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Electromagnetic energy and multiphysics modelling

Abstract — This paper presents an energy-based theory of elec-
tromagnetism. The fundamental postulate is presented under the
form of a diagram with interconnected energy reservoirs. The com-
pletely covariant equations obtained by stating energy conservation
in this diagram are shown to be a combination of Maxwell’s equa-
tions with the constitutive laws of the material. They are established
in this paper under the assumption of an absolute time, but a rel-
ativistic extension can be established as well. This energy-based
formulation clarifies several issues related to dissipative and cou-
pled phenomena in magnetic materials, dielectrics and conductors.
The last part of the article is devoted to show how the energy-based
approach can be exploited in numerical computations.

I. I NTRODUCTION

Opening a textbook on electromagnetism, it is likely that the
first set of equations presented will be Maxwell’s equations

curlh − ∂td = j (1)

curl e + ∂tb = 0 (2)

div b = 0 (3)

div d = ρQ (4)

complemented by a set of constitutive relations of the form

b = µ h , d = ε e , j = σ e (5)

with the mention that the first set are universal (always valid) and
the second one contains any relation one would need to ‘close
the system’ and be able to solve it. Electromagnetism is seenthis
way as a matter of fields whose evolution in time and distribution
in space are ruled by partial differential equations (PDE) and
constitutive relations. There is no place in this usual setting for
any energy considerations.

Further in the same book, some energy related notions are
however likely to be introduced. The magnetic energy, for in-
stance, is usually defined as a functional ofb or h (or even
both). Different materials will be considered, starting with the
simplest medium (vacuum) and proceeding in a bottom-up fash-
ion towards more complex materials : linear, anisotropic, nonlin-
ear, etc. Not for long however, because the definitions become
quickly rather technical and fall outside the scope of a general
monography.

Classical presentations of the theory of electromagnetism
leave thus the impression that energy aspects are by-products
of the field theory, somehow accessory and difficult to exploit.
The principles of Thermodynamics are however universal and
they must apply to electromagnetic phenomena also. Maxwell’s
equations say actually something yet about energy conservation,
but they do so in a way that makes is impossible to disentangle
the different energy flows in presence. Moreover, classicalpre-
sentations of the theory leave unanswered fundamental questions
like

• What are the state variables in an electromagnetic system ?

• How are magnetic and electric energy defined in the general
case ?

• What are the possible dissipation mechanisms ?

• How is magnetic energy converted into electric energy ?

• How is electromagnetic energy converted into other forms
of energy ?

• etc.

Those shortcomings are particularly hampering when one
deals with the modelling of problems involving the computation
of local electromagnetic forces (energy conversion), magnetic
hysteresis (energy dissipation), magnetostriction (both), multi-
physics couplings in general. In such problems, it is necessary
to dispose of a theory of electromagnetism where energy aspects
are involved from the beginning and throughout.

After pursuing theoretical investigations in those domains,
and accumulating along the way pieces of knowledge about how
energy behaves in electromagnetic systems, a big picture has
eventually, and somewhat unexpectedly, formed that gives rise
to an energy-based theory of electromagnetism [1]. This theory
can be presented pictorially under the form of an energy flow di-
agram. Stating conservation of energy in this diagram entails
more governing equations than the classical theory and gives
clear answers to the questions listed above. Being expressed
in integral form, instead of by a set of PDE’s, those governing
equations can be derived straightforwardly in arbitrary coordi-
nate systems, i.e. they are completely covariant. The theory
is established in this paper under the assumption of an absolute
time, which is sufficient for engineering purposes, but a relativis-
tic extension can be established as well and will be presented
elsewhere.

From the point of view of numerical computations, the
energy-based approach clarifies issues like e.g. electromagnetic
forces and vector hysteresis modelling. It gives all terms in
weak formulations a clear physical interpretation, and provides a
sound framework where the notions of duality and complemen-
tary formulations inscribe naturally. Finally it providesoperative
concepts to deal in a consistent way with coupling terms in mul-
tiphysics problems and lumped parameters in reduced models.

The article is organized as follows. The mathematical ingre-
dients are introduced in Sect. II. A basic knowledge of Differen-
tial geometry is assumed. Notions like manifold, tangent space,
co- and contravariant quantities, pull-back, metric, etc.. . are in-
deed used but not defined extensively. Since those notions can
be understood intuitively, the unfamilar reader should be able to
follow the developments anyway. In Sect. III, the energy-based
theory is developed with an absolute time. The mathematical
implications of the postulated energy diagram are derived sys-
tematically and some physical interpretations are discussed in
Sect. IV. Finally, Sect. V gives a few examples how the energy-
based theory can be exploited in numerical computations.

II. T HEORETICAL SETUP

A. Function, map, operator



The notation

f : X ∈ M ⊂ N 7→ x = f(X) ∈ D ⊂ E (6)

for a functionf (or a map, or an operator) is first introduced. The
setsM ⊂ N andD ⊂ E are respectively the domain and the
codomain of the function. The generic pointX of the domain
is the variable of the function. The pointx of the codomain is
the image ofX, also called the value of the function atX. The
notationsD ≡ f(M) and M ≡ f−1(D) can be used when
useful. Iff is regarded as an operator rather than a function, one
prefers writingx = f X instead ofx = f(X). All elements
of the exhaustive definition (6) are not always necessary, and
shortened notations are used whenever no confusion is possible.

B. Differential forms

When the theory of Electrodynamics took its present form
around the beginning of the XXth century, electromagnetic fields
were represented by tensors, i.e. array of components related to
a fixed (local or global) reference frame. Modern theories of
Electromagnetism, however, tend to view electromagnetic fields
as being by nature differential forms of various degrees.

To start with, let us callp−sub-domains any smooth
p−dimensional subset of a given domain : 0–sub-domains are
points, 1–sub-domains are smooth curves, 2–sub-domains are
smooth surfaces, etc. . . LetΛp(M) denote the set of allp−sub-
domains in a domainM .

Differential forms are not directly defined as fields but more
fundamentally as linear maps from thep−sub-domains to the
real numbers. A differential form of degreep, or ap−form for
short, is a map

α̃ : C ∈ Λp(M) 7→ R (7)

with α̃(C1+C2) = α̃(C1)+α̃(C2). The intuitive understanding
of this map is the integration over thep−sub-domainC of a field
α associated with the map̃α. In order to make the link between
the map and the associated field, the case of a 1–form is first
considered. LetP be a point inM , andV ∈ TP M an arbitrary
vector of the tangent space atP . The map

Γ : λ ∈ [−ǫ, ǫ] ⊂ R 7→ CP ;V
ǫ ⊂ M,

with Γ(0) = P and (∂λΓ)(0) = V is the parameterization of
a family of curvesCP ;V

ǫ ∈ Λ1(M), with parameterǫ, going
throughP and havingV as tangent vector atP . Thanks to the
linearity of α̃, it can be shown that the limit

lim
ǫ→0

1

2ǫ
α̃(CP ;V

ǫ ) =< α(P ) ;V > (8)

exists for allV ∈ TP M and does not depend on the parameter-
ization. Its value is the duality product ofV with the value atP
of a covector fieldα that is uniquely defined by the map̃α.

