Technical article

Network models of three-dimensional electromagnetic fields

. INTRODUCTION

One of the oldest techniques for electromagnetic field
analysis and computation relies on magnetic and/or
electric field equivalent circuits. Historically such circuits
tended to be simple with few degrees of freedom due to
limitations to available computing power and memory;
notwithstanding, these methods are still helpful in
providing efficient estimates of global parameters and are
used for teaching purposes as they are well based
physicaly and avoid complicated mathematical
descriptions. They are also used in real time simulations
and for analysis of complex structures. Dramatic
increases in computer speed and available memory have
removed many restrictions and progressively more
accurate models are being used based mainly on the finite
element (FE) formulations.

The principal advantage of the equivalent networksis
that they provide useful physical insight and rely on well
known and understood Kirchhoff’'s and Chm's laws for
electric and magnetic circuits [6, 16, 18]. The solution
uses methods from circuit theory which are generally
considered by engineers as much simpler than finite
element formulations. It is therefore not surprising that
researchers have long been searching for analogies
between field descriptions and network equivalents.

The authors have for many years taught courses on
finite elements and have developed a network description
of the FE formulation which allows the method to be
explained using the language of circuit theory [7, 8, 9,
11]. This article presents briefly such an approach,
discusses the use of potentials and shows various possible
descriptions of the elements using nodal, edge, facet and
volume formulations. An 8node hexahedron is used to
illustrate the implementation of the general ideas.

1. ELECTROMAGNETIC FIELD EQUATIONS

The electromagnetic field may be described using the
usual set of equations

culH =J, curlE =- B/ft
H =nB, J=sE+1(E)/ft

(1ab)
(2a,b)

where the expression for current density refers to two
components. conduction (using conductivity s of
material) and displacement current due to time variation
of the electric field. For brevity we introduce the notation

J=¢E (©))

where g=s+pe (and p=1/1t) contains both components
and may bereferred to as ‘ operational’ conductivity.

In wave problems an aternative to (1a) is often used,
in which current density is expressed in terms of a time
derivative d an electric flux density D, which yields

rotH = 1D/ft, while D =e,E, and an ‘operational’

electric constante, =p” 1g =p s +e.

From (1b) it follows that divB=0, as there may be no
‘free’ magnetic poles, and from (1la) we can deduce
divJ=0, which expresses the law of conservation of
charges in the absence of free electric charge (in other
words the continuity of conduction current, or the field
equivalent of Kirchhoff's current law). The equations
divB=0 and divJ=0, together with (1a) or (1b), are
normally used when the magnetic and electric fields are
considered separately, for example when seeking field
distributions due to imposed current density or solving
equations describing current density distributions
resulting from time variation of the prescribed flux
density.

Electromagnetic fields may be solved using field
equations directly (H, B, E or D) or by introducing
potential functions. The potential formulations are
considered more general and will be discussed here.
There are three main approaches based on potentials: (a)
the W- T method, where the magnetic field is expressed in
terms of a scalar potential W, while the electric field is
described using an electric vector potential T; (b) the A-V
formulation, where A is a magnetic vector potential andV
an electric scalar potential; and (c) the A-T formulation
based on magnetic and electric vector potentials.

Table . Equations for the different potential formulations

Method| Substitution Equations
div|mgradW+T)[=0
J=curlT [n(g q )]
W— T -1 =- 1
H - T=grad W curl(g-eurl T) Tt [MgradWA+T)]
B =curl A A
curl(ncurl A) =ggradV - g+—
A-V A _ it
E +—=gradV i 9A
fit div[ g(gradV - W)] =0
J=curlT curl(ncurl A) =curlT
A-T q
B=curl A curl(gteur T) =- ﬁ(curl A)
T T=H curl(g‘lcurIT)z-%(nT)
TA
A E=-— - JA
1t curl(ncurl A) gW

Table | gathers field expressions relevant to the
various formulations. The bottom row refers to the case
when the W-T and A-V formulations are reduced to
simpler forms through the assumption of gradw=0 and
gradV=0, respectively. As a result the two equations
become decoupled and may be solved independently.
Moreover, the solution becomes unique with appropriate
choice of the gauge condition. Gauging of the solution is
an important issue and appropriate conditions are often
added to the governing equations. However, some recent
publications on numerical methods suggest that gauging



may not always be necessary [2, 7, 17]. By using
numerical techniques such as relaxation methods or
ICCG, one of the possible solutions is found satisfying
the equations for potentials. Finding one of the solutions
may be faster than searching for the only one satisfying
the gauge conditions[2, 17].

