Technical article

About Sensitivity Analysis
using High Crder
Derivatives

Introduction

The finite element method is now well known, largely
used, and able to solve a wide set of partial differential
equation problems. Nevertheless, there still remains an
important restriction: it is unbearably time expensive
when you want to do sensitivity analysis, or, in other
words, when vou need the solutions for several values
of parameters. In consequence, since the finite element
method is increasingly used in design rather than as a
simple validation tool, sensitivity analysis must be
performed efficiently.

An interesting way of investigation could be the use of
high derivatives to construct a polynomial
approximation of the finite element solution. The idea
was already presented [1], [2], [3], but here, there is a
new aspect: the entirely analytical caleulus of the
derivatives [4], [5], [14]. This approach is more powerful
and flexible than a simple automation of successive
re-analyses to perform the sensitivity analysis. This
method will be presented for two dimensional linear
magnetostatic and linear magnetodynamic problems
using vector potential formulation. The knowledge of
high order derivatives for the “solved variable” (the
vector potential) allows the deduction of any dependent
quantitiés (forces, losses, ...).

The high derivatives can be done with respect either to
physical parameters (frequency, permeability, ...) [6], or
to geometric parameters [7]. This method open:
moreover, some possibilities in automatic optimization,
particularly the coupling with genetic algorithms. This
is often impossible because of the cost of the test
function, but here it is not the case thanks to the Taylor
development.

Formulation and Paraineters
A. The FE solving

With the magnetic vector potential Asuch as B=cirl A
and the magnetodynamic formulation, Maxwell
equations lead to
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(1)

where vis the given magnetic reluctivity, o is the given
electric conductivity and /. is the given current density.

For a linear problem and with a harmenic excitation
current of pulsation @, we can use a complex
representation to separate the space and the fime
dependencies. Moreaver, in a two dimensional
problem, we can define only the components of the
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magnetic veclor polential A and the current density J.
which are normal to the section of the device
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Then, equation {1) becomes

~V(vVA)+ jocA=J,. (3)

Using the finite element method and the Galerkin
process, we obtain an approximate solution by solving
a complex matrix equation

M.{A}=5, (4)

where A} is the set of the N unknown nodal values. By
introducing real part P and imaginary part Q of the
NxN complex matrix M, we write

M=P+j0. (5)

Global matrixes I, Q and global vector 5 are assembled
from local element terms P, Q. and 5.
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where [@] are the trial functions.

B. The high order devivative paramelers

It may seem curious to speak about high order
derivatives, since the finite element method is based on
low order polynemial trial functions. Tn fact, the space
interpolation is only a first or second order
approximation, but we speak here of high order
derivatives with respect to the design parameters. Our
FE problem is continuous with respect ta the physical
parameters. Even for geometric parameters, it is
possible to derive at high order, because we use a
derivation of the equilibrium equations.

We purpose to use high order derivatives of the “solved
variable” (the vector potential A). Using state adjoint
variables, the process could be generalized to all the




derived quantities of the FE problem [1]. For instance a
development of the dissipated thermal energy ina
conductor, or these of a magnetic force could be
derived. However, just with the main variable, we
consider we have the most general approach, but
probably not the most efficient in many cases.

We consider the derivatives versus either physical
parameters or geometric parameters.

The linear problem under study is constituted of sub-
domains Dy where the magnetic reluctivity vi, the
electric conductivity o and the current density [, have
different values but are uniform. Any of the value v,
@0, or [, inside any sub-domain D could be taken as a
physical parameter.

As s00n as now, we can note that the 3 elementary
terms (6, (7) and (8) are linear towards the physical
parameters v, wo, and J. These simple algebraic
dependencies will facilitate a direct differentiation. For
the physical parameters, the first derivatives are
constants and the higher order ones are zeros. Notice
how that if a linear dependency on the source term
(8) implics a linear dependency on the solved variable,
it is not the case for the linear dependencies acting on
the matrix terms (6) and (7).

For gccmmiric parameters (for instance air gap
thickness, slot dimension, etc.), the dependencies are
introduced throughout the nodal co-ordinates which
affect both the elementary area €, and the trial function
gradients (Vo). In the general case, there is no obvious
simplification and higher order derivatives of I, ¢, and
5, versus geometric parameters could exist.

.
Calculus of High Order Derivatives
A. One parameler study

Thanks to the principle of stationarity [1, 8], equation
{4) is true for any value of each parameter. 5o we can
derive (4) with respect to any parameter p, and then
find the new equation to solve to obtain the derivatives
of the solution vector A
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It must be noted that the derivative of the solution is
obtained by solving a malrix equation, with the same
matrix than in (4). Moreover, we need the solution A to
calculate the new right hand side vector and then the
derivative.

