Technical article

Error Bounds in Computational Electromagnetics

1, INTRODUCTION

Most engineering problems must be solved by numerical
methods that in general are able Lo provide only approximate
solutions. The error analysis is therefore a theme of greal
interest in computational enginéering. It is nowadays of
common use to make error estimation which leads 1o the
definition of the error in the field equations (residual) or in
the constitutive relations (constitutive approach). These a
posteriori error estimations provide a basis for a selective
mesh refinement, and an indication about the convergence of
the solution process. However. in some cases it is important
10 assess the aceuracy of the numerical solution with error
bounds,

1L GLoear. Bounps

The criteria for the determination of upper and lower hounds
for glabal quantities were established in the thirties in the
frame of the elasticity problem [ 1], while the First
applications to computational electromagnetics can be found
in the eighties in the papers of Rikabi et al. [2-3]

The Ligurian approach for the magnetostatic problem is
based

= on the introduction of a pair of potentials, A and €2 | cach
of them able to satisty automatically one only of the
Maxwell equations ViH=] and V-B=0 by imposing
=VxA and H=1-VQ with T selected such that V<
o on the definition of a local error density whose expression
in the linear case is
A= (B 2/ 20 = [VsA—u (T-V 2/ 2u:
in the non-linear case the error density can be defined as
well, as shown in [2] and Fig. 1.

The interface conditions on the discontinuity surfac 1 be
automatically verified by adopting the edge-element based
shape functions for the numerical approximation of T and A.

This allows for the general definition of a global error
functional:

A= [ AVAT-VO) gV =

TIAQ) + ELA) +O(0) = 0,
with strictly definite inequality for each pair of potentials that
do not verify the constitutive relationships.
Selecting A and £ 50 as Lo verify the essential boundary
conditions, the cross term T(A,Q) = |, VA< T-V{2) dV splits
in two independent functionals and the glabal functional can
be written as A(A. L) = Z(A) + B = 0.
By denoting with “0" the actual quantities, e have therefore
upper and lower bounds:

-E(A) <

Ag)=0[0) = BV A, Q.

For linear media and homogeneous boundary conditions
—E(Ap) = O(£LYy) is the magnetic energy stored in the domain.
Therefore, as well known. there exist upper and lower bound

for self-inductance coefficients.
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Figare |
Giraphical representation of the local ervor in nenlinear magnetostatics. 7+
and A% are the num The local error . given by the area
of the shaded surface, is zero if (H%B%) is on the B-H curve and positive
ofherwise.

field estima

1L Locat. Bousns

By using an extension ol the error based approach it is
possible Lo establish upper and lower bounds for local field
quantities, namely the average value of a field component in
an arbitrarily small region [4-5]. The hasic idea relies on the
possibility to determine upper and lower hounds for the
mutual inductance between a test coil and the source
currents,

The self-inductance of the series of two circul
L=l +1,+2M,

where L and L, are the self-inductance of the two circuits

separately, and M is their mutual inductince.

The procedure of the previous section allows Lo obtain
bounds for L, L, and L, Therefore, we can get upper and
lower bounds for M=(L-L, -L)/2:

My =(L,~L,, <L, V2

M =ML ~L,, ~L,, V2,
where the subscript "L (respectively, “U”) denotes the lower
(respectively, upper) bound for the corresponding quantity,

In this context, local bounds were already discussed in the
forties. Here, we recall the main points of a paper by
Gireenberg |6]. who analyzed the Dirichler problem in a
homogeneous domain:

Aw=0inV, w=fon¥§
The starting point is a ¢lassic theorem yielding the following
inequalities:

Dlu) < D(w) = D¥w) < D¥v)

where 1
Diu)=— 7—”\?’14 Nudv
24

D)= %”vu Vudv -j f f;‘fds
A o
Vv 5

‘ 1 dw
D' (w) = ——-jj o s
2 an
5
wis any smooth function satisfying u=fon 5, v €V is any
function satisfying Av=0 in V. Let us consider three different
problems:



L Aw=0inV, w= f ond
2, Aw=0inV, w=-PFonj
3 Aw=0inV, w@=f-PFons§

where fis the boundary condition on §=d V. P is a real
constant, and I is the fundamental solution in the free space,

it
In 2D F=P logf1/r), where r=jix—x, /" +(y— v,/ isthe

distance from fx,,v, ) .

The lirst one is the original problem: the second one is an
auxtliary problem: the third one is obtained by the first two
by superposition.
In the 2D case. using the above inequalities, it is possible t©
get lower and upper bounds for the three quantities:

W, = D¥(w)

Wi =x Pwix.y)

Wy =Wy 427 Pw(xyy b+ W,

which provide bounds for the local value wixy. v, ) :

Wy =W, =Wy <21 Pwixg,vg )Wy =W, =Wy,
Similar expressions: can be found in the 3D case. Greenberg
also defined an iterative procedure able o obtain
successively improved upper and lower bounds without
recaleulating the solution of the Dirichlet problem in the
whole domain. It would be extremely useful 1o transfer this
approach to the numerical methods currently used.

