Technical Article
Generation of Tangential
VYector Finite Elements

Introduction

Edge-based vector finite elements have a number
of advantages over scalar elements for modeling
clectromagnetic field vectors. First and foremost,
they provide accurate and reliable solutions free
from the spurious modes and numerical
instabilities thal plague conventional scalar
elements. Second, Lhey have a simple form with
which it is easy to enforce the tangential continuity
of field components. And third, they form a
consistent numerical approximation for
tangentially continuous field quantities such as A,
E and H when scalar finite elements are used to
approximate the associated scalar potential
functions. This third advantage allows the
particular solution to be computed easily for with
magnetostatic and eddy current problems [1].
They have, however, one major disadvantage:
their rate of convergence is low. The rate of
convergence with edge elements is only first-order
since only constants are approximated with these
elements in the range space of the curl operator.
To achieve higher rates of convergence; one must
employ higher-order polynomials in the
approximation. However, the procedures required
to do this are not obvious. One must be careful to
maintain the tangential continuity of the field, to
generale consistent polynomial approximations,
and to ensure the completeness of the resulting
polynomial spaces, all while increasing the
polynomial order. While all of these requirements
have been met by polynomials in the literature, the
methods for generating these polynomials are
complicaled. As a result, although high-order
tanigential vector finite elements are now widely
used, the procedures used to generate them are
not well understood.

This paper presents a new, more easily understood
derivation of vector elements than is currently
found in the literature [2,3,4]. Our approach is to
begin by writing a general two-component, two-
dimensional vector as a linear combination of
scalar elements. By enforcing tangential coitinuity
of the vector at element boundaries, we generate
elements having the proper interelement
continuity conditions but not necessarily the
correct, complete polynomial order. To determine
the correct order, we focus on the order of the
polynomials in the resulling range space of the
curl operator, rather than considering just the
order of the polynomials in the approximation
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itself. Additional basis functions are added, each
generating a higher-order polynomial in the range
space, to insure the completeness of the high-order
space.

An interesting byproduct of this approach is a new
expression for zero-order edge elements. It turns
out that zero-order elements can be expressed in
terms of bwo types of functions: one which has
zero curl, the other a constant curl. These new
basis functions provide a natural way to separate
the nullspace of the curl operator from its
nontrivial range. Employing tree-cotree methods
then allows us to determine a unique solution
much as is done with ordinary edge elements.
Tirst we begin with the new derivation of the
H{curl) element that is complete to first-order in
the range space of the curl operator. Next, we
apply this praocedure to generate a new zero-order
element HOcurl). Use of the resulting partitioned
edge element space 1s then illustrated by an wave
propagation example. Lastly, using the lessons
learned from the two lower order spaces, we
derive a new second-order complete H2(curl)
clement.

Fig. 1 2D triangular element

Fig. 2 (a) Linear vector slement (b) Constant vector slement

A General Procedure

Let F=(F,.F, ) be a two-dimensional vector field
over a triangular element A. In the following, we
use the labelling in Figure 1, where 8; denotes the
local vertex angles, n; the unit normals, and ; the
unit tangent vectors, As is well known, a scalar
field of complete polynomials of integer order is
correctly represented by nodal elements. We will
therefore attempt to represent each Cartesian




component of Findividually by nodal elements.
Each nodal variable thus becomes a vector
variable 7| as pictured in Figure 2(a) and the
vector F becomes

3 :
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where C, n =123 are the homogeneous
coordinates in the triangle. If the vector nodal
variables /; were set to have the same value in two
adjacent elements across their common boundary,
the resulting field F would have both tangential
and normal continuity across this boundary. This
is too much continuity both physically and
mathematically. Physically, a field variable such as
the magnetic vector potential A, or the electric
field E, or the magnetic field H has only tangential
continuity and may have discontinuous normal
components.

Mathematically, requiring both tangential and
normal continuity of low-order vector polynomials
makes incorrect approximations of the nullspace of
the curl operator. These incorrect nullspace
approximations result in spurious modes in wave
problems and mesh dependent instabilities in low
frequency deterministic problems.