Recursively, we can calculate an arbitrary high order
derivative of A by deriving (4) and solving with a new
second member calculated with the first derivatives of A
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where ¢l = =C'=1.

Finally, with the derivatives of A, we construct a
polynomial to evaluate the solution for any value of &,
from an initial solution for the value py
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where N, is the Taylor development order for the
parameter p.

B. Multi-parameter stidy

In the case of a multi-parameter study, with high order
derivatives, we must calculate the crossed derivatives of
M and § before calculating the crossed derivatives of A,

Just look at the generalization of (10) and (11) with only

two independent parameters p and ¢
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Of course when the number of independent parameters
increases, (13) becomes quickly very long because of the
crossed terms !

C. Derivatives of M and § versus physical parameters

Obviously in the general case, the main difficulty is to
calculate the derivatives of the matrix M and those of
the vector S. But if p is ane of the previously described
physical parameters (v, wo, or J.), this is no longer a
difficulty. For the reluctivity v; of the sub-domain D,
we deduce from (5) and (6)
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For the product @a;, taken as a whole parameter, we
have
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The supﬁmnl‘) ons are restricted to the elements €2,
belonging to the sub-domain 0.

As previously mentioned, the higher derivatives are
equal to zero and consequently there is no crossed
derivative between the physical parameters.

D Derivatives of Moand S versus geometric paraeters:

The derivatives towards geometric parameters could be
obtained using the local jacobian derivative method [8].

First we consider the second member S Using
parametric finite element integration, its expression (8)
becomes
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where A, is the reference element corresponding to the
actual element &2 and |G| is the determinant of the
jacobian matrix G of the transformation from local (i4,0)
to global (x,u) co-ordinates.

During the modification of a geometric parameter p, the
topology of the mesh is unchanged but some finite
due to the moving of the

clements are distorted. This
nodes linked to the parameter.

Because in (20) |G | is the only term depending on the
actual geometry (4, is the reference element and {c} are
functions of (1)), the first derivative of 5 is

E ”‘ J{a}—d:m‘v (21)
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The high order derivatives can be obtained using the
same method. For instance, with two geometric
parameters pand g, we have
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The summation is restricted to the elements
simultaneously concerned by the parameters p and . In
the general case, if an element is not distorted by at
least one parameter, its contribution is equal to zero.
This property allows to reduce the amount of
compulations dramatically.

For the matrix 2, we can apply to (7) exactly the same
process as for 5.

Finally, we study the matrix P. This case is more
complicated than the precedent ones due to the
gradients { Vo under the integral sign (6). In each
clement, the gradient Vey of any function ¢ can be
expressed as
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where G- is the inverse of the jacobian matrix G and
Vyutz is the local gradient in the reference element. The
gradient expression inside (6) becomes

(Valval ={v,e}c""cV,a} . 24)
Then, (6) can be rewritten as
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In the previous expression, the product [ G1.G1.G1] is
the only term depending on the actual geometry, so the
derivatives of (6) can be calculated by deriving only it.
For instance, high order derivatives relative to two
geometric parameters p and g are
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The expressions of G and |G| depend on the finite
element lype and on the nodal co-ordinates, If we know
the derivatives of the nodal co-ordinates, we can
compute the derivatives of G and |G . From the
property G-1G=1, we can deduce the derivatives of G
knowing the ones of G. For instance the first derivative
of Glis

G 1 3G ot
— = G
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So, any derivalive at any order of the product
[1G1.G11.G1] can be expressed as a function of G,
|G, their derivatives and G-1.

E. Crossed derivatives between physical parameters and
geomelric paraneters

As noted in section C, the crossed derivatives between
physical parameters are zero. However, the crossed
derivatives between physical parameters and geometric
parameters exist and can be obtained using the same
process as in section 12, Although, they are restricted to
the first arder for the physical parameters.

For instance, resulting from (14}, the high order crossed
derivatives for the parameter v and two geometric
parameters p and g are
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Similar derivatives arise from (16) and (19)
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Use of High Order Derivatives
A. Steps of the consiruction of the polyiomial

Following the formula given in the previous
developments, the first step in the method is to find the
derivatives of the matrix M and of the vector § at the
central values pg, gy, .. for the parameters.

In order to have a general approach, capable of treating
big size problems, all these terms are saved on files
instead of managing them all in the memory. The finite
element matrix M is naturally sparse. Moreover, its
derivatives and the those of the vector § are more and
more sparse as the derivative order increases. So, itis a
good idea to use a specific file format for sparse
structures.

Then, the high derivatives of A are calculated
recursively, by solving the systems (12), All these
systems have the same matrix M but different right
hand side vectors. It is worth using a direct method
{i.e., a factorization of the matrix M), to selve all these
systems. Iterative methods (e.g., preconditioned
conjugate gradients) are superior for a single solution,
both in terms of storage requirements and
computational efficiency. A direct method is more
expensive for the first solving (the computation of A),
but then all the derivatives only cost a forward and
backward substitution each. Finally, the high
derivatives have a very low cost when using a
factorization.

