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The Role of the Potentials in Electromagnetism

It is well known that there are generally two ways of
calculating the energy of an electromagnetic system. The first
uses the field quantities and the second uses the products of
the sources of charge and current with the potentials. The
total energy is the same whichever method is chosen, but the
energy distributions are quite different. [f the potentials are
used, the energy is confined to the material in which the
charges and currents are located, whereas the use of the field
quantities locates energy also in space devoid of matter.

From the point of view of computation the use of the
potentials and sources often has considerable advantages
because it confines the energy to the conductors. However,
this leaves open the question of the actual energy
distribution, which may affect the design and construction of
a device. In this article we hope to answer the question by
considering the physical and mathematical role of the
potentials. Our enguiry should have the additional benefit of
throwing light on the structure and meaning of the various
electromagnetic quantitics.

Historical Background

With the exception of the work of William Gilbert who
discussed the idea of a magnetic field in his book ‘De
Magnete” in AD 1610, all early work on electricity and
magnetism stems from [saac Newton's mechanics

Newton's mechanies consists of two parts. First there is
geometrical space which Newton regarded as an emply
stationary container of infinite extent. The geometry of this
space is Fuclidean, so that location in space can be referred
to Cartesian axes. All such axes are interchangeable because
they can be refated to each other by rotation and parallel
displacement. Time progresses uniformly in this space.
Secondly there are particles of mass moving in the empty |
space under the influence of forces. Amongst these forces

are the gravitational attractions between the particles.

Geometry is a property of space and physical action a

property of matter.

The enormous success of Newlon's ideas meant that it was
natural to attribute electrical and magnetic effects to electric
and magnetic particles. This idea was reinforced by the
discovery of an inverse-square law of interaction for both
types of particles just as in the law of gravitation between
particles of mass. The existence of repulsive as well as
attractive forces in electricity and magnetism was regarded as
a minor difference. The discovery of electrical conductors
and insulators lent further support for the particle view of
electricity. In magnetism one simply had to assume that the
particles were unable to pass from one molecule to the next
and thal the particles occurred in pairs.

The first serious difficulty arose when in 1820 Ocrsted
discovered that there is a torque on a small magnet in the
vicinity of an electric current. Ampére followed this with a
thorough investigation of the reactions between currents,
which led him to the conclusion that magnetic dipoles are
equivalent to small current loops and that current circuits are
equivalent to magnetic double layers or ‘magnetic shells’. In
the absence of such shells in nature Ampére concluded that
magnetic effects are due to electricity in motien. He then
faced the problem of how to incorporate electric currents into
the Newtonian scheme of particle interaction. His solution
was the ‘current element’ and he devised a law of force
between such elements regarded as particles

The law had the inverse-square relation and also the
Newlonian requirement of equality between action and
reaction, because the force acted along the line joining the
two elements. However, there was no means of testing it,
because there were no such things as isolated current
elements. All that could be observed was the force on a short
piece of circuit due to a complete circuil. The assumption of
action along the line joining the elements was without
experimental basis and Ampére's cumbersome formula is
never used. In the absence of current particles the
Newtonian scheme could not be applied to magnetic effects

An even sharper attack on the Newtonian view came from
the combined work of Faraday and Maxwell. Faraday had a
strong aversion to the notion of isolated particles, He
thought that an electric charge by itself could have no
existence, because it would have no physical effect. e also
distrusted the idea of action in a straight line, because he
observed that the magnetic force curved round the current,
This led him to the concept of linkage between electric
current and magnetic field, Linkage demands a closed curve,
which is a topological feature and not a local geometrical
one. A closed curve cannot be replaced by an apen one. This
meant that the phenomenon could not be due to the
interaction between discrete particles, because Newton’s
emply space has no topological features. Another equally
important discovery made by Faraday was that ime and
‘rate of change’ affect the proces: s0 that electromagnetic
systems are dynamic rather than static,