The case of a 2–form is treated similarly. Let

Σ : λ, µ ∈ [−ǫ, ǫ] ⊂ R 7→ SP ;V,W
ǫ ⊂ M

with Σ(0) = P , (∂λΣ)(0) = V and (∂µΣ)(0) = W be the
parameterization of a family of surfacesSP ;V,W

ǫ going through
P and havingV andW as tangent vector atP . The limit that
defines the associated fieldβ writes

lim
ǫ→0

1

4ǫ2
β̃(SP ;V,W

ǫ ) =< β(P ) ;V,W > . (9)

Since permutingλ andµ amounts to swapping the vectorsV
andW , and hence to revert the orientation of the surface, one

hasSP ;V,W
ǫ = −SP ;W,V

ǫ and consequently< β ;V,W >P =
− < β ;W,P >P .

This result generalizes as follows. The fieldα associated
with the map (7) is a (multi)linear real-valued completely an-
tisymmetric operator acting onp vector fields arguments, i.e. a
p−covector field. For this reason,p−forms are natural argu-
ments forp−fold integrals. Given ap−form α̃ and a domainM ,
one proceeds as follows. The domainM is partitioned intoNǫ

small parallelepipedsC(k)
ǫ ∈ Λp(M) of characteristic dimen-

sionǫ. To each parallelepiped, thep−form associates a number
α̃(C

(k)
ǫ ) and the limit

∫

M

α̃ = lim
ǫ→0

Nǫ
∑

k=1

α̃(C(k)
ǫ ) (10)

exists. It defines the integral of̃α overM .
Due to their equivalence, both the fieldα and the map̃α are

called differential forms in practice and the tilde can be dropped.
The set of allp−forms defined on a domainM is denoted by
Λp(M).

Of course,p−forms need specific intrinsic antisymmetry-
preserving operators. The antisymmetry-preserving tensor prod-
uct is the exterior product∧ (11) and the antisymmetry-
preserving spatial derivative is the exterior derivatived (12).

∧ : Λp(M) × Λq(M) 7→ Λp+q(M) (11)

d : Λp(M) 7→ Λp+1(M) (12)

Complete definitions can be found in any Differential geometry
treatise, e.g. [2]. One has in particular

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ (13)

for all p−formsα andβ. Exterior derivative obeys also Stokes’
theorem

∫

M

dα =

∫

∂M

α (14)

where∂M denotes the boundary of the integration domainM .

C. Euclidean space, proxy fields

An Euclidean space is a space endowed with an Euclidean
metricgij = δij , whereδij is the Kronecker symbol. This par-
ticular choice has for consequence that covariant and contravari-
ant quantities are rendered indistinguishable. Vector analysis is a
particularization of Differential geometry to the case of athree-
dimensional Euclidean spaceE3. The different kinds of fields
encountered in Vector analysis are the scalar fields (1 compo-
nent), the vector fields (3 components) and the tensor fields (9
components). LetV p(Ω), p = 0, 1, 2 be the sets of those scalar,
vector and tensor fields defined on a domainΩ ⊂ E3.

Differential geometry, on the other hand, distinguishes a
wealthier set of fields. In particular, since there exist four kinds
of sub-domains in a three-dimensional domain (points, curves,
surfaces and volumes) there exist also four kinds of differen-
tial forms. Table 1 summarizes them and gives the associated
geometrical map, their physical interpretation and the examples
encountered in this paper.

When mapped intoE3, 0–forms and 3–forms get identified
with scalar fields, whereas 1–forms and 2–forms are identified
with vector fields. These scalar and vector fields are called the
proxy fields of their correspondingp−form [3]. But both repre-
sentations are nevertheless not equivalent. The representation of
a field in terms of a 1–form for instance still makes sense when



Table 1:Differential forms of degree 0, 1, 2 and 3 in a 3D space :
associated geometrical map, physical interpretation and exam-
ples encountered in this paper.

0–form Points 7→ R scalar function u

1–form Curves 7→ R circulation density a, e,h

2–form Surfaces 7→ R flux density b,d, j

3–form Volumes 7→ R volume density ρ
Ψ

M , ρ
Ψ

E

the domain deforms, due to the fundamental definition (7) of a
1–form as a map on the curves. The number associated with a
given curve remains unchanged when the curve deforms. On the
other hand, Vector analysis provides no rule to drag a vectorfield
along in the deformation of its domain of definition. This distinc-
tion between thep−forms and their proxy fields is thus crucial
when it comes to the definition of electromagnetic forces.

D. Placement map

As for any thermodynamic analysis, a volume control enclos-
ing a given amount of matter must be defined as a reference for
establishing an energy balance. This role is played by the so
called material manifold, or any subset of it. One is on the other
hand familiar with the fact that a large energy density at a certain
point, is associated with a large intensity of the associated field.
One therefore needs a way to attribute to the field a local inten-
sity, i.e. a norm, in order to express the energy density. It is the
role of the metric to define such norms.

The theoretical framework we need relies therefore upon two
manifolds : the material manifoldM of which each point is as-
sociated with a material particle of the continuous medium (e.g.
an atom)1, and a metric spaceE3 which is the space in which
the motion takes place.

E3X

M

pt+∆t

pt

Figure 1:Placement map at two instants of time and the trajec-
tory ofx = ptX in E3.

In order to describe the motion and the deformation of the
system, the placement map

pt : X ∈ M 7→ x = ptX ∈ E3 (15)

is defined, Fig. 1. It attributes a position inE3 to each ma-
terial particleX ∈ M at all instants of timet ∈ [tA, tB ].
The codomain of the placement map,Ω = ptM , is the de-
formed state. On the other hand, the codomain of the map
t ∈ [tA, tB ] 7→ x = ptX ∈ E3 is the trajectory of a particu-
lar material particleX. The velocity field,v = ∂tx (vectors in

1The delicate question of the definition of electromagnetic fields in the ab-
sence of material support will be discussed elsewhere.

E3 are denoted with a bold letter), is the field of tangent vectors
to all trajectories of the flow at a given instant of time.

The placementpt is assumed to be regular and invertible at all
t. It induces mapping, also notedpt, of all field quantities de-
fined onM (p−forms and other kinds of tensors) to their vector
or tensor proxies defined onE3. Quantities defined onM , i.e.
material quantities, are denoted by an uppercase symbol, and
their image inE3 (i.e. their proxy field) by the corresponding
lowercase symbol, i.e.ptZ = z. In the following, the symbols
Z andz will be used to denote generic fields whose nature is not
(or needs not) be specified.

E. Energy functionals

In our theoretical setting, a metricg is available inE3. Since
energy density is related to the local intensity of the field,i.e. to
the norm|z|x of the fieldz at the pointx ∈ E3, the expression
of energies in a systemΩ are by definition real-valued functions
(functionals) of the fields defined onE3. Denoting energy func-
tionals with the letterΨ, one has

Ψ : V p(E3) 7→ R, (16)

and

Ψ =

∫

Ω

ρΨ , ρΨ(z, g) ∈ V 0(E3) (17)

with the notationρΘ used throughout the paper to represent the
volume density of a quantityΘ.

Thanks to the placement mappt, the norm for fields defined
on E3 induces a norm for the pull-back fieldsZ = ptz defined
on the material manifoldM if one simply states

|Z|X = |ptz|X ≡ |z|ptX = |z|x. (18)

Knowing the expression of the energy of the systemΨ(z) as
a function of the proxy fields, the corresponding expressionin
terms of the associated differential formZ can also be obtained
thanks to the placement map. One has

Ψ(z) ≡

∫

Ω≡ptM

ρΨ(z, g)

=

∫

M

{

ptρ
Ψ
}

(ptz, ptg)

=

∫

M

{

ptρ
Ψ
}

(Z,G) ≡ {ptΨ} (Z).

