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The Mystery and Magic of
Whitney Elements

- An Insight in their
Properties and
Construction

Introduction

The introduction and extensive application of vector
finite elements is considered one of the most important
recent advances in electromagnetic field computation. A
large number of publications, either theoretical or
applied, on this subject, seems to result in some
common ebservations about their advantages over
scalar elemenls, For example, the property of tangential
continuity across interface boundaries provides a
correct representation of electromagnetic fields,
especially when sharp corners or material
discontinuities are involved. On the other hand, the
property of proper modelling of the nullspace of the
curl operaltor, in other words the consistent modelling
of irrotational fields, ensures the elimination of spurious
modes, which do not only contaminate the solutions of
eigenvalue problems, but are responsible for
corruptions (or “vector parasites”) in the analysis of
deterministic problems as well, when conventional,
scalar elements are used. Furthermore, on the level of
implementation, the simplicity and clear geometric
representation of degrees of freedom, makes it easy to
enforce boundary conditions and the property of
tangential continuity.

However, the correct topological and geometrical
representation of electromagnetic fields via vector linite
elements is achieved with the cost of low rates of
convergence. Nevertheless, since this drawback can be
attributed to the existence of zero eigenvalues in modal
electromagnetic field problems, it seems to be an
inherent property of Maxwell's equations, rather than a
disadvantage of the vectar finite element itself.

Since the infroduction of edge elements [1], [2], which,
from a mathematical peint of view, are considered first
order Whitney 1-forms, much work has been done to
implement them in several electromagnetic field and
poetential formulations. But despite their extensive
application and use, their generalisation from the first
order to higher orders has always been an open
problem, since there seems to be a lack of a common
ground and a straightforward methodology to produce
higher order Whitney forms. However, several
approaches to the construction of higher order vector
finite elements, either tetrahedral [3]-]5], or hexahedral
[6]-]8]. can be found in the literature. Each approach
seems to emphasise on different aspects of the Whitney
element theory and results in different element
expressions. Sometimes, the proposed scheme is not
clearly explained and the real nature of vector finite
elements is not evident through its development.

This paper presents a generalised and unified theory of
Whilney elements, which results in a systematic
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methodology for the construction of both tetrahedral
and hexahedral vector finite elements. Through the
proposed theory, a step-by-step enforcement of the
fundamental properties of Whitney elements is
adopted, thus providing an insight into their
philosophy and nature. For instance, the choice of
conforming degrees of freedom, that have a clear
geometrical interpretation is very critical, as far as
implementation parameters are concerned.
Furthermore, the property of decoupling between the
degrees of freedom or the associated shape functions
contributes to the element’s simplicity. Finally, the
inherent geometry of electromagnetic fields, as
described by certain concepts from Differential
Geometry and Geometric Integration Theory is
preserved in the discrete domain by taking special care
to represent the gradients of scalar vector fields,
correctly and consistently.

On the other hand, this paper aims at providing useful,
ready-to-use expressions for the resulting higher order
Whitney elements and some impartant guidelines
about difficulties in their implementation. Therefore,
apart from the underlying theoretical background, it
gives to the researcher, as well as to the end-user a
useful tool for accurate electromagnetic field
computation.

Haow many degrees of freedom?

The first problem in the generation of Whitney
Elements in higher orded the proper choice of
degrees of freedom. The well-founded choice of
edge-based degrees of freedom, in the case of edge
elements [2], seems to be insufficient when higher order
approximations are involved. We will show that in
arders higher than ene, degrees of freedom defined on
the faces or the whole valume of the element are
required

Let's first determine the actual number of degrees of
freedlom that is required to build an y-th order
tetrahedral tangential vector finite element (1-form
Whitney element), An important observation is that
tangential continuity is automatically ebtained, if the
lLield in an i-th order tetrahedral element is expressed
by the expansion
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where T, i=1,...4 are the simplex co-ordinates and &, are
vectors normal to the face {i], provided that the values
of degrees of freedom are the same for adjacent
elements. However, this primitive form for the vector
finite element includes every possible product of
simplex co-ordinates, up to the n-th order, Hence, the
number of degrees of freedom in (1) is excessively large.
To determine the precise number of linearly
independent degrees of freedom, which is required, we
should focus on the property of correct modelling of the
nullspace and the range space of the curl operator,
which is considered fundamental in the study of
Whitney elements [3]




