Basic equations associated to the calculation of
the deformation of bodies under external efforts
for linear and elastic material.
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Abstract— This paper gives an overview of the method used to
calculate body deformations under external stresses. Onthe 2D

behaviour is taken into account. These data allow anyone to L
integrate this basic formulation into its finite element @ackage as
soon as the source code is available.

Index Terms—External forces, Young modulus, Poisson
coefficient, and Finite element method.
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I. INTRODUCTION y
z

Any material presents deformations in front of external () (b) x

stresses. Such deformations can be calculated asascsbme

mechanical properties are known. Hook law and espediglly Fig. 1 Two behaviors must be considered when a bodsulsnitted t

general form is used to perform such calculation. Usirg th external forces. In the Figure (a) therders are free and a length varia

energy principle, it is possible to link any exterfates that along the z direction is allowed. In Figure (b)rder is maintained wi
ti l’:) dv to th def ti Th k sbth mechanical lock (c), hence, the preceding lengtiiatian is not allowe

are acting on a - 0dy 10 these - erorma |0n§. e Wc_)r . 6 € but stress appears in the body along the z directio

external forces is balanced with the elastic enemgyation.

Using the finite element method, the problem summarizes\yjih 4 structure having a z independent behaviour, three
itself in ‘a matrix inversion. This matrix is built @ 504 deformations are taken into account. Submitted t

L .For example, in fig 2 and 3, two basic deformations ar
are recalled. The definition of the elementary matrix . .
. . o obﬁerved. Such deformations are easily understandable as
associated to the basic element is discussed and a sf&or i f def i d directi f externatés
example of a resolution is given. irections of deformation and directions of extern are
the same. In Fig. 3, a more complex deformation appéars,

can be assumed as a rotation along the Z direction. Z is
Il.  EQUATION ASSOCIATED TOHOOK LAW. orthogonal to X,Y.

Before any calculation, behaviour of the system must be
examined because two different formulations exist. Geiyer
the usual hypothesis is the p|ane stresses assumpu'ohing Deformation of the body after application of external forces
at the Fig 1a, the body is free. In Fig 1b, the bodfjrisly Lx
maintained along the Z direction and no deformation is
allowed in such direction. This last example is knowplase
deformation assumption. A2
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Deformation of the body after application of external forces Whereﬁ iS the external StreSS, ara—‘dhe deformation Of the
/ element (3).
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Ill.  RELATIONSHIP BEETWEEN DEFORMATIONS AND NODES

Fig. 2. Under external stresses a basic deformationg the Y direction

observed. Equation (1) remains the main equation in finite eleme

resolution. In this point of view, the main structure is
Deformation of the body after application of external forces described as an assembly of basic elements. The vasatfo
the positions of nodes will be used to write the defdiom of
the basic element (Fig. 4). The equation (4) is uselinko
displacements associated to nodas) {0 the deformation of

the basic elements).
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Fig. 3. Under external stresses a deformationgatbe z direction &n bt [B]: oA 0o X3z 0 X3 0 X21D (%)
noticed. For example, the reference X1,Y1 becomd¥ X after extern: 2 Yoz Xs Va1 Yo Yoo
stresses application.

2 A= Y31 %1= %51 Yor

W]th the hypothess of elastic behaviour, the deforometi Notice that A is also the surface of the element.
are linearly linked to external stresses. In plane ssess
assumption, two mechanical properties of the material ar

used. The modulus of elasticity (E) which is linkedthe %Xlg
aptitude of the material to present deformations am s Y10
external efforts are applied and the Poisson coeffic{e) U=@X2EI (6)
which takes into account the ability of material to dese its W‘QD
volume in front of external forces. For example, a migte @,25

with a low elasticity modulus presents a high level of
deformation in front of low level of external forcasd for
Poisson coefficient; it evolves from 0 to 0.5 (0.5 &
material where there is no volume variation under eaterndirection of the node nx,, or v, are used in place of

stresses). X,—%, Or y,—Y, and normare the number of the node (1,2

¢ In this formulation,t,, or G, are the displacements in x or y

In 2D formulation, the three preceding deformations a3 in the example).
taken into account. Using an X,Y,Z reference, thesdhr
stresses components are linked to these three ddfonsia Uyt
Under plane stresses assumption, they can be joinedhé¢nget e Txl
as it is subjected in the following equation (1) and (2).