This is the formal definition of the functionptΨ : Λp(M) 7→ R,
which is called the pull back ofΨ (Compare with (16)). Note
the use throughout the paper of curly braces{} for grouping,
whereas parenthesis() are reserved to indicate at which point
functions are evaluated.

The derivative of the energy densityρΨ with respect to its field
argumentz is the field{∂zρ

Ψ}(z, g) such that

lim
|δz|→0

1

|δz|

∣

∣

∣

∣

Ψ(z + δz) − Ψ(z) −

∫

Ω

{

∂zρ
Ψ
}

(z, g) · δz

∣

∣

∣

∣

= 0

(19)
where the limit is taken over all sequences of non-zeroδz that
converge to 0. This is the Fréchet derivative. This derivative
allows defining the constitutive laws of the material

z∗ =
{

∂zρ
Ψ
}

(z, g), (20)

where the fieldz∗ is the energy dual ofz. The induction fieldb
and the magnetic fieldh, for instance, constitute a pair of energy
dual fields.



As Ψ(z) = {ptΨ} (Z) and noting that the integral in (19) can
also be written
∫

Ω

{

∂zρ
Ψ
}

(z, g) · δz =

∫

M

{

pt∂zρ
Ψ
}

(ptz, ptg) ∧ δptz

≡

∫

M

{

∂Zptρ
Ψ
}

(Z,G) ∧ δZ,

one has, by identification, the commutation property

∂Zpt = pt∂z. (21)

In E3, z ∈ V p(E3) ⇒ z∗ ∈ V p(E3) whereasZ ∈ Λp(M) ⇒
Z∗ ∈ Λn−p(M) in an−dimensional manifold.

F. Co-moving time derivative

Thanks to the concept ofp−forms, fields can be consistently
defined on deforming domains. The time derivative of energy
functionals requires however a special care. Considering the
functionalΨ(z), with z depending ont, one has

∂tΨ(z) = ∂t

∫

Ω

ρΨ(z, g) = ∂t

∫

M

{

ptρ
Ψ
}

(ptz, ptg) (22)

by the change of variables induced bypt. As the material man-
ifold does not depend on time,∂t

∫

M
=

∫

M
∂t holds and the

chain rule of derivatives yields

. . . =

∫

M

{

∂Zptρ
Ψ
}

(Z,G)∧∂tZ+

∫

M

{

∂Gptρ
Ψ
}

(Z,G) : ∂tG.

Now, the commutation property

∂tpt = pt Lv (23)

defines the co-moving time derivativeLv of any tensorial ob-
ject. The indexv = ∂tptX ∈ V 1(E3) represents the velocity
field associated with the placementpt.

Then, (21) and (23) gives

. . . =

∫

M

{

pt∂zρ
Ψ
}

(ptz, ptg) ∧ pt Lv z

+

∫

M

{

pt∂gρ
Ψ
}

(ptz, ptg) : pt Lv g

and finally, by using the inverse change of variable,

∂tΨ(z) =

∫

Ω

{

∂zρ
Ψ
}

(z, g) · Lv z +

∫

Ω

{

∂gρ
Ψ
}

(z, g) : Lv g.

The co-moving time derivatives of the proxy fields associated
with p−forms,p = 0, 1, 2, 3, are :

Lv f = ḟ (24)

Lv h = ḣ + (∇v) · h (25)

Lv b = ḃ − b · (∇v) + b tr(∇v) (26)

Lv ρ = ρ̇ + tr(∇v) ρ (27)

as can be checked component by component. The definitions of
the ȧ time derivative and of the productsa · (∇v) and(∇v) · a
are given in the Appendix. Alternative expressions in termsof
Vector analysis operators are also useful :

Lv f = ∂tf + v · {grad f}, (28)

Lv a = ∂ta + grad (a · v) − v × curla, (29)

Lv d = ∂td + curl (d × v) + v div d, (30)

Lv ρ = ∂tρ + div (ρv). (31)

In order to make the link with classical notions, it can be noted
that Lv ≡ ∂t + £v, where£v is the Lie derivative [2] ; in the
absence of motion,v ≡ 0 andLv ≡ ∂t. One recognizes in (24)
resp. (28), and (27) resp. (31) material derivatives that are en-
countered in Fluid dynamics. Equations (25) resp. (29), and(26)
resp. (30), could therefore be regarded as the material derivatives
of 1– forms and 2– forms respectively. But, as electromagnetic
fields do not need material support, the name co-moving time
derivative is preferred [2]. Although 1–forms and 2–forms have
proxy fields of the same nature (vector fields), their co-moving
time derivatives are different. The same remark holds for 0–
forms and 3–forms. One may finally recognize in (28)-(31) the
Euclidean expression of Cartan’s magic formula for differential
forms

Lv = ∂t + div + iv d. (32)

G. Convex analysis

In order to draw all the benefit from the theory presented in
this paper, some concepts from Convex analysis are useful. See
e.g. [4] for a sufficient introduction to the subject.

Let X be a set. Afunction f : dom f ⊂ X 7→ R is defined
by fixing adomaindom f ⊂ X and arule x → f(x) that makes
sense∀x ∈ dom f with f(x) ∈ R. 2 Theepigraph of f is the
subset ofX × R defined by epif = {(x, z) : x ∈ dom f, z ≥
f(x)}. The functionf is upper-bounded iff∀x ∈ dom f , ∃ α ∈
R : f(x) ≤ α. The smaller upper bound forf is notedsup f .

Let us suppose now thatX is vector space. A subsetK ⊂ X is
convexiff ∀x, y ∈ K, (x + y)/2 ∈ K. A functionf : dom f ⊂
X 7→ R is convex if its epigraph is convex.

Let us now additionally assume anorm |x| is defined on the
vector spaceX. This notion is necessary to express convergence.
The setK ⊂ X is closedif it contains the limits of all its con-
vergent suites. The fonctionf is lower semi-continuousif its
epigraph is closed.

Let finally X andY be two Hilbert spaces with thescalar
product (y, x), x ∈ X, y ∈ Y . TheLegendre transform of a
functionΨ : dom Ψ ⊂ X 7→ R is the functionΨ∗ : Q ⊂ Y 7→
R defined by the rule

y → sup
x∈dom Ψ

{x 7→ (y, x) − Ψ(x)}. (33)

and the domainQ that is the set of the pointsy ∈ Y for which the
functionx → (y, x) − Ψ(x) is upper bounded. It can be shown
that the functionsΨ∗ defined this way is convex and lower semi-
continuous (clsc) and thatΨ∗∗ = Ψ if Φ is cslc itself.

The functionsΨ : dom Ψ ⊂ X 7→ R andΦ : dom Φ ⊂ Y 7→
R, are said to bedual iff both

Φ(y) = sup
x∈dom Ψ

{x 7→ (y, x) − Ψ(x)} (34)

Ψ(x) = sup
y∈dom Φ

{x 7→ (y, x) − Φ(y)}

are true. Dual functions are automatically clsc. Note that apair
of functionsΦ andΨ that are the Legendre transform of each
other (i.e.Ψ∗ = Φ andΦ∗ = Ψ) are dual by definition but, as
Q might be different from a prescribed domaindom Φ, Φ andΨ
might be dual without havingΦ∗ = Ψ.

