Technical article
Electromagnetic energy and multiphysics modelling

Abstract — This paper presents an energy-based theory of elec- e What are the possible dissipation mechanisms ?
tromagnetism. The fundamental postulate is presented under

form of a diagram with interconnected energy reservoirs. The com e How is magnetic energy converted into electric energy ?
pletely covariant equations obtained by stating energy conservain

in this diagram are shown to be a combination of Maxwell's equa- ~ ® HOW is electromagnetic energy converted into other forms
tions with the constitutive laws of the material. They are establishe of energy ?

in this paper under the assumption of an absolute time, but a rel-
ativistic extension can be established as well. This energy-based
formulation clarifies several issues related to dissipative and cou-
pled phenomena in magnetic materials, dielectrics and conductors.
The last part of the article is devoted to show how the energy-bade
approach can be exploited in numerical computations.

e etc.

Those shortcomings are particularly hampering when one
deals with the modelling of problems involving the compiatiat
of local electromagnetic forces (energy conversion), reéign
hysteresis (energy dissipation), magnetostriction (hottulti-
I. INTRODUCTION physics couplings in general. In such problems, it is nexrgss
to dispose of a theory of electromagnetism where energyctspe
Opening a textbook on electromagnetism, it is likely that thare involved from the beginning and throughout.
first set of equations presented will be Maxwell’'s equations After pursuing theoretical investigations in those dorsain
and accumulating along the way pieces of knowledge about how

curlh — d,d J (1)  energy behaves in electromagnetic systems, a big pictise ha
curle+9,b = 0 (2) eventually, and somewhat unexpectedly, formed that gies r
divh = 0 3) to an energy-based theory of electromagnetism [1]. Thisrthe
. can be presented pictorially under the form of an energy flew d
divd p% (4)

agram. Stating conservation of energy in this diagram kntai
more governing equations than the classical theory andsgive
clear answers to the questions listed above. Being exmtesse
b=ph , d=ce , j=oce (5) inintegral form, instead of by a set of PDE’s, those govegnin
equations can be derived straightforwardly in arbitrargrde
with the mention that the first set are universal (alwaysiyalnd nate systems, i.e. they are completely covariant. The yheor
the second one contains any relation one would need to ‘closeestablished in this paper under the assumption of an atiesol
the system’ and be able to solve it. Electromagnetism isttgen time, which is sufficient for engineering purposes, but atreils-
way as a matter of fields whose evolution in time and distidout tic extension can be established as well and will be predente
in space are ruled by partial differential equations (PDEJ a elsewhere.
constitutive relations. There is no place in this usualrsgtior From the point of view of numerical computations, the
any energy considerations. energy-based approach clarifies issues like e.g. electyoetia
Further in the same book, some energy related notions &ces and vector hysteresis modelling. It gives all terms i
however likely to be introduced. The magnetic energy, fer inweak formulations a clear physical interpretation, andioes a
stance, is usually defined as a functionaltor h (or even sound framework where the notions of duality and complemen-
both). Different materials will be considered, startinghwihe  tary formulations inscribe naturally. Finally it provideperative
simplest medium (vacuum) and proceeding in a bottom-up fasboncepts to deal in a consistent way with coupling terms ik mu
ion towards more complex materials : linear, anisotropamilim-  tiphysics problems and lumped parameters in reduced models
ear, etc. Not for long however, because the definitions becom The article is organized as follows. The mathematical ingre
quickly rather technical and fall outside the scope of a ga&ne dients are introduced in Sect. Il. A basic knowledge of Défe
monography. tial geometry is assumed. Notions like manifold, tangeatsp
Classical presentations of the theory of electromagnetissd- and contravariant quantities, pull-back, metric, etare in-
leave thus the impression that energy aspects are by-pigodugeed used but not defined extensively. Since those notians ca
of the field theory, somehow accessory and difficult to exploibe understood intuitively, the unfamilar reader should e &
The principles of Thermodynamics are however universal arigliow the developments anyway. In Sect. Ill, the energgeuh
they must apply to electromagnetic phenomena also. Ma®sweltheory is developed with an absolute time. The mathematical
equations say actually something yet about energy cortsamya implications of the postulated energy diagram are deriyed s
but they do so in a way that makes is impossible to disentangiematically and some physical interpretations are dismligs
the different energy flows in presence. Moreover, clasgiced  Sect. IV. Finally, Sect. V gives a few examples how the energy
sentations of the theory leave unanswered fundamentaigoes based theory can be exploited in numerical computations.
like

complemented by a set of constitutive relations of the form

e What are the state variables in an electromagnetic system ? Il. THEORETICAL SETUP

e How are magnetic and electric energy defined in the general
case? A. Function, map, operator



The notation hasSFV'W = —SPW.V and consequently. 3;V,W >p=
—<B;W,P>p.
f:XeEMCN—z=f(X)eDCE (6) This result generalizes as follows. The fieldassociated

for a functionf (or a map, or an operator) is first introduced. Th with the map (7) is a (multilinear real-valued completely-a
i . . ' isymmetric operator actin vector fields arguments, i.e. a
setsM C N andD C F are respectively the domain and the y P gom 9

d 1 of the functi Th . kit of the d .~ “p—covector field. For this reasop—forms are natural argu-
codomain of Ihe function. The generic polstot the domain ., q ;o forp—fold integrals. Given @a—form & and a domain/,
is the variable of the function. The poimtof the codomain is

. . d follows. The domaihi titioned intoV,
the image ofX, also called the value of the function & The one proceeds as 1o OV(\ZS) © domaiiis partioned i
notationsD = f(M) andM = f-1(D) can be used when small parallelepipeds’s™ € A, (M) of characteristic dimen-

useful. If f is regarded as an operator rather than a function, or?~ on(ek.)To each pgrgllelemped, the-form associates a number

prefers writingz = f X instead ofr = f(X). All elements @(Ce ") and the limit

of the exhaustive definition (6) are not always necessany, an N

shortened notations are used whenever no confusion idyb@ssi / & = lim &(Ce(k)) (10)
M

e—0
B. Differential forms k=1

h he th ¢ ] q . K ; exists. It defines the integral éf over M.
When the theory of Electrodynamics took its present form p, o g their equivalence, both the fieldand the mapy are

around the beginning of the XX_th century, electromagnatic called differential forms in practice and the tilde can bepgred.
were represented by tensors, i.e. array of componentedeiat The set of allp—forms defined on a domaifi/ is denoted by
a fixed (local or global) reference frame. Modern theories o P(M)

Electromagnetism, however, tend to view electromagnediddi
as being by nature differential forms of various degrees.