The following discussion concentrates on the
ungauged solutions. Using the language of the circuit
theory, the finite element method is derived for all three
potential formulations.

[11. FINITE ELEMENT INTERPOLTATION FUNCTIONS

A final element may be considered as nodal, edge,
facet or volume [3, 9, 12]. In the nodal formulation the
distribution of a scalar quantity inside an element is
expressed in terms of the values at nodes (e.g. vertices).
An edge element describes a vector quantity in that
element through the values of integrals of this quantity
along the element edges — these integrals are known as
edge values. In a facet element the function describing a
distribution of a vector quantity inside is associated with
the surface integrals of that quantity on the element facets
— the integrals are known as facet values. Finaly, a
volume element may be defined if a distribution of a
scalar quantity is expressed in terms of known volume
integrals of this quantity — the integrals are called the
volume values. As a conseguence of the multiplicity of
integration, a volume element may be referred to as an
element of the third order, a facet element as second
order, an edge element as first order and a nodal element
as zero order. For the element of the ith order we can
write

N
Yi= & W,Yij
1= (i=0,1,273 (4
where y;; is the jth nodal value for i=0, edge value for
i=1, facet value for i=2 and volume value for i=3; w;; is
the jth interpolating function of the element of the ith
order; and ny is the number of values of the field quantity
yi (n; equals the number of nodes for i=0, the number of
edges for i=1, the number of facets for i=2 and the
number of volumes for i=3; typical elements have one
volume, hence nz=1). The interpolating functions for
elements of third and zero order are scalar.
Equation (4) may be written in amatrix form

yi =Y, (i=0,1,23 (5

Here w; is a matrix of interpolating functions of the
element of ith order, and Y; a vector of associated values,
e.g. avector of nodal (=0), edge (=1), facet {=2) or
volume (i=3) values. The values and interpolating
functions of the edge and facet elements, that is elements
of the first and second order, are vectors; accordingly
they are further designated using bold letters.

As the field quantities describing magnetic fields, as
well as their sources, are themselves vectors, it is often
beneficial to use interpolating functions which are also
vectors and thus make the best use of edge and facet
elements.

IV. FINITE ELEMENT GRAPHS

In electromagnetic field systems the functions wy j of
the edge element are used to describe: (@) a gradient of
the electric, V, or magnetic, O, scalar potentia, (b)
electric or magnetic field strength, or (c) electric, T, or
magnetic, A, vector potentials. The functions wy; of the
facet element, on the other hand, are related to the current
density J or the magnetic flux density B. The edge values
of the relevant field intensities represent voltages,
whereas the edge values of the vector potentials T and A

are linked with the loop currents and fluxes around the
edge, respectively. The facet value of J is a current, while

the facet value of B is aflux through the facet [9].

Let a vector quantity y; be expressed in terms of a
gradient of a scalar yo, i.e. y1=gradyy. Hence the edge
value y1; for the jth edge, with the start at P, and the end
at Py, may be written as

P

q
yij = dyidl =yo(Ry)- Yo(Pp) (6)
Pp

This relationship shows that the edge value of the
gradient equals the potential difference between the edge
ends. This may be written in matrix form for all edges of
afinite element mesh as

Y1 =kwYo ()

where Y; is the vector of the edge values of gradyo, Yo a
vector of the nodal values of vy, and k,, a transposed
nodal matrix of a graph whose branches coincide with the
edges of the discretising mesh (Fig. 1). Equation (7) isa
network representation of the substitution y; =grady,. For
el ectromagnetic systems Y; becomes a vector of branch
voltages and Y, a vector of nodal values of a scalar
potential. For the remainder of this article, the graphs and
networks with branches coinciding with the finite element
mesh will be referred to asedge networks (EN) [9, 11].
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Fig. 1. Edge graph of 8 hexahedrons

In the electromagnetic field analysis it is common
practice to express the current and flux densities in terms
of a circulation of a vector potential. The vector
potentials represent a vector quantity y; associated with
an edge element, while densities B and J correspond to a
vector quantity y, related to a facet element. Using the
aforementioned substitution we obtain y,=curly;. After a



facet value y»; has been determined following the above
definition of y, and by applying the Stoke's theorem we
obtain