It is obvious from the definitions ofΨ andΦ that the inequality

Λ(x, y) = Ψ(x) + Φ(y) − (y, x) ≥ 0 (35)

holds∀x ∈ X and∀y ∈ Y .

2Note that the domaindom f might be prescribed as being a subset only of
the domain on which the rulex → f(x) is actually defined.



∫

M
J ∧ dU

∫

M
J ∧ Ej

∫

∂M
H∂ ∧ ∂tA

ẆM ẆE

∫

M
Hi ∧ ∂t dA

∫

M
∂tD ∧ Ei

∫

M
∂tD ∧ ∂tA

∫

M
J ∧ ∂tA

∫

M
∂tD ∧ dU

∫

∂M
U ∧ (J + ∂tD)

{p−1
t ΨE}(D){p−1

t ΨM}( dA)

{p−1
t ΨK}(J)

Figure 2:Electromagnetic energy diagram in the material man-
ifold M .

Thesubdifferential ∂xΨ of the functionΨ(x) is the set

∂xΨ = {y ∈ Y : Ψ(x′) − Ψ(x) ≥ (y, x′ − x),∀x′ ∈ dom Ψ}.

The elements of that set are calledsubgradients. If the function
Ψ(x) happens to be differentiable atx, its gradient is the only
element of∂xΨ and y = ∂xΨ can be written instead ofy ∈
∂xΨ. An important result is that the inequality (35) becomes an
equality if eithery ∈ ∂xΨ or x ∈ ∂yΦ. Finally, the applications
x 7→ ∂xΨ and y 7→ ∂yΦ are monotonous in the sense that
(y2 − y1, x2 − x1) ≥ 0 for any givenx1, x2 ∈ dom Ψ and
∀y1 ∈ ∂xΦ(x1), ∀y2 ∈ ∂xΦ(x2).

III. E NERGY-BASED THEORY

A. Energy diagram

Whereas the classical theory of electromagnetism is expressed
in terms of the vector fieldsh,b, e, d, j ∈ V 1(E3) and the
charge densityρQ ∈ V 0(E3), the set of state variables selected
for the energy-based theory is different. It consists of theelectric
scalar potentialU ∈ Λ0(M), the magnetic vector potentialA ∈
Λ1(M), the electric displacementD ∈ Λ2(M) and the current
densityJ ∈ Λ2(M), all defined on the material manifold. The
state variables are thus the two electromagnetic potentials, i.e.A
andU , and the two fields associated with electric charges, i.e.D
andJ .

Let us state as a postulate that, in an arbitrary material region
M , electromagnetic energy flows according to the diagram de-
picted in Fig. 2. The diagram consists of four energy reservoirs,
each one associated with a state variable. TheA−reservoir (up-
per left) contains the magnetic energy of the system

{ptΨM}( dA) =

∫

M

{ptρ
Ψ
M}( dA)

=

∫

Ω=ptM

ρΨ
M (curla) = ΨM (curlA)

which is a function ofdA = pt curla, i.e. the image inM of the
induction fieldcurla. Similarly, theD−reservoir (upper right)
contains the electric energy{ptΨE}(D), which is a function of
the electric displacementD = ptd. The U−reservoir (lower
right) is always empty. TheJ−reservoir, finally, contains the
kinetic energy of the charge carriers, which can be expressed as

{ptΨK}(J) =

∫

M

α
|J |2

2
=

∫

Ω

|j|2

2
= ΨK(j) (36)

whereα is a constant. Except in case of superconductors, the
inertia of charge carriers is negligible, and the J-reservoir can
then usually be considered empty as well.

The internal flows (the flows connecting two reservoirs of the
diagram) depend on the state variables only. The black-headed
arrows represent 3 dissipative volume flows associated respec-
tively with magnetic hysteresis, dielectric hysteresis and Joule
losses. They involve state variables (U excepted) and empirical
dissipative so called generalised forcesHi = pthi, Ei = ptei

and Ej = ptej , whose physical interpretations are discussed
below. The surface generalised forceH∂ = pth∂ is associ-
ated with the magnetic energy crossing the surface of the sys-
tem. The second surface flow, connected to theU−reservoir,
represents the energy entering the system through the conduc-
tors crossing its surface. Finally, the flowsẆM andẆE account
respectively for the electric or magnetic energy convertedinto
non-electromagnetic forms of energy (e.g. mechanical, chemi-
cal, etc. . . )

The energy-based theory relies on the structure of this dia-
gram, which tells something fundamental about how electro-
magnetic fields interact with matter and spacetime. It makesup a
framework in which all electromagnetic systems, includingdis-
sipative and coupled ones, should inscribe.

B. Conservation equations inM

As the fieldsA, D, J andU are independent variables, they
can be varied freely in order to obtain, following a variational
line of argument, the conservation equations implied by the
structure of the diagram. By expressing on the one hand en-
ergy conservation at nodeA (the variation of the energy in the
reservoir is equal to the sum of incoming flows minus the sum
of outgoing flows),

∂t {ptΨM} ( dA) =

∫

M

{J + ∂tD} ∧ ∂tA

−

∫

M

pthi ∧ ∂t dA

−

∫

∂M

H∂ ∧ ∂tA − ẆM

and applying on the other hand the chain rule of derivatives

∂t {ptΨM} ( dA) =

∫

M

{

∂Bptρ
Ψ
M

}

( dA,G) ∧ ∂t dA

+

∫

M

{

∂Gptρ
Ψ
M

}

( dA,G) : ∂tG,

two expressions of the variation in time of the magnetic energy
are obtained. Note that it has been assumed for the sake of sim-
plicity that dA is the only argument ofptΨM . Other arguments
could be added if necessary, e.g. the strainε for a magnetostric-
tive material, with a similar mathematical treatment as theone
sketched here.

Identification of the two right-hand sides gives an equation
that must be verified, for arbitrary variations ofA, i.e. ∀∂tA.
The implied conservation equations are obtained by applying the
fundamental lemma of Calculus of variations3, i.e. by identify-
ing to zero the factors of∂tA, separately onM and∂M . Using
the commutation property∂t d = d∂t, (13) and Stokes’ theorem
(14), to perform an integration by parts, one obtains the Euler-
Lagrange equations

d
{{

∂B ptρ
Ψ
M

}

( dA,G) + pthi

}

= J + ∂tD onM,
{

∂B ptρ
Ψ
M

}

( dA,G) + pthi = H∂ on∂M,

3The arbitrary time derivative∂tA plays here the role of the variationδA.



