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Tangential vector finile elements are a consequence ol
geometry: Consider the “roof tap* surface formed by
dppmxunatiug a bwo dimensional polenLi.i] function f by fi
arder finite elements. Since the finite element approximation
is continuous along the element edges, the derivative tangent
to each element edge will be continuous, However, the
normal derivative along each edge will be discontinuous since
the finite element approximation has a crease there,
Consequently, approximating f by first-order finite elements,
implies that the gradient of f must be approximated by
functions having continuous tangential components but
discontinuous normal components, Further, the resulliug, two
copponent vectors are constants inside cach finite element.
Ihis simple observation lies at the heart of tangential vector
finite clements.

Now consider the curl operator. The curl operator has a
domain, a range, and a nullspace, Restricting the discussion to
2D for simplicity, we notice that the range of the curl operator
is a one component vector {a scalar times a unit vector). Ina
differential equation, the range of the curl must be set equal to
something. Thus, in the lowest order case, we will
approximate the scalar in this range by zeroth-order finite
clements (constants). Note that the dimension of this
approximation per element is one. The question is: What
functions must be in the domain of the curl operator so that
its range is zeroth-order finite elements?

The domain space of the curl consists of two parts: (a) a
gradient space as described above, and (b) a non-gradient
space which generates constants. Thus, in addition to having
a function in the domain to generate the constants in the
range, we need Lo add functions to complete the nullspace.
The nullspace of the curl operator is the gradient space. Itis
shown in [1] that the dimension of the gradient space of a
finite element approximation is one less than that of the
original space. First-order elements have a dimension of three,
s0 the dimension of its gradient space is two, as observed
above. Since the dimension of the gradient space is two and
the dimension of the non-gradient space is one, it follows that
the dimension of the domain space is three. Further, these
functions must possess tangential continuity as described
above. The above observation leads to edge elements: define a
vector finite element by its three constant tangential
components aleng each side of the clement. Two of these
functions generate the nullspace described above, the third
contributes the nontrivial range.

This analysis is extended to higher order and to three
dimensions in [1,2]. Tt is also shown in these references that a
proper treatment of the domain, range and nullspace of the
curl operator is required to ensure correct results.

If edge elements are the answer, what is the question?
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There is now consensus on the relevance of edge elements,
but why their analytical form should be the well-known one
(AVA = A'VA | if one denotes by A' the barycenhic
function of node i), that is puzzling. Why not A'VA' | for
instance, with fwo shape functions per edge (and hence, two
DOF's)? Such an edge element has tangential continuity, oo,
and has the apparent advantage of “first-order completeness”
(the property that any globally linear vector field lies in the
generated finite space). So why the first form (with 6 DoFs per
tetrahedron) rather than the second one (with 12)? Why are
edge elements what they are?

Two kinds of answers may be given. First: take seriously the
idea that edge elements are to (say) the magnetic field, what
scalar nodal ones are to the magnetic potential. A point x can
be represented as a weighted sum of mesh nodes,

x= Z A'x,  sowe are justified in interpelating the potential

from its values at nodes: we just set @(x) = zﬁ'qx‘ , where
@, is the DoF at node i, and this works: So it would work
the same if we just could represent a line segment xy as a

linear sum of edges, like this {imagine sy and the edges ¢ as

Z“u‘{,x. yle . Then we would say

oriented vectors): v

that the magnetomotive force along xy is Z’ K (x.nH, |
where the F s are the mmf’s along the edges. Since for a
small segment xy the mmf is approximately # (x)- xv , this
provides an approximation of the field H. Note how natural
the idea is: edge elements — assuming we don’t know them
yet — should yield all possible mmf‘s from edge-mmf’s, the
same way as nodal elements yield potentials at all points from
node potentials. A calculation shows that, if edge e goes from
itoj, then M, (x, ) =(AXVA — AVA)x) (¥ - 1) (Details
are in ICS Newsletter, 1, 3 (1895), pp. 3-6.) 50 when this
working programme is fulfilled, what pops up is the Whitney
edge element,
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The second line of argument would take much more space to
develop. In a nutshell: We are not looking for the edge
element in isolation. We want finite elements for all the
potentials and fields that appear in Maxwell’s equations,
some of which are edge-based indeed, but some of which are
node-based, face-based, ete,, as well. So it's a corrsistent
representional system for all of these at once that should be
loaked for, i.c., a consistent family of “cell” clements, for cells
of all dimensions. “Consistent” here is understood as