In order to model the range space of the curl operator
correctly, the curl of an #-th order approximation should
be a complete vector polynomial of order #-1. The
number of parameters to built a complete 3D vector
polynomial of order n-1is given by

_n(n+ Dy(n+2)
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However, since the divergence of the curl of a vector is
identically zero, there is a number of linear relations
among these parameters. This is proven to be
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Finally, we should add the required number of degrees
of freedom to model the nullspace of the curl operator,
in other words the irrotational fields. This is the number
of independent gradients, N;, of an n-th order scalar
field, which is, in fact, the number of edges of a
“gradient tree” (Fig. 1). If the gradients of an

irrotational field on the edges of this tree are known,
gradients on any other edge can be easily computed.
The number of independent edges in a gradient tree is
easily proven to be

- n'+6n

and the required number of independent degrees of
freedom for an n-th order 1-form Whitney element is
given by

N=NE—N,,+N,=%M ®)

Fig. 1. A gradient tree for a third order elewent, indicated by
the thick lines.

What kind of degrees of freedom?

One of the most obscure aspects of the Whitney element
generation methodelogy is that of the choice of degrees
of freedom. What seems apparent in the first order case,
ie. the well known edge element, where the degrees of
freedom are the line integrals of the vector field along
the tetrahedron’s edges, is not enough when dealing
with higher orders. On the other hand, it is likely that
the tangentially continuous field should be expressed in
terms of some kind of tangential projections, The
following observations shed light on that issue.

First of all, for an n1-th order 1-form Whitmey element, 1t
degrees of freedom could be related to each edge. This
number accounts for n-th order field variations along the
tetrahedron’s edges or, in other words, it can represent
the i gradients of an i-th order scalar field. Using less
than 7 degrees of freedom on each edge, we could not
express i-th order fields along edges, whereas maore than
1 degrees of freedom are not linearly independent. These
degrees of freedom can be expressed in terms of field
projections on edges. Although we could use point
degrees of freedom, in other words tangential projections
on specific points of an edge, we will adopt weighted
field projections of the form

)
Ff = [F-i,q)dl ®
(3]

where the nodal shape functions of order #-1 for every
node p, on edge [11], play the role of the weighting
functions. We will show that this choice leads to an
elegant definition of the other types of degrees of
freedom and a rigorous connection of the 1-form
Whitney element to 2-form Whitney elements, i.e.
normal tor finite elements. It can be also shown, that
any other field projection on edge [{f] can be expressed
as a linear combination of the degrees of freedom in ().
This affine transformation between two arbitrary sets of
edpe degrees of freedom justifies the fact that all
possible choices are, more or less, equivalent, although
different choices will result in slightly different shape
function expressions

We now focus on the crucial issue of choosing the
remaining degrees of freedom, independent to those
given by (6) and to each other, to complete the desired
number (5). A convenient approach is to attempt to
express the degrees of freedom for the curl of the vector
field under consideration, in terms of the degrees of
freedom of the vector field itself. This is particularly
useful when dealing with Maxwell's equations, because
it will provide explicit discrete relations between E and
B, or H and D. However, we bear in mind that the curl
of an 1-form (tangentially continuous) field is a 2-form
(normally continuous) field, and we should at least
comment on how the degrees of freedom for such a
kind of field are to be defined.