These ideas were Laken up by Maxwell, who clothed them in
mathematical form. Although Maxwell used the terminology
of mechanics in terms of force and momentum, he regarded
their transference to electromagnetism as an analogy rather
than a physical equivalence. Also he used the system
dynamics of Lagrange, which are based on energy, rather
than the particle dynamics of Newton. In Lagranian
mechanics attention is transferred from the parts of a system
to the energy distribution connecting the parts. There are
two kinds of energy, kinetic and potential. Maxwell’s
crowning achievement lay in the discovery that in
electromagnetism these two types of energy interact to
produce a wave of energy travelling through space with a
constant velocity. The experimental fact that energy is
transmitted in this manner shows that there are no such
things as emply space or universal Hime. Space and time are
linked entities.

Einstein developed theseddeas in his special theory of
relativity. He took the velocity of the electromagnetic waves
as a universal constant and concluded that every observer
has his own sel of coordinates of space and time. Since the
velocity of light determines the relation between these
coordinates, geometry and physics cannot be separated in the
Newtonian manner, There is no geometry without physics,
nor physics without geomelry. Moreover the geometry of
electromagnetic effects is non-Euclidean because the velocity
of light acts as a barrier between the time-like regions of past
and future and the space-like regions, which are ‘elsewhere’
and beyond the reach of the observer located at the origin of
coordinates defined as ‘here and now’, Electromagnetic
space-time is essentially a system exhibiling curvature.

However, i time is laken to vary harmonically with a
particular frequency, lime and space can be separated from
each other by using the time-axis as having imaginary

numbers. Such space-time is associated with the name of
Minkowski and is described as pseudo-Euclidean. It does



not distinguish between past and future. Although it is then
possible to retain the idea of parallelism in space, the
Minkowski space-time retains the topological features which
makes it different from Newtonian space and time.

One further general observation needs to be made about the
use of vectors in electromagnetism. Vectors act at a point and
are particularly appropriate to the investigation of systems of
point-particles. When they are applied to eleclromagnetism
they are less successful and exhibit various contradictory
features such as the distinction between polar and axial
vectors, The cause of these difficulties is that point vectors
seek to separate physical action frem geometry. The
difficultics disappear when vectors are replaced by
differential forms which combine space and time with
observable physical features. However, in order to avoid
unfamiliar notation we shall use vector algebra in this article.

The Electrostatic Potential

In a discussion of gravitational attraction Lagrange
discovered a function which shortened the labour of
calculating the force on a particle due to other particles. This
function is now known as the Newtonian Potential. [t
comsists of the sum of the masses of the particles each of
shich is divided by the distance from the point at which the
function is to be calculated. The name ‘potential was given
by Green, who showed that the function could be used in
electrostatics, if the masses are replaced by charges, and in
magnetostatics, if the masses are replaced by magnetic poles
or dipoles. Time does not enter into these calculations and
space is the flat infinite container of Newtonian mechanics.
The energy is energy of position and is therefore potential
energy. Hence the name “potential’ is very appropriate.

We can wrile the electrostatic potential as
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where (), is the charge of the fth particle, £ is the permittivity, r
is the distance between the particle and the point at which
the potential is calculated, p. is the volume density of charge
and v 1s the volume occupied by the charges. The electric
field is given by

E=—grad g, 2)
The electric flux-density is given by the constitutive equation
D=ek (3)

The electric field is conservative and the potential has a
unique value apart from an arbitrary constant.

