Technical Article

A Synergetic Story of
Evolving Thoughts

In the beginning of 90's at Argonne National

Laboratory we had a small team with Larry Turner and
with Bill Trowbridge as an external member developing
integral equation approaches for magnetostatic and
eddy current problems. Qur first aim was to develop an
error estimator for the well known GFUN approach [1]
- which is perhaps the most reinvented formulation in
our community - and for this reason we wanted to
analyse why GEUN suffered the so called “loaping
problem” |2].

The basic idea behind GFUN is simple Magnetic field /i
is decomposed into two components i/ and /" due to
source currents and magnetization M, respectively. Next
one introduces an integral operator H mi — #7.
Denoting by H(m) the “value” the operator assumes at
mwemay write

h—H(yh)=n". (1

The system of equations is obtained by solving (1) in
the centroids of the elements in which case the problem
becomes solvable in terms of I

There had been a lot of work around this idea already
in the late 60s and in the beginning of 70's especially in
the group led by Bill Trowbridge at the Rutherford
Appleton Laboratory in England and GFUN code was a
result of these studies. Larry Turner was a leading
member of the group and with others [3] they had a lot
of numerical experience of GFUN. The members of the
group must have been some kind of “computer nerds”
of the beginning of the 70's as they had optimization
and particle tracking supported with interactive
graphics already at the time when pocket caleulators
were not yet part of every day life. However, in the
second half of 1970's partial differential equations
became much more appealing in nonlinear
magnetostatics and the researches around integral
methods were gradually diminished. Still some
outstanding papers were published, such as e.g. [4]
although they seem to get easily forgotten. Tt was a
challenge to go back to this old material, read the old
hand written notes and try to create something new out
of it. “The uncrowded paths are on the deep unbroken
fields of snow”.

One of the first questions was, what did GFUN actually
solve. It was not i as it was not possible to construct
any kind of discrete h-field possessing proper
continuity conditions. The same held good for magnetic
flux density k. This question turned out to be rather
difficult and to avoid it we chose the standard
engineering approach: if there is a major problem take a
step backwards and try another route. So, that’s what
we did and less than a year later we had a new integral
code called GFUNET [5] which removed many of the

practical problems of the old GFUN, including the
“looping” problem referred to above. With John
Simkin's support GFUNET was also connected to a
standard pre and post processing environment. But if

there been open questions before with GFUN now we
had maore of them. I‘whapa the most amazing fact was
that GFUNET yielded ilar kind of rL!:,uIta as other /-
oriented formulations such as the standard
magnetostatic FEM-codes based on scalar potentials -
although GFUNET was very different. Basically
GFUNET was built around (1, but the equations
“matched” along edges instead of points. Knowing that
the circulation of i vanishes around all (bounding)
cycles, we were able o construct a system of equations
solving the circulation’s of i1 along the edges of the
spanning tree.

[t was intuitively clear that our approach was somehow
complementary to Albanese and Rubinacci’s eddy
current formulation for nonmagnetic materials [6]. In
fact, at first | had misunderstood what they did and
that's how the complementary idea was picked. In their
case the spanning tree was removed from the system
whereas we needed the spanning tree but not the
complement. Thence, it was reasonable to assume that
the combination of the two would be a full integral
approach for the eddy current problem including
magnetic materials. But that was almost all we knew at
that time. | started to wonder mysell, where is the
divergence condition hiding. As the code yielded
similar kind of results as other h-methods, the div b = (
condition had o be somehow involved in the system.
Hence, the main question was to understand what
really were the equations we solved.

Later on back in mnporo my colleague Kimmo
Forsman implemented a wm;_,htcd version” of
GFUNET following John Simkin’s similar kind of
approach with a later version of GFUN', This means
that the starting point was a weighted version of (1), L.e.

[ h=[w HGhy = [w-b" w' e IPEQ) @
Q o 0

where IL{€) is the space of square integrable vector
fields in domain £. With the new code we discovered
two interesting facts L 1 Hginand 1 were
represented in a discrete space, we got precisely the
same resulls as before. Secondly, if we tried to integrate
terms [’ - Hiyh) and [0 - I as accurately as
possible” the results were significantly worse than what
the first version of GFUNET gave. The first property of
the weighted version gave some light on what was
going on, but still our puzele was not solved.

