Technical Article

Stochastic Design

in Applied Electro-
magnetics ...The Genetic
Algorithms Approach and
System Optimization
Strategies

The need to solve electromagnetic problems accurately
and efficiently for large-scale complex problems has
caused the emergence of computational
electromagnetics. The methods developed, such as the
finite difference method, the method of moments, the
finite element method, and the boundary element
method, have become increasingly sophisticated with
ever increasing computational power. These numerical
techniques are used by researchers as indispensable
tools to compute the field parameters and predict the
performance of devices in all areas of electromagnetics
These applications range from two-dimensional
electrostatics to nonlinear eddy current calculations in
three dimensions and to high frequency applications.
The tremendous advancements in computer technology
make it possible to enhance these analysis tools with
state of the art modelling and post-processing
capabilities to offer the researcher or the engineer
everything that is necessary to analyze an
electromagnetic problem in a user-friendly package.

Many researchers and engineers, however, seldom need
to perfotm analyses alone. Their major task is to come
up with the best solution for a problem. [n other words,
engineers need a tool that can help them synthesize the
best solution for the problem in their hands. The place of
an analysis package in this task description is to provide
the solution and the performance measure of the current
design, which help the researcher navigate in search of
the optimum. With the definition of this new need,
computational elecromagnetics adopts another field,
design optimization. Using the already perfected
analysis modules in coordination with a search method,
design optimization in computational electromagnetics
seeks the optimum solution for a specified problem.
This problem has an objective function and constraints.
Design optimization's task is to maximize (minimize)
the objective function while not violating the constraints.
The objective function [{x;}, is a function of the design
variables, x;. The number of design variables defines the
dimension of the search space. There is a set of
constraints that govern the domain of the design
variables, Bach constraint can be written as an
inequality; pi(x;) 0. The optimization is formulated as:

Maximize f{x;) (objective function)
Subject to pilvs) £ 0 (constraints)

Optimization is not a new concept. Problems dealing
with the optimization of parameters are seen in every
field. Mathematical optimization can be dated to as
early as the mid 17005 when Euler developed the
calculus of variations, Many other mathematical

optimization techniques are derived from the calculus
of variations. In the last 20-30 years, progress has been
made in solving inverse problems largely due to the
mathematical regularization theory developed by
Soviel scientists [1],

In electromagnetics, numerical techniques combined
with the available computing capability raise the
appuortunity for incorporating the analysis methods
with a search scheme to locate the optimum in the
search space, This very promising environment results
in the addition of new techniques to the arsenal of
numerical optimization methods, Stochastic search
technigues, such as simulated annealing, evolution
strategies, and genetic algorithms, along with artificial
intelligence based methods, such as neural networks,
have been introduced in the last ten years. Optimization
schemes that combine one or a hybrid of several of
these methods with computational electromagnetics”
analysis lools are reported (o have successful
applications to design oplimization problems of various
kinds. Genetic algorithms (GAs), developed by John
Holland in the 1970s, attracted the interest of more and
more researchers due to their robustness and efficiency
in handling search problems. In computational
electromagnetics, design optimization can benefit from
the use of this highly successful method. The finite
element method joined with GAs to form a design
optimizalion environment for electromagnetic devices,

One of the most difficult aspects of design optimization
is the shape optimization problem. The optimization
technique described here is not limited to shape
aptimization. Other design paramete uch as
excitation and material characteristics as well as device
terminal parameters may also be a part of the
optimization’s goal. Thus, a multidimensional search
space is under consideration. The optimizaticn method
must be able to perform an effective search in a
multidimensional parameter space. As a shape
optimization problem mav require a high number of
control points to be adjusted, the number of design
parameters can be quite large. This should not pose a
major difficulty for the optimization scheme. In other
waords, the developed scheme must possess the
flexibility to adapt easily to different design needs.