Now let us consider the "connection rules”
required to assemble individual elements into a
mesh. To do so, consider two elements and resolve
each nodal vector in (1) into its components along
the two adjacent triangle sides. For example, /) is
the interpolated value of F at vertex 1, which is
also the intersection of sides 2 and 3. Simple
geometry yields for 7y
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where 7@ and 711 are the tangential
components of ¥ along sides 2 and 3. Similar
expressions to (2) are obtained for /5 and 75,
Substituting these results into equation (1), F is
expressed within A as a linear combination of six
linearly independent functions ey(l), .., el where
the e, are given in Table 1a, along with their
curls, The symbols 0.1(2’, i=1, ..., 6 in this table
denote the familiar quadratic shape functions
discussed in [5] and 1; denotes the length of side i.
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Table la. Linear basis functions and curls for firsi-order compiete element.

By examining the expressions for e;!!) and e,(1) we
see that these basis functions have non-zero
tangential components along side 1 and zero
tangential components along the other two sides.
We say that these two functions "interpolate the
tangential component of F along side 1", Similarly,
;1) and e,V interpolate the tangential component
of F along side 2, and €% and ey interpolate the
tangential component of F along side 3. We also
note that all six basis functions have non-zero
normal components along the three sides,

Using this fact, we employ the following
connection rule for a multiple element mesh: set
the scalar parameters associated with the two basis
functions in Table 1a in adjacent elements equal
along the common side. The result is tangential
continuity of F throughout the mesh without
enforcing normal continuity. In fact, the space
described by these basis functions includes every
tangentially continuous function that is element-
wise linear in x and y. A subset of these functions
are functions of the form F=Vg. Since VxVg=0, this
subset of functions provides the nullspace of the
curl operator. It can be shown that this subspace is
spanned by V'P; where V'; are global, piecewise
quadratic basis functions [6].

The second column of Table 1a reveals that the
curls of the basis functions e; !}, ..., es!) are all
constants. Thus, using these six functions, and
only these six functions, provides an
approximation for VxF that is complete to only
zero order polynomials (constants). To obtain a
linear approximation for VF, we need to add two
basis functions whose curls are linear in g;. The
fact that two basis functions must be added to
obtain a complete linear polynomial in the range
space follows because a linear polynomial requires
three basis functions, only one of which
(constants) is provided by the first six functions
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Table 1b. Quadratic hasis functions and curls for first-order complete
element.

The new bagis functions may take a number of
forms, Table 1b lists one possibility. In this case,
the functions e,(!) and eg(!) have zero tangential
components on all three sides. Thus, these
functions do not disturb the above tangential
continuity connection rule and provide local basis
functions associated only with the one triangle,
This is the first-order complete vector element denoted
as "Hl(curl)” and originally presented in [7]. It has
been shown to produce reliable solutions without
spurious modes in electromagnetic field problems.
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Edge Elements

Using the above derivation of Hl(curl) as a guide,
let us now construct the zero-order element. To do
this, let us return to the single triangle case and
use constant functons to express each COTH[.)OHOI‘Lt
of F in place of the linear functions used before.
There are two degrees of freedom assigned to F in
this triangle, which we symbolize in Figure 2b
with an interior node and an arrow. Simple
geometry provides

F=Fjcschyng  Fposching 3)

where 'l and F2 are the tangential components of
F along sides 1 and 2 of the triangle. In this way, F
is written as a linear combination of two linearly
independent basis functions 4% and e,() defined
along with their curls in Table 2a.

cschy i, |wa=n ]
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Table 20, Low-order nullspace basis functions and curls,

Note that e, has unity tangential component
along side 1 and zero tangential component along
side 2. Correspondingly, ;" has unity tangential
component on side 2 and zero tangential
component along side 1. Both basis functions have
non-zero tangential components along side 3.
Since the curls of both e; () and e,(" are zero, the
rangé of the curl eperator is not com plete even to
zero-order polynomials. To span the range space to
the lowest (zerp) order, we must add a third basis
function, 4}, which has a constant non-zero curl.
The rules of differentiation imply that such a
function has linearly varying components.
Additionally, to preserve the interpolatory nature
of ;M and e)@, e must be constructed such
that it has zero tangential components along sides
1 and 2. The function e5® defined in Table 2b
satisfies these requirements.

]Txc-‘_::{lﬁcscez v 1esel, )i

Table 2b.  Lincar low-order basis function and its curl
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The geometric factors cscfy and cscly are included
to provide a unity constant tangential component
along side 3. Thus, this function interpolates to the
tangential component on side 3.