Yoj =a Y1q (8)

q
Here the summation refers to the edge values of all edges
of thejth facet. The sign in front of the gth edge valuey, 4

depends on the direction of the qth edge. For all mesh
facets we can write

Y, =ksYp 9

where Y, is a vector of the facet values, and ks is a
transposed loop matrix of a graph whose nodes are
positioned in the centre of element volumes and the
branches connecting the nodes cut the facets as shown in
Fig. 2. This type of graph and associated networks have
been named facet networks (FN) [9, 11]. The matrix ks
refers to loops around the edges and is aso the loop
matrix of the edge graph where edges are linked with
relevant facets. Equation (9) is a network equivalent of
the substitution y>=curly; and expresses branch values

using loop val ues.
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Fig. 2. Facet graph of 8 hexahedrons

Table Il. Network representations of differential operators

Differential Network equival ent§ of the differential
operations operations
Edge graph Facet graph
divy kwYi kyYa
curl y kY1, kIYs ksYy, KIY,
grady kwYo k\'/l'Y3
curl grady=0 ksky, =0 kSTkJ -0
div curl y=0 kIkI =0 kyks=0

Referring now to the volume value ys; of a quantity
y3, considering that it is a divergence of a vector y», and
applying Gauss theorem, leads to the following
expression

Y3j = £Y2p (10)
p

where the summation involves the facet values y,, of al
facets of the jth volume. For al elements of the

discretising mesh we can write

Y3 =kyY? 11

where Yz is avector of volume values, and ky a matrix
of cuts of the edge graph, with cuts associated with
facets. These matrices are network representations of the
differential operatorsasexplainedin Tablell.

V. BRANCH EQUATIONS FOR EDGE ELEMENT MODELS

The vector functions which are associated with an
edge element are: the electric and magnetic field
intensity, the potential gradient and the vector potentials.
The edge values of these functions for the edge N ; with
the beginning at P; and the end at P;, are assembled in
Tablelll.

TableI11. Edge values of the field vectors for an edge N;; with
the beginning at P; and an end at P;

Quantity | Edge value Description of the edge value
gradv | V-V, Electric potential difference between
nodes
gradw Wj - W Magnetic potentia difference between
nodes
H UHN; Magnetic potential associated with
' branch permeance
E UEN: Electric potential associated with
') operational branch admittance
A f ON; Loop flux around the edge
T ioNi y Loop current around the edge

Using the relationships from Table |, H - T= gradW
and E +YA/ft=gradV, it is possible to establish
correlations between the edge values of Table III.

Integrating both sides along the edge N leads to the
following expressions

Up; ;- ioNi’j =W - W (124)

(12b)

Fig. 3. An edge model of an 8-node, 12-edge element.

The implications of expressions (12a) and (12b) are
as follows. The potential difference between nodes of the
branch N;; of the edge graph (e.g. that of Fig. 3) isasum
of the branch electromotive force (emf) egn;;or

magnetomotive force (mmf) Qy; ; and the voltage drop



UEN; ; OF UHN; ; across the branch elements (the branch

N;,; is associated with the edge N;). The branch ent is
expressed in terms of the time derivative of the flux
around the edge, eqy, = - df gy | /dt. The branch mmf

corresponds to the loop current ig;j, QNi,j = ioNi’J. .

The current igNLj in the branch N ; of the edge model

of a single element containing an €electric field may be
obtained using the following expression

igNi,j ngllei,j‘]dv (13)
e

where V is the element volume. Equation (3) should be
used, while the E vector may be described in terms of the

interpolating functions of the edge element, yielding
J = =gvUg (14)

where w; is a matrix of the edge element functions — see
(5), and ug is a vector of edge values of the electric field
strength E. Substituting (14) into (13) gives

o

igNi,j = N a _1(GNi, i va,q + pCNi' i ,Np’q )UEN p.q (15)
p.g=
where
GNij Np o =@IVLN; | SWIN, 4 AV (168)
Ve
(16b)

CNi.j Npg :dﬁ‘DvaNi.j erva,q dv
Ve
It can be deduced that when formulating an edge model
of an element subjected to an electric field, mutual
conductances and capacitances will emerge. The voltage
across the admittance of the branch N,y will create
conduction and displacement currentsin the branch N; ;.
Following a similar derivation as when establishing
(15), it is possible to find an expression for the magnetic
flux f gn; ; associated with branch N;; of an edge model

of an element in the presence of magnetic field:

%
ngi,j = & L Nij N pqUHpg (17)
prq—l
where
L NijNpg :S@WlNi.j nwWiN g dV (18)

e

Here, expression (18) describes permeances. It can be
seen that, in the edge model of an element with a
magnetic field, one encounters mutual permeances. The
magnetic potential across the permeance of the branch
Npq creates a flux in the branch N;;. In the model of a
rectangular parallelepiped, the mutual conductances and
capacitances between branches associated with
perpendicular edges are equal to zero.