The multiparameter objective function for a simple
design optimization problem in magnetostatics can be
non-convex (local extremes), non-differentiable, and
stiff [2-3]. The optimization algorithm must be able to
deal with these ditficulties. It is known that a search
method based on deterministic methods tends to fail
when the objective function is discontinuous. The local
extremes also present a significant danger to the success
of the search because the gradient based algorithm can
be casily trapped in such a local extrema, Finally, the
search process is rated by its speed of finding a solution
and the accuracy of the solution, its closeness to the
global optimum. Therefore, the developed optimization
method, these parameters must be within acceptable
margins. Besides the search algorithm, an analysis
scheme is also needed. The analysis module’s task is to
provide field solutions for the different designs
suggested by the search tool. Modelling the problem is
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one of the responsibilities of the analysis module.
Bspecially in shape optimization, accurate modelling of
the suggested design is very critical. The analys
section of the optimization environment, therefore,
must be able to model the problem accurately and
efficiently, and it must provide accurate solutions for
the field parameters. The search relies on the analysis
done on its suggestion. Direct application of GAs to the
design optimization of electromagnetic devices is
explained through an example.

1. Genetic Algorithms

John Holland laid the foundation of GAs in the

publication summarizing his work on designing an
artificial system that simulates the characteristics of a

natural system [4]. Since then, GAs have been
successfully applied to optimization problems in
various areas of research ranging from chemistry to
social sciences [5-8] as well as in the optimization of
electromagnetic devices [9-11]. Genetic algorithms
mimic the mechanics of natural genetics, The search
starts from a randomly created population of strings
representing the chromosomes. The optimization is
based on the survival of the string structures from one
generation to the next. Strings that better suil the
environment, the objective function, are more likely to
survive. Using the bits of information, genes, of the
survivors of the previous generation, creates a new
improved generation.

Genetic algorithms implement methods of nature.
Natural systems show a high level of robustness. This is

the rebu{t.of their being able to adapt to many different
environments and to operale to locale the global
optimum without being attracted to the local optima [8].

GAs are different from the other common aptimization
methods because: 1) they operate on a population of
points in the search space simultaneously, not on just
one point, 2} they work with a coded string
representing the parameters, not the parameters
themselves, 3) they use the objective function itself and
nol derivatives or any other additional information, and
4) their rules for transition are probabilistic, not
deterministic [8].

There are three fundamental operators involved in the
search process of a genetic algorithm: 1) reproduction,
2} crossover, and 3) mutation. The reproduction
operator creates a new generation giving the better
strings of the previous generation a better chance of
having more copies in the new population. The
crossover operator accounts for the information
exchange between string pairs randomly mated from
the entire population. Occasionally, the mutation
operator changes the value of a string position. It acts as
protector against the complete loss of some important
genetic information [8].

2. Application of GAs to Design Optlimization

There are two fundamental functional bodies in a
design optimization process; the analysis tool and the
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search algorithm. They continuously interact, as for
every new set of design paramelers the search
algorithm suggests the analysis tool solves the
governing equations and determines the value of a new
point in the search space. The genetic algorithm
performs the search operation and the finite element
method carries out the analysis. A schematic diagram of
the procedure is given in Figure (1). The GA comprises
all the blacks on the left side of the figure, The analysis
is shown as a single block, which contains all of the
processes of

Initial Population

3 Fitness _‘>{ Finite Element _i

Average Fitness @—— Analysis

I Reprodustion
Crossover
Mutation

¥

—— New Generation

Figure 1. Genetic Algerithis in Design Optimization.

AGAstarts the search from an initial population of a
certain number of members. This population i
randomly created within the domain of the search space.
The members of the population are finite length string
structures called chromosomes. Coding the desngn
parameters using a finite length alphabet forms these
structures. Generally a low cardinality alphabet is used,
such as the binary system. The coding of the

parameters is entirely application dependent and it is
one of the critical aspect of the performance of a GA.
For the binary alphabet, two of the well-known ones are
binary and gray coding. The bits in the strings are
called genes. As every chromosome in the population
represents another design, it is necessary to determine
how well fitted each design is. The FEM creates a mesh
tor that particular design, solves the governing
equations, and informs the GA about the performance
of the designed device by returning the necessary
values such as magnetic flux densities at critical points.