[t is an interesting fact of life that one may be close to a
solution without recognizing it. Since 1988 1 had been
carrying in my briefcase a paper by Bossavit about
Hodge decompositions and about the so called
Bihovskij-Smirnov's fivefold decomposition of the
space of square integrable vector fields [7]. | had been
reading the paper every now and then, but really did
not gel into it until Alain Bossavit inspired me and
Kimmao Forsman to look at it closely while we were
writing reference [8]. The mathematical tools of [7]

! rel; private communication with John Simkin,

2 Highyand I were integrated within the elements, and the second
integration was carried out numerically with a high number of
Gaussian integralion points.




turned out to be the key to get forward. Bihovskij-
Smirnov's decomposition is a generalization of the
classical Helmholtz de-composition and it is a useful
tool in examining the mathematical structure involved
in Maxwell's equations.

Let us assume that and that demain Q is embedded in a
three dimensional Euclidean space. A good technigue to
illustrate the structure behind Maxwell’s equations is to
display a de Rham’s complex, Fig. 1.
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Figure 1: Ade Rham’s complex showing the structure ehind
Maxwell’s equations

The hoerizontal lines of Fig. 1 represent the spaces of
square integrable scalar and vector fields in domain €,
i.e. L'(€) and IL(€)), respectively. On each level non-
intersecting segments of these lines represent mutually
orthogohal subspaces’. The vertical arrows show how the
grad, curl and div operators map these subspaces to
each other. The subspace of gradients is denoted by G
and C is the subspace consisting of curl fields.
Subspaces H', p = 0,..., 3 are the so called pth de Rham
cohomology groups. In this case H ' and H * are of
special interest because they ave related to “loops” and
“ravities”. We'll get back to this point later on. C | and
G | are the orthogonal complements of ker(curl) and
ker(div). They consist of curls and gradients,
respectively, but this ime with some additional
conditions, and hence the sub- and superscripts.

The classical result by Helmholtz says that any square
integrable vector field in three dimensional Euclidean
space can be divided uniquely into div-free and curl-
free components. Equivalently one may state that, if the
sources and vortices of a vector field are known and if
the field vanishes at infinity, then the vector field is
uniquely defined. The classical result holds for the
whole space and Bihovskij-Smirnov’s decomposition -
which follows when levels p = 1 and p = 2 of Fig. 1
overlap - is a generalization onto bounded domains.
Bounded domains are essential for us since that is
typically the case in numerical computation’.

*Tiwvo spaces U and V are orthogonal, if for every u & Uand v e V
their scalar product [ (scalar fields) or [ - o (vector fields) is null

4 Be aware, that this
on integral operator:

s typically the case also with approaches based
The problem is solved in a bounded domain
although in the post processing slage fields can be inlegrated on
points of the exterior space

Otherwise, the spirit of the numerical solution process
is well aligned with the classical Helmholtz result.
What we solve are “div-free” and “curl-free”
components but this time, due to boundedness, they
correspend with curl and grad components equipped
with some additional conditions.

The simple example of magnetostatics will enlighten
how orthogonality and the decompositions plug into
our numerical approaches. In the magnetostatic case we
want to find vector fields b and h such that

divh=0, 3
curl h= j, (4)
b= ph, (5)

hold withing, and such that the b and /or /i fulfill
appropriate boundary conditions.

As there is an apparent problem that the curl and div
aperators are not defined (in the classical sense) e.g. on
the material interfaces we switch to weak forms. Going
through the pi‘O(EbS; we end up with weak forms of (3)
and (4) and the idea is now to find vector fields b and h
such that

Jodivb=0 Yo' {Q) (6)
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and such that (5) and the boundary conditions are

fulfilled.

There are now several choices to make, The main one is
to decide whether to salve the problem in terms of b or
I Let’s choose first b. Assuming the domain is
topologically trivial enough and by integration by parts
the magnetostatic problem becomes find the veclor field
B in [L'(€2) such that

Jodive=0 o' () ®
Q

J',i;’-ib=.[w’xh-n+jw'vj Yw'ec, ()
lu' r Q

Q

where C is the graph of the mapping of curl from TLY(Q)
onto C (i.e. the set of all pairs {w’b'},w’ € ILZM.(Q) and
b e C such that b’ = curl w’. This problem lends itself to
be solved directly in terms of b using Whitney (facet)
elements’. However, there are alternative techniques to
impose (8) as well. Using an analogue of the idea of
spanning trees, but now for facets, one can construct
subspace C by extracting a maximal set of facets that
does not generate closed (bounding) surfaces. If b is
sought from C then (8) yields no information, as if b e
C, then div b =0, see Fig. 1. The situation is precisely
the same, if we want to solve a magnetostatic problem
in terms of magnetic vector potential a. If b = curl a, this

Y In fact, it is not simple in all its details. See reference [9].