It has been shown by the authors that for a mesh
which is sufficiently fine the integrals (16) and (18) may
be approximated using the values of the integrand in the
element vertices[7, 8] by using the following relationship

Mo

a@f (¢ Y, 2dv=Ve-1-4 f(R) (19
Vo Moi=1

A simplified model is thus established for a

parallelepiped, where

GNijNpa =05 CNijNpg =05 LN N g =0
for Ni,jl Np‘q (20a,b,c)
—o Ve _ Ve
GNi'j,Ni’j =S 4Ii2j 1 CNi,j,Ni,j _erizj,
V,
L Nij.Nij = m4ng (21ab,c)

where [;; is the length of the edge N;; —see Fig. 3. Similar
expressions may be obtained by applying classical
methods, e.g. the integral formulation, or using rubes and
slices [14]. In the edge model of a parallelepiped, if (19)
has been applied, there will be no couplings between
braches, that is no mutual permeances, conductances or
capacitances.

The edge model of an element with a magnetic field,
as described by (17) and (18), will be referred to as the
permeance model or edge magnetic (EM). Following
similar logic, the edge model of an element with an
electric field, expressed by (15) and (16), will be known
as the conductance-capacitance or edge electric (EE).

V1. BRANCH EQUATIONS FOR FACET ELEMENT MODELS

The vector quantities which are associated with a facet
element are: (a) magnetic flux density B, and (b) current
density J. The facet values of these quantities, related to
theith facet, are: (a) magnetic flux fg passing through the
facet, and (b) current ig; flowing through the facet. These
values correspond to the branch flux and current in the
branch Q;§ of the facet model of the element, as shown
in Fig. 4. By making the substitutions B=curlA and
J=curlT, and applying (9), these values may be expressed
in terms of edge vector potentials, that is using loop
currents and fluxes
fg=a Kg.NpqfoNp g+ 15 a K NpqloNpq (228.0)

P.q Npg

where Kg N, , is an element of the jth row and Npgqth
column of the matrix ks for agraph of asingle element.

Toop B oop around
around P 4| edge N34
edge Npq
Pg V 1
Pq S
S Q F3 | €gg O Qg
./V/ Py

S & iq’ orf ]

Ps P7 Vg or Wy Ug OF Uns

Fig. 4. A facet model of an 8-node, 12-edge element.



An expression for the magnetic potential between
nodes for the branch Q;§ of the facet model may be
derived using the following relationship

@N2,j gradWav = g, jH dv- gz, j T dv (23)
Ve Ve Ve

The above expression is a result of the multiplication of
the substitution H-T=gradW by the jth interpolating
function wp; of a facet element and subsequent
integration. By applying theidentity

Wo j gradW=div(w ; W) - Wdiv W j (29

and taking into account that divw, ; = wsky; , where ky;
is the jth column of the matrix ky, then for an element of
asingle volume, in which w3 =ws 1 =Vg1, wefind

W, | gradWav= St @V dS - Ve *@ivdv= W, - W,
Ve Sj Ve

(25
where Ws; is an average value of the potential of the jth
facet associated with the node §, and W, isan average

value of the potential within the volume of the element
associated with the node Q; of the edge graph. Thus the
left hand side of (23) represents the voltage between
nodes. When considering the right hand side of (23) the
following relationships are hel pful

H=nB=nwyfg, T=wig (26a,b)
Here f denotes the vector of fluxes passing through
facets, thus branch fluxes, and i, the vector of loop

currentsioj. Substituting (26) into (23) via (24) yields

n2
Ws, - Wo =& R, 01 s~ Qs 27
where
RnQyi.Quj =@V2i W, j dv (28a)
Ve
pe :
Qgs= a Kijn g (28b)
Pg~
and
KiNpq = @2, jWL Ny o AV (29)
Ve
In the branch equation (27) mutual reluctances

Rrqyj,@,; may be recognised. The magnetic flux in the

ith branch, that is in the branch between nodes Q; and §
(Fig. 4), creates a flux in the jth branch between nodes Q;
and §. The branch mmf Qg may be expressed in terms of
loop (mesh) currents in the loops ‘embracing’ element
edges.