From the results of the analysis, GA calculates the
objective function value for each chromosome. This
value is called the fitness of the chromosome and plays a




significant role in the further steps of the search. Also, an
average fitness is caleulated representing the fitness of
the entire population. The decision on the convergence
of the search is made based on the average fitness as
indicated in Figure 1. If the search has to continue, the
GA creates a new generation from the old one. There are
three operators, which exclusively characterize the GAs;
repreduction, crossover, and mutation.

Based on the fitness of a chromesome and the average
finess of the population, the reproduction operator
determines, rather randomly, whether that particular
chromosome will have copies in the next generation,
and how many. There are many ways of designing this
operator, however, the underlying idea is to give the
chromosome with a higher fitness more chance to be
represented in the next generation but leave the actual
decision to a random variable.

Once the reproduction is complete, the new generation
is made of copies of the previous generations’ members
Nevertheless, there is no new information. It is time for
the chromosomes to exchange information through the
crossover operator. At this point the number of
chromosomes in the population has not changed.

The crossover operator forms pairs from the new
generation mating chromosomes randomly. For each
pair all bits from a randomly selected position on the
string to the end of the string are swapped. As an
example suppose the coding is binary with an alphabel
A={0,1}. Assume that before crossover two strings, $;
and Sy are mated and are represented as:

5 =1101010110
1001110001

Also assume that the crossover site for this pair to be 3
as indicated above. After crossover the new pair is

S5=1101110001
5, =1001010110

The third fundamental eperator of GAs is the mutation
operator, It occasionally changes the value of a gene
acting as a protector against the complete loss of some
important genetic information [8].

Both crossover and mutation operators have occurrence
probabilities. Compared to the crossaver, mutation
happens much more seldom.

After all these operators perform their functions, the
new generation is macle of members who have gained
new information through the exchange between pairs,
The better traits of the “parent” chromosomes are
carried along to the future generations.

3. A Magnetizer Example Problem

A magnetizer is modeled where a high current is
applied to a coil, which causes a magnetic field to be set
through the material that is to be magnetized. The
geomelry of the problem is shown in Figure 2. The
Tegion to be magnetized is assumed to be made of
non-magnetic material. Permeability very close to that

of air is assigned to that region. For the pole face and
the outer shell, the relative permeability is p, = 2000,
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Figure 2. Geometry of the magnetizer probleni.

The goal is to optimize the pole shape to achieve a
sinusoidal magnetic flux density distribution along
chord, AB, positioned at i = 60.0 mm, halfway through
the width of the magnetized piece. The magnetized
material is placed across a 60" angle. Points A and B are
located at a 17 distance from either end of the
magnetized region. Chord AB subtends a 58" angle. At
point B, the flux density, B, is maximum, and it is
expected to follow a cosine function along AB.

There are six points that control the pole face’s shape.
These are indicated as P, through P,. The control points
are mapped on te a polar coordinate system with its
arigin at Q. The angular coordinate of each contrel
point is kept constant with 18" between two consecutive
points. The radial coordinates, ry through v, constitute
the six design variables with mapping ranges given in
Table I. Once determined, the radial and angular
coordinates of a control point are mapped back to the x
and y coordinates. Uniform non-rational cubic b-splines
(UNBS) are used to appreximate the shape of the pole
face from the six control points.