∫

Ω
j · Lv a

∫

Ω
Lv d · Lv a

∫

Ω
j · grad u

∫

Ω
hi · curl Lv a

∫

∂Ω
h∂ × Lv a · n

∫

Ω
Lv d · ei

∫

Ω
Lv d · grad u

∫

Ω
j · ej

∫

∂Ω
u (j + Lv d) · n

ẆM ẆE

ΨK(j)

ΨE(d)ΨM( curl a)

Figure 3: Electromagnetic energy diagram in the Euclidean
spaceE3.

and the remaining of the equation writes

−ẆM =

∫

M

{

∂Gptρ
Ψ
M

}

( dA,G) : ∂tG. (37)

Conservation relations at the other nodes of the diagram are
obtained similarly. One finds :

dH̄ = J + ∂tD (38)

Ē = −∂tA − dU (39)

ptej + α∂tJ = −∂tA − dU (40)

0 = d {J + ∂tD} (41)

where the magnetic field̄H and the electric field̄E are not fun-
damental quantities, as they are in classical electromagnetism,
but shorthand for

H̄ ≡
{

∂B ptρ
Ψ
M

}

( dA,G) + pthi (42)

Ē ≡
{

∂D ptρ
Ψ
E

}

(D,G) + ptei. (43)

One has also the boundary condition̄H = H∂ on ∂M , and the
equations

−ẆM =

∫

M

{

∂Gptρ
Ψ
M

}

( dA,G) : ∂tG (44)

−ẆE =

∫

M

{

∂Gptρ
Ψ
E

}

(D,G) : ∂tG, (45)

define the power developed by magnetic and electric forces.

C. Conservation equations inE3

Equations (38) - (41) can be mapped intoE3, thanks to the
placement mappt, so as to obtain the conservation equations, not
in terms of differential forms, but in terms of the corresponding
proxy fields. Alternatively, the conservation equations can be
derived directly from the diagram inE3 (Fig. 3) using vector
field analysis. One obtains inΩ

curl h̄ = j + Lv d (46)

ē = −Lv a − gradu (47)

ej + αLv j = −Lv a − gradu (48)

0 = div {j + Lv d} (49)

with the shorthand

h̄ ≡
{

∂b ρΨ
M

}

(curla, g) + hi, (50)

ē ≡
{

∂d ρΨ
E

}

(d, g) + ei. (51)

The boundary condition writes̄h = h∂ on∂Ω and the equations

−ẆM =

∫

Ω

{

∂gρ
Ψ
M

}

(curla, g) : Lv g (52)

−ẆE =

∫

Ω

{

∂gρ
Ψ
E

}

(d, g) : Lv g (53)

define, inE3, the power developed by magnetic and electric
forces in terms of the co-moving time derivative ofg. Although
the latter is fixed in an Euclidean space, its co-moving time
derivative is not. It is given by

Lv g = (∇v) + (∇v)T = 2 ∂tε, (54)

whereε is the strain tensor.

IV. D ISCUSSION

The governing equation we have just established inE3 are
now discussed. A similar discussion holds of course for the cor-
responding equations inM .

A. Magnetic field

Equation (50) shows that the magnetic field is composed of
a reversible parthr ≡ ∂bρΨ

M that accounts for the magneti-
zation phenomenon (alignment of microscopic magnetic mo-
ments), and an irreversible parthi that accounts for the local
dissipation process. The magnetic field is thus not a fundamen-
tal quantity but a composite one representing at the same time
two different phenomena.

B. Electric field

One can be puzzled sometimes by the changing visage of the
electric field, which can in turn be associated with electrostatic
charges (e = −gradu), the motion of charge carriers (e = ρj),
electric dipoles (e = εd), or with the magnetic flux (e = −∂ta).

As for the magnetic field̄h (50), the electric field̄e is a com-
posite quantity representing phenomena of different natures (51).
But the situation is even more confusing for the electric field.
Indeed, (47), (48) and (51) give three different and unrelated ex-
pressions for̄e.

Equation (48) in particular, which is the conservation equa-
tion at nodej of the energy diagram depicted in Fig. 3, is a
true equilibrium equation for charge carriers, up to a factor qc.
The term−gradu is the applied electrostatic force and the term
ej = σ−1j is the viscous force opposed by the crystal lattice.
When the charge carrier accelerates, a certain amount of energy
has to be given to increase its kinetic energy and another amount
of energy also to increase the magnetic energy of the system.
The accelerated charge is indeed associated with a larger cur-
rent, which in turn generates a larger magnetic field. These two
energy transfers are respectively represented by the forces α∂tj

and∂ta (up to the factorqc again), which can be regarded as
two inertial forces of respectively mechanical and magnetic ori-
gin. The dynamics of charge is thus made, by the energy-based
approach, an integral part of the theory.

C. Constitutive laws

Constitutive laws are defined by giving algebraic expressions
for the energy density functionalsρΨ

M , ρΨ
E , ρΨ

K and for the dissi-
pation functionshi, ei, ej . The gouverning equations (46) - (53)
do not contradict Maxwell’s equations, but they are more com-
plete, as they involve the constitutive laws as well. All terms



have a clear physical interpretation in terms of energy or energy
transfer, which can be visualized in the diagram Fig. 3.

The definition as fundamental quantities of the magnetic field
(50) and of the electric field (51) suffices to eliminate all metric
aspects from the conservation equations (46) - (49). The relation
betweenb andh̄, resp.d andē, can however not be fully repre-
sented by the Hodge operator in the presence of the dissipation
forceshi andei [5, 6].

D. Electromagnetic forces

The conditionsLv a = 0 and Lv d = 0 are the precise
mathematical statement of what is usually called “holding mag-
netic/electric fluxes constant” [7]. By settingLv a = 0 and
Lv d = 0, the a−reservoir and thed−reservoir are isolated
from the diagram in Fig. 3, and the variation of energy

ẆM + ẆE = − ∂tΨM |Lv a=0 − ∂tΨE |Lv d=0 (55)

represents then the power converted into non-electromagnetic
forms of energy (mechanical, chemical. . . ).

In particular, if one substitutes (54) in (52) and (53), the
Maxwell stress tensorσem can be defined as the factor of∇v

in the right-hand side of (55), i.e.

ẆM + ẆE = −

∫

Ω

σem : ∇v + . . . (56)

The Maxwell stress tensor is the fundamental quantity repre-
senting the electromechanical coupling and a unifying concept
for all force formulae encountered in literature and used innu-
merical computations : the virtual work principle of Coulomb
and Ren [8, 7], the sensitivity analysis of Lowther [9], Arkkio’s
formula [10], Kameari [11], and the Eggshell method [12, 13].
Each material has its own Maxwell stress tensor and it has been
shown in [14] how its algebraic expression can be derived alge-
braically from a known expression of the magnetic and electric
energy densities of the material.

E. Electric charges

Electric charge are not explicitly in the diagram They arede-
finedby

ρQ = dD = div d. (57)

The inertia of the charge carrier is also at the root of the defini-
tion of the static charges that are present at the surface of current
carrying conductors [15]. Identifying the left hand sides of (47)
and (49) and assumingei = 0, one has

{

∂d ρΨ
E

}

(d) = ε−1
0 d = σ−1j + αLv j. (58)

The divergence of the right-hand side is identically zero (div
and Lv commute) inside the conductor, but the term inα has
a non-zero contribution on the surface of the conductor, whence
the expressionε0αLv j · n for the surface charges.

F. Superconductors

In practice, theJ−reservoir can often be considered as empty,
because of the very small value ofα (negligible inertia of the
charge carriers), and the corresponding term in (48) can be dis-
regarded. However, in superconductors, for whichσ is infinite
(ej = 0) andgradu is zero, (48) writes

αLv j = −Lv a, (59)

i.e. the first London’s equationa = −αj for superconductors
[16].

G. Poynting’s vector

The flux of the Poynting’s vector through the boundary of the
system is found by noting that the two surface flows combine to
form the flow of the Poynting vector (60).