To start with, let us callp—sub-domains any smooth
p—dimensional subset of a given domain: 0—sub-domains
points, 1-sub-domains are smooth curves, 2—sub-domains
smooth surfaces, etc...Lat,(M) denote the set of ai—sub- Ao AP(M) x AT(M) — API(M) (11)

domains in a domairi/. Cap 1
Differential forms are not directly defined as fields but more d s AP(M) = APTH(M) (12)

fundamentally as linear maps from the sub-domains to the oo piete definitions can be found in any Differential geamet
real numbers. A differential form of degree or ap—form for treatise, e.g. [2]. One has in particular

short, is a map

Of course,p—forms need specific intrinsic antisymmetry-
preserving operators. The antisymmetry-preserving tqmsal-
uct is the exterior product\ (11) and the antisymmetry-
a1:31‘?e$erving spatial derivative is the exterior derivativ€l2).

a:CeA(M)—R @) d(aAB) = da A B+ (-1)%e@aa dj (13)

with &(C1 +C2) = &(C1)+a&(C2). The intuitive understanding

of this map is the integration over the-sub-domairC of a field for all p—forms« and 3. Exterior derivative obeys also Stokes’

« associated with the mag. In order to make the link between theorem

the map and the associated field, the case of a 1-form is first / da = / a (14)

considered. LeP be a point inM, andV € Tp»M an arbitrary M oM

vector of the tangent space At The map wheredM denotes the boundary of the integration dormiain
F:A€[—e€d CcR—CHY M, C. Euclidean space, proxy fields

with T'(0) = P and(9,I')(0) = V is the parameterization of ~An Euclidean space is a space endowed with an Euclidean
a family of curvesCV € A;(M), with parameter, going metricg;; = d;;, whered;; is the Kronecker symbol. This par-
through P and havingV’ as tangent vector d. Thanks to the ticular choice has for consequence that covariant and aarir

linearity of @, it can be shown that the limit ant quantities are rendered indistinguishable. Vectadyaisis a
particularization of Differential geometry to the case dheee-
lim i&(CEP;V) =< a(P);V > (8) dimensional Euclidean spade®. The different kinds of fields
e—0 2 encountered in Vector analysis are the scalar fields (1 cempo

exists for allV € TpM and does not depend on the parametelne”t)a the vector fields (3 components) and the tensor fi€lds (
ization. Its value is the duality product &f with the value at> ~ components). LeV?(2),p = 0, 1,2 be the sets of those scalar,

of a covector fieldy that is uniquely defined by the map vector and tensor fields defined on a donfaimc £°.
The case of a 2—form is treated similarly. Let Differential geometry, on the other hand, distinguishes a
wealthier set of fields. In particular, since there existrfoinds
YiMp€ -6 CR— SEVW M of sub-domains in a three-dimensional domain (points, €sjrv

_ surfaces and volumes) there exist also four kinds of differe
with $(0) = P, (0,X)(0) = V and(9,%)(0) = W be the tjal forms. Table 1 summarizes them and gives the associated

parameterization of a family of surfacég*">""" going through  geometrical map, their physical interpretation and thevelas
P and havingl” andW as tangent vector a. The limit that encountered in this paper.

defines the associated fiefdwrites When mapped intd=?, 0—forms and 3—forms get identified
1. with scalar fields, whereas 1-forms and 2—forms are idedtifie
lim Pﬁ(sf;vvw) =< B(P);V,W >. (9)  with vector fields. These scalar and vector fields are calied t

proxy fields of their corresponding—form [3]. But both repre-
Since permuting\ and x amounts to swapping the vecto¥s sentations are nevertheless not equivalent. The repegienof
and W, and hence to revert the orientation of the surface, oreefield in terms of a 1-form for instance still makes sense when



3 : : ,
Table 1:Differential forms of degree 0, 1, 2 and 3 in a 3D space E* are denoted with a bold letter), is the field of tangent vector

ted trical hvsical int tati to all trajectories of the flow at a given instant of time.
assoclated geometrical map, physical interpretation The placemen, is assumed to be regular and invertible at all
ples encountered in this paper.

t. It induces mapping, also noted, of all field quantities de-
fined onM (p—forms and other kinds of tensors) to their vector

0—form Points — R | scalar function u . ¢ - : :

1-form | Curves — R | circulation density| a, e, h or tensor proxies defined afi®. Quantities defined oi/, i.e.
2—form | Surfaces — R | flux density b,d, j material quantities, are denoted by an uppercase symbdl, an
3—form | Volumes — R | volume density Py e their image inE? (i.e. their proxy field) by the corresponding

lowercase symbol, i.ep;Z = z. In the following, the symbols
Z andz will be used to denote generic fields whose nature is not

. o (or needs not) be specified.
the domain deforms, due to the fundamental definition (7) of a

1-form as a map on the curves. The number associated with a E. Energy functionals
given curve remains unchanged when the curve deforms. On the . . o . _ )
other hand, Vector analysis provides no rule to drag a véieior ~ In our theoretical setting, a metricis available inE®. Since

along in the deformation of its domain of definition. Thistiis- ~ €nergy density is related to the local intensity of the fiet, to
tion between the—forms and their proxy fields is thus crucial the norm|z|, of the field > at the pointz € E?, the expression

when it comes to the definition of electromagnetic forces. ~ Of energies in a systefa are by definition real-valued functions
(functionals) of the fields defined di®. Denoting energy func-
D. Placement map tionals with the lette®, one has

. 3
As for any thermodynamic analysis, a volume control enclos- v VP(E?) — R, (16)

ing a given amount of matter must be defined as a reference fo

establishing an energy balance. This role is played by the so - v 03

called material manifold, or any subset of it. One is on tleept V= /Q/’ P (2,9) € VI(EY) an
hand familiar with the fact that a large energy density atrtade _ o
point, is associated with a large intensity of the assoditieid. with the notatiornp® used throughout the paper to represent the

One therefore needs a way to attribute to the field a locahinteVolume density of a quantit. . _
sity, i.e. a norm, in order to express the energy densitg thé ' "anks to the placement map, the norm for fields defined
role of the metric to define such norms. on E3 induces a norm for the pull-back fields = p,z defined
The theoretical framework we need relies therefore upon twi? the material manifold/ if one simply states
manifolds : the material manifold/ of which each point is as-
sociated with a material particle of the continuous mediarg.(
an atom}, and a metric spac&?® which is the space in which Knowing the expression of the energy of the systéf) as
the motion takes place. a function of the proxy fields, the corresponding expresgion
terms of the associated differential fotthcan also be obtained
thanks to the placement map. One has

/ p¥(2.9)
Q=p: M

ixé/lmm P . U 2
A / . = /M {pip"} (pi2,p19)
= [ otz = oy @)

This is the formal definition of the function ¥ : AP (M) — R,

which is called the pull back o (Compare with (16)). Note

the use throughout the paper of curly bragésfor grouping,
Figure 1:Placement map at two instants of time and the trajec~hereas parenthesi$ are reserved to indicate at which point
tory ofz = p, X in E3. functions are evaluated.