The Magnetostatic Potentials A

1 magnetostatics is regarded as the effect of magnetic
parlicles we can write
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However, if the sources are steady eleetric currents, we must
start with the field equations

(5)
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div B=0 (6}
B=ul 7)
There is no unique scalar potential because the energy is
kinetic and not potential.
However, eqn. (6} allows us to put
- -
B=curt A (8)
Then from eqns. (5) and (7) we obtain
- - =
curl (curl A)=curl B=pewt H=pJ @)

The left-hand side of this equation can be transformed by the
vector identity

- - -
curl (curl Ay= grad div A-V* A 0
Hence

- 5 =
grad div A -ViA=pJ (1n)

Since a vector is defined by its divergence and curl and since
A has so far been defined only by its curl, we can put

divA=0 12}

Hence
- -5
ViA=—ult 13)
This has the integral solution
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Comparison of eqns (4) and (14) shows that A is the vector
analogue of the scalar potential ¢y This has led to it being
called the ‘vector potential’, a somewhat unfortunate term
since potential energy cannot be a vector,

For a current element we can write
Mt (15

Eqn (15) suggests that we have solved Ampére’s problem of
finding an expression for the effect of an isolated current
element. We have certainly obtained a very useful tool for
calculating the field of currents. A particularly useful feature

of eqn (14) is the fact that A and J are parallel to each other.
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However, this parallelism leads us back to the Euclidean
property of Newlonian space. In fact we have separated
space from physical action and have lost sight of Faraday’s
discovery of linkage. We have also lost sight of the finite
velocity of light and its relativistic effects but this is less
important because that velocity is so enormous. In many
practical cases we can regard it as infinite and this is what we
have done in using the magnetostatic equation (5), where we
have omitted Maxwell's displacement current.

Clearly the idea of linkage must not be disregarded and it is
included in egn (5). We have got rid of it in the expressions
for A by making the assumption of eqn (12). This is an

arbitrary choice and therefore A unlike @ has no unique
value. [t is nol an observabie quantity, but is subject to a
‘gauge transformation’ given by

A'=A+grad A (186}

-
where A is a scalar function. This leaves B unchanged, since

- -+
curl A'=curl A+ curl grad A = curl A (17

Eqn (12) assumes that A is a harmonic function because
div grad A = ViA=0 (18)

Apart from this A is arbitrary. We are now able to answer the
question of the correct energy distribution, Since A is not
- -
unique and s not ohservable, the energy density A, J is not
i o

, tmique either. On the other hand B and H are observable
and the field energy is therefore uniquely correct.

We need now to investigate the physical reason for the gauge
invariance of A. This must be something to do with the idea
of linkage and the fact that the absence of current particles
makes it impossible to use the idea of Newtonian space.
However, before we discuss these matters we need to include
the effects of time on the phenomena.

Time - Varying Potentials
We start with the observable field relationships.

curl E == o a9
&
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v = aD
curl H =1 + (20
o
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divB =0 (21)
-
div D =p (22)
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B=uH (23
L; =£ E (24
I'rom eqgn (21) we put
5 -
B =curl A (25
Then from eqn (19)
-
=~ a_A —grad ¢ (26
o

and from eqns (20}, (24) and (26)
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Hence
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Rearranging the terms in this equation and using the
experimental result

He= (29,
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where ¢ is Lhe velocity of light, we have
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A has not been defined, we can use the Lorentz
gauge condition
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Hence
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The square bracket indicates that f must be taken at an earlier
time given by ! /= { - /e, where f is the time at which A is to
be caleulated.

From eqn (22)

s (34)




and

!
@ :—J'[ijifl;*' {35)
dmed ¥
W

We natice that A and ¢ are related to each other, so that the
potential now has four components: three spatial components
of A and a time component ¢. The combined 4-potential is
subject to a gauge invariance of

AL,p'= A‘ @+ grad A (36)

where the gradient has a time component as well as three
space components. The gauge transformation leaves the
electric and magnetic fields unchanged. The choice of the
Lorentz gauge implies that

This arbitrary cheice makes it possible to separate current

and charge in eqns (32) and (34) and that makes pe ble the
parallelism between A and [ in eqn (33). We have also had to
use Cartesian coor es, because only in these coordinates

it is possible to separate V2 A into three components.