The objective function in equation (1) performs a
comparison of the desired and calculated magnetic flux
density values, Byegwa and Becuad, at 59 points along
chord AB, separated from each other by 1", To avoid
ripples on the pole face, a penalty term, M, is included
in the objective function. The value of M is calculated as
a function of the slopes of the line segments connecting
consecutive control points, P, through Py, The curve
modelling the pole face is expected to decrease
monotonically. The penalty, theretore, increases with the
number of line segments with a positive slope. If all
segments have negative slopes, there is no penalty.
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Bioreak = Buiarg $I0(90° — k) For 1sk < 59 (2)

Afitness for each design a is defined as ®(a) = 1/f (a).
Because f (a) in equation (1) prescribes an error term for
design a, maximizing the fitness translates into
minimizing the objective function.

The GAis run with a population of 40 individuals.
Character strings of 15 bits each are allocated to the
Tepresentation of each of the 6 design variables yielding
a chromosome Jength of 80 bits per individual, The
representation scheme uses Gray code to map the real
valued design variables in to binary strings. Linear

| fitness scaling is employed to apply selective pressure,
The reproduction operator is based on the remainder
stochastic sampling without replacement method.
Uniform crossover is applied with an occurrence
probability p, = 0.9 per chromosome pair. Mutation
probability p,, = 0.005.

4. Results of the Magnetizer Example

The evolution is stopped after 200 generations. The best
of all individuals is selected as the optimal design. The
optimization results of the magnelizer problem are
presented in Table IL Figure 3 shows the final pole shape
while Figure 4 compares the desired magnetic flux
density with the flux density calculated for the optimized
geometry along chord AB. The good results are attributed
to the higher number of control paints in modelling the
pole shape and the imposed geomelrical constraint.

DESIGN VARIABLES AND THEIR RANGES USED IN THE MAGNETIZER
FROBLEM

Design variable Mapping range [mm)

ry 22.0-295
r 22.0-30.2
r3 22.0-323
ry 22.0-38.0
Is 220-414
s 22.0-485

Table I

COORDINATES OF THE OPTIMIZED CONTRGL POINTS FOR THE
MAGNETIZER

Cantrol Point

Design variable r [mm]

P, 25.586
P, 25.790
Py 27.536
P. 30.089
Ps 31.738
Ps 36.987

Table 11
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Figure 4. Comparison of the expected and optimized results,

5. The Generalized Optimization Environment

When optimizing designs for practical electromagnetic
problems, the number of design constraints and
variables is increased drastically [12-14]. The
construction and step-by-step creation of an electrical
system, in practice, is a trial and error process. The
design may lead to a sub-optimal solution since the
success of a design depends on the experience of the
designer, Tt is therefore necessary to simulate the
physical behaviour of the electrical system by numerical
methods in a generalized fashion. To obtain an
automated optimum design, numerical aptimization is
necessary to achieve a well-defined optimum.
Optimization requires that all design goals, of a device,
be connected into a single objective function with all
independent variables and constraints. In applications
to practical problems, effective pre-processing and post
processing of data are necessary in addition to high
performance computing capabilities. To achieve this
process, a generalized oplimization environment is
suggested in Figure 5.
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Figure 5. Generalized Optimization Architechure for Practical
Design of Electrical Devices.

The system architecture for this optimization can be
utilized for the computational creation of an electrical
device ora system. Itis intended to be a design and
development toolbox system for practical applications in
an industrial environment. As shown in Figure 5, the
generalized optimization environment involves four
main interacting blocks. These represent: 1) the
computing platform, 2) the analysis toolbox, 3) an
optimization chest, and 4) the design engineer’s
observation and decision making path. The optimization
chest is a black box of various optimization techniques.
Ihe choice of an optimization procedure versus another
is based on the expectation that the selected method will
work faster or give best answers to a particular problem
rather than the heuristic choice of a method that is
application spec The interaction between the
modules is described in a shared open system
computational environment which will make use of
available computing facilities and utilize the experiences
and tools gained from previous applications.

