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One possible method for the automatic mesh generation
for finile element analysis (FEA) uses a dynamic bubble
system [1]. The method features two separate routines;
one for the automatic generation of a set of nodes in
accordance with the desired mesh density and the
dynamic bubble system, and one for the automatic
generation of finite elements according to the Delaunay
algorithm and using the set of nodes generated from the
previous routine. The generation of bubbles is performed
frontally - starting from vertices and edges - and ending
up with surfaces and volumes of the analysis region after
which a dynamic movement of generated bubbles is
performed. The dynamic bubble system consists of a set
of bubbles which are defined by their radii, masses and
positions in space according Lo their central coordinates,
Each bubble obeys Newton's Second Law of Dynamics,
where the acting forces are the van der Waals' forces
between them. Input data for the method are just the
outline of the analysis domain and the radii of séme or
all vertices that define in the model.

First, the vertex bubbles are set by user or automatically
approximated using some approximation technique. .
Next, the generation of edge bubbles is performed and
movement according to the existing dynamic forces is
performed, followed by the generation and movement
in the same manner as above, this time, however, for
the set of facet bubbles, Al the end, according to the

previous pracedures, volume bubbles are generated
inside the entire analysis domain. When the dynamic
stability of the entire generated dynamic system of
bubbles is achieved, the movement stops and each
center of a bubhble becomes a possible node in the finite
element mesh. Then, a tetrahedral finite element mesh
is generated utilizing the Delaunay algorithm and the
above generated set of nodes. In order to avoid
preblems due to the existence of convex regions,
initially the entire analysis domain is divided into a
very coarse, so called pre-tetrahedral mesh, again
utilizing the Delaunay triangulation method and only
the nodes that outline the entire analysis domain,

The method enables easy mesh density control using
simple exponential functions with a very small amount
of input data and very short computation time. The
algorithm is applicable to the automatic mesh
generation of complex shapes and structures such as
those usually encountered in various electromagnetic
devices (rotating machines and transformers). Due to its
modest requirement for input data and its ability to
generate meshes with graded mesh densities, the
method could also be very useful for adaptive mesh
refinements in FEA [2].

To verify its usefulness, the method was applied for
automatic mesh generation of an inductor test model.
The generated finite element meshes for the entire
domain and for the air area are shown in Fig.1, From
Fig.1,it is apparent that the method produces a high
quality mesh division map with graded mesh density.
The average value of the quality coefficient defined as a
ratio between three times radius of the inscribed sphere
and the radius of circumscribed sphere, for this mesh
was 0.88, which is very close to the ideal value of 1.0
obtained for the equilateral tetrahedron.
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Figure 1. Application model. (n) Final division wap (b) Air
region

Mixing hexahedra, prisms and tetrahedra

Jean-Louis Coulomb

Laboratoire d'Electrotechiique de Grenoble,
INPG/UJF-CNRS, Fraiice
Jean-Louis.Coulomb@leg ensieg inpg.fr

Another well known problem in mesh generation,
which is common for example in electromagnetics and
acoustics is the presence of regions of free space which
embed solid objects. Different methods show interesting
features but lack generality (Delauney, advancing front,
extrusion, transfinite mapping, ete.). How to keep the
positive aspects of these generation methods while
minimizing the drawbacks? By mixing them, and
taking into account the problems of conformity of the
mesh. In the toolbox we present, three kinds of mesh
generators are made available: an automatic mesh
generator, a mapped mesh generator and a mesh
technique based on extrusion. The purpose of our
toolbox is to allow the user to mix these mesh
generators in order to increase the accuracy of the
solution and to reduce computational cost. We have
also built a pyramid element [5] that can satisfy the
continuity requirements between rectangular and
triangular faces. The following table summarizes the
different popular mesh generators proposed by the
toolbox. We can divide them into two main families of
methods: automated and assisted generators

4 1S Newslelter:

Table 1. Mesh Generators

Methods Finite Elements  Algorithms

Automated generators  TriangleTetrahedron  Delaunay triangulation

Assisted mesh generators  Quadrangle, Triangle Extrusion
Prism, Brick Transfinite mapping
Tetrahedron