The derivative of the energy densjy with respect to its field
In order to describe the motion and the deformation of thargument: is the field{0,p?}(z, g) such that

system, the placement map

1Z|x = |pezlx = |2lp,x = |22 (18)

37 bt \Ij(z)

U(z+dz) — U(z) — / {0.p"} (2,9) - 62| =0

’ (19)
is defined, Fig. 1. It attributes a position ifi® to each ma- Where the limit is taken over all sequences of non-zerehat
terial particle X € M at all instants of timet € [tq,tp]. coOnverge to 0. This is the Fréchet derivative. This deneati
The codomain of the placement ma@, = p, M, is the de- allows defining the constitutive laws of the material
formed state. On the other hand, the codomain of the map . v
t € [ta,tg] — x = p;X € E3 is the trajectory of a particu- 2" ={0:p"} (2,9),
lar material particleX. The velocity field,v = 0.« (vectors in

lim —
p:XeEM—z=pXe E3 (15) l62[—0 [z]

(20)

where the field:* is the energy dual of. The induction fieldo
1The delicate question of the definition of electromagneticigién the ab- and the magnetic fiell, for instance, constitute a pair of energy
sence of material support will be discussed elsewhere. dual fields.




As ¥(z) = {p:¥} (Z) and noting that the integral in (19) can In order to make the link with classical notions, it can beedlot
also be written that £, = 0; + £+, where£, is the Lie derivative [2]; in the
absence of motiony = 0 and £, = 9;. One recognizes in (24)
/ {0.0"} (2,9) - 62 = / {p:0.p"} (prz,prg) A Oprz  resp. (28), and (27) resp. (31) material derivatives thetear
@ M countered in Fluid dynamics. Equations (25) resp. (29),(26)

= / {0zptp‘1’} (Z,G)N6Z, resp. (30), could therefore be regarded as the materiatdisgs
M of 1- forms and 2— forms respectively. But, as electromagnet
one has, by identification, the commutation property fields do not need material support, the name co-moving time
derivative is preferred [2]. Although 1-forms and 2—fornas/é
Ozt = pi0;. (21) proxy fields of the same nature (vector fields), their co-mgvi

time derivatives are different. The same remark holds for 0—
In %, 2 € VP(E®) = 2* € VP(E®) whereasZ € AP(M) = forms and 3-forms. One may finally recognize in (28)-(31) the
Z* € A"7P(M) in an—dimensional manifold. Euclidean expression of Cartan’s magic formula for diffeia
P A forms
F. Co-moving time derivative Lo =0, 1 diy +ivd (32)

Thanks to the concept gf—forms, fields can be consistently

defined on deforming domains. The time derivative of energy
functionals requires however a special care. Considetieg t
functional ¥ (z), with = depending on, one has

G. Convex analysis

In order to draw all the benefit from the theory presented in
this paper, some concepts from Convex analysis are usedal. S
v v e.g. [4] for a sufficient introduction to the subject.
0, 0(z) = at/ p(2,9) = at/ {pep”} (pez,p19)  (22) Let X be a set. Aunction f : dom f C X — R is defined
° M by fixing adomaindom f C X and arule x — f(x) that makes
by the change of variables induced py As the material man- sensevz € dom f with f(z) € R. 2 Theepigraph of f is the
ifold does not depend on timé), fM = fM 0, holds and the subset ofX x R defined by epif = {(z,2) : ¢ € dom f,z >
chain rule of derivatives yields f(z)}. The functionf is upper-bounded iffz € dom f, 3 a €
R : f(z) < a. The smaller upper bound fgris notedsup f.
.= / {0zpp"} (2, G)/\atZJr/ {0apip”} (Z2,G) : 0,G.  Letus suppose now that is vector space. A subsat C X is
M M convexiff Vz,y € K, (z +y)/2 € K. Afunction f : dom f C

Now, the commutation property X — Ris convex if its epigraph is convex.
Let us now additionally assumersrm |z| is defined on the
Otpr = pt Ly (23)  vector space&X . This notion is necessary to express convergence.

The setK C X is closedif it contains the limits of all its con-
vergent suites. The fonctiofi is lower semi-continuousif its
epigraph is closed.

Let finally X andY be two Hilbert spaces with thecalar
product (y,z),z € X,y € Y. ThelLegendre transform of a

defines the co-moving time derivativé, of any tensorial ob-
ject. The indexv = 9;p; X € V(E?®) represents the velocity
field associated with the placement

Then, (21) and (23) gives

v function¥ : dom ¥ C X — Risthe functionV* : Q C Y
o= /M {pe0:p" } (Pez,prg) N pe Ly 2 R defined by the rule
+ / {pe0gp" } (D2, p9) 19t Lv g y— s {we (y2) = P(2)} (33)
M r€dom

and the domail) that is the set of the poingse Y for which the
and finally, by using the inverse change of variable, functionz — (y,x) — ¥(z) is upper bounded. It can be shown
that the functiong* defined this way is convex and lower semi-
oV(z) = / {0.9"} (2,9)- Ev2+/ {0,067} (2,9) : Lvg. continuous (clsc) and that** = T if & is cslc itself.
@ @ The functionsV : dom ¥ C X — Rand® : dom® C Y
The co-moving time derivatives of the proxy fields assodiateR, are said to béual iff both
with p—forms,p = 0,1, 2, 3, are:

, o(y) = sup {z— (y,2) - ¥(z)} (34)
Ly f — f (24) r€dom ¥
Luh = h+(Vv)-h (25) U(z) = yesd%gq>{x = (y,2) — 2(y)}
Lub = b—b-(Vv)+btr(Vv) (26) _ _ _

. are true. Dual functions are automatically clsc. Note thadia
Lyp = p+tr(Vv)p (27)

of functions® and ¥ that are the Legendre transform of each

as can be checked component by component. The definitions®@fer (i-e.¥* = & and®* = ) are dual by definition but, as
thea time derivative and of the products (Vv) and(Vv)-a & Mightbe different from a prescribed domaiom ¢, ¢ and¥

are given in the Appendix. Alternative expressions in teahs Might be dual without having™ = W. _ _
Vector analysis operators are also useful : Itis obvious from the definitions oF and® that the inequality

Lof = 0f+v- {gradf}, (28) Az, y) = V() +2(y) — (y,2) =0 (35)
Lya = Oia+grad(a-v)—v xcurla, (29)  nholdsvz € X andvy € Y.
Lyd = Od+curl(d xv)+vdivd, (30)

2Note that the domaidom f might be prescribed as being a subset only of

Lyp Op + div (pv). (31) the domain on which the rute — f(z) is actually defined.