IV, ResuLrs

Two numerical solutions, ie. the complementary A and
(T.£2) solutions, have been determined for the magnetostatic
problem shown in Fig. 2 with each of three different meshes
having 960, 3840, and 15360 elements, respectively.

The method proposed in [4-5] has been applied 1o evaluate
the average magnetic ficld in the measurement region. The
comparison with the exact value of the average horizontal
field <Bxz. reported in Table 1, clearly shows bounds and
convergence. Table T also shows that the complementary
formulations do not provide, by themselves, bounds for local
field quantities.

Table |

M tic field in the measurement region normalized o the exact value of
the average horizontal figld <=

= _Field By atthe Bxat the
e <Bx>y <Bx>p center center
Mesh (A} (1.0

Coarse (L.88034102 111799682 099896084  0.964 10090
Average  0.96168844  1.03785246 099175017 1.01760113
Fine 098449695 1.01525388  1.00392486  1.00806121

V. STATUS AND PERSPECTIVE

Error estimators are essential tools in computational
electromagnetics. The estimate of a local error distribution
provides a basis for a selective mesh refinement, and the
evaluation of a global errar parameter can be used to check
the convergence of the solution process,
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Figire 2.
A 2D magnerostatic problan. Permanent magnets in o hollow iron block

Well-established techniques. borrowed and adapred from
other fields of application [7]. have been successfully applied
1o computational electromagnetics. A wide bibliography on
these techniques, mainly based on the use of local solvers [8]
taking the residual as source term, is given in [9].

The constitutive error approach provides a valid allernative o
the Babutka-like error estimators, Its main advantages are its
straightlforward interpretation and the possibility of providing
upper and lower bounds for both global and local quantities.

The local error (“error density”) is simply obtained by
comparing the different estimates of the fields linked by the
constitutive equations. For instance, in magnetostatics, it is
given by and ease in obtaining both local and global error by
simply comparing the different estimates of the fields linked
by the constitutive equations, as shown in Section I1. The
price to be paid is to double the number of unknowns.
However, the splitting of the functional [2] or the use of dual
formulations [3, 10] allow to reduce the calculation to the
solution of the same problem with two different sets of
variables. For instance in magnetostatics a numerical
B-solution can be obtained by the A formulation whereas an
approximate H-solution can be given by the T, € method. As
shown in [ 10], there 1s a means to further reduce the
computarional effort, by solving the full (linear or nonlinear)
problem with one method and determining the other set of
variables by simply interpelating the dual unknown via least
squares or other linear fitting techniques.

For all stationary problems for which the analogue of a
virtual work principle can be established, complementary
solutions allow to establish complementary variational
principles, and consequently bounds for global quantities.
The key point is the possibility of splitting a real-valued error
functional in two parts, each depending on a different set of
variables. These global bounds are also applicable in
nonlinear, inhomogenecus and anisotropic problems. The
possible extension of these resulls (o the transient
sinusoidal steady-state problems has been widely discussed.
However, the possibility of establishing upper and lower
bounds for global parameters has not been demonstrated
12.12,13]. The fact is that so Far the splitting has been
achieved only for complex functionals for which inequalities
cannol be applied exceplt cases of no practical interest.

Most technical articles dealing with the error approach
mainly refer to differential formulations and associated finite
element codes, Actually. the technical application of the error
based approach, although possible using any technique able




L —————————

1o provide dual solutions enforcing the canonical equations,
became straightforward and widespread when used in
conjunction with the edge elements for their well known
properties of well representing the continnity behavior of H,
E and A vectors [3]. A present limit of the numerical codes
based on integral formulations is that they are not
accompanied by cfficient error estimators. To this respeet, an
estimator based on the definition of a local error density
might probably be applied when using dual integral
formulations like those proposed by [ 14].
Itis pussible to determine upper and lower bounds for the
average values of the fields in arbitrarily small regions. The
technique illustrared in Section 11 can be used for any linear
system in stationary conditions for which the analogue of the
virtual work principle can be applied. The material media are
ssarily isotropic and homogengous, but non-
s are not allowed, It would be interesting 1o extend
the procedure to the nonlinear case. To obtain bounds for
licld values at given points. it would be interesting to explore
the possibility of a combined use of the technigue illustrated
in [4-5] and the method proposed in [6]. which can be applied
only in the ease of hemogeneous media.

In any case, the most critical limitation to the computational
accuracy stems from the approximate modeling of the
material media and the interaction of electromagnetic fields
with other phenomena, e.g. motion, thermal diffusion, MHD,
ete.. Therefore, attention should be kept alive on the material
modeling, with particular attention to hysteresis, and the
formulation and associated numerical cades for the solution
of coupled problems.
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