∫

∂Ω

{h∂ × Lv a + u {j + Lv d}} · n =

∫

∂Ω

ē × h̄. (60)

V. A PPLICATIONS

A. Formulations

In many problems encountered in electromagnetism, it is not
necessary to solve the complete set of Maxwell equations. Ac-
cording to the dimensions and the time scale under considera-
tion, the materials in presence and the configuration of the sys-
tem, it happens often that simplifications are possible. Those
simplifications consist generally in dropping terms in the full
Maxwell’s equations and weak formulations are then obtained
by applying Galerkine’s method to the simplified equations.

The alternative top-down approach, which consists in deriv-
ing weak formulations directly from the energy diagram, is not
necessarily more straightforward but has nevertheless several ad-
vantages. Firstly, the assumptions done take on a physical jus-
tification this way, instead of a mathematical one. The different
terms in the weak formulation also maintain their interpretation
in terms of energy, so that they can be used for establishing a
global energy balance of the device or to express coupling terms
in multi-physics problems.

Spelling out the wide variety of weak formulations encoun-
tered in computational electromagnetism would be fastidious.
We are going to consider only electrostatics and magnetodynam-
ics.

Electrostatics

The electrostatic regime is obtained by setting to zero the state
variablesa and j and preventing the system from any energy
conversion, i.e.ẆM ≡ 0, and assuming no motion,v ≡ 0 ⇒
Lv ≡ ∂t. Since dissipative forces act over time, it is also nat-
ural to assumeei ≡ 0 in a static problem. Two conservation
equations then remain.

At nodeu, (49) becomes

div ∂td = ∂tdiv d = 0, (61)

which shows that the quantitydiv d is conserved. The state
variabled is therefore constrained. The vector potentialc is
then defined as a new unconstrained state variable, such that
d = d0 + curl c with ∂td0 = 0, div d0 = div d.

The conservation equation at noded in integral form,

∂tΨE +

∫

Ω

gradu · ∂td = 0 ∀ ∂d(t), (62)

becomes then
∫

Ω

{

∂dρΨ
E(d0 + curl c) + gradu

}

· ∂tcurl c = 0 ∀ ∂c(t),

(63)
and after an integration by part of the second term

∫

Ω

∂dρΨ
E(d0 + curl c) · curl ∂tc

+

∫

∂Ω

gradu × ∂tc · n = 0 ∀ ∂c(t).



∫

Ω
j · Lv a

∫

Ω
j · grad u

∫

Ω
hi · curl Lv a

∫

∂Ω
h∂ × Lv a · n

ẆM

ΨM( curl a, z)

∫

Ω
σ−1|j|2

ΨK = 0

∫

∂Ω
u j · n

Figure 4: EM energy flow diagram for the magnetodynamics
regime.

This is the vector potential weak formulation for electrostatics.
The arbitrary∂tc can be chosen equal to the shape functions
of the field c. At the boundary, eitherc (Dirichlet boundary
condition) or−n× gradu (Neumann boundary condition) must
be specified.

The formulation in terms of the scalar potentialu, is obtained
thanks to the concept of duality introduced above. The dual vari-
ables are in this casex = d ≡ d0 + curl c andy = −gradu.
Since (63) is a condition stronger than∂dρΨ

E ∋ −gradu, the co-
energyΦE defined by (34) as the dual of the energyΨE satisfies
the equality

ΦE = −

∫

Ω

gradu · d − ΨE , (64)

so that

∂tΦE = −

∫

Ω

∂tgradu · d −

∫

Ω

gradu · ∂td − ∂tΨE

= −

∫

Ω

∂tgradu · d

−

∫

Ω

{

gradu + ∂dρΨ
E

}

· ∂tcurl c

= −

∫

Ω

∂tgradu · d ∀∂tu(t)

by (63). Making now an integration by part, one has

∫

Ω

∂grad uΦE · grad ∂tu =

∫

Ω

∂tu div d

−

∫

∂Ω

∂tu d · n ∀∂tu(t)

with div d = div d0 the charge density. This is the scalar po-
tential formulation for electrostatics. At the boundary, either u
(Dirichlet boundary condition) ord ·n (Neumann boundary con-
dition) must be specified.

Magnetodynamics

The magnetodynamics regime is obtained by settingd ≡ 0. The
corresponding energy diagram is depicted in Fig. 4. Dissipation
(Joule and hysteresis) and electromechanical coupling (v 6= 0)
are going to be considered in this dynamical formulation, but the
kinetic energy of charge carrier is disregarded, i.e.ΨK ≡ 0. En-
ergy conservation in integral form at nodea and the application
of the chain rule of derivatives to the magnetic energyΨM write

respectively

∂tΨM =

∫

Ω

j · Lv a −

∫

Ω

hi · curl Lv a

−

∫

∂Ω

h∂ × Lv a · n − ẆM

∂tΨM =

∫

Ω

{

∂bρΨ
M

}

(curla, g) · curl Lv a

+

∫

Ω

{

∂gρ
Ψ
M

}

(curla, g) : Lv g

and, after identification of both right hand sides,

0 =

∫

Ω

{

∂bρΨ
M (curla, g) + hi

}

· curl Lv a

−

∫

Ω

j · Lv a +

∫

∂Ω

h∂ × Lv a · n (65)

+

∫

Ω

{

∂gρ
Ψ
M

}

(curla, g) : Lv g + ẆM ∀Lv a(t).

Being independent ofLv a, the last two terms must sum up to
zero separately, which defines the power delivered by magnetic
forces and gives an already known result (53). The other terms
make up the vector potential weak formulation of Magnetody-
namics, with an imposed current density.

Now, if the dissipation forceej is asumed to be an invertible
function of j (one has for instanceej = σ−1j for normal con-
ductors), one can with (48) expressj = fct(Lv a− gradu) and
substitute this in the weak formulation above in order to obtain
the weak formulation of Magnetodynamics with imposed volt-
ages. In practice, the voltage source is simply representedby a
discontinuity ofu over a given cross section of the conductor.

Motion terms likev × b are naturally present in the formula-
tion by virtue of the co-moving derivativeLv a, and they must
not be introduced on basis of a relativistic argument (Lorentz
transformation). This issue is will be discussed in anotherpaper.

B. Magnetic hysteresis

The energy diagram indicates that the state variable of a mag-
netic material is the inductionb ≡ curla, which, in the presence
of hysteresis, is subjected to a (generalised) forcehr = ∂bρΨ

M

deriving from a potential (the magnetic energy densityρΨ
M ) and

to a dissipative forcehi. It is remarkable that complying with
this observation yields naturally a vector hysteresis model, in
contrast to Preisach [17] and Jiles-Atherton [18, 19], which are
basically scalar models

k

i
h

l
+

ir
hh

h

Figure 5:Equilibrium equation (71). The grey circle represents
the subgradientG.