A

whereq is a constant. Except in case of superconductors, the
inertia of charge carriers is negligible, and the J-reservan
[, ODAE, then usually be considered empty as well.
The internal flows (the flows connecting two reservoirs of the
diagram) depend on the state variables only. The blackeduead
Ju N OA arrows represent 3 dissipative volume flows associatececesp
JudD A dU tively with magnetic hysteresis, dielectric hysteresig doule

iy I NE; - [ I A dU Iqssgs. .They involve state vqriabléé éxcepted) and empirical
4—@—> dissipative so called generalised fordés = p;h;, F; = p;e;
and E; = p:e;, whose physical interpretations are discussed
below. The surface generalised forég) = p;hy is associ-
v ated with the magnetic energy crossing the surface of the sys
) ) ) ) ) tem. The second surface flow, connected to thereservoir,
Flgure 2:Electromagnetic energy diagram in the material Manienresents the energy entering the system through the condu
ifold M. tors crossing its surface. Finally, the floi&,; andi/z account
respectively for the electric or magnetic energy conveited
non-electromagnetic forms of energy (e.g. mechanicalnche
cal, etc...)
9,0 ={yeY ') —W(z)> (y,2' —a),¥a' € dom ). The engrgy—based theo_ry relies on the structure of this dia-
gram, which tells something fundamental about how electro-

The elements of that set are callabgradients If the function Magnetic fields interact with matter and spacetime. It maloes
¥(z) happens to be differentiable af its gradient is the only ~framework in which all electromagnetic systems, includitie
element ofd, ¥ andy = 9, can be written instead of €  SiPative and coupled ones, should inscribe.

0.V. An important result is that the inequality (35) becomes an B. Conservation equations it/

equality if eithery € 0,V orx € 9,®. Finally, the applications i ) )
z — 9,¥ andy — 9,® aremonotonousin the sense that As the fieldsA, D, J andU are independent variables, they

(yo — y1,02 — 1) > 0 for any givenz,,z» € dom¥ and can be varied freely in order to qbtain, follpwing a yaria’éd)

Vur € 0, ®(21), Vo € Dy ® (). line of argument,_ the conservation e_quanns implied by the
structure of the diagram. By expressing on the one hand en-

ergy conservation at nod# (the variation of the energy in the

reservoir is equal to the sum of incoming flows minus the sum

of outgoing flows),

Jors Ho N 0 A

Jo Hi A0 dA
Sy 0D NOA

Jons UN(J +0:D)

Thesubdifferential 9, ¥ of the function¥(z) is the set

I1l. ENERGY-BASED THEORY

A. Energy diagram Oy (pe¥n} (dA) = / (J+0,D} A O A
M
Whereas the classical theory of electromagnetism is exguless
in terms of the vector fieldh, b, e, d, j € V!(E?) and the - /M pehi A9y dA
charge density® € VY(E?), the set of state variables selected .
for the energy-based theory is different. It consists oftleetric - Hy NOA — Wiy
oM

scalar potential/ € A°(M), the magnetic vector potentidl €
AY(M), the electric displacemer® € A%(M) and the current

densityJ € A%(M), all defined on the material manifold. The and applying on the other hand the chain rule of derivatives

state variables are thus the two electromagnetic potential A / N
) . . ) U A) = , A A
andU, and the two fields associated with electric charges]l.e. O {pi¥ark (d4) " {Oppepa;} (44, G) A O d
andJ.
g .
Let us state as a postulate that, in an arbitrary materigdmeg + / " {8GptpM } (d4,G) : 9,6,

M, electromagnetic energy flows according to the diagram d
picted in Fig. 2. The diagram consists of four energy resesyo
each one associated with a state variable. Aheeservoir (up-
per left) contains the magnetic energy of the system

fivo expressions of the variation in time of the magnetic gyer
are obtained. Note that it has been assumed for the sake of sim
plicity that dA is the only argument gf; ¥ ;. Other arguments
could be added if necessary, e.g. the stedior a magnetostric-
tive material, with a similar mathematical treatment asdhe

() = [ (olihaa) sketched here.
M Identification of the two right-hand sides gives an equation
= / py(curla) = Uy, (curl A) that must be verified, for arbitrary variations 4f i.e. Vo, A.
Q=p:M The implied conservation equations are obtained by applyia

fundamental lemma of Calculus of variatiSnse. by identify-
ing to zero the factors af; A, separately od/ anddM . Using
the commutation propery; d = dd;, (13) and Stokes’ theorem
(14), to perform an integration by parts, one obtains theiul
Lagrange equations

which is a function ofdA = p; curl a, i.e. the image il of the
induction fieldcurla. Similarly, the D—reservoir (upper right)
contains the electric enerdy, ¥ }(D), which is a function of
the electric displacemen® = p,d. The U—reservoir (lower
right) is always empty. Th&—reservoir, finally, contains the
kinetic energy of the charge carriers, which can be expdease  d {{0s ptp}IC]} (dA,G) +pihi} = J + 0:D onM,

2P {08 pepdy} (dA,G) +pehi = Hy  ondM,
{pt\PK}(J) B /M aT B /Q 2 = WK(J) (36) 3The arbitrary time derivativé; A plays here the role of the variatiom.
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\
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The boundary condition writds = hy on 92 and the equations

Wy = A{agp%[}(curla,g) : Lyyg (52)
e = [ {0k o) Log (53

define, in E3, the power developed by magnetic and electric
forces in terms of the co-moving time derivativegfAlthough

the latter is fixed in an Euclidean space, its co-moving time
derivative is not. It is given by

Lyg=(Vv)+(VV)T =20, (54)

Figure 3: Electromagnetic energy diagram in the Euclidean

spaceF?.
and the remaining of the equation writes

—Wa = /M {8gptp%[} (dA,G) : 6,G. 37)

Conservation relations at the other nodes of the diagram are

obtained similarly. One finds:

dH = J+0o,D (38)

E = —-9,A—dU (39)

prej +aldJ = —0A—dU (40)
0 = d{J+09:D} (41)

where the magnetic fieldf and the electric field” are not fun-
damental quantities, as they are in classical electrontizgme
but shorthand for
H
E

(42)
(43)

{aB Ptﬂ}{[} (dA, G) + pih;
{0p pipw} (D, G) + pre.