The Conmputing Platform

The current improvements and increase in capabilities
of desktop computing facilities will enable the designer
to utilize vast computing resources that are available in
the design environment. The computing platform block
in Figure 5 represents the computing facilities that may
be available in the design environment. In this platform,
parallel computing machines, clustered workstations
and personal computers could be utilized to provide
super-computing capabilities at low cost. Workstation
farms connected to data swilches and data :
communication networks could provide automated
access to clusters of workstations that could be shared
at distant locations or at the work place,

The Analysis Toolbox

This toolbox includes a collection of modelling tools
and analysis techniques. Software packages for FEM,

BEM, FDTD as well as other technigques will be accessed
concurrently by the Optimization Chest Lo determine
the objective function values, and by the design
engineer to observe the perfermance and check the
design parameters interactively. The analysis toolbox
also include information about the various methods
and their formulation, facilities for pre- and post
processing of input and output data, mesh generation,
mesh density information, adaptive meshing and
additional interfacing software to access the various
blocks in the overall system.

The Optimization Chest

This block includes a collection of design methods.
Each is treated as a black box with an interface that
accepts the appropriate problem specification. The
techniques in this box include evolutionary algorithms
such as evolution strategics, evolutionary
programming, genetic algorithms and genetic
programming. It also includes artificial intelligence
algorithms such as neural networks, simulated
annealing, expert systems, fuzzy reasoning and
adaptive learning, In addition to these emerging
methadologies, standard search algorithms ranging
from gradient methods, random search, hill climbing
and biased random walk will also be included in the
optimization chest. As practical applications require
many objectives that may not be met by one of the
metheds, combinations and generalizations of these
algorithms have proved to be powerful. Design
sensitivity techniques are also included in the
optimization chest.

Parametric Design in the Optintization Chest

The optimization chest described above is a stochastic
blackbox approach to design optimization. To check its
performance in a practical environment, cach box
representing a lechnique should be based on the same
assumptions. These may include: 1) the values for each
parameter must be found, 2) each parameter has finite
number of possible values, 3) combinations of
parameter values may be unacceptable, 4) there is a
function to give a measure for each set of parameters,
and 5) the objective function is to produce an optimal
set of design parameter values for an acceptable scoring
measure. The cheice of an optimization method should
be based on which method can work faster or give best
answers to the problem rather than if the method will
work at all for the given application. Approximating
continuous parameters with discrete values will work
for most applications but may increase the problem
dimensionally. Combination methods are used to
reduce the size.

Problews Specification

Applying any or all of the design methaods to a given
problem can be successful with proper problem
specitication. Some suggested methods to enable the user
specity the problem are discussed here. These methads
could be coded in software that will execute before
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invoking the design process. The creation of a design
policy, in the form of a rule-generating function that
produces a feasible set of rules, may be developed. Fach
use of this function may produce a different set of rules
for every application. For this reason, the feasibility of
the generated rules must be checked. Formulating a
function that will be used to determine the feasibility of
the generated rules is an important task in specifying the
problem. Such a function will take any generated set of
input and determines if the values satisfy all users
imposed constraints, The next step in specifying the
problem is a scaring function that takes the rules as
input, evaluates it and returns a measure of merit, In
order to evaluate several methods, the same scoring
function must be used. The performance of any method
in the optimization chest could be determined based on
the number of objective function evaluations, or on the
time it takes to return a feasible solution or a
combination of these ideas. The final item in the problem
specification process is an output function, which will
display the input ta the optimization chest. Here, other
user inputs such as relating the parameters to those in a
database or empirical data from previous design or
adding explanations and additional restrictions on the
parameters may be added. This process can be used at
the end of the search process for determining if a good
design is reached. This process can alse be used during
the search as a checking mechanism to interrupt to see
the search result at some point.

Observations and Decision Making

This part of the optimization environment includes
information access in the form of query search database
inan industrial or a research environment. This may
include interactive features to access information on
field and experience data, design aids and rules,
empirical data, knowledge base, cost tables and parts
list for off-the-shelf design optimization.