" Notice that in this case @ & W? which is the space spanned by
“yolume elements”




Figure 2: A coil avound a imagnetic knot. The cones show
magnetic flux density within the knot.

implies that b & Cand hence, again, there is no need for
(8). In this case the problem is to find ¢ in ILY(Q) such
that (some boundary conditions and a gauge for a are
obviously needed to find a unique solution)

lcurl W -#

curl n:J‘w'Xh—n+J‘u"—j W02 (10)
r u

But now; (10) is the same as what is obtained when one
starts with a PDE in terms of a. Hence, assuming exact
arithmetic it does not make a difference whether the
magnetostatic problem is solved terms of b or a. Of
course, some approaches are numerically more efficient
than uth_crs, but that's another issue.

Going the other way around and choosing 1 instead of
b the roles of (6) and (7) swap. Exploiting the spanning
tree extraction technique or by introducing a scalar
potential (or the so called “reduced scalar potential”)
for h, we get rid of (7) as the information of it is already
included in the system. Thus the same solution is found
independently whether we solve directly for ft or if
PDEs and potentials are employed.

Now we can get back to where I started. The missing
divergence condition of GFUNET followed from (6). As
is explained thoroughly in a paper which will appear
around March 1998 [10], starting from (6) one can get

[ ugh= [ Hom = [0 vire G )
Q 0 Q

This is what the very first version of GFUNET did
when it “matched equations along edges”. Notice also
the relationship between this and (2). )

The real asset was, however, that de Rham complexes
and Bihovskij-Smirnov's decompuosition revealed the
infrastructure behind the superstructures of
computational electromagnetism. It was not only the
connection between standard boundary value problems
and approached based on integral equations which was
important, but as well the systematic and consistent
approach to impose well posed problems although the

"o

domain included “loops”, “cavities” or even worse

“knots”. This is, of course, one of the main messages of
Bossavit's paper [7]. The topological properties of the
domain are related to the de Rham cohomology groups
H', p=0,.,3, and hence they are the key to understand
when and what kind of “cuts” are needed. A grip on
this makes it much easier to understand why pioneers
such as Alain Bossavit, Robert Kotiuga and others
encourage the use of differential forms as a native
background for electromagnetism. Going in this
direction leads to subjects such as homology and
cohomology which are tough, but on the other hand
essential. It seems that the classical training of engineers
and physicists is not always precise enough in these
issues, This is perhaps why one of the topics of
Compumag conferences is “multiply connected
regions” although simply and multiply connectedness
are misleading concepts in this context (see e.g. [11] and
especially [12] for a readable exposition). For these
reasons I think Kotiuga's PhD thesis [13] or Bossavit's
paper [7], are important milestones in our field and
they both deserve mare attention, In the literature one
can find also many “smaller” examples of the
usefulness of the mathematical background. For
instance, see the effect of the right hand side to the
convergence properties of an iterative solver studied in
references [14] and [15]. As Ren has showed in [15] the
convergence problem gets back to the properties of the
discrete spaces and to the discrete operators between
them. All this boils downs to the same roots of
computational electromagnetism.

a1

Figtere 3: A sealar potential constricted from Hre solution of
f1. Netice Hie jump in the polential (in the fop).

As a last point it is interesting to challenge the
“folklore” which says that it is not possible to find a
general formulation for all the problems we deal with.
For instance, it is quite often said that the magnetostatic
and eddy current problem require solution techniques
of their own. When it comes to efficiency this may well
be the case’ but there still remains the question, could
we create a methodoelogy that generates “all”
formulations, and if so, can they all be coded ina
reasonable manner as one package. As can be seen from
Fig. 1, there is a certain structure involved in the
Maxwell's equations which repeats itself from one level

71t is pbyicus, that numerically the most efficient cede is the one
which is tuned for a specificproblem, because it does not carry out
any extra work,
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essential in compressing data into a compact and
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