Ina way similar to that of the previous paragraph, an
-th order normally continuous vector field would
require n(ni+1)/2 degrees of freedom for each face,
related to normal projections, to describe ii-th order
field variations on thal face, This is also the number of
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independent curls of an n-th order tangentially
continuous field. A reasonable choice for the facial
degrees of freedom of an n-th order normally
continuous field, similar to (6), is

By = [[F-dads I

{1 kY

where the weighting functions are the nodal shape
functions of order #-1 for every node p, on the face
{i.i.kl. Apparently, these degrees of freedom are
integratec weighted normal field projections (Hows)
from the face {1,k}.

In the second order case, the edge degrees of freedom
for the field F (6) take the form

(5] (i) |
= [eiga, F=[Figa g
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To associate degrees of freedom of F to those of the curl
of F, we consider the equation

Vx(EF) =V, xF+L,VxF ©)

and we apply the Stokes theorem on face 1,2,3}:

(&3]

n
[V (& Fy ivds =(?§1F-d1- JeFdiv jgra oo
)

1,23 &5 3

By combining (%) and {10}, we obtain the expression
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(11)

In the left side of (11) we have a degree of freedom for
the curl of F, falling into the general category (7). As it
can be seen, computation of degrees of freedom for the
enrl of a 2-form vector field involves the edge degrees
of freedom of 1-form fields (6) and a new kind of
degrees of freedom defined on faces, but related to
tangential projections on them. Therefore, it seems
reasonable to make the following choice for the facial
degrees of freedom of an 1-form field on the face lijk):

By= ”Fxﬁ*~V§Jdv, Fy= [[Fxiveds (12

ikt (3]
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However, only two out of the three possible degrees of
freedom are linearly independent since

(VG +VE, +VE ) xn =0 (12

Therefore, we have to define eight facial degrees of
freedom, two on each face, which gives rise to an
inevitable lack of symmetry. This means that the local
numbering of the element will affect the placement of
degrees of freedom. We also emphasise, that degrees of
freedom on both edges and faces are shared between
adjacent elements, therefore we have to place them
consistently during the mesh generation procedure. In
addition, the unil vectors normal to the surface in the
degrees of freedom (12) are assumed to point outwards
and inwards, respectively. This also helps to a
consistent definition, in the sense that the signs of facial
degrees of freedom are the same for adjacent elements,
The twenty degrees of freedom for the second order
element are shown in Fig, 2.

)

Fig. 2. Degrees of freedom. in o second order tetrahedron

In the third order case, our choice of degrees of freedom
is justified by a similar procedure. First of all, three
degrees of freedom are defined on edge [i,7]. According
te (6), we define

(2] (#3]
Fi= [F-b,5028-0d,Ff = [Fi58d,

(0 (i)

] (14)
Ef = [F-#8,(28, - 1yat

(4}

Using the Stokes theorem and an approach similar to
(9)-(11), we introduce the following facial degrees of
freedlom on any face {i,j,k}:




Fi, = [[Fxi-gVitds

ik (15)

where (g.0) & Wik (), Gk, (iR, (i), (D), in
other words any possible combination of indices , j and
k. As a result, we have six independent degrees of
freedom for each face. Unlike the second order case, the
definition of facial degrees of freedom is symmetric,
However, the total number of degrees of freedom,
which is 45, is not yet completed. To determine the
remaining three of them we should first define a second
kind of degrees of freedom for a 2-form (normal)
Whitney element. Using Gauss theorem and the same
approach as before, we obtain a new kind of degrees of
freedam involving volume integrals. For the third order
case the three volume degrees of freedom can be
defined via

Fy= [J[F-9xVEav (16

(Efk.d)

where only three out of the possible combinations of
indices (1,j,k,1) should be chosen. We assume that (i,j.k.1)
e 1{(12,34), (23.1.4), (3,1,24)}. In this case, although we
can symmetrically define the facial degrees of freedom,
the lack of symmetry is observed in the placement of
volume degrees of freedom. Again, since degrees of
freedom are shared between neighbouring elements, we
should define proper local numberings to place them
consiftently. The 45 degrees of freedom that have been
defined for the third order element are shown in Fig. 3.