6. Conclusion

GAs provides a high level of robusiness by simulating
nature’s capability of adapting to many different
environments. Through the application of GAs to
design optimization problems, the performance
characteristics of the GAs are shown to be powerful in
solving optimization problems with high dimensional
objective functions containing several local minima. As
they use only the fitness values, GAs does not require
derivatives or any other additional information about
the objective function. The performance of GAs can be
improved significantly by applying selective pressure
and adequately providing a shape modelling technique
to control the range of variation for the shape o be
optimized.

We also described a generalized optimization
environment that may be valuable for current and
future activities in computational electromagnetics for
analysis and design of practical applications. This
environment involve interacting blocks and adds the
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input of the design engineer to the process and giving
him the final decision making on the achievement of an
optimal design. The interactions between the various
blocks of the system can be implemented in an
industrial or a research environment.

References
[1] V. B. Glasko, Irverse problems of mathematical phisics, New

York, New York: American Institute of Physics, slation
Series, 1988,

=)

] A. Gottvald, K. Preis, C. Magele, O. Biro, and A, Savini,
“Global optimization methods for computational
electromagnetics”, IEEE Transactions on Maguietics, Vol. 28, no
2, pp. 1537-1540, March 1992,

13] K. Preis, O. Biro, M. Friedrich, A. Gottvald, and C. Magele,
“Comparison of different optimization strategies in the design
of electromagnetic devices”, iE isaction on Magnetics,
Vol. 27, Nuo. 5, pp. 4154-4 September 1991,

14] 1. H. Holland, Adaptation in Natural and Artificial Systenis, Ann
Arbor: University of Michigan Press, 1975

[5] €. B. Lucasius and G. Kateman, "Application of genetic
algorithms in chemometrics”, Proceedings of the Third
International Conference on Genetic Algorithins, George Mason
University, pp. 170-176, 1989.

[6] K. A. De Jong and W. M. Spears, “Using genelic algorithms to
solve NP-complete problems”, Proceedings of the Third
11 iomal Cenference on Cenetic Algorithms, George Mason
University, pp. 124-132, 1989,

[7] ¥.'Tanaka, A, Tshiguro, and Y. Uchikawa, “A method of
estimation of current distribution using genetic algorithms
with variable-length chromosomes”, Proceedings of e
Luternational ISEM Symposivim on Sinudation and Desigr of
Applied Electromagnetic Systems, Elsevier Science BV, pp.
163166, 1994,

=

D. E..Goldberg, Genetic Algorithms in Scarch, Optimization &
Machine Learning, Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc., 1989,

[9] O. A Mohammed, E G. Uler, 5, Russenschuck, and M.
Kasper, “Design Optimization of a Superferric Octupole
Using Various Evolutionary and Deterministic Techniques”,
TEEE Teansactions on Magnetics, Vol. 33, No. 2, pp. 1816-1821,
March 1997,

[10]0- A Mehammed, and F. G. Uler, “A Hybrid Technique for
the Optimal Design of Electromagnetic Devices Using Direct
Search and Genetic Algorithms”, [EEE Transactions on
Magnetics, Vol 33, No. 2, pp. 19311934, March 1997,

[11] 0. A. Mohammed, and T G. Uler, “Ancillary Techniques for
the Practical Implementation of GAs to the Optimal Design of
Electromagnetic Devices”, [EEE Transactions on Magnetics, Vol
32, No. 3, pp. 1194-1197, May 1996.

[12]M. H. Lean, “Concurrent Multi-level Simulation i
Computational Prototyping”, Faternational Journal of Applicd
Electroniagretics in Maierials, Elsevier, pp. 9-12, 1994,

[13]T. Back, and H. F. Schwefel, “An overview of E
Algorithms for Parameter Optimization”, M
Computation 1{1): 1 -23, 1993,

colutionary
wolutionary

[14]O. A. Mohammed, R. 5. Merchant, and E. G, Uler, “An
Intelligent Systern for Design Optimization of Elechiomagnetic
ices”, Transactions on Magnefics, Vol. 30, No. 5, pp

; September 1994,

Osama A. Mohammed