One has also the boundary conditiih= Hy on 9M, and the
equations

- WJ\/I

A {oepoli} (44.6) 106 (@)

—Wg

/M {0cpiry} (D,G) : 9,G, (45)

define the power developed by magnetic and electric forces.

C. Conservation equations i

Equations (38) - (41) can be mapped iffd, thanks to the

wheree is the strain tensor.
IV. DISCUSSION

The governing equation we have just establishedsinare
now discussed. A similar discussion holds of course for tre ¢
responding equations ik

A. Magnetic field

Equation (50) shows that the magnetic field is composed of
a reversible parh, = abp}\l’4 that accounts for the magneti-
zation phenomenon (alignment of microscopic magnetic mo-
ments), and an irreversible pdit that accounts for the local
dissipation process. The magnetic field is thus not a fundame
tal quantity but a composite one representing at the same tim
two different phenomena.

B. Electric field

One can be puzzled sometimes by the changing visage of the
electric field, which can in turn be associated with elec¢ttis
charges¢ = —grad u), the motion of charge carriere & pj),
electric dipoles¢ = d), or with the magnetic fluxe = —d;a).

As for the magnetic fielth (50), the electric field is a com-
posite quantity representing phenomena of different eat(51).
But the situation is even more confusing for the electricdfiel
Indeed, (47), (48) and (51) give three different and uneelax-
pressions foe.

Equation (48) in particular, which is the conservation equa
tion at nodej of the energy diagram depicted in Fig. 3, is a
true equilibrium equation for charge carriers, up to a fagto
The term—grad u is the applied electrostatic force and the term
e; = o~ 'jis the viscous force opposed by the crystal lattice.
When the charge carrier accelerates, a certain amount ajyener
has to be given to increase its kinetic energy and anotheuaino

placement map;, So as to obtain the conservation equations, n@f energy also to increase the magnetic energy of the system.

in terms of differential forms, but in terms of the corresginy

proxy fields. Alternatively, the conservation equations t&

derived directly from the diagram i®? (Fig. 3) using vector
field analysis. One obtains in

curlh = j+ L,d (46)
e = —Lya—gradu 47
ej+alyj = —Lya—gradu (48)
0 = div{j+ £, d} (49)
with the shorthand
h = {ab p]\ILI[} (CU.I‘I a, g) + hi7 (50)
e = {Oapp}(dg) +e:. (51)

The accelerated charge is indeed associated with a larger cu
rent, which in turn generates a larger magnetic field. These t
energy transfers are respectively represented by thesfoi@g

and O0;a (up to the factorg. again), which can be regarded as
two inertial forces of respectively mechanical and magnett-

gin. The dynamics of charge is thus made, by the energy-based
approach, an integral part of the theory.

C. Constitutive laws

Constitutive laws are defined by giving algebraic expressio
for the energy density functionalg;, p, p}- and for the dissi-
pation functions;, e;, e;. The gouverning equations (46) - (53)
do not contradict Maxwell’s equations, but they are more-com
plete, as they involve the constitutive laws as well. Alinter



have a clear physical interpretation in terms of energy ergn
transfer, which can be visualized in the diagram Fig. 3.

The definition as fundamental quantities of the magnetid fiel

(50) and of the electric field (51) suffices to eliminate alltrice
aspects from the conservation equations (46) - (49). Tlatioel

betweerb andh, resp.d ande, can however not be fully repre-
sented by the Hodge operator in the presence of the dismipati

forcesh; ande; [5, 6].
D. Electromagnetic forces

The conditionsLya = 0 and £,d = 0 are the precise
mathematical statement of what is usually called “holdiragm
netic/electric fluxes constant” [7]. By setting,a = 0 and
L,d = 0, the a—reservoir and thel—reservoir are isolated
from the diagram in Fig. 3, and the variation of energy

War + Wg = — 0,9 ] Loa=o — HYE|L a—o (55)

represents then the power converted into non-electrontiagn

forms of energy (mechanical, chemical...).

In particular, if one substitutes (54) in (52) and (53), th

Maxwell stress tensas.,, can be defined as the factor ofv
in the right-hand side of (55), i.e.

:Vv+... (56)

Uem

WM+WE=—/
Q

The Maxwell stress tensor is the fundamental quantity Fepre, tarms of energy.

senting the electromechanical coupling and a unifying eptc
for all force formulae encountered in literature and usedun
merical computations: the virtual work principle of Coulom
and Ren [8, 7], the sensitivity analysis of Lowther [9], Aitk

G. Poynting’s vector

The flux of the Poynting’s vector through the boundary of the
system is found by noting that the two surface flows combine to
form the flow of the Poynting vector (60).

/{haxﬁva+u{j+£vd}}-n:/ &xh. (60)
o

o0

V. APPLICATIONS

A. Formulations

In many problems encountered in electromagnetism, it is not
necessary to solve the complete set of Maxwell equations. Ac
cording to the dimensions and the time scale under considera
tion, the materials in presence and the configuration of yse s
tem, it happens often that simplifications are possible. s€ho
simplifications consist generally in dropping terms in tié f

eI\/Iaxwell’s equations and weak formulations are then obthine
tpy applying Galerkine’s method to the simplified equations.

The alternative top-down approach, which consists in deriv
ing weak formulations directly from the energy diagram, @ n
necessarily more straightforward but has neverthelessalead-
vantages. Firstly, the assumptions done take on a physisal |
tification this way, instead of a mathematical one. The cifé
terms in the weak formulation also maintain their interatien
so that they can be used for establishing a
global energy balance of the device or to express couplimgste
in multi-physics problems.