Fig. 3. Degrecs of freedom in a third order tetrahedron, Face
degrees of freedom are shown only on front face

The analysis can be generalised to orders higher than
three, where all categories of degrees of freedom are
present, It can be shown that a lack of symmetry, either
in facial or in volume degrees of freedom will continue
to exist. However, the number of degrees of freedom
becomes excessively high and the complexity of
expressions makes them have little practical
importance.

Praperties and constriction of shape functions

In the previous paragraph we have introduced the
degrees of freedom that will be used to the constru
of our higher order Whitney elements. We have cle
stated that this particular choice is not mandatory.
Other forms of tangential projections on edges, faces or
the whole element’s volume could be introduced, either
integral- or point-based, but similar to the integrand of
(8), (12) and (14)-(16), We emphasise that the types of
tangential projections in each kind of degrees of
freedom are different and, as it can be shown, this
ensures the independence of degrees of freedom, in
other words the element’s unisolvence,

Let us now proceed to a more formal definition of the
properties of tangential vector finite element shape
functions. We have seen that even the general form of
expansion (1) which has no particular properties,
ensures the tangential continuity, on condition that
degrees of freedom are consistently defined between
two neighbouring elements, Therefore, it seems that the
two basic properties of Whitney elements, conformity
and unisolvence [1], are almost automatically satisfied.
In fact, the introduction of two other properties will
determine the exact form of shape functions. As we will
see, the importance of those properties is, sometimes,
underestimated because they seem to lack a formal
definition, although they may seem to be quite obvious.

First of all, we introduce a general expression of the
shape functions in terms of some unknown coefficients,
which have to be computed. Any shape function of the
a-th order 1-form Whitney element is expressed via a
vector polynomial expansion, This includes any
possible product, of order less than or equal to #, of the
simplex co-ordinates that are associated with the 1-, 2-
aor 3-subsimplex (edge, face or volume, respectively), on
which the corresponding degree of freedom is defined.
The basis vectors of the expansion are the gradients of
the simplex co-ordinates, also associated to the same
subsimplex. For instance, a shape function related to an
edge degree of freedom, defined on edge [/ will be
expressed in terms of §, and §; only, whereas the shape
function of a facial degree of freedom on face {ijk} will
involve [, §; and (. This assumption is by na means
restrictive, since the omitted terms are zero on the
subsimplex under consideration. A compact algebraic
expression for a shape function of any kind and order is

13
fy v e " n
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where k is the order of the subsimplex, on which the
correspending degree of freedom is defined, e 2, 3 or
4 for edge, face and volume degrees of freedom,
respectively. Furthermore, iiz,,..,i; are the indices of the
related simplex co-ordinates and the inner summation
involves any possible multiplicities 1,1,....1.

I'he first property, which has to be imposed on the
shape functions is the decoupling of degrees of
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freedom. This property simply guarantees their
“separation”, in the sense that any shape function will
affect only the corresponding degree of freedom, In
terms of a mathematical formulation, every degree of
freedom that is computed for a given shape function
should be zero, unless it is the one which is directly
associated with it. Tn a more formal interpretation, if we
consider the degrees of freedom functionals acting on
vector fields, the decoupling property is expressed by

By, B, 0B

i (w"\ o ):

Byt gy

(18)

where the arguments of the functionals are the shape
functions. We note that (18) includes a normalisation
condition. This property is particularly eritical when the
degrees of freedom of a given field have to be
computed. Any 1-form field, F, will be approximated by
a linear combination of the shape functions,

A s el (19)

Ly

If we apply the functional of (18) on (19) and impose
property (18) we have

FJ‘;:,EJ‘J = F .h (F) (20)

which implies that the coefficients in the expansion (19)
are, in fact, the degrees of freedom of the vector field. If
the decoupling property would not have been imposed,
a system of equations would result instead of (20) and
the computation of degrees of freedom would not be
direct and easy.

Imposition of property (18) on the unknown shape
functions (17) results in a set of linear equations in
terms of the unknown coefficients of (17). However, this
system of equations is underdetermined, which shows
that a simple property of decoupling is not enough to
produce the exact form of the shape functions. In fact,
this property seems to be quite logistic, since it simply
prevents shape functions from affecting degrees of
freedom irrelevant to them.