In asimilar way an expression may be derived for a
magnetic voltage between nodes in the branch ;S of the
facet model of an element with an electric field:

Ns .
VSj -Vg = jé_lel,in,j Is - Egg (30)

where
ZQ;.Q; =€0‘]‘)N2,i9' w, jdv (31a)
e
2 K, (F o) (31h)
g =- a . p
99 Npq=l 1.Np g \F' opq

In the branch equation (30) there are mutua
impedances of the capacitive type. A current in the ith
branch triggers avoltage in the jth branch.

From the relationship (31a) one can deduce
expressions for branch resistances for models without
displacement currents, as well as branch *elastances’ [9],
if such currents are present and conduction currents are
negligible. The facet model of an element with an electric
field has been named the impedance or facet electric (FE)
model. The facet model of an element with a magnetic
field is known as the reluctance or facet magnetic (FM)
model.

The branch parameters of facet models may be
established using (19). For example, for a parallelepiped,
the following expressions are found

R, =0, Zoj.q; =0 for it | (32a,b)

—n Ve - 1 Ve
RI’TQJ',QLJ _nzsjz ’ ZQ,]’QLJ‘ _(S +pe) 28]2 (33aab)
where § is the surface area of the ith facet. As aresult, a
simplified model of the parallelepiped element is
achieved, without couplings between branches, whose
parameters are the same as those found using classical

approaches, for example a method described in [14].
VIlI. MODELSOF CONNECTED ELEMENTS

Edge models

Network models of a meshed region are obtained by
connecting element models. In the case of an edge model
the branches associated with common element edges are
connected in paralel. As a result a multi-branch
permeance model (EM) is established for a magnetic field
or multi-branch conductance-capacitance model (EE) for
an electricfield.

The vectors ig and fy of branch currents in EE and
branch fluxesin EM may be written in the matrix form

ig=(G+pClug, fg=Luy (34a,b)

where G, C and L are the matrices of branch
conductances, capacitances and permeances, respectively;
and ug, uy refer to the vectors of potential differences
across elements of the branches of EE or EM. Taking
account of (12) allowsfor these vectorsto be written as

Ug =kyV +eg, Uy =kyW+Qq (35a,b)
where V and W are vectors of node potentials; ey and Qg
are vectors of branch emfs and mmfs; and k,, is a
transposed nodal matrix for the edge graph of the system
of connected elements.

In models created using 6-facet elements the
branches contain four capacitances and conductances or
permeances connected in parallel, such as the branch PP,
inFig. 5.



From the above relationships the nodal equations for
the permeance network may be established

kwLkyW+ kgL Qg =0 (36)
and similarly for the conductance-capacitance network
k(G +pC)kyV +ki(G+pC)ey =0 (37

The derived equations correspond to the description of
the nodal element method (NEM) using scalar potentials.

element 3 element 4
Magnetic
&j=Qgnj Pi
€ |
Electric
[ €ij = EgNij
Uk j = UH N

element1] . " element2

Fig. 5. Part of an edge model of four elements with details of a
branch associated with the edge P; P,

Facet models

When assembling elements for the facet electric (FE)
or facet magnetic (FM) model of a meshed region, the
branches associated with common facets are connected in
series. As aresult, a network is established whose nodes
are points Q associated with centres of the volumes, as
shown in Fig. 6. Voltage equations for a branch
containing nodes Q; may be written as

Ups = Raf s,

where R, and Z are the matrices of branch reluctances
and branch operational impedances; whereas fs and is are
vectors of branch fluxes and currents. The vectorsuys and
Ugs may be written in the following form

Ugg = Zig (38a,b)

Ups = ky Wo + Qgs: Ugs= kv Vo +€gs (39a,b)
where W, and V, are vectors of the noda potentials
associated with centres of elements; Qs and gs ae
vectors of branch mnfs and ents; finally ky is the matrix
mentioned previously of cuts for the network of
connected edge element models.

The vectors fg and ig of branch fluxes and currents
are edge vector values of flux and current density,
respectively. They may be expressed in terms of edge
values of vector potentials, thus in terms of loop fluxes f,
and loop currents i, in the loops around the edge of a set
of connected elements. We may write

fo=Kefo, ig=Kdg (40a,b)

where K is the aforementioned transposed loop matrix of
the facet graph of the connected elements. Fig. 6 depicts
part of the facet model of four elements showing a loop
‘embracing’ the edge P;P;.

element 4

element 3

Magnetic
€ =0k

v
L]
L]
L]
[]
L]
:
[]
:
' U2 =Ug1 2

R

Electric
e & = &
. Uo=Ugn 2

g -~
prg element 1| ..-

element 2

Fig. 6. Part of afacet model of four elements with aloop around the
edge Pi Pj

Loop equations for a reluctance model (SM) of