Onee again we have to conclude that the potentials are not
unique, because they depend on a choice of gauge and a
choice of coordinates. These choices are arbitrary and the
potentials are therefore not physically observable. The
energy distribution associated with the potential has no
physical significance apart from the total energy of a system.

What is the Physical Significance of the Gauge
Invariance?

We have seen the potential was originally defined for a
system of interacting particles. Such a system can be
deseribed in terms of potential energy, which is a scalar
quantity. Faraday's discovery of the mutual linkage between
electric currents and magnetic fields drew attention to a
topological property which conflicts with the idea of the
empty flat space used in Newtonian mechanics. It is not
possible to describe electromagnetic interaction in Newtonian
terms, because space and physical action cannot be

separated. There has to be a complete re-appraisal of the
relationship between geometry and phys

The vector potential was devised as a tool for describing the
interaction of sources having direction as well as position.
Such interaction requires a comparison of vectors and the
comparison involves transportation of a vector in space. Ina
flat space this presents no difficulty, because the direction of
the vector is not affected by its displacement, but it a curved
space Lhe direction depends on the curvature and on the path
taken. This becomes clear when we consider, for example,
the displacement of a vector in a curved two-dimensional
space such as the surface of a sphere. '

The direction of a vector is independent of the choice of
coordinates, Its components depend on that choice, but the
vector itself remains invariant. This explains its usefulness in
describing physical phenomena. However, the derivative of

a vector depends on the coordinates, because in a curved
space il depends on the path for the displacement. Tt
becomes helpful to define a ‘covariant derivative’ which is
independent of the choice of coordinates. The technicalities
are not important for our present purpose, The important
results are that the covariant derivative is equal to the
ordinary derivative plus a term consisting of the product of
the vector with a geometrical object called the ‘affine
connection’. This connection depends on the curvature and
the path. It is not a unique local quantity, but as its name
implies it makes a connection. We also find that the
covariant derivative of a vector around a small closed loop is
equal to the local curvature.

These ideas can be applied to the clectromagnetic interaction.
Consider again the interaction between current-¢lements.

For this we need the vector potential and we have found that
it provides the connection. The vector potential is subject to
a choice of gauge and is not a unigue local quantity. Thus
there is a close analogy between its behaviour and that of the
affine connection in a curved space. That is not surprising,
because Faraday's linkage exhibits curvature and the absence
of independent current particles shows that there is curvature
in the electromagnetic space containing current sources.

There is an even deeper physical significance in the gauge
invariance of the electromagnetic field. So far we have
treated electric charge as consisting of particles and current as
the motion of such particles. However, we learn from
quantum theory that these particles are inherently wave-
functions which can be described in terms of a magnitude
and phase-angle. The magnitude relates to probability and is
observable. The phase-angle can be observed only in terms
of phase-differences and is not & uniquely local quantity. The
phase transformation of the wave-function is closely related
to the gauge transformation of the polential, so that the
phase-angle can be expressed in terms of the gauge of the
potential. A charge of gauge, therefore, does not effect the
magnitude of the wave-function, but the derivative of the
wave-function is affected by a change of gauge.

Once again it is useful to define a covariant derivative and as
expected, the patential behaves as an affine connection.
Moreover the covariant derivative around a small closed loop
is equal to the local electromagnetic field. We conclude that
the field describes the curvature which characterizes the
clectromagnetic interaction. [t is an observable local quantity.
This remarkable result shows the underlying unity between
macroscopic electromagnetism and the microscopie quantum
behaviour.

End-Note

A full account of the subjects discussed in this article is given
in the book: ‘Geometry of Electromagnetic Systems’ by D
Baldomir and P. Hammond {Oxford University Press 1996).

The book explains the advantages of using differential forms
in the description of electromagnetic phenomena, because
they combine geometry and physics.

This book also gives a much more complete account of the
relationship between the gauge of the potential and the phase
of the wave-function, which is mentioned briefly in the
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