To discover what kind of additional constraints should
be imposed on the coefficients of (17) we should look
back to a property that seems to have been exploited in
a previous step of our analysis, the correck modelling of
the nullspace of the curl operator. In fact, the true
essence of the Whitney element theory is included in
this property, since the real source of problems like
spurious modes and parasitic vector solutions, when
conventional scalar finite elements are used, is,
undoubtedly, the poor modelling of irrotational fields,
The property of correct nullspace modelling has been
used in the derivation of the required number of
degrees of freedom (5). However, we have attempted to
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introduce a very wide class of field variations for the
Whitney element expressions (17), and the element may
not be able to correctly represent gradients of scalar
Lelds, unless specific constraints are applied,

To find out how this property will practically affect the
element construction, we revert to an elegant and
formal definition taken from the field of Differential
Geometry. Even from the early days of introduction and
application of edge elements, the importance of
existence of De Rham - Whitney complex,

WD) W (D) — s W (DY W (D) (21)

in the discrete domain, has been clearly emphasised [2].
This abstract sequence of Hilbert spaces of scalar or
vector fields shows how these spaces are transformed
by the vector operators. The four sets in (21) are spaces
of the discretised Whitney 0-, 1-, 2- ar 3-forms, defined
on the discrete tessellation. The meaning of this
sequence is that the image of any field belonging to a
space to the left of an arrow, when the corresponding
operator acts on it, should belong ta the space to the
right of the arrow. Generally, a De Rham complex is
considered the basis for the existence and study of the
topological and geometrical properties of spaces. In our
case, a corresponding complex exists in the continuous
domain, but not in the discrete domain, when nodal
finite elements are used.

For the construction of Whitney 1-forms, we
concentrate on the first from the three mappings in (21),
To interpret this abstract property in terms of algebraic
equations, we require that the gradient of any Whitney
(-form, or scalar field defined on a n-th order
tetrahedron, will belong to the space of Whitney
1-forms. In other words, we seek additional constraints
among the unknown coefficients of (17), to guarantee
the existence of solutions to the equations

X AW @) = Ve, @2

where A’s are the unknown degrees of freedom, and ¢'s
are the n-th order nodal element shape functions.
However, we are not interested in solving the system of
equations (22) for the degrees of freedom, This system
is a parametric one, since the shape functions are still
parameter-dependent, and we search for the constraints
among the coefficients, under which the system admits
solutions, After some strenuous algebraic manipulation,
we can deduce the generic constraints that ensure the
existence of solutions for (22}, In the second order case
the generic constraints are

aj+ay =a, +a; =0 (23)(24)
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a, +ay, +ay =0 (25)

forany i, , k. whereas for the third order case, these are
proven to be

ay; (26),(27)
k i

ay g +ag; =0 (28)

Qg F 8y T g+ = 0 (29)

for any i, j, k, [. The coefficients that are involved in
(23)-(25) and (26)-(29) are related to the highest order
terms in the vector finite element expressions. Hence, it
should be emphasised that the n-th order terms cannot
vary in an arbitrary way. The property of correct
gradient representation requires that their coefficients
are related to each other by this kind of cyclic relations.
These relations are easily generalised to higher orders.

The decoupling property (18), along with the solvability
constraigts that have been deduced in the previous
paragraph, are combined to form linear systems of
equations for the unknown coefficients of the shape
functions (17). In the end of this awesome procedure, it
may be surprising that the linear systems for the
coefficients are neither under- nor overdetermined. The
final expressions for the shape functions of a second
order 1-form Whitney element are given by

Wi = (88 —4L)VE, + (-8LL, + 260V (30)