g=[H]e (1)

And
X Uy2

@ ? . Uys

(2) Ux3

a
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%) 0 (]'_TUE Fig. 4. Three corners define the basic element, six disphents ai

observed, two for each corner.
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IV. RELATIONSHIP BEETWEEN EXTERNAL FORCES ANINODE - ~=2000 .0
a 0 rep= e
DISPLACEMENTS - - 0= %0 (13)
0- ~ O hen
| - | Fiby Med [0 GeO
With the principle of energy, the work of external fesds 0 OO

balanced to the elastic energy variation. Equatignigthe

general form of elastic energy aid is a virtual deformation.

With the Hook law (1), equation (8) can be written.rgsthe UYIT
conclusion associated to the chapter Ill, it is possible

describe such energy principle with a point of view assediat

to the basic element (9). In this equationj* is a virtual
displacement and only the elastic energy associatedeto tt

— Ux1

basic element is calculated. D53
T Uy3
W=(E.6.dv 7 :
J ( ) Ux3 £x3
Displacements at each node External efforts at each node
W=J§*.[H ]§.dV (8) Fig. 5. Notations used for external efforts andendisplacements.
W:JG [B]T.[H ].[B}i.dv 9) Hence, as soon as the modulus elasticity and the MRoisso

coefficient are known, the H matrix can be calculatedr
each basic element that composes the structurd3 thatrix
can be also calculated. In conclusion, thd [B][B].Se
matrix is defined for each basic element.

With the equation (10) the work of the external foraetsg
on the element is defined. The equilibrium between thstiela
energy and the force work implies the equations) @rid
(12).

. V. FINAL ASSEMBLY AND RESOLUTION.
W:E .F.ds (10)
# ~ . The structure is described in term of nodes and external
JU [B]T-[H]-[Bl‘-dva F.ds (11) forces applied on these nodes. At each node, two
displacements and two external efforts are attachdud
n _ following notation will be used in the example desicigbthe
J[B]T'[H ].[B}J.dV:g:.dS (12) whole structure: at node | orl, and U;,, or U, and U;,

iy’
are the associated displacement.and F , or F,and F,,
are the associated external efforts. Relation betweennakte

.It appears that it is now po§3|ble to link externakcéar efforts and displacements can be expressed with thetiequ
acting on one element to the displacement of the ndd®Bs ((13)

(Fig. 5). In this equatior, is the volume of the element in _

3D modelling or the surface the elemerf<A) in 2D W, [F,
modelling. W, O
" 0” o7
0. 0.
a,0 Of,0 Wi hx
%ylg E;ylg %Jiy ElFiy
[BY [H)[g] s djer= geo (12) Kl o= (13)
2] ¥2[] @jx d:jx
x3[] x3[] W, (F.
Bl Bt o’ o’
0. 0.
EJr'l)( mI’])(
Mo Ho

This general matrix is obtained with a concatenation of
elementary matrixes coming from each basic elemant. |



addition, it appears that some values can be imposednyAt  Tab.l
node where there is no external efforf, and F, are equal
) Node X (m) Y (m)
to 0 and at any node where there is contadf,and U, are 1 0 0
equal to 0. For example, using Fig. 6, equation (13)(13) |2 0.1 0
(16) and (17) can be added. 3 0.05 01
4 0.15 0.15
F.=F0, F,=FO, (13)
Tab. 2
F.=0 F,=0 (14
but Element 1 Element 2
Node 1 X1=0m Node 1 X1=0.1m
Uy#0 U0 (15) Y1=0m Y2=0.1 m
Node 2 X2=0.1m Node 2 X2=0.05 m
Uy=0 Uy=0 (16) Y2=0m Y2=0.1 m
but Node 3 X3=0.05m |Node 3 X3=0.15m
Fu?0 F,20 a7 Y3=0.1m Y3=0.15m

When the external efforts are given,

it is possible to

calculate each displacement at each node in doing axmatri 1) Step 1 (Element characteristics)

inversion of K.

