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Abstract— This paper gives an overview of the method used to 

calculate body deformations under external stresses. Only the 2D 
behaviour is taken into account. These data allow anyone to 
integrate this basic formulation into its finite element package as 
soon as the source code is available. 
 

Index Terms—External forces, Young modulus, Poisson 
coefficient, and Finite element method. 

I. INTRODUCTION 

Any material presents deformations in front of external 

stresses. Such deformations can be calculated as soon as some 
mechanical properties are known. Hook law and especially its 
general form is used to perform such calculation. Using the 
energy principle, it is possible to link any external forces that 
are acting on a body to these deformations. The work of these 
external forces is balanced with the elastic energy variation. 
Using the finite element method, the problem summarizes 
itself in a matrix inversion. This matrix is built as an 
association of elementary matrix coming from the basic 
element. In this paper, the Hook law and the associated matrix 
are recalled. The definition of the elementary matrix 
associated to the basic element is discussed and a short 
example of a resolution is given. 
 

II. EQUATION ASSOCIATED TO HOOK  LAW.   

Before any calculation, behaviour of the system must be 
examined because two different formulations exist. Generally, 
the usual hypothesis is the plane stresses assumption. Looking 
at the Fig 1a, the body is free. In Fig 1b, the body is firmly 
maintained along the Z direction and no deformation is 
allowed in such direction. This last example is known as plane 
deformation assumption. 
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 With a structure having a z independent behaviour, three 

local deformations are taken into account. Submitted to 
external forces, a structure evolves and deformations appear. 
For example, in fig 2 and 3, two basic deformations are 
observed. Such deformations are easily understandable as 
directions of deformation and directions of external forces are 
the same. In Fig. 3, a more complex deformation appears, it 
can be assumed as a rotation along the Z direction. Z is 
orthogonal to X,Y. 
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Fig. 1.  Two behaviors must be considered when a body is submitted to 
external forces. In the Figure (a) the borders are free and a length variation 
along the z direction is allowed. In Figure (b), border is maintained with 
mechanical lock (c), hence, the preceding length variation is not allowed 
but stress appears in the body along the z direction. 

 
Fig. 2.  Under external stresses a basic deformation along the X direction is 
observed.  
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With the hypothesis of elastic behaviour, the deformations 
are linearly linked to external stresses. In plane stresses 
assumption, two mechanical properties of the material are 
used. The modulus of elasticity (E) which is linked to the 
aptitude of the material to present deformations as soon as 
external efforts are applied and the Poisson coefficient (υ) 
which takes into account the ability of material to decrease its 
volume in front of external forces. For example, a material 
with a low elasticity modulus presents a high level of 
deformation in front of low level of external forces and for 
Poisson coefficient; it evolves from 0 to 0.5 (0.5 is for 
material where there is no volume variation under external 
stresses). 

 
In 2D formulation, the three preceding deformations are 

taken into account. Using an X,Y,Z reference, the three 
stresses components are linked to these three deformations. 
Under plane stresses assumption, they can be joined together 
as it is subjected in the following equation (1) and (2). 
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Where σv is the external stress, and εv the deformation of the 
element (3). 
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III.  RELATIONSHIP BEETWEEN DEFORMATIONS AND NODES   

 
Equation (1) remains the main equation in finite element 

resolution. In this point of view, the main structure is 
described as an assembly of basic elements. The variations of 
the positions of nodes will be used to write the deformation of 
the basic element (Fig. 4). The equation (4) is used to link 
displacements associated to nodes  (u

r
) to the deformation of 

the basic element (ε
r

).  
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Notice that A is also the surface of the element.    
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In this formulation, xnu

r
or ynu

r
 are the displacements in x or y 

direction of the node n. mnx  or mny  are used in place of 

mn xx −  or mn yy −  and  n or m are the number of the node (1,2 

or 3 in the example).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Three corners define the basic element, six displacements are 
observed, two for each corner.  

 
Fig. 2.  Under external stresses a basic deformation along the Y direction is 
observed.  

 
 

Fig. 3.  Under external stresses a deformation along the z direction can be 
noticed. For example, the reference X1,Y1 becomes X2,Y2 after external 
stresses application.  
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IV. RELATIONSHIP BEETWEEN EXTERNAL FORCES AND NODE 
DISPLACEMENTS   

 
With the principle of energy, the work of external forces is 

balanced to the elastic energy variation. Equation (7) is the 

general form of elastic energy and 
*ε
r

 is a virtual deformation. 
With the Hook law (1), equation (8) can be written. Using the 
conclusion associated to the chapter III, it is possible to 
describe such energy principle with a point of view associated 

to the basic element (9). In this equation,  
*

u
r

is a virtual 
displacement and only the elastic energy associated to the 
basic element is calculated.  
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With the equation (10) the work of the external forces acting 

on the element is defined. The equilibrium between the elastic 
energy and the force work implies the equations  (11) and 
(12). 
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It appears that it is now possible to link external forces 
acting on one element to the displacement of the nodes (12) 
(Fig. 5).  In this equation eS  is the volume of the element in 

3D modelling or the surface the element (ASe= ) in 2D 

modelling. 
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Hence, as soon as the modulus elasticity and the Poisson 

coefficient are known, the H matrix can be calculated. For 
each basic element that composes the structure, the B matrix 
can be also calculated. In conclusion, the [B]T[H][B].Se 
matrix is defined for each basic element. 
 