Spelling out the wide variety of weak formulations encoun-
tered in computational electromagnetism would be fastiglio

formula [10], Kameari [11], and the Eggshell method [12,.13lye are going to consider only electrostatics and magnetdyn

Each material has its own Maxwell stress tensor and it has be
shown in [14] how its algebraic expression can be derived-alg
braically from a known expression of the magnetic and dlectr

energy densities of the material.
E. Electric charges

Electric charge are not explicitly in the diagram They dee
finedby
p® = dD = divd. (57)

The inertia of the charge carrier is also at the root of thendefi
tion of the static charges that are present at the surfacercdrat
carrying conductors [15]. Identifying the left hand sidé$4Y)
and (49) and assuming = 0, one has

{04 pp}(d) =eg'd=0""j+a L] (58)

The divergence of the right-hand side is identically zettr (
and £, commute) inside the conductor, but the termirhas
a non-zero contribution on the surface of the conductornebe
the expressionga L, j - n for the surface charges.

F. Superconductors

es.

Electrostatics

The electrostatic regime is obtained by setting to zero thte s
variablesa and j and preventing the system from any energy
conversion, i.eWW,; = 0, and assuming no motion, = 0 =
L, = 0;. Since dissipative forces act over time, it is also nat-
ural to assume; = 0 in a static problem. Two conservation
equations then remain.

At nodew, (49) becomes

divd,d = d,divd = 0, (61)

which shows that the quantifivd is conserved. The state
variabled is therefore constrained. The vector potentiabk
then defined as a new unconstrained state variable, such that
d = dg + curlc with 9,dg = 0, divdy = divd.

The conservation equation at nodén integral form,

WV + / gradu-0,d =0 Vod(¢), (62)
Q

becomes then

In practice, the/ —reservoir can often be considered as empty,

because of the very small value af(negligible inertia of the

{0app(do + curle) + gradu} - Gpeurle =0V Oe(t),

charge carriers), and the corresponding term in (48) carisbe d Jo

regarded. However, in superconductors, for whicls infinite
(e; = 0) andgrad u is zero, (48) writes
alyj=—Lya, (59)

i.e. the first London’s equatioa = —«;j for superconductors
[16].

(63)
and after an integration by part of the second term

/ dapp(dg + curlc) - curl d;c
Q

+/ gradu X deec-n =0 VOc(t).
o0



Wy respectively

oWy = /j-ﬁvaf/h,;-curlﬁva
Q Q

7/ haxﬁva~anM
oN

fsz h;- curl Ly a

U curla, z)

j- Lya
Ja vy = /{8bp%[}(curla,g)~curl Ly a
Q

Joo il Jod - gradu

—|—/ {8gpj\{’4}(curla,g) Ly g
Q

[ouj-n and, after identification of both right hand sides,
00

) ) 0 = / {8bp}1\//[(curla, g9)+h;}-curl Ly a
Figure 4: EM energy flow diagram for the magnetodynamics Q

regime. 7/j. Lva+/ hy x Lya-n (65)
Q 20

This is the vector potential weak formulation for electetists. +/ {0,001} (curla,g) : Lyg+ Wy VLya(t).
The arbitraryd;c can be chosen equal to the shape functions @

of the fieldc. At the boundary, eithee (Dirichlet boundary Being independent of,, a, the last two terms must sum up to
condition) or—n x grad u (Neumann boundary condition) must zerq separately, which defines the power delivered by magnet
be specified. forces and gives an already known result (53). The othergerm
The formulation in terms of the scalar pOtenhilaliS obtained make up the vector potentia| weak formulation of Magnetody_
thanks to the concept of duality introduced above. The daidd v namics, with an imposed current density.
ables are in this case = d = do + cwlc andy = —gradu. Now, if the dissipation force; is asumed to be an invertible
Since (63) is a condition stronger thélap; > —grad u, the €O~ fynction ofj (one has for instance; = o—'j for normal con-
energy<I>E_ defined by (34) as the dual of the enef@y satisfies ductors), one can with (48) expreiss: fct( £, a— grad u) and
the equality substitute this in the weak formulation above in order tcaobt
By = _/ gradu-d — Ug, (64) the weak form_ulation of Magnetodyna_\mi(_:s with imposed volt-
Q ages. In practice, the voltage source is simply represénted
discontinuity ofu over a given cross section of the conductor.
Motion terms likev x b are naturally present in the formula-
tion by virtue of the co-moving derivativ€,, a, and they must
not be introduced on basis of a relativistic argument (Ltren
transformation). This issue is will be discussed in anoftagrer.

so that

0 PE —/atgradu-d—/gradu-atd—at\I/E
Q Q

— / O:;gradu - d

" B. Magnetic hysteresis
—/ {gradu + 8dp§} - Ogcurl e

@ The energy diagram indicates that the state variable of a mag
_/ Orgradu -d  Vosu(t) netic material is the inductiolh = curl a, which, in the presence

Q of hysteresis, is subjected to a (generalised) fdrce= Oy p3,
deriving from a potential (the magnetic energy densify) and
to a dissipative forcé,. It is remarkable that complying with

this observation yields naturally a vector hysteresis hode

/Q Ogradu®p - grad dyu = /Q dyudivd contrast to Preisach [17] and Jiles-Atherton [18, 19], \Wtice
basically scalar models

by (63). Making now an integration by part, one has

- Oud-n VYou(t)
o — K
L . . . hh;
with divd = divdg the charge density. This is the scalar po-
tential formulation for electrostatics. At the boundariher «
(Dirichlet boundary condition) ad - n (Neumann boundary con- h +h"
r 1

dition) must be specified.

Magnetodynamics

The magnetodynamics regime is obtained by setfirg 0. The

corresponding energy diagram is depicted in Fig. 4. Disgipa

(Joule and hysteresis) and electromechanical coupiing: (0)  Figure 5:Equilibrium equation (71). The grey circle represents
are going to be considered in this dynamical formulationfibe  the subgradient.

kinetic energy of charge carrier is disregarded,¥g. = 0. En-

ergy conservation in integral form at nodexnd the application  Starting from the vector potential formulation (66), using
of the chain rule of derivatives to the magnetic enefgy write  curlh = j and making an integration by part, the conservation