Wy = L6EEVE, —BEEVE ~8LEVE

for edge and facial degrees of freedom, respectively,
whereas in the third order case they are given by, the
following rather complicated expressions, i

wi = (450]- 4557+ 9L VL,

2 . (32)
+ (45575 + 308 & - 38 )VE,

Wi =(455] + 18007E, +455,8] — 5L - 0L, +24E)VE,
#(=d5E] — 180ETL,— 45L,L7+ TSE] +90E,L, - 246,)VE, (33

W = (270657 + 9058, Ve, + (9087, - 308,6,)VE,
+(18088,8, — 308,60V, (34)

Wi = 540';,@9"@; = lsogrgkg,vcj
— 1805,L5,6,VE, 1808 LE NV, (35)

for edge, facial and volume degrees of freedom. The
edge shape function, corresponding to the third degree
of freedom in (14) is also given by (32), but its signs
should be inverted.

At last, we should further comment on the term
“generic” that has been introduced in the previous
paragmph Constraints (23)-(25) and (26)-(29) are
generic, in the sense that they produce the widest
possible class of elements. A detailed analysis of (22)
will show that there are nongeneric constraints as well.
For example, in the second order case we can replace
(25) by the equations

ay =a;=0 (36),(37)

Replacement of one constraint by two is definitely more
restrictive and leads to an overdetermined system of
equations for the unknown coefficients of the shape
functions. However, we mention the existence of the
nongeneric constraints (36),(37) because a previous
approach [4] preduces a second order tangential vector
finite element that falls into this nongeneric category.
Although, in the same approach, shape functions seem
to be a priori or heuristically chosen, the fulfilment of
constraints (36),(37) is a result of the fact that special care
is taken for a correct nullspace modelling, via a different
approach, the tree-cotree decompositions [4], [9].

What happens with hexahedral vector finite elenents?

Although the construction of hexahedral vector finite
elements is considered simpler, compared to the
tetrahedral element case, due to the hexahedron’s
structural simplicity, and vatious approaches can be
found in the literature [5]-[8], we will show thata
similar procedure can be used to derive hexahedral
Whitney elements. This generalised theory seems to

1G5 Newstetter 11



result in wider classes of elements, while it further
clarifies some common but, more or less, ad hoc
assumptions. We will concentrate on generating second
order elements, although any extension is
straightforward and easy.

First of all, we have to decide the particular kind of the
nodal hexahedral element on which a Whitney form is
to be built, We could choose between Lagrangian or
Serendipity elements, although there exist other
puossible node placements, depending on the desired
accuracy and number of nodes. This choice will affect
the dimension of the nullspace of the discrete curl
operator and, consequently, the total number of degrees
of freedom, which is proven to be 54, for the second
order Lagrangian clement and 36 for the Serendipity. In
the following example we will build a second order
Serendipity element.

The choice of degrees of freedom follows the same
rules, as in the case of tetrahedra. Although in the study
of Whitney forms in tetrahedra we have used integral
degrees of freedom, we could similarly use point
degrees of freedom. Although it may be difficult to find
explicit relations among point degrees of freedom for
different Whitney forms, like (11), they have the
advantage of being easier to compute. In the second
order 1-form Whitney Serendipity element, the
edge-related degrees of freedom, for example along
E-edges, are defined by

L %
T =X F.
oLy 2 F tf E==Yn=m8=8y?
] (38)
R R
» B == b Fotile iy

and similarly for n- or L-oriented edges. Additionally,
the element requires two degrees of freedom in each
face. A suitable definition, for example at face &= -1, is

Ff”:‘c =SFx ﬁg 'VW‘E:—'I,Qt(l,;fEH

E5" = SFx g - Ve

Em-19=0,5=0

where S is the area of face &= -1 and the p-vector is the
unit vector normal to the face. To maintain conformity
of degrees of freedom between neighbouring elements,
p-vectors are always pointing towards the positive
direction of local coordinates.