V. FINAL ASSEMBLY AND RESOLUTION.   

 
The structure is described in term of nodes and external 

forces applied on these nodes. At each node, two 
displacements and two external efforts are attached. The 
following notation will be used in the example describing the 
whole structure: at node I or J,ixU and iyU , or jxU and jyU ,  

are the associated displacements.  ixF and iyF , or jxF and jyF ,  

are the associated external efforts. Relation between external 
efforts and displacements can be expressed with the equation 
(13). 
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This general matrix is obtained with a concatenation of 
elementary matrixes coming from each basic element. In 

 
 

Fig. 5.  Notations used for external efforts and node displacements.  
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addition, it appears that some values can be imposed. At any 
node where there is no external effort,  ixF and iyF  are equal 

to 0 and at any node where there is contact,  ixU and iyU  are 

equal to 0. For example, using Fig. 6, equation (13),(14),(15) 
(16) and (17) can be added.  
  

 yjyxjx FFFF 00 ==  (13) 

 

 00 == iyix FF  (14) 

but 

 00 ≠≠ iyix UU  (15) 

 

 00 == kykx UU  (16) 

but  

 00 ≠≠ kykx FF  (17) 

  
When the external efforts are given, it is possible to 

calculate each displacement at each node in doing a matrix 
inversion of K. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

VI. EXAMPLE: 

 
In order to conclude this short description of the mechanical 

calculation, an example is treated (Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
This small structure is defined by four nodes (Tab.1). As an 

example, this figure is modelled with only two elements. 
Three nodes define each element and for each element the 
position of each node is given (Tab.2). 

Tab.1  

 
Node X (m) Y (m) 
1 0 0 
2 0.1 0 
3 0.05 0.1 
4 0.15 0.15 

 
Tab. 2 

 
Element 1 Element 2 

X1= 0 m X1=0.1 m Node 1 
Y1= 0 m 

Node 1  
Y2=0.1 m 

X2=0.1 m X2=0.05 m Node 2 
Y2=0 m 

Node 2 
Y2=0.1 m 

X3=0.05 m X3=0.15 m Node 3 
Y3=0.1m 

Node 3 
Y3=0.15 m 

 
 
1) Step 1 (Element characteristics)  

 
For each element the matrixes B and BT are calculated 

(18),(19),20, 
 

a)Element 1 (Fig. 8 ). 
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And 
 
 01.0)0)(05.0()1.0)(1.0(2 1 =−=A  

005.01=A  

 
 
 
 
 
 
 

 
Fig. 7. Magnetic core built from parts (A) and (B) .  

 
Fig. 8. First element associated to the main structure.  

 
 

Fig. 6.  Example of a structure in real situation. For nodes i, j, and k 
external efforts or displacement can be imposed.  
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b) Element 2 (Fig. 9). 
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2) Step 2 (Material) 

 
With properties of the material, the elasticity matrix, H, can 

be built. For this example, the elasticity modulus is E=100 000 
MPA ( 1 MPA = 106 PA and 1 PA = 1 N / m² ) and the 
Poisson coefficient 3.0=υ . Under plane stresses assumption, 
this matrix is (22). 
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This matrix is the same for all elements. 

 
3) Step 3 (Matrix associated to each element) 

 
For each element, the [BT] [H] [B]. Se entity can be 

expressed. It is mane K1 for the first element and K2 for the 
second element (24), (25). 

 
 
                         K1 =[B1

T] [H] [B 1] . A1  (24) 
 
 

K1=  1.0e+010 * 
 
    5.9753    1.7857   -5.0137   -0.1374   -0.9615   -1.6484 
    1.7857    3.2967    0.1374   -0.5494   -1.9230   -2.7473 
   -5.0137    0.1374    5.9753   -1.7857   -0.9615    1.6484 
   -0.1374   -0.5494   -1.7857    3.2967    1.9230   -2.7473 
   -0.9615   -1.9230   -0.9615    1.9230    1.9230         0 
   -1.6484   -2.7473    1.6484   -2.7473         0        5.4945 

 
 

 
       K2 =[B2

T] [H] [B 2] . A2  (25) 