15 —_— — The pinning phenomenon, which is at the origin of magnetic

hysteresis, is on the other hand represented by the drjofrict
ir 1 force associated with the term|b|. This term is not differen-
os | tiable atb = 0, but, as itis a convex function, it has a subgradient
G defined by
0
G={h},|hf|<kifb=0hf =reyif b#0} (70)
-0.5
whereex, = x/|x|. Since it is a homogeneous function of de-
1T gree 1, one hak? = 9; x|b|, i.e. one can identifin} with the
15 ‘ — ‘ ‘ L subgradient.
-800 600 —400 -200 0 200 400 600 800 1000 The equilibrium equation writes finally
e T h—h, —h}=hf €G. (72)
==
1
The memory effect originates from the non-univocity of the
E 05 1 friction forceh’ atb = 0. The subgradient, i.e. the set of pos-
s sible forcesh?, is represented by the grey circle of radiuin
3 Fig. 5. If the tip ofh is inside the circle, one hds= 0 by (70),
- 08y which impliesh, = 0, i.e. no change of the magnetisation. A
b 4 1 given magnetisation can thus persist although the appligt m
netic fieldh has decreased, whence the memory effect. If on the
sE L ] contrary the tip ot tends to get out of the circld, is updated
—1000-800-600-400-200 0 200 400 600 800 1000 h . . . L
Magnetic Field [Alm] according to the differential equation in time
Figure 6: Internal loops (above) and minor loops (below) are h—h, —h}= Key, (72)

represented by the model.
where we have noted thaf, = e;, . Details on the implemen-

tation can be found in [20]. The presence of a hon-smooth-func
equation at node in integral form can be put into the form of tionals is essentially a theoretical issue. In the impleaion,
the First Principle of ThermodynamiésW,, = W + @ with it amounts to a simplé statement (70).
This model is able to represent minor loops, Fig. 6. By combi-
Q= _/ h;-b , W= / h-b (66) nation of several submodels with different values:pthe num-
Q Q ber of parameters of the model can be increased for a better ac
. ] curacy. Fig. 7 shows the agreement obtained with 5 submodels
and whereb is shorthand forurl £, a. It follows directly that  ag this hysteresis model is based on a real physical deieript
of the phenomenon, it makes sense to use it in a 3D model, even
/ {hr —h+ hi} b=0 v B(t) (67) when parameter identification has been done on basis ofiahiax
Q guasi-static measurements.

so that the conservation equatiorhis= h, + h,;.

The principle of the dynamic hysteresis model is introduced
by making a mechanical analogy. The dissipative phenomengn;g getting increasingly more important in modern compu-
can be accurately represented py the friction fdng:@btained tations to dispose of a concise, computationally tractaioie
from the non-smooth non-negative convex potential though accurate representation of a given large systemi-in o

der to allow real time computation, coupling with other paot
Q(b) = —/ {FL b| + )\Bz} <0. (68) a larger system, etc. There are essentially two ways toereat
a2 such simplified representations.

The first approach consists in truncating an asymptotical (i
some sense) representation of the initial system. These are
e.g. the Model Order Reduction (MOR) techniques, which are
mostly applicable to linear problems [21]. In this case thie i
tial and simplified representations are of the same natune. T
approximation error is measured by the mathematical norm in
"Brms of which the convergence of the asymptotical reptasen
Wnis expressed. As this norm has however scarcely a pdiysic
meaning, the neglected terms turn out often to have a signific
impact on the physical properties of the reduced model. &her
fore, special actions need be taken in order to preservaqattys
properties like passivity, stability, etc.

The second category gathers Parameter Identification meth-
ods, which are often based on energy criteria. When it comes to
construct such models, energy turns out indeed very oftée to

1 . . the fundamental quantity to preserve. A good model is tloeeef
h} = iab(AbQ) = Ab. (69)  a model able to account accurately for the energy storedein th

C. Model reduction

Since the dissipation functioné] is a function ofb, andnot
of b like ¥,, is, the relation betwee@ andh; is not a differ-
ential one (subgradient) but an algebric one, a kind of iinis
of )% by b for which a mathematical definition is needed. For
tunately, for a large class of dissipation functionalss ttivision
can be expressed in terms of the subgradient of the funttio

function of ordern is a function such thaf ({z) = £ f(z).
It has the property:0,f = nf. This can be writtenf/x =
(0f)/n, which is precisely the sought relation.

The quadratic term in (68) represents a viscous frictiondor
It stands for microscopic eddy currents induced in the radter
by the variation with time of induction. Since this term is@ h
mogenous function of order 2 &f, one has



2 — ‘ ‘ ‘ The simplifying feature that allows reducing the model is th

15| banal observation that the current dengitsan be written
l [ .
E o5 J= Z Iw,, (73)
s "
é 05 where the current shape functions. have support in the con-
- ducting regiong” C 2. Note that (73) entails no approximation
_l . . ] H
= if the w,'s are allowed to depend on tlme._
-15 Requiring now that the magnetic work is exactly represented
2 o 5 o, 000 |de the correspond:ng energy flows in the field and scalaiggne
Magnetic Field [A/m] lagrams are equal,
2 T T T
sl ] /j-ﬁvaEZIrgbr = ng:/wr-ﬁva (74)
Q - Q
l L
E osl 1 a mapping betweep and L, a is obtained, whereas one needs a
s mapping between the state variabjeanda. One makes there-
é o5l fore theassumptionthat thew,.’s do not depend on time, so that
- one obtains the sought mapping
_1 L
“Lsr or= | w,.-a. (75)
-2 : : : s
-1000 -500 0 500 1000 ’
Magnetic Field [A/m] Phase resistances are determined by identification of the di

Figure 7: Measurements (above) and model (below) obtaine%]patlon functionals

with 5 submodels for electrical steel.
RJE:/U—HJ’F = er/a—l\wrﬁ. (76)
Q Q

system, and for the main energy flows entering the systemgbei  There are two different ways to identify the magnetic energy

converted inside it, or leaving it. i.e. the inductance matrix, of the reduced model. Either one
Various applications of reduction methods implicitly bds®  makes a global identification or a linearisation around @miv

energy criteria can be found in the literature, see e.9.4224].  working point. For a global identification, the inductansele-

This approach can be seen also as the one that leads to the Ggfed as the matrix of multiplicative factors such that
nition of classical RLC lumped parameters in electricatwis.

Lacking a unifying theoretical background, it is howevet res er@ .

garded as a model reduction method, but the energy-basay the W (curla) = / Lisesdr = Ligps=1I. (77)
introduced in this paper contributes to providing such atée 70

ical framework. The inductance is in this case a non-linear function of altest
variables, and of the,.’s in particular. In practice, the magnetic
energy of the system or the fluxes are pre-computed by static
finite element computations over the state space of therayste
(i.e for all rotor positions/,, ...) and the computed values are
stored in look-up tables [24].