Many readers will note that e;®™ has a familiar
appearance. Indeed, simple geometry shows that

“)

61C5 Newsletler

where hj is the triangle altitude to vertex i.
It follows that

cscl) =-1 Vig=-13 V(5 (5)
with similar expressions for cseB; and cseba. Thus,

the elements of the basis {e; (), e,(!), e4(0)) may be
written as

e ) =uy - sin cschyuy (6a)
20 =, - sind, cschs sy (6b)
ey =uy (6c)

where uy, uy, uz is a second basis defined in Table 3.
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Table 3. Edge element basis functions and their curls,
The basis functions uy are the 2D form of the usual
"edge element” functions in the literature [8].
Equation (6) shows that the two sets of basis
functions e; and u; span the same space, which we
denote as H(curl).
While the functions e, nicely separate the range
space into the nullspace of the curl operator and
its complement, it at first appears Lo require much
more complicated connection rules. The usual
edge elements simply require edge values to be set
the same along adjacent sides. With the functions
") this is not so easy: we need to enforce the
tangential continuity of F across element
boundaries, but the functions are not interpolatory
along all three sides. All three are interpolatory
along edges 1 and 2, so that two adjacent elements
sharing edges 1 or 2 may simply share the
common parameter Fy or F>. However, for shared
edges assigned as local edge 3 for either or both
triangles, properly enforcing the connection rule is
awkward. The tangential component of F on side 3
is a linear combination of the local parameters F;
and I, and tangential continuity requires
enforcing a linear relationship between Fy and T,
and one or both of the tangential parameters in the
second element, While this is possible, a better
method is available.
An elegant method of enforcing continuity is
obtained by recognizing that

e)=-1 V&; and el =-1; VL, (7
That is, the nullspace basis functions e;® and e,(0}

sciated with the gradients of node-based
scalar functions within the same triangle.

are ¢




Equation (7) suggests that we may obtain
tangential continuity of the nullspace basis
funetions by simply taking the gradient of a scalar.
To do this, consider a continuous scalar function ¢
defined on a mesh using N node-based finite
elements
N
0=2 o, ¥, ®
n=
where W are global linear scalar basis functions
and @ are interpolated values of @ at the nodes.
Note that in any particular element, ¥ _ is just En.
Since @ is continuous, its gradient
N
V(P = ”ZJI Pra V\Pn (&)

is tangentially continuous. Also, since W | are
constructed from the patch of £, interpolating to 1
in all the elements surrounding node n, according
to (7) the V' | may be constructed from the
functions e} and e, .

Taking the gradient of a first-crder scalar finite
element approximation therefore creates the
desired piccewise constant and tangentially
continuous vector field. However, to be precise,
we note that (9) contains one too many degrees of

freedom. One of the V'V, can be written as a linear

combination of the other N-1. To see this, consider
equation (9) for the case p=constant. In this case,
(9) yields

3 0y V¥, =0 (10)

n=1
Thus the VW | are linearly dependent. This is the
only dependency since no function other than
p=constant has a zero gradient. Therefore, the
piecewise constant field is spanned by N-1
independent functions of the form (7).
We remark here for future use that a similar
argument to the above shows that the dimension
of the gradient space for high-order scalar
elements is one less than the number of nodes in
the element for a single element, or one less than
the number of nodes in the mesh for an assembly
of elements.
As first noted by Albanese and Rubinacci [9], the
dependent and independent degrees of freedom of
the curl operator may be determined by
decomposing a zero-order edge element mesh into
a tree and a cotree. A tree of the mesh is defined
as a set of edges which visits all nodes, but does
not contain any closed loops; the cotree space is
defined as the subspace of the edge-element space
in which all edge variables on the tree are set to
zero. Note that the number of branches in a tree is
(N-1), which equals the dimension of the nullspace
of the curl operator. As explained in [8], the cotree

space is disjoint from the nullspace and the
nullspace and cotree space together comprise the
entire edge element space.

We are thus led to the following prescription for
using the basis functions e . Let e and e,
the curl nullvectors, be defined in terms of the
scalar variable @ and let e5l® be associated with
the edges of the cotree. Continuity of ¢ is
accomplished in the usual manner of first-order
scalar finite elements, and continuity of e3™ in the
usual manner of zero-order edge elements.
However, e is only defined on the cotree edges
of the mesh. One then sets up and solves the finite
element equations for the variables ¢ and e/ .
The number of variables in this system is identical
to the number of variables in w® since @
generates a matrix of rank (N-1) which is the same
as the number of tree branches.