The example in Fig, 2 is taken from the car industry. It
is a heating device, used to modify physical properties
of a car engine. The frequency of the current in the
inductor is 200 kHz and it involves eddy

currents in the metal part. This example, solved with an
A-V magneto dynamic formulation, is rather expensive
because of the four complex unknowns per node.
Furthermore, the accuracy of the solution is very
sensitive to the discretisation of the skin depth, where
induced currents are present. Fig. 2 shows the mesh of
the conductor, the air and the coil. The conductor is
meshed with prisms, the air with tetrahedra and the
inductor with bricks. A strong continuity is ensured at
the interface between free and mapped meshes by the
pyramid elements (Fig. 3). Indeed, the mesh has to be
very thin in the small width (0.5 mm) where eddy
currents occur, that's why prisms are very useful in this
case. A tetrahedral mesh of the whole structure would
have generated too many nodes, and would have
increased significantly the computational cost of the
simulation.

Metal
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Figure 2, Mixing bricks (conductor), prisms (mefal) and
tetvahedra {air) and liking with pyramids.

Figure 3, Pyraids on the interface metalfair,
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Ervor Estimation

Since the real solution of the field problem is unknown,
the error distribution has to be computed using an error
estimator. Several schemes have been proposed in
recent years [6,7,8,9,10,11,12,13], all of them looking for
a compromise between speed and reliability. An error
estimator should have bwo properties: it should give a
local error distribution that is the basis for the adaptive
mesh refinement, and it should give some absolute
measure Lhal can be used for judging on convergence of
the solution process.

Convergence

The error of the finite element solution converges as
1T = OUr), v=minip,i) with 11ldll| being the energy
norm of the error, /i the element size, p the polynomial
order of the elements and A the intensity of the
singularities [14,15]. As the element size h is difficult to
define, the number of degrees of freedom (NDF) can be
introduced. As I decreases with NDF* in the 2D case
and NDF* in the 3D case, the convergence rate can be
calculated from [le|l = ONDF or [l = O(NDE ).

It an grror estimator delivering the energy norm like the
one proposed in [6] is used, the estimated error 1llsl]]
can be compared with the total energy [Hnl[] stored in
the field problem itself, leading to the definition of a
relative error |[lel /11l 1] which shows the same
convergence behaviour as [llelll, since the computed
stored total energy remains nearly constant. Figures 4
and 5 show the convergence of the finite element
solutions for a 2D and a 3D example problem,
respectively [16].

L h-adagtve -
o h-giobal ==
D14
E ®
004
0.001 T T T T
10 100 1000 10000 100000 1e+06

Number of nodes

Figure 4. Relative error vs. number of nodes for a 2D
problen.
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Figure 5. Relalive ervor vs, nwunber of nodes fora 3D
problem.

The convergence behaviour clearly shows that the
number of degrees of freedom necessary to achieve the
required accuracy rises fast when going to 3D, making
an adaptive (and hence well fitted) mesh very desirable.
Due to the geometric problems in the 3D case (see the
later remarks regarding robustness) adaptive mesh
generation 1s seldom found in commercial and scientific
codes,

Adaptive Mesh Generation

Beside the possibility of reducing the required memory
(often at the cost of rising computer time), the adaptive
mesh generation offers another great benefit. Starting
with a very simple mesh, that can be automatically
generated, the software will take over the time
cansuming task of adjusting the mesh to the problem,
To a certain degree the computation of field problems
can become a “fire and forget” task which does not
require human intervention and delivers good results.
Experience shows, however, that the user should
understand both the field problem and its physics, as
well as the algorithms, methods, and limitations behind
the software. If the physical problem is not modelled
properly, wrong results that are not recognized by the
user can appear due to the “everything is automatic”
attitude.

Automatic Adaptive Mesh Generation
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There are many advantages to automatic adaptive mesh
generation. It eliminates the sometimes tedious task of
manual mesh generation by unloading this work to the
computer. [t produces an optimal mesh that

reduces computational costs by minimizing mesh size.
It provides accuracy indicators by which one can
determine the convergence of the selution. And it is
more robust than manual mesh generation, avoiding
the many pitfalls encountered in a user directed
process.