The derivation of the formulas for the shape functions
will be based on the two fundamental prisperties of
Whitney finite elements. However, in this case we could
significantly simplify the procedure, if we adopt the
restriction that shape functions should have only one
covariant component, for example a §-edge shape
function will be given by

whoo=( D, 't )vE o)

Lidksn
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where 1 is the order of the approximation and the
summation involves, for the moment, every possible
polynomial term. This restriction, although simplifying,
is not necessary, and a more general treatment would
reveal wider classes of elements. In the case of
hexahedral elements, it is convenient to enforce the
property of correct gradient representation (21), (22,
where the gradients of the second order nodal
Serendipity element shape functions are involved,
before doing anything else. The final result of the
analysis requires that most of the coefficients in (40) are
null and it is further simplified as follows:

wf“ s = Elau.f.k'?"?k +& Z Qi ’?[‘;k WVE (41)
i

Jk=l

This general form, which is also adopted in [5], justifies
the term “mixed order elements” which is another
commonly used term, In simple words, the variation of
any field component on its own direction is of order
n-1. The analysis reveals that this assumption is a
natural consequence of the correct nullspace modelling
property.

The explicit form of the shape functions is finally
obtained by enforcing the property of decoupling (20).
The expressions for the hexahedral 1-form Whitney
Serendipity shape functions, corresponding to degrees
of freedom (38), (39) are

1
w;_tu :'-tg(l""iu’?){l*'Coﬁ)(‘l“70’7*‘:\‘:?25)‘75 (42)
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respectively, while the others are obtained by cyclic
permutation.

Mesh conformity considerations

The analysis of higher order Whitney 1-forms reveals a
new problem in their numerical implementation, the
unsymmetric placement of degrees of freedom. In each
face of a second order vector finite element there are
two degrees of freedom and a fully symmetric
arrangement is not possible. When using third order
elements, there is no lack of symmetry in face degroes
of freedom. However, the three volume degrees of
freedom cannot be symmetrically defined. In both
cases, special care should be taken to ensure that
adjacent elements will have conforming degrees of
freedom. In the second order case, this means that two




.

elements sharing the same face should have the same
placement of degrees of freedom on it. Similarly, in
neighbouring third order elements, the volume degrees
of freedom should be consistently placed.

The problem of conforming mesh generation requires
the definition of proper local numberings, to ensure
conformity of degrees of freedom between adjacent
elements. In an arbitrary tetrahedral mesh, we could
introduce an appropriate algorithm, which would start
from an element of the mesh and define the local
numbering from element to element. However, this
procedure involves elements of graph theory and it can
be very complicated, not to mention that the algorithm
may not converge or it may have no solution, unless the
mesh is constructed under specific structural eriteria. To
avoid this kind of complexity we concentrate on the
case of structured meshes based on hexahedra. To
preserve the property of conformity, we propose a
standard local numbering scheme (Fig. 4). Each
hexahedron is divided into six tetrahedra and the local
numberings are chosen to guarantee conformity, both in
inner and outer edges or faces. We emphasise that this
particular scheme is valid only if the placement of
degrees of freedom in each element is as in Fig. 2 and 3.
This scheme is very useful for a successful
implementation of higher order vector finite elements.
The use of structured meshes is not restrictive, since
they can be used as initial meshes in mesh refinement
schemes.

(b)

Fig. 4. Alocal mumbering scheme for mesh conformity: (a)
the second order ease, (b) the third order case

Conclusions

We have presented a generalised theory and a
systematic procedure for generating higher order
Whitney 1-forms in three-dimensions. The theory is
applied in both tetrahedral and hexahedral elements
and produces explicit expressions for the finite element
shape functions and a clear interpretation of degrees of
freedom. The analysis delves into the nature of Whitney
forms and vector finite elements and clarifies the
importance of their fundamental properties, as well as
the means of enforcing them to get the final results.
Some ad hoc assumptions about the choice of degrees
of freedom are also explained. Finally, we give some
important guidelines for their implementation, related
to difficulties in mesh generation. The whole analysis,
although mathematically oriented, gives a further
insight in the fascinating subject of Whitney elements
and, hopefully, provides a series of useful tools for the
electromagnetic field analyst.
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