Starting from the vector potential formulation (66), using
curl h̄ = j and making an integration by part, the conservation
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Figure 6: Internal loops (above) and minor loops (below) are
represented by the model.

equation at nodea in integral form can be put into the form of
the First Principle of Thermodynamics∂tΨM = Ẇ + Q̇ with

Q̇ = −

∫

Ω

hi · ḃ , Ẇ =

∫

Ω

h̄ · ḃ (66)

and whereḃ is shorthand forcurl Lv a. It follows directly that

∫

Ω

{

hr − h̄ + hi

}

· ḃ = 0 ∀ ḃ(t) (67)

so that the conservation equation ish̄ = hr + hi.
The principle of the dynamic hysteresis model is introduced

by making a mechanical analogy. The dissipative phenomenon
can be accurately represented by the friction forcehi obtained
from the non-smooth non-negative convex potential

Q̇(ḃ) = −

∫

Ω

{

κ |ḃ| + λḃ2
}

≤ 0. (68)

Since the dissipation functional̇Q is a function ofḃ, andnot
of b like ΨM is, the relation betweeṅQ andhi is not a differ-
ential one (subgradient) but an algebric one, a kind of division
of ρ̇Q by ḃ for which a mathematical definition is needed. For-
tunately, for a large class of dissipation functionals, this division
can be expressed in terms of the subgradient of the functional
thanks to the notion of homogeneous function. A homogenous
function of ordern is a function such thatf(ξx) = ξnf(x).
It has the propertyx∂xf = nf . This can be writtenf/x =
(∂xf)/n, which is precisely the sought relation.

The quadratic term in (68) represents a viscous friction force.
It stands for microscopic eddy currents induced in the material
by the variation with time of induction. Since this term is a ho-
mogenous function of order 2 ofḃ, one has

hλ
i =

1

2
∂
ḃ
(λḃ2) = λḃ. (69)

The pinning phenomenon, which is at the origin of magnetic
hysteresis, is on the other hand represented by the dry friction
force associated with the termκ |ḃ|. This term is not differen-
tiable atḃ = 0, but, as it is a convex function, it has a subgradient
G defined by

G = {hκ
i , |hκ

i | ≤ κ if ḃ = 0,hκ
i = κ e

ḃ
if ḃ 6= 0} (70)

whereex ≡ x/|x|. Since it is a homogeneous function of de-
gree 1, one hashκ

i = ∂
ḃ
κ|ḃ|, i.e. one can identifyhκ

i with the
subgradientG.

The equilibrium equation writes finally

h̄ − hr − hλ
i = hκ

i ∈ G. (71)

The memory effect originates from the non-univocity of the
friction forcehκ

i at ḃ = 0. The subgradient, i.e. the set of pos-
sible forceshκ

i , is represented by the grey circle of radiusκ in
Fig. 5. If the tip ofh̄ is inside the circle, one haṡb = 0 by (70),
which impliesḣr = 0, i.e. no change of the magnetisation. A
given magnetisation can thus persist although the applied mag-
netic fieldh̄ has decreased, whence the memory effect. If on the
contrary the tip of̄h tends to get out of the circle,hr is updated
according to the differential equation in time

h̄ − hr − hλ
i = κe

ḣr

, (72)

where we have noted thate
ḃ

= e
ḣr

. Details on the implemen-
tation can be found in [20]. The presence of a non-smooth func-
tionals is essentially a theoretical issue. In the implementation,
it amounts to a simpleif statement (70).

This model is able to represent minor loops, Fig. 6. By combi-
nation of several submodels with different values ofκ, the num-
ber of parameters of the model can be increased for a better ac-
curacy. Fig. 7 shows the agreement obtained with 5 submodels.
As this hysteresis model is based on a real physical description
of the phenomenon, it makes sense to use it in a 3D model, even
when parameter identification has been done on basis of uniaxial
quasi-static measurements.

C. Model reduction

It is getting increasingly more important in modern compu-
tations to dispose of a concise, computationally tractableand
though accurate representation of a given large system, in or-
der to allow real time computation, coupling with other parts of
a larger system, etc. There are essentially two ways to create
such simplified representations.

The first approach consists in truncating an asymptotical (in
some sense) representation of the initial system. These are
e.g. the Model Order Reduction (MOR) techniques, which are
mostly applicable to linear problems [21]. In this case the ini-
tial and simplified representations are of the same nature. The
approximation error is measured by the mathematical norm in
terms of which the convergence of the asymptotical representa-
tion is expressed. As this norm has however scarcely a physical
meaning, the neglected terms turn out often to have a significant
impact on the physical properties of the reduced model. There-
fore, special actions need be taken in order to preserve physical
properties like passivity, stability, etc.

The second category gathers Parameter Identification meth-
ods, which are often based on energy criteria. When it comes to
construct such models, energy turns out indeed very often tobe
the fundamental quantity to preserve. A good model is therefore
a model able to account accurately for the energy stored in the
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Figure 7: Measurements (above) and model (below) obtained
with 5 submodels for electrical steel.

system, and for the main energy flows entering the system, being
converted inside it, or leaving it.

Various applications of reduction methods implicitly based on
energy criteria can be found in the literature, see e.g. [22,23, 24].
This approach can be seen also as the one that leads to the defi-
nition of classical RLC lumped parameters in electrical circuits.
Lacking a unifying theoretical background, it is however not re-
garded as a model reduction method, but the energy-based theory
introduced in this paper contributes to providing such a theoret-
ical framework.

Application to a synchronous electrical machine

ẆM

ΨK = 0
RrI

2
r UrIr

ΨM(ϕr, z)
I i
rϕ̇r

I∂
r ϕ̇r

Irϕ̇r

Figure 8:EM energy flow diagram in scalar representation.

As an example, a synchronous electrical machine is consid-
ered, for which one disposes of a detailed representation (e.g.
a finite element model) in terms of the field state variablesa, j

andu, and for which one wishes to extract a reduced model in
terms of the corresponding scalar state variablesϕ, Ir andUr,
r = 0, . . . , N , whereN is the number of phases of the motor.
The energy diagrams of the field representation and the scalar
representation are depicted at Fig. 4 and 8 respectively.

The simplifying feature that allows reducing the model is the
banal observation that the current densityj can be written

j =
∑

r

Irwr, (73)

where the current shape functionswr have support in the con-
ducting regionsC ⊂ Ω. Note that (73) entails no approximation
if the wr ’s are allowed to depend on time.

Requiring now that the magnetic work is exactly represented,
i.e. the corresponding energy flows in the field and scalar energy
diagrams are equal,

∫

Ω

j · Lv a ≡
∑

r

Irϕ̇r ⇒ ϕ̇r =

∫

Ω

wr · Lv a (74)

a mapping betweeṅϕ andLv a is obtained, whereas one needs a
mapping between the state variablesϕ anda. One makes there-
fore theassumptionthat thewr ’s do not depend on time, so that
one obtains the sought mapping

ϕr =

∫

Ω

wr · a. (75)

Phase resistances are determined by identification of the dis-
sipation functionals

RrI
2
r =

∫

Ω

σ−1|j|2 ⇒ Rr =

∫

Ω

σ−1|wr|
2. (76)

There are two different ways to identify the magnetic energy,
i.e. the inductance matrix, of the reduced model. Either one
makes a global identification or a linearisation around a given
working point. For a global identification, the inductance is de-
fined as the matrix of multiplicative factors such that

ΨM (curla) =

∫ ϕr(a)

0

L−1
rs ϕs dx ⇒ L−1

rs ϕs = Ir. (77)

The inductance is in this case a non-linear function of all state
variables, and of theϕr ’s in particular. In practice, the magnetic
energy of the system or the fluxes are pre-computed by static
finite element computations over the state space of the system
(i.e for all rotor positions,Ir, . . . ) and the computed values are
stored in look-up tables [24].