implying two things: first, homogeneity in polynomial degree;

second, preservation at Lhe discrete level of such properties as
ker(rot) = range(grad), which are so essential to avoid
spurious mades (besides other reasons), A technique, based
on the so-called “Poincaré gauge”, was sketched during the
panel session, that allows a svstematic construction of
consistent families of cell elements, And not surprisingly,
when polynomial degree is set to ane, and for a tetrahedral
mesh, it’s the family of Whitney elements that is generated by
this process

Higher-Order Edge-Based Vector Finite Elements
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Another interesting problem is the extension of edge elements
to other types of geometric finite elements or higher orders of
approximation. For first order elements, either tetrahedral or
hexahedral, the choice of degrees of freedom is relatively
direct and simple, For example, the tetrahedral first order
edge clements has six degrees of freedom, the line integrals of
the unknown field along the tetrahedron’s edges. This choice
is justified by the fact that fields having tangential continuity
across inteface boundaries, like the electric or magnetic field
ntensity, get a more tangible physical sense through their line
integrals. These are, in fact, the measurable and physically
perceptible quantities, like potential drops and electromative
or magnetomotive force,

In higher order elements, however, different kinds of degrees
of freedom appear. Although they are still related to
tangential projections of the unknown field, the kind of
projection can be essentially different from a simple tangential
component and can refer (o an edge, face or the whole
clement’s volume. In general, an edge - based higher order
element can have edge-, face- or volume- related degrees of
freedom. This diversity serves the purpose of linear
independence of degrees of freedom, whereas their number is
s!rictly determined by the same property, which is furmai]y
called unisolvence. On the other hand, the shape functions are
strictly associated with the particular choice of degrees of
freedom, in the sense that different choices of degrees of
freedom may lead to different shape function expressions.
Edge-based vector shape functions fulfil the property of
tangential continuity across the interface boundaries between
adjacent elements and a property of decoupling between
degrees of freedom and shape functions. The latter simply
states that the “value” of a shape function, askompuled via
the definition of degrees of freedom should be unity for the
degree of freedom that is associated with it and zero for the
others. It must be mentioned here that different degrees of
freedom result in different classes of elements,

Of particular importance is also the property of correct
madelling of irrotational fields, which ensures the elimination
of spurious modes. This property is considered the trademark
of edge-based vector elements and guarantees the correct
topological and geometrical representation of fields, The
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constraints that this property imposes to the shape functions
alfect the terms of highest order in the shape function
expansion. Generally, for an #-th order tangential vector finite
element, the field variation is not fully i-th order, but of order
# to the direction nermal Lo the field and -1 to the parallel
direction, This is often veferred 1o as the property of mixed
order approximalion and is directly related to the correct
representation of the curl operator and the irrotational fields,
An example of a third-order tetrahedron is shown in Figure 1.

Figire 1
A third-order letraliedron with fhe appropriate degrees of freedons shoun
ondy o the first face,

A representative example indicating the efficiency of higher-

order edge elements is given below
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Figuie 2.

-0 surfce plot of the real part of Hx magnetic fild component with a
rugnetic perse equal to 2.0-12.0. (@) Fi v clements 105631255,
1) second-ordor lenients 1:25552, and (e} third-order elements 223652

Hierarchal Edge Elements
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In general, higher order finite elements give a greater
accuracy for a given computational cost, than using a larger
number of low order elements. For that reason, higher order
clements have been widely used for both scalar and vector
field problems.

However, most high order elements are non-hierarchal in
nature, i.e. the set of basis functions for the element of order pr
is not built, hierarchally, from those of lower orders but
consists of all new functions. Consequently, if vou try to
connect an element of order p and an element of order p-1
along a common edge, say, it is not possible (or, at least, not
easy) because the basis functions along the common edge do
not match up. Effectively, this prevents the mixing of different
orders within the same finite element mesh.

On the other hand, the ability to use different orders in
different parts of a mesh is very useful, For example, where
small elements are needed because of the geometric
complexity, low orders can be chosen; where large elements
are possible, high orders are selected to support the required
field variation. This leads naturally to a kind of adaptive
method called p-adaption: from the first (low-order) field
solution, the errors in the elements are estimated, the order
increased in the worst elements, the problem re-solved, and so
o, Even more interesting is the possibility of combined p-
and Ji-adaption, which invalves either increasing thg order or
subdividing the element, depending on which is predicted ta
have the greater impact. This can lead to very fast
convergence rates.

To do p-adaption what is needed is a hierarchal element.
Figure 3 shows, on the left, an ordinary Whitney edge element
with three degrees of freedom, each associated with one of the
edges of the triangle, On the right is a hierarchal element with
six degrees of freedom. The six basis functions of this element
consist of the three basis functions of the Whitney element,

plus three new basis functions (indicated by the heavier
arrows). On the common edge, then, the righthand element
has contributions from two basis functions, whereas the
lefthand element only has a contribution from one basis
function. Still, it is easy Lo impose (tangential) continuity
across the common edge. All that has to be done is to set to
zero the coefficient of the higher order basis function of the
righthand element, and equate the coefficients of the lower
order basis functions of the two elements.

6 DOFs

IDOFs

Figure 3.

T edge clements of different order can share g copmmen edyge
without violating continity provided they are Kierarchal elements.

In the case of edge elements, as opposed to scalar elements,
there is a further advantage to the hierarchal approach. In
veetor electromagnetics it is frequently necessary, or at least
desirable, to split the vector space into a subspace of gradient
{irrotational) functions and a subspace of rotational functions
(i.e. a subspace that contains no gradients), and to work with
a set of basis functions each of which belongs to one subspace
or the ather. This has application in gauging the magnetic
vector potential [3], in a robust edge-element version of the T-
£ method [4], and, recently, in faster solvers for the vector
wave equation [5]. With the lowest order (Whitney) edge
clements, the split is achieved by defining a spanning tree
from the graph of edges of the finite element mesh, Temoving
the degrees of freedom associated with the tree edges and
replacing them by the gradient of scalar basis functions
associated with the nodes of the mesh (Figure 4} [6]. The
rotational basis is then just the set of remaining edge
functions, The question naturally arises, how can this be
generalized to higher order elements? With nan-hierarchal
elements, the Whitney edge functions are thrown away and
replaced by new basis functions, and a new splitting has to be
constructed for the new set. With the hierarchal approach, the
splitting that exists at the lowest level is retained; all that has
to be done is to ensure that the higher order functions added
are also split, and it turns out that this is a purely local malter,
i.e it does not involve the spanning-tree [7].

= Vector Basis Function
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<

.
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Spanning-tree Edge

Figure £,
Aspauning tree of e niesh is used fo split the basts into o gradient part

(gradient of scalar basis functions) and a rotational part (vector functions on
cotres edges).




The fall(acy) of edge elements
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Infroduction

Over the past decade edge elements have earned an explosive
growth in attention in the electromagnetic finite-element
community and this rapid development slill seems lo be
continuing unhampered. They gained their first popularity
only after the fundamental theoretical paper by Nédélec [8]
and the application of these elements, first by Bossavit and
Verité [9] and subsequently by many others.