This approach has two drawbacks. Firstly, the size of thie-loo
up tables grows exponentially when the number of parameters
increases. Secondly, differentiation of the stored valnest be
approximated numerically by finite differences. The dissee
tion of the state space must therefore be fine enough, ygeldin
again an increase of the look-up table dimensions. One svoid
one differentiation by storing directly the fluxes’s, instead of
the energy, but one numerical differentiation is still riegqd to
evaluatel,, = R,. I + ¢,

The second approach consists in linearising the magnetic be
haviour of the system around a given working point. This ap-
proach is very useful when one wants to couple the reduced
model of the motor with the a high dynamic model of the sup-
As an example, a synchronous electrical machine is consiglying inverter. The state variables of the linearised made

ered, for which one disposes of a detailed representation (edenoted by, and the governing equations are
a finite element model) in terms of the field state variablep

andu, and for which one wishes to extract a reduced model in L-26p, + R7Y (8,60, — 0U,) = 0. (78)
terms of the corresponding scalar state varialples. andU,.,

r =0,...,N, whereN is the number of phases of the motor.The tangent inductance matrix of the reduced system is dkfine
The energy diagrams of the field representation and therscaly

representation are depicted at Fig. 4 and 8 respectively. L;2=0,0,Uu(¢*) = L2p.=1. (79

Application to a synchronous electrical machine

Figure 8:EM energy flow diagram in scalar representation.



It can be shown it can be evaluated as follows Let us prealably assume that one has been able, for a given
b, (t), to determine a fielh*(¢) such thatH[h*,t] = b, (t).
Lo, = W”-Ji;lWSj , Wei= / Wy - Qy (80) From this particular hysteresis curve, the model is ablerts p
Q vide the value of the amount of energy dissipated over oriegher

whereJ;; is the jacobian matrix of the non-linear system and T
denotes thé'" edge shape function. QF = / h* - 9,b, (84)
The approximation (75) allows identifying all parametefs o 0
the reduced model. It determines therefore also the dorain g, the amplitude of the fluctuation of the magnetic energy de
validity of the reduced model. The reduction is accuratééf t ;. v
, L . L Y Py
actualw,’s do not varytoo muchin time. This assumption is
always true for coils, but it can also be fulfilled in a moretries _ ) -
tive way, e.g. for a given frequency in time-harmonic protde (Apn)™ = {?8%’]‘ - ’[%117%} par(bw)
or on a limited time interval for a linearised model. o o
= Par(bmaz) = Par(bmin)-

D. Equivalent time-harmonic reluctivit e .
g y On the other hand, the magnetic field in the material repre-

Another interesting application of energy-based paramet&ented by the complex
identification is the definition of equivalent material cheter- Vs
istics for time-harmonic models. Periodic phenomena aie-ub h,(t) =vby(t) = (vr + ;Zat) b, (t) (85)
uitous in electromagnetic applications but, due to magreeti-
uration or the presence of non-linear electronic companemwt allows to write the energy balance
tual wave shapes are scarcely sinusoidal, which invakdgie v U
phasor representation. Still, the complex formalism is st h, - 9;b, = 0, {é|bw|2} + j’|3tbw|27 (86)
cal and offers so many useful mathematical properties that i
often worth in practice to seek for approximative phasoraep where the bracketed term represents the magnetic energy den
sentations. In this case again, itis meaningful to adoptggrees ~ sity. One has therefore the two relations
identification criterion.

In frequency domain, vector fields are represented by twe vec /T h, - 0;b, = ﬂy_ (\b 2+ |b-|2)
tors, e.g. for an harmonic induction field, one bas= b,.+jb;. 0o w 2 N ’
The associated time domain vector field = Ty (bfmn + bfmm) =Q* (87)
b, (t) = b, coswt — b; sinwt (81) by |2
{max - min} Uy = v, A = (ApY))* (88)
. L . . . 0,77 [0,T] 2
describes an ellipsis in the three-dimensional geomésijizce, _ o
of which the two axis are given by that allow identifyingv,. andv;.
b, |2 + |b;[? VI. CONCLUSION
gww}:¢|;|iA
men Does it make sense to come up like this with another the-

) N ory of Electromagnetism? We believe the answer is yes. This
A2 — <|b,| — |bi ) + (b .b_)2. energy-based theory is indeed not just a re-formulatiorof-It
2 fers substantial improvements with regard to the classied

The mathematical space of phasors being linear, the most g&f; in particular an explicit and natural link with mechesi
eral relation between an induction phasor and a magnetit figknd the universal principles of Thermodynamics. It enccsapa
phasor, when anisotropy is disregarded, is representedtina  More Physics also, since the constitutives laws, the dycsafi
plex reluctivityr = v, + jv;, wherev, andy; are real constants. charges, the behaviour of superconductors and motiorcédiu

answers to long-standing controversies like the ones atheut

v=u, + ﬁat_ (82) computa.tion of local magnetic forces and the vectorizatibn
w hysteresis models.

In time domain, considering magnetic hysteresis but disre- 1€ energy-based formulation relies on two points: the math

garding anisotropy, the local relation between the induntiec- ematical representation of fields with differential formstead
tor b and the magn,etic field vectdrcan be written formally of vector and tensor fields, and the introduction of the nialter

manifold as the volume control for thermodynamic analyrse
b(t) = H[h, 1], (83) Wwhole theory follows from these statements by simply apgyi

continuity the rules of energy conservation. The mathessati
where’H denotes an hysteresis operator. Numerous theoreitivolved is more demanding but all theoretical results capy
cal and phenomenological representations of hysteregigaop pressed in the classical frameworks of vector and tensdysiaa
tors can be found in literature. We use here the one presentdhe end. From the point of view of Physics, the obtained gov
above. The principle of the identification is now to deterenin  erning equations are completely covariant, i.e. they alid im
andy; so that the energy balance of the equivalent material reprbitrary coordinate systems, whereas the classicalystmws
resented by the complexmatches as closely as possible the eninvariance with respect to a local Lorentz transformatiofy.o
ergy balance of the hysteretic material representetibpince The presented theory is a continuum theory but it is the opin-
we have two parameters to identify, we may impose two condien of the author however, that nothing opposes the introoiic
tions. of singularities (if need be) or quantum mechanics elemients



such a variational formulation by means of e.g. the theory ¢i4] F. Henrotte, K. Hameyer,

distributions.

The energy-based formulation has also advantages for raumer

ical modelling. Conservation equations can be read diréatin
the diagrams in a form that is readily useable by the finite ele

ment method, and all terms retain a clear physical intesticet. [15]
This helps for the definition of coupling terms in multiphysi
modelling and provides meaningful criteria for identifgithe 14
lumped parameters of reduced models.
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