While the above algorithm is straightforward, it does
contain two complex steps, One is the process by which
the elements are made; the other is the procedure used
to compute the errors, For the first of these complex
steps, it is necessary to create a mesh with arbitrary
geometries and to refine it locally. This is possible today
only with triangles in two-dimensions and tetrahedra in
three dimensions. The essential algorithm for this
process is called Delaunay tessellation and was applied
in finite element computation for example in [9,17]. For
the second step, it is necessary to determine the error in
each finite element. This process can be accomplished
for example by the error energy residual algorithm in
[18].

A key component of Delaunay tessellation applied to
finite element mesh generation is the preservation of
object surfaces. The Delaunay algorithm in a “pure”
sense creates a triangular or tetrahedral mesh for an
arbilrary sel of points without considering object
surfaces. In finite element computation, there is an
added requirement to maintain the integrity of the
surfaces of the objects in the model. Until recently, the
leading approach Lo object surface preservation was the
“add point” algorithm, In this algorithm, points are
added to the object surface whenever an element face
cuts through that surface. In theory, if encugh points
are added on a surface, eventually the surface will be
lessellated entirely by element faces. [n practice, this
approach is expensive and error prone: complex models
often generate endless loops and excessive numbers of
surface points,

Fortunately, a procedure that guarantees the integritv of
the surface has been developed recently. In this
approach, the surface mesh is created first, before
attempting to form the volume mesh. Points are added
on the surface to meet strict mathematical criteria. The
volume mesh is created only after these strict criteria
have been met. It can be proved mathematically that a
valid volume mesh that matches the previously
generated surface mesh always exists provided that the
surface mesh satisfies the proper criteria.

The other major component of automatic adaptive
mesh generation is the error energy residual algorithm.
This algorithm is described in detail in [19]. It consists
of two essential steps: (1) computing the residual in
each finite element, and (2) computing the local energy
error from the element residuals. From interpolation
theory we know that the optimal rate of convergence of
a 3D finite element solution is NI-2p2)/31 where N is the
number of points and p is the polynomial order. Tests
show that error energy algorithm provides this optimal
convergence rate
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The current state of the art in tetrahedral mesh
generation shows a well-understood, stable and
compulationally efficient [21] set of techniques to
improve, from the point of view of accuracy, existing,
boundary-conforming meshes. The need for such
strategies arises because of the badly shaped elements
which can be generated by the first stages of most mesh
generation algorithms (Fig. 6).
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Figiere 6. Optinial and vavious types of badly shaped
elements.,

The two main families of mesh improvement
techniques operate, after selecting proper quality
criteria [20, 23], either on nodes or on edges/ faces: the
first through addition, removal or movement, the latter
through swaps [22]. The best results in terms of quality
improvement are achieved by carefully combined
methods [24]. Recently, the use of adaptive techniques
[26], with proper node addition strategies [25], is
becoming more widespread also due to the sinking cost
ol sufficiently powerful hardware (Fig. 7).

Figure 7. Initial and adepted weshing of ¢ C-shaped maguet.

While mesh improvement techniques, which operate on
given boundary-conforming meshes, are today
routinely used, the subject of three-dimensional mesh
generation itself is still open to research. A number of
different issues contributes to the lack of sufficient
robustness and generality of current meshing
algorithms and packages, such as: choice of algorithm,
implementation of a given algorithm, finite precision
arithmetic, interaction, or lack thereof, with the
modelling environment. In computational
electromagnetics and other areas of research which
make heavy use of gridding techniques a number of
different mesh generation strategies are currently used
to generate 3D tetrahedral meshes: spatial
decomposition [34,33], advancing front [29],




Delaunay /point insertion [22], convex decomposition
127, 28]. All of these algorithms have their own
strengths and weaknesses and no one appears to be
clearly superior to all others in general. Depending on
the chosen technique, thousands of elements per second
can be generated on rather inexpensive equipment in
structural analysis and CFD (1000 elements per second
on Sun Spare 2 [35], 15000 elements per second on
HIP735 [36], 3000 elements per second on HIP'735 [31])
and multi-million element grids are also a reality (20
Million elements [30] ). Although such results may
seem, and indeed are, impressive there are no similar
achievements in the computational electromagnetics
community, This very brief overview of the current
state-of-the-art shows that more research in this key
technology is necessary to further strengthen and
simplify the use of finite element codes.
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