The storage of the derivatives of the vector A, is done
on files again, but with a sel of plain arrays. So write
accesses, as well for read, may be random.

Finally for any variation &, &j, ... of the parameters,
using (13), a palynomial is constructed allewing the
solution to be evaluated.

Because evaluation of a polynomial is instantaneous, it
can be used interactively, and it allows a new approach
of the sensitivity analysis.

Parameter
alion

Instantaneous

Mand §
derivatives

Polynomial
evaluation

Standard
FEM solver

One PE analysis

-
Parameter
modification

Fig 1. Compared steps befieent standard finite element solver
and polynomial approack

Fig. 1 shows how new developments are introduced in
a finite element package. Calculations of the derivatives
of the matrix and vector need Lo be coupled with the
assembling function. Construction of the polynomial is
an independent program. Evaluation must be interfaced
with the pest-treatment module.




To sum up, the initial cost of this method is quite high,
but affordable. After an important investment, we
obtain a polynomial which provides fast evaluations
(Fig. 2.).

: Re-analyse
Lims with FEM
kost (proportional

Polynomial
evaluations

.

Construction of
the polynomial

0 0
Number of tested configurations
Fig. 2. Compared time cosls betiween re-analyze and

polynomial approach.

B. Precision and convergence radius

It is important to distinguish the precision and the
convergence radius. Obviously, inside the convergence
radius, the more terms are taken, the better the
reconstructed solution is. Qutside, the more terms are
taken, the worst it is. For the current density [, the
convergence radius is infinite (it is a source term). For
the other physical parameters v and g, which act on
the matrix M, if v, and (wo), are the central values of the
Taylor development, the domain of convergence is
10, 2w and 10, 2(wao)[

Here is a beginning of a proof for a one parameter
study gnlv. As the vector 5 is independent of the
parameter vand we and only the first derivatives of M
are non zero, (10) becomes
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Then, the Taylor development (11) is
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To insure the convergence when Ny tends to the infinite,
the following condition must be verified at the central
parameter value py

g
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Because we have a linear dependency of M{p) relatively
to the parameter p, we can write (when pgz0)

M _ Mipy)=M(©) _ M~ M0)

(35)

dp Po—0 Po
where M(0) is the matrix obtained when the parameter
{reluctivity or conductivity) is set to zero inside the
parametered sub-domain.

Then, for the first member of (34) we have
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The previous inequality is oblained thanks to the
propertics of finite eclements matrixes M, M{0) and
[M-M(0)] which are symmetric and, when meshes are of
good quality, with real parts which are definite non
negative and dominant diagonal,

So, from (34) and (36), we abtain a sufficient
convergence condition on &

|| <[Pl (37)

This conclusion is confirmed in [6] on the study of an
analytical solution for the physical parameters. The
domains of practical use, for a reasonable accuracy of
5% with a 10 to 20 order Taylor development, are
102w, 1.8v,] and ]0.2(wo)s, 1.8(wok] (see a later section
for an example).

Validation on Induction Heating Problem
(Physical Parameters Study)

A, Presentation of the studied problem

We choose an induction heating process (Fig, 3) where
inductors produce eddy currents in the steel fubes.
Such tubes become malleable and can be extruded to
the desired form. We do not treat the problem using
geometric parameters, but just develop the magnetic
solution with the three physical parameters v, @, and J;
under a hypothesis of linear magnetization. The first
parameter is the characteristic of the steel and the two
last are the command parameters for the heating
process. The mesh used for this process is presented on
Fig, 4. It contains 2686 nodes and 1017 second order
finite elements.

Inductors
ooooo  Tubes
| ——

[ Drift ; ]

‘ Fig. 3. The 21 induction heating problent.



Fig. 4. Mesh of the 2D induction heating probient.

B. Validity of the polynomial approach

This example, shows that the polvnomial method
works on a realistic multi-parameter problem. We
verified the previously cited convergence limits and
confirm the conclusion on the order of development
given in [6]. The 2D example diverges for values of the
reluctivity and frequency superior to twice the initial
ones. In any case, reasonable orders (10 to 20) are
sufficient to a good precision for the computation of
common problems (5% between polynomial solution
and standard solution). In conclusion, the polynomial is
valid for the domain |0.2v, 1.8w| and 0.2(wo),,
1.8(wa)[. Table [ shows the costs for classical finite
element analysis (using direct method) and polynomial
approach.