Fo

Node j Node i

Node k /

Fig. 6. Example of a structure in real situatiéior nodes i, j, and
external efforts or displacement can be imposed.

For each element the matrixes B and &e calculated

(18),(19),20,

a)Element 1 (Fig. 8).

@ @)

Fig. 8. First element associated to the main sirect

VI EXAMPLE: —01 0 01 0 00
[B]= %HD 005 0 -005 0 04as)
005 -01 -005 1 01 0f
In order to conclude this short description of the medzhni
calculation, an example is treated (Fig. 7).
EI-O 1 O s —OOOlSD
@ - Y ]
[Bl] %ﬂﬁm —o 05 30 (19)
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Fig. 7. Magnetic core built from parts (A) and (B)

This small structure is defined by four nodes (Tab.1)aks

And

2A,= (01)(0.1)-(0.05)(0)=0.01
A=0.005

example, this figure is modelled with only two elements.
Three nodes define each element and for each element t

position of each node is given (Tab.2).




b) Element 2 (Fig. 9).

Fig. 9. Second element associated to the maintsteic

L3005 0 015 0 _ -0 0 O
[ajzgﬂ 0° 01 0. -005 0. -005720)
01 -005 -005 015 -005 -01f
3005 0 01 [
[B]-H1 s % _8'8% 21)
B "% 9> -005 015
(0-01 -0.05J

And
2A,=(-0.05)(0.15)-(0.05)(0.1)=-0.0125
A,=0.00625

2) Sep 2 (Material)

With properties of the material, the elasticity matkk can
be built. For this example, the elasticity modukig&#100 000

K1= 1.0e+010*
59753 1.7857-5.0137 -0.1374 -0.9615 -1.6484
1.7857 3.2967 0.13740.5494 -1.9230 -2.7473
-5.0137 0.1374 5.97531.7857 -0.9615 1.6484
-0.1374 -0.5494 -1.7857 3.2967 1.92302.7473
-0.9615 -1.9230 -0.9615 1.9230 1.9230 0
-1.6484 -2.7473 1.6484-2.7473 0 5.4945

— T
K2 =[B ] [H] [B] . Az (25)
K2 = 1.0e+011 *
0.2637 -0.1429 -0.4066 0.2637 0.14290.1209
-0.1429 0.4780 0.23630.3352 -0.0934 -0.1429
-0.4066 0.2363 1.02750.2143 -0.6209 -0.0220
0.2637 -0.3352 -0.2143  0.4560-0.0494 -0.1209
0.1429 -0.0934 -0.6209 -0.0494 0.4780 0.1429
-0.1209 -0.1429 -0.0220 -0.1209 0.1429 0.2637
4) Sep 4 (Building the entire matrix)
mJlx Ele
Ky, KlSDIU1y D:Iy
0. . DﬂJZX Ed:zX
d.. .
0-- - =[] ¥ (26)
|:|" . 3x 3x
a. Oy Oy
@(81 Kss ax 4x
4 Hay

MPA (11 MPA = 16 PAand 1 PA=1N/m) and the " This matrix (26) is the entire matrix associated tovthele
Poisson coefficienv=0.3. Under plane stresses assumptionstrycture. It must be noticed that displacemeny &f the

this matrix is (22).

. U1 03 0 E
H= 0 8(3)20 3 1 0 O (22)
E é‘- 5 1-0.3
0 0 J E
0989010  3296710° 0 E
H=8296710° 10989010 0 g @
H o 0 384611065

This matrix is the same for all elements.
3) Sep 3 (Matrix associated to each element)

For each element, the [B[H] [B]. Se entity can be
expressed. It is mane K1 for the first element andidtzhe
second element (24), (25).

K1=[B] [H][B].A; (24)

whole structure can be associated to nodes describing the
elements (Tab. 3). With this information, it immedig
appears that the node 3 of the entire structure istlaésaode

3 for the element 1 and the node 2 for the elementh2. T
displacement associated to this node is the samedohn
element.

