- (3)
- the point where the error due to the cancellation may be large --- - (4)

Comparison between calculation and experiment :

- the average flux densities ---- (5), (6), (7) (No.1, 12 and 25)
- the point where the flux density is high
and it does not change suddenly ---- (8) (No.27)
Fig. 5. Recommended points to be compared (see Table 1, 2, and 3)

Table 1 Average flux density $|\mathbf{B}|$ (\mathbf{T}) in the steel (see Fig.4)

	coordinates (mm)			ampere turn (AT)	
No.	x	y	Z	1000	3000
1			0.0		
2			10.0		
3			20.0		
4	$0.0 \leq x \leq 1.6$	$-25.0 \leq y \leq 25.0$	30.0		
5			40.0		
6			50.0		
7			60.0		
8	2.1				
9	10.0				
10	20.0				
11	30.0				
12	40.0				
13	50.0	$15.0 \leq y \leq 65.0$	$60.0 \leq z \leq 63.2$		
14	60.0				
15	80.0				
16	100.0				
17	110.0				
18	122.1				
19			60.0		
20			50.0		
21			40.0		
22	$122.1 \leq x \leq 125.3$	$15.0 \leq y \leq 65.0$	30.0		
23			20.0		
24			10.0		
25			0.0		

Table 2 Flux density $|\mathbf{B}|$ (\mathbf{T}) (see Fig.4)

No.	coordinates (mm)			ampere turn (AT)	
	x	y	z	1000	3000
26	10.0				
27	20.0				
28	30.0				
29	40.0				
30	50.0				
31	60.0	20.0	55.0		
32	70.0				
33	80.0				
34	90.0				
35	100.0				
36	110.0				

Table 3 Flux density $|\mathbf{B}|$ (\mathbf{T}) (see Fig.5)

	coordinates (mm)			ampere turn (AT)	
No.	x	y	z	1000	3000
(1)	2.2	15.1	60.1		
(2)	2.0	14.9	50.9		
(3)	1.5	0.0	55.0		
(4)	1.5	0.0	25.0		

to are for comparison between various numerical methods of analysis. The points where large errors may occur, such as due to large flux density changes, are chosen.

The points ${ }^{5}$ to ${ }^{8}$ show the recommended po

Table 4 Description of computer program

No.	Item	Specification
1	Code name	
2	Formulation	1. FEM (Finite Element Method) 2. BEM (Boundary Element Method) 3. IEM (Integral Equation Method) 4. FDM (Finite Difference Method) 5. combination $(+\quad)$ 6. others ((Please write references in item No.18)
3	Governing equations	
4	Solution variables	
5	Gauge condition	\square 1. not imposed 2. \quad imposed impose the condition on (a) \quadgoverning equations directly \square (b) penalty function method (c) \quad Lagrange multiplier method (d) others ((Please write references in item No.18)
6	Fraction of geometry	1. $1 / 4[1]$ 2. $1 / 2$
7	Technique for non-linear problem[2]	$\square 1$ Newton-Raphson method [3] 2. Modified Newton-Raphson-method 3. Incremental method 4. SOR[4] 5. others ((Please write references in item No.18)
	Convergence criterion	

Table 4 Description of computer program (continued)

No.	\|Item	Specification	
8	Approximation method of BH curve	1. spline 2. Akima[5] 3. straight lines 4. others((please write references in item No.18))
9	Technique for open boundary problem [6]	1. truncation 2. mapping 3. ballooning 4. Zienkiewicz's infinite element 5. Tong's infinite element[7] 6. BEM or IEM 7. others ((please write references in item No.18))
10	Calculation method of magnetic field produced by exciting current	1. Biot-Savart law (analytical) 2. Biot-Savart law (numerical) 3. taking into account exciting current governing equations directly	in
11	Property of coefficient matrix of linear equations	1. symmetric \square (la) sparse \square (lb) full 2. asymmetric \square (2a) sparse (2b) full 3. combination	
12	Solution method for linear equations	1. ICCG 2. ILUBCG 3. ILUCGS[7] 4. SOR 5. LDL $^{\text {T }}$ 6. LU 7. Gauss elimination method 8. others ((please write references in item No.18))
	Convergence criterion for iteration method		

Table 4 Description of computer program (continued)
iNo. IItem
Specification

Average flux density $|B|$ in steel plate (1000AT, measured)

The curve for high flux densities $(B>1.8 T)$ is approximated as follows:

$$
\begin{array}{ll}
\mu \mathrm{OH}+\left(\mathrm{aH}^{2}+\mathrm{bH}+\mathrm{c}\right) & (1.8 \mathrm{~T} \leq \mathrm{B} \leq 2.22 \mathrm{~T}) \\
\mu_{0} \mathrm{H}+\mathrm{Ms} & (\mathrm{~B} \geq 2.22 \mathrm{~T})
\end{array}
$$

$\mu \mathrm{o}$: permeability of free space
a : -2.822×10^{-10}
b : 2.529×10^{-5}
c : 1.591
Ms : saturation magnetization (2.16T) B-H curve of steel.

Typewritten data for the B-H curve		
No.	$\mathrm{B}(\mathrm{T})$	$\mathrm{H}(\mathrm{A} / \mathrm{m})$
1	0	0
2	0.025	45
3	0.05	75
4	0.10	120
5	0.20	173
6	0.30	201
7	0.40	222
8	0.50	240
9	0.60	250
10	0.70	265
11	0.80	280
12	0.90	300
13	1.00	330
14	1.10	365
15	1.20	415
16	1.30	500
17	1.40	640
18	1.50	890
19	1.55	1150
20	1.60	1940
21	1.65	3100
22	1.70	4370
23	1.75	6347
24	1.80	8655