This application of the high order derivative method
has been implemented within a specific multiplatform
and pluridisciplinary finite element program [9]
.
TABLE 1

TIMES FOR EACH STEP
COMPUTER CLOCK INDICATOR AND MINUTES MEASUREMENTS

Classical FE Derivalives Caleulus of the Evaluation ol

analysis Lynomial 1he polynomial
2500 1o 2800 TO00 10 2100 2%@?}0 Tio3

aboul 25 less than 25 about 5 min Instantancous
seconds seconds

Validation on SMES Optintization
(Physical and Geometrical Parameters Study)

A. Presentation of the studied problem

In recent years, Genetic Algorithms [10], [11] have been
applied successfully in many fields of optimization
These algorithms present numerous advantages over
classical gradient methods. They are able to locate the
global optimum and they do not require the use of the
derivatives, However, Genetic Algorithms require
thousands of evaluations in order to reach the
optimum, and thus, they are particularly penalized - in
terms of cpu time - when the objective function is
calculated by a Finite Element Method. To reduce such
computational constraints, we propose (o link a Genetic
Algorithm with an accurate enough, but less expensive
approximation method, based on Taylor development.

(0,10) line a

dz

axis of rotation
g auy

{100

thg r
I

R1 Rz

Fig. 5. SMES design parameters.

The test case problem deals with the optimization of a
system, consisting of two coils, for a Superconducting
Magnetic Energy Storage device (SMES). This problem
is a simplification of a more complex one [12] and is
schematically shown in Fig. 5. The SMES configuration
has six degrees of freedom (four geometrical and two
physical) and shall be optimized with respect to these
objectives

- Stored Energy should be 180 M,

- Magnetic field along two given lines should be as
small as possible.

It is also subject to the following comstraint:

- Magnetic field within each coil must satisfy a certain
Physical conditien in order to guarantee a
superconductivity behaviour.

The two objectives were coupled with a weighted sum
to form a single objective (0.8 for relative stored energy
and 0.2 for relative magnetic field). Then the
constrained problem was transformed into an
unconstrained one by associating a penalty with all the
constraints.

B. Polymopial approach

In arder to avoid Finite Element solution for each
different configuration, an approximate objective
function can be obtained with Taylor development [13].
The procedure requires an initial configuration of the
design parameters and an initial mesh. In our study, the
initial values of the parameters were chosen near the
centre of the domain where they are able to evolve
(Table 11). Tt must be pointed out that a good mesh
should be able to support the greatest variations of
parameters. When this is achieved, the Taylor
development of the “solved variable” is constructed in
about thirty minutes and gives second order derivatives
for geometrical parameters. Accuracy has been tested
by comparing the energy in the device between
polynomial development and a Finite Element re-
analysis: worst cases - when parameters are far from
initial Taylor point - give reasonable accuracy of 4 %o,




TABLE Il
PARAMETERS SPACE DOMAIN AND TAYLOR POINT

31 2 T T T T
(mm]  fmm]  fmm] mml (Afmmd] [Afmmd)
500 [ 300 o0 0 =0
TID0 500 T50 00 30 10
1O} 300 6350 KR 20 =20

C. Optimization using venetic algorithm

The Genetic Algorithm used has the following main
characteristics: Real coding, Linecar ranking selection,
four crossover operators (1-point, 2-points, Uniform,
Arithmetic), three mutation operators (Uniform, Non
Uniform, Gaussian) and a roulette wheel, depending on
weights, to select operators.

TABLE III
AVERAGE AND BEST TRIAL
T e
Bst 2y
[1.23‘_“’ [MI]
Average T 5L I
Teost 50

Table [1I and Table IV summarize the results from
different trials with different population sizes and
operator weights. In these tests the width of the first
coil was fixed to 594.3 mm and the length of the second
coil fixed to 1418.4 mm. B, represents the average of
the magnetic field along line @ and line b. The genetic
approach requires at least 8000 evaluations to reach the
optimum but a search with a uniform grid of twenty
points in each dimension in parameter space would
have required 64,000,000 evaluations.

TABLE IV
BEST SOLUTION

3l 2 Y T T

[mm]  {mm]  [mm]  foml ammd] [ASmme)
Best 1298.57 129.52  722.24 25837 1170 -11.54
Concinsion

A polynomial representing the finite elements solution
in terms of the design parameters can be reached using
the high order derivatives. This is a hybrid approach: a
continuous solution versus the design parameters
through the Taylor development and a discrete solution
in space through the finite elements method. This
allows a quick evaluation for new values of physi
and geometrical parameters and a su
for design. It provides a good tool to perform physical
and geometrical sensitivity analysis in case of linear
problems,

The case of non linear problems is a much more
complicated one. The main difficulty comes from the
B{H) curves which cannot be well approximated by a
single low order polynomial. A promising direction of
investigation could be to use some Pade’s
approximations as proposed in [15].

Neasletior. |
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