Tab. 3
Node Element 1 Element 2
(entire structure )
Node 1 | Uy, Node 1 |upy
Uly uly
Node 2 | U,y Node 2 | uyy Node 1 |ugy
U2V Uoy Uy
Node 3 | U3y, Node 3 | ugy Node 2 | uyy
U3V Usy Upy
Node 4 | Uy Node 3 | ugy
U4y Usyx

Using the notation associated to the whole structuee, th
relation between the displacements and the externadaan
be rewritten.



glx 0
w,, o, W, o, Dzly 10
v, E';ly , E‘;Zy 2 D8
KL 2 = 2 K 2.1 3 = (3¢ @7) [K] »=[y Z[K][R:[S (31)
2y 2y 3y 3y x [0
3x 3x 4x 4x IEJSV T4)(
y Hea oy Hey o oy
4
The matrix K can be obtained as an association of K1 andanol K'is -
K2 (27), (28). '
3 0 0 0 K1, K1, 0 00
K2 KD KM K KB 0 oD M 4 0 0 KL KLo 0 o0
KL, KL, Kigkz, KioK2, KigKz, KigKz, K2, K20 0 0 -1 0 KL+K2, KL+K2, K2, K20
L OSE KD GRg Kol 2 B8 D0 0 a4 KINOD KIKa Ko Kad
W KD Kk, KRk, KLk, Kigk2l Ko K2d b 0 0 0 KigK2, KigK2, s K2
Dot 0t R, K2,, K2y, LK K2 0 0 0 KL#K2,, KL#K2, K2, K25
DO 0 K2, K2, K2, K2, K25 K266|] 0 0 0 253 K254 K 5 GD
28) 0 0 0 K2, K2,  K2u *H

Forces associated to nodes connected to each other
disappear. Only remain external forces associated to thq<1

and K2, are calculated in the step 3. As soon as the
structure (29). In this equation,fare external forces. .4 %y P

external efforts are given, S is totally known and Rhis
unknown entity. R is immediately calculated with a matr

K K u, F, inversion, R = [KT S. For example, £= 16 N/m and Ry =
o 1y Ry 10° N/m, the results for the displacement to the node 34and
a.. 2 LF, are given in Tab.4.
0 1y=g:2y (29)
0 * D8 Tab. 4
.. Y [
4x
e Ke o ey Uax 3.4891 10 m
(0.03489 mm)
The structure is fixed on the floor using the node 1 aed t Usy 1(01?)11917danr1nm)
node 2; consequently, the displacements associated ® thes ¥ 6 4 1°m
nodes are equal to O and the preceding equation (29) can be x ('0 064mm)
modified (30). :
fied (30) - Usy 1.1642 16 m
Ky o e e e e Ky iy (0.01164mm)
.. -LHO
Bjj ) 03 29:3 (30) And the force at the node 1 and 2 in Tab. 5.
D.. ) 3y |:|0
O 0, Tab. 5
Hex 88 4 3
& Fix -5.3292 10
Fiy -1.0000 16
When a force is applied to node 4, &nd Ry, are known = 26707 18
and the entire system contains 8 unknown elements and 8 FX 0'0007 16
equations. Hence this system can be solvgd.Fg, Fyy, Foy, 2 i

the action of the floor on the node 1 and 2 can beulzdén
and Uy , Uy, Uy, Uy, the displacements of the two free
nodes can also be calculated at the same time. Théepro
can be written in a more useful form (31).



With commercial software, and the same mesh, thdtses
are Tab. 6 and Tab. 7.

Tab. 6
Usx 0.03488 mm
Ugy 0.01198 mm
Ux 0.06398 mm
Uyy 0.01165 mm
Tab. 7
Fix -5.32918 19 Fig. 10. External effort acting on studied struetu
Fy -1.0000 10 Fx=1¢ N/m and Fy=10N/m.
Fax -4.67081 18
Fay 0.0000 16

In conclusion, this short example shows the procedsee
to calculate the deformation of a body with a 2D behaviour
Basic element with 3 nodes is used to model the struckhes
external force is acting only on node 4 (Fig.10). Defatiamn
of the body and displacement of the nodes are calculaigd
11) and (Tab. 6 ). Action of the floor on the nodes can bk
defined (Fig. 12) and (Tab. 7). Additional informatidooat
basic element can be found in reference book such asrig 11, Deformation of the structure.
[1],[2],[3] and [4]
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