The main reasons for the success of edge elements seem to be
the following:

* Ldge elements can be used for representing fields with
continuous tangential components while leaving the
normal component [ree to jump,

+ Edge elements can be, and usually are, designed such that
they are free of divergence. Among other reasons, this
freedom of divergence has motivated the hope, and even
conviction of many, that solutions of lield problems
obtained by using edge elements will be free of divergence
and, consequently, free of spurious solutions.

Neédeélec's paper was followed by many other papers

proposing ever new tvpes of edge elements. We mention only

the types that are relevant in the context of the present paper.

In 1985 Mur and de Hoop [10] introduced the so-called
consistently linear edge elements. Conlrary Lo “first-order”
mixed edge elements they provide a linear approximation of
each component of the field in each Cartesian direction. In
.Illl Nédélec presented a very general discussion on edge
elements of this type.

In the present paper the validity of the various claims that are
made regarding edge elements is analysed. A few additional
properties of edge elements are also discussed.

Lddge elewents do allow spurious solutions

A simple and explicit example demonstrating that edge
elements do allow spurtous solutions in driven problems was
given by Mur [12] and it is a trivial exercise for the reader to
construct a similar example for eigenvalue problems.

About the example of edge elements allowing spurios modes
we note the following:

= The example was chosen for the sake of utmost clarity and
simplicity. From it it follows that accurate, non-spurious,
solutions can only be guaranteed by making the
continuity of the normal component of the flux between
edge elements a part of the formulation of the finite-
clement methed
[13,14]

* The example is such that the propertics edge elements have by
definition are used for constructing an unhmbiguous
example of their fatlure in preventing the occurence of
spurious solutions,
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More complaints aboul edge elements

We now catalogue a number of additional disadvantages and
problems one may enceunter when using edge elements:

*  Edge elements are known to be less efficient, than nodal
elements [12,14,15].

¢ The condition of the representation of a field using
vectorial finite elements depends on the bases of the
reference frames used in those elements. In edge elements
those bases are often related to the vectorial orientations of
the faces of the elements. These faces usually are not
mutually perpendicular which will degrade the condition of
the edge element representation [12],

*  Most types of edge elements have a zero divergence. They
can be applied only to solving problems the solution of
which is free of divergence.

*  Under specific circumstances the use of edge elements
may resull in singular siiffness nuatrices [16].

*  Plots of solutions obtained by using edge elements often
seem to be rather “rough”. The problem may be “solved”
by smoothing the solution in post processing, Some
authars [17] claim that post processing vields a reduction
of the error in their results. Itis clear that such a claim
cannot have any mathematical justification,

Eddge elenwenits and ve-endrant corners

Edge elements are often mentioned as a method to eliminate
the large errors that are made when using nodal elements
near re-entrant corners in, for instance, a perfectly electrically
conducting outer boundary. Obviously edge elements, which
are polynemials, cannot be expected to accurately model the
singular behaviour of the field near a re-entrant corner and,
when using edge elements near re-entrant corners, Hie local
ervor deri will remain sinbownded.

Do e have alternatives?

The above shopping list of problems encountered when using
edge elements cries out for an alternative. Fortunately a
number of methods is available that are expected to free us of
edge elements.

We mention the following:

* The first alternative is provided by a new class of vectorial
finite elements, the gencralized Cartesian elements [18].
These elements can accurately model fields that are
discontinuous across interfaces as well as fields in
homogeneous subdomains,

*  Asecond class of alternatives may be provided by so-
called “dual” or “complementary” formulations. In this
type of formulations, two “complementary™ vectorial
field quantities are chosen that togetier allow a consistent
representation of electromagnetic field inside the domain
of computation. Dual approaches assume a subset of the
Maxwell's equations to be exactly satisfied, ie. the local
curl equations as in [19, 20] or the domain-integrated curl
and divergence equations as in [21], while imposing the
remaining field equations in a weak form.

Conclusions

A critical discussion of the properties of edge elements was
presented. A more general and delailed discussion of the
subject of the present paper is given in [22].
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