 
K2 =   1.0e+011 * 
 
    0.2637   -0.1429   -0.4066    0.2637    0.1429   -0.1209 
   -0.1429    0.4780    0.2363   -0.3352   -0.0934   -0.1429 
   -0.4066    0.2363    1.0275   -0.2143   -0.6209   -0.0220 
    0.2637   -0.3352   -0.2143    0.4560   -0.0494   -0.1209 
    0.1429   -0.0934   -0.6209   -0.0494    0.4780    0.1429 
   -0.1209   -0.1429   -0.0220   -0.1209    0.1429    0.2637 
 

 
4) Step 4 (Building the entire matrix) 
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This matrix (26) is the entire matrix associated to the whole 
structure. It must be noticed that displacement Uxy of the 
whole structure can be associated to nodes describing the 
elements (Tab. 3). With this information, it immediately 
appears that the node 3 of the entire structure is also the node 
3 for the element 1 and the node 2 for the element 2. The 
displacement associated to this node is the same for each 
element. 
 
Tab. 3 
 

Node 
(entire structure ) 

Element 1 Element 2 

U1x u1x Node 1 
U1y 

Node 1 
u1y 

 

U2x u2x u1x Node 2 
U2y 

Node 2 
u2y 

Node 1 
u1y 

U3x u3x u2x Node 3 
U3y 

Node 3 
u3y 

Node 2 
u2y 

U4x u3x Node 4 
U4y 

 Node 3 
u3yx 

  
 
Using the notation associated to the whole structure, the 

relation between the displacements and the external forces can 
be rewritten. 

 

 
Fig. 9. Second element associated to the main structure.  
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The matrix K can be obtained as an association of K1 and 

K2 (27), (28). 
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(28) 

 
Forces associated to nodes connected to each other 

disappear.   Only remain external forces associated to the 
structure (29). In this equation Fxy are external forces. 

 













=




































y

x

y

x

y

x

y

x

y

x

y

x

y

x

F
F

F
F
F
F

U
U
U
U
U
U
U
U

KK

KK

4

4

2

2

1

1

4

4

3

3

1

2

1

1

8881

1811

0
0

............
................
................
................
................
................
................

............

 (29) 

 
The structure is fixed on the floor using the node 1 and the 

node 2; consequently, the displacements associated to these 
nodes are equal to 0 and the preceding equation (29) can be 
modified (30). 
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When a force is applied to node 4, F4x and F4y are known 

and the entire system contains 8 unknown elements and 8 
equations. Hence this system can be solved. F1x, F1y, F2x, F2y, 
the action of the floor on the node 1 and 2 can be calculated 
and U3x , U3y, U4x, U4y, the displacements of the two free 
nodes can also be calculated at the same time. The problem 
can be written in a more useful form (31).  
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and K’ is : 
 

























++
++
++−
++−

−
−

66656463

56555453

464544664365

363534563355

262524462345

161514361335

2625

1615

22220000
22220000
2221210000
2221210000
2221211000
2221210100
00110010
00110001

KKKK
KKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK

KK
KK

 
 
K1xy and K2xy are calculated in the step 3. As soon as the 

external efforts are given, S is totally known and R is the 
unknown entity. R is immediately calculated with a matrix 
inversion, R = [K']-1 S. For example, F4x = 106 N/m and F4y = 
106 N/m, the results for the displacement to the node 3 and 4 
are given in Tab.4. 

 
Tab. 4 
 

U3x 3.4891 10-5 m 
 (0.03489 mm) 

U3y 1.1977 10-5 m 
 (0.01197 mm) 

U4x 6.4 10-5 m 
 (0.064mm) 

U4y 1.1642 10-5 m 
 (0.01164mm) 

 
And the force at the node 1 and 2 in Tab. 5. 
 
Tab. 5 
 

F1x -5.3292 105 
F1y -1.0000 105 

F2x -4.6707 105 
F2y 0.0007 105 
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With commercial software, and the same mesh, the results 
are Tab. 6 and Tab. 7.  

 
Tab. 6 
 

U3x 0.03488 mm 

U3y 0.01198 mm 

U4x 0.06398 mm 

U4y 0.01165 mm 

 
Tab. 7 
 

F1x -5.32918 105 

F1y -1.0000 105 

F2x -4.67081 105 

F2y 0.0000 105 

 
 
In conclusion, this short example shows the procedure used 

to calculate the deformation of a body with a 2D behaviour. 
Basic element with 3 nodes is used to model the structure. The 
external force is acting only on node 4 (Fig.10). Deformation 
of the body and displacement of the nodes are calculated (Fig. 
11) and (Tab. 6 ). Action of the floor on the nodes can also be 
defined (Fig. 12) and (Tab. 7). Additional information about 
basic element can be found in reference book such as 
[1],[2],[3] and [4] 
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Fig. 10.  External effort acting on studied structure.  

Fx=106 N/m and Fy=106 N/m. 

 
Fig. 11.  Deformation of the structure. 

 
Fig. 12. Action of the floor on the structure. 