To illustrate the use of the basis functions ¢},
consider the driven waveguide problem in Figure
3. Here we wish to compute the magnetic field H
as it travels left to right in a TE; mode in a parallel
plate waveguide. Figure 3(a) depicts a meshed
rectangular region. A tree for this mesh appears in
Figure 3(b). Solving for the magnetic field H using
a node-based representation for ¢, and local basis
functions e;"! for the cotree space gives the
magnetic field solution presented in Figure 3(c).
Absorbing boundary conditions were enforced on
the left and right boundaries to obtain this
solution. Solutions obtained by this process are
observed to be both accurate and reliable.

(a)

]

Fig. 3 {a} 2D Delaunay mesh  (b) Mesh tree

Fig.3 (c)Magnetic field for TE, parallal plate waveguide mode
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Fig. 4 Element construction

The H2(curl) element

Figure 4 summarizes the previous construction for
the H(curl) and H'%curl) finite element spaces.

In addition, it provides a basis for constructing the
second-order complete space, denoted "HZ(curl)".
The development of each order is read from left to
right, with the rows q=0, g=1, and q=2 referring to
the HYcurl), Hl{curl), H3(curl) spaces,
respectively. The row following "q" provides the
dimension of the associated function space.
Several symbols not used ecarlier in the text appear
along the top row of this figure. Here PqH(A)
denotes a single scalar element constructed from
the usual (q+1)-th order polynemials in x and y
[5]. The multi-element version of this space is
spanned by a set of node-based global basis
functions 'V, and the gradients of these functions
span a tangentially continuous "gradient” space V
Py Tyfcurl,A) denotes the incomplete, !
tangentially continuous, intermediate space which
contain the gradient space, discussed above for
g=0and g=1. Finally, "R" and "K" stand for range
and nullspace of the curl operator, respectively.
Before discussing H2(curl), let us summarize the
pattern established in constructing H%curl) and
H(curl) as portrayed in Figure 4. In order to
adequately model the nullspace of the curl
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operator, the first step is to create an intermediate
space by associating a vector variable with each
node of a scalar Lagrangian element. Scalar
polynomial spaces and the resulting dimension of
each included gradient space are shown in
columns 2 and 3 of Figure 4. The intermediate
space 1 (curl,A) which contains the gradient space
is presented symbolically in column 4 of this figure.
Next, each vector variable of the intermediate
space is resolved into tangential and normal
components along the element sides to enforce
tangential but not normal continuity in element
assembly. For g=0 and g=1, the resulting spaces
are known Lo contain the gradient space VP .
The final step is to create additional linearly
independent basis functions so that the range of
the curl operator is a complete polynomial. These
functions are constructed to leave undisturbed the
tangential interpolation property of the
intermediate space Tyleurl,A). While the
polynomials used are not unique, the number
required can be deduced by inspecting the curls of
the existing basis functions as discussed earlier.
Allernatively, the overall required dimension of
the Hd{curl) space can be computed as the sum of
the dimensions of the curl range space and curl
nullspace [10].



The dimension of the complete polynomial range
space is shown in column 5 of Figure 4. The
resulting calculated dimension for the space
HA(curl) is given in column 6. Thus, the dimension
of the entire space is known, as well as the
dimension of the intermediate space T (curl,A)
constructed to provide tangential continuity. We
simply need to subtract column 4 from column 6
to find the number of additional basis functions
required. This is (q+1) and is given in column 7.
The final column of Figure 4 pictures the
additional basis functions selected to make each
space complete, For HO{eur), the linear basis
function e5© is added as depicted in the figure.
Similarly, quadratic basis functions es1 and e}
are added to the g=1 row. These are represented as
perpendicular vectors on two of the triangle edges.
We will now construct H2(curl) based on the above
principles. A single node-based element of cubic
order is pictured in column 1 of row 5 of Figure 4.
This element has 10 degrees of freedom, each one
associated with a node. The resulting gradient
space contains 10-1=9 degrees of freedom. The
quadratic intermediate space T(curl,A) is presented
symbolically in column 4. This element is formed
by associating a vector variable with each node in
anode-based quadratic Lagrangian element.

This single element is now maodified by connection
rules to be valid over an entire mesh. The
requirefnent is again to enforce tangential
continuity, but not normal continuity. To
accomplish this, the three vertex vector variables
are resolved along the triangle edges. The degrees
of freedom associated with these tangential
components are shared between adjacent elements
in the same way as those in the H!(curl) space.
However, the H2(curl} element presents a new
feature: the midpoint vector variables contain both
normal and tangential components. Here the
tangential degrees of freedom along a common edge
of adjacent triangles are shared, but the normal
degrees of freedom are not. The basis function
arising from each midpoint normal component is
associated only with the parent triangle.

Next, to achieve a quadratic rate of convergence,
the curl range space of the H2(curl) element must
be spanned by a complete z-directed quadratic
polynomial. A quadratic polynomial in x and y has
6 degrees of freedom; this is therefore the required
dimension for the curl range space.

Since the intermediate space To(curl,A) has a
nullspace dimension of 9, the total number of
degrees of freedom required for H2(curl) is
dim(K)+dim(R)=9+6=15. Since the number of
degrees of freedom in the intermediate space is 12,

three remaining basis functions need to be added.
These three functions may be constructed in many
ways. However, they must be linearly
independent of the new and existing polynomials,
and their polynomial order must be 3 so that their
curls will supply quadratic terms to span the curl
range space. One possibility is sketched in the last
column of Figure 4. In this case, each of the three
vector basis functions is associated only with this
triangle and is formed by multiplying the P5(A)
scalar basis function associated with the pictured
node times the normal vector to that side. This
construction provides linear independence and
does not disturb the tangential interpolation
property of the intermediate space.

The 15 basis functions thus derived, along with the
connection rules described above, defines the
H2(curl) space. This space enforces tangential but
not normal continuity, avoids the problem of
spurious modes, and is a full order more accurate
than the published Hl(curl) element in [7].

Conelusion

We have shown that tangential vector finite
elements are easily derived by beginning with the
usual scalar element, forming a two-component
vector from this scalar, and then restricting the
vector to have tangential but not normal
continuity. The resulting intermediate vector space
contains the nullspace of the curl operator, and
therefore avoids the problem of spurious modes,
but does not provide complete polynomials in the
range space of the curl operator. To achieve
completeness in the range space, additional
domain space variables must be added. The
number of additional domain variables equals the
dimension of the curl nullspace plus its range
minus the dimension of the intermediate space.

A byproduct of this new derivation is a better
understanding of zero-order edge elements and
their relationship to the trees and cotrees of the
finite element mesh. We have shown in a new way
that the nullspace of these elements is associated
with a first-order finite element scalar function and
that the complement of this nullspace is associated
with the cotree edges in the mesh. Solutions of
waveguide problems demonstrate the validity and
accuracy of the new approach.

While many of the results in this paper exist in the
literature, it is hoped that the new approach
presented here will help to clarify the derivation of
high-order tangential vector finite elements. These
elements are endlessly fascinating, and much
future work depends on our understanding of
these complex yet highly important elements.
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XIV EPNC'96

14th Symposium on Electromagnetic
Phenomena in Nonlinear Circuits will be held
in Poznan, Poland, on 29 May to 1 June
1896. The aim of the EPNC Symposium is to
discuss the development in problems of the
analysis and synthesis of nenlinear electric
and magnetic circuits as well as to provide
the forum for presentation of recent
applications of nonlinear phenomena in
electrical engineering. Topics of interest to the
conference include:

+ Ferromagnetic and magnetics circuits

- Theory and application of nonlinear
phenomena in ferromagnetic elements
and structures containing such elements,

- Electromagnetic filed calculation for
nonlinear problems

- Modelling of material properties and the
numerical treatment of hysteresis,
anisotropy and permanent magnets.

Semiconductors and nonlinear electric
circuits

- Power electronic devices and converters,

- Modelling and simulation of nonlinear
electronic elements and systems with
these elements,

- Chaos in electric circuits,

- Nonlinear digital circuits.

The EPNC'96 Symposium will be held in
Kiekrz (a resort near a lake on the outskirts
of Poznan). English and Polish will be official
languages of the Symposium, but only
papers written in English will be published in
the Symposium Proceedings.

For further information please contact:
EPNC'96 Secretariat

Poznan University of Technology

Institute of Industrial Electrical Engineering
ul. Piotrowo 3a

61-138 Poznan

Poland

Tel: +48 61 782 580
Fax: +48 61 782 381
E-mail: EPNC@poznlv.tup.edu.pl