This approach has two drawbacks. Firstly, the size of the look-
up tables grows exponentially when the number of parameters
increases. Secondly, differentiation of the stored valuesmust be
approximated numerically by finite differences. The discretisa-
tion of the state space must therefore be fine enough, yielding
again an increase of the look-up table dimensions. One avoids
one differentiation by storing directly the fluxesϕr ’s, instead of
the energy, but one numerical differentiation is still required to
evaluateUr = RrIr + ϕ̇r.

The second approach consists in linearising the magnetic be-
haviour of the system around a given working point. This ap-
proach is very useful when one wants to couple the reduced
model of the motor with the a high dynamic model of the sup-
plying inverter. The state variables of the linearised model are
denoted byδϕr, and the governing equations are

L−∂
rs δϕs + R−1

r (∂tδϕr − δUr) = 0. (78)

The tangent inductance matrix of the reduced system is defined
by

L−∂
rs = ∂ϕr

∂ϕs
ΨM (ϕ∗) ⇒ L−∂

rs ϕ̇s = İr. (79)



It can be shown it can be evaluated as follows

L∂
rs = WriJ

−1
ij Wsj , Wri =

∫

Ω

wr · αi (80)

whereJij is the jacobian matrix of the non-linear system andαi

denotes theith edge shape function.
The approximation (75) allows identifying all parameters of

the reduced model. It determines therefore also the domain of
validity of the reduced model. The reduction is accurate if the
actualwr ’s do not varytoo muchin time. This assumption is
always true for coils, but it can also be fulfilled in a more restric-
tive way, e.g. for a given frequency in time-harmonic problems,
or on a limited time interval for a linearised model.

D. Equivalent time-harmonic reluctivity

Another interesting application of energy-based parameter
identification is the definition of equivalent material character-
istics for time-harmonic models. Periodic phenomena are ubiq-
uitous in electromagnetic applications but, due to magnetic sat-
uration or the presence of non-linear electronic components, ac-
tual wave shapes are scarcely sinusoidal, which invalidates the
phasor representation. Still, the complex formalism is so practi-
cal and offers so many useful mathematical properties that it is
often worth in practice to seek for approximative phasor repre-
sentations. In this case again, it is meaningful to adopt energy as
identification criterion.

In frequency domain, vector fields are represented by two vec-
tors, e.g. for an harmonic induction field, one hasbω = br+jbi.
The associated time domain vector field

bω(t) = br cos ωt − bi sin ωt (81)

describes an ellipsis in the three-dimensional geometrical space,
of which the two axis are given by

bmax

bmin

}

=

√

|br|2 + |bi|2

2
± ∆

∆2 =

(

|br|
2 − |bi|

2

2

)2

+ (br · bi)
2
.

The mathematical space of phasors being linear, the most gen-
eral relation between an induction phasor and a magnetic field
phasor, when anisotropy is disregarded, is represented by acom-
plex reluctivityν = νr + jνi, whereνr andνi are real constants.
The corresponding representation in time-domain is the operator

ν = νr +
νi

ω
∂t. (82)

In time domain, considering magnetic hysteresis but disre-
garding anisotropy, the local relation between the induction vec-
tor b and the magnetic field vectorh can be written formally

b(t) = H[h, t], (83)

whereH denotes an hysteresis operator. Numerous theoreti-
cal and phenomenological representations of hysteresis opera-
tors can be found in literature. We use here the one presented
above. The principle of the identification is now to determineνr

andνi so that the energy balance of the equivalent material rep-
resented by the complexν matches as closely as possible the en-
ergy balance of the hysteretic material represented byH. Since
we have two parameters to identify, we may impose two condi-
tions.

Let us prealably assume that one has been able, for a given
bω(t), to determine a fieldh⋆(t) such thatH[h⋆, t] = bω(t).
From this particular hysteresis curve, the model is able to pro-
vide the value of the amount of energy dissipated over one period

Q⋆ ≡

∫ T

0

h⋆ · ∂tbω (84)

and the amplitude of the fluctuation of the magnetic energy den-
sity ρΨ

M

(∆ρΨ
M )⋆ ≡

{

max
[0,T ]

−min
[0,T ]

}

ρΨ
M (bω)

= ρΨ
M (bmax) − ρΨ

M (bmin).

On the other hand, the magnetic field in the material repre-
sented by the complexν

hω(t) ≡ νbω(t) = (νr +
νi

ω
∂t) bω(t) (85)

allows to write the energy balance

hω · ∂tbω = ∂t

{νr

2
|bω|

2
}

+
νi

ω
|∂tbω|

2, (86)

where the bracketed term represents the magnetic energy den-
sity. One has therefore the two relations

∫ T

0

hω · ∂tbω =
ωT

2
νi

(

|br|
2 + |bi|

2
)

= πνi

(

b2
min + b2

max

)

≡ Q⋆ (87)

{

max
[0,T ]

−min
[0,T ]

}

νr

|bω|
2

2
= νr∆ ≡ (∆ρΨ

M )⋆ (88)

that allow identifyingνr andνi.

VI. CONCLUSION

Does it make sense to come up like this with another the-
ory of Electromagnetism ? We believe the answer is yes. This
energy-based theory is indeed not just a re-formulation. Itof-
fers substantial improvements with regard to the classicalthe-
ory, in particular an explicit and natural link with mechanics
and the universal principles of Thermodynamics. It encompasses
more Physics also, since the constitutives laws, the dynamics of
charges, the behaviour of superconductors and motion-induced
effects are now part of the theory. Moreover, it brings clear
answers to long-standing controversies like the ones aboutthe
computation of local magnetic forces and the vectorizationof
hysteresis models.

The energy-based formulation relies on two points : the math-
ematical representation of fields with differential forms instead
of vector and tensor fields, and the introduction of the material
manifold as the volume control for thermodynamic analysis.The
whole theory follows from these statements by simply applying
continuity the rules of energy conservation. The mathematics
involved is more demanding but all theoretical results can be ex-
pressed in the classical frameworks of vector and tensor analysis
at the end. From the point of view of Physics, the obtained gov-
erning equations are completely covariant, i.e. they are valid in
arbitrary coordinate systems, whereas the classical theory shows
invariance with respect to a local Lorentz transformation only.
The presented theory is a continuum theory but it is the opin-
ion of the author however, that nothing opposes the introduction
of singularities (if need be) or quantum mechanics elementsin



such a variational formulation by means of e.g. the theory of
distributions.

The energy-based formulation has also advantages for numer-
ical modelling. Conservation equations can be read directly form
the diagrams in a form that is readily useable by the finite ele-
ment method, and all terms retain a clear physical interpretation.
This helps for the definition of coupling terms in multiphysics
modelling and provides meaningful criteria for identifying the
lumped parameters of reduced models.
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APPENDIX

(∇G) · F =
∑

ij

ei ∂Gj

∂xi
F j

F · (∇G) =
∑

ij

F i ∂Gj

∂xi
ej 6= (∇G) · F

F × curlG = (∇G) · F − F · (∇G)

ż = ∂tz + v · grad z

ż = ∂tz + v · (∇z)

AUTHOR’ S NAME AND AFFILIATION

François Henrotte
Institute of Electrical Machines,
RWTH-Aachen University,
Schinkelstrasse 4, D-52056 Aachen, Germany.
francois.henrotte@iem.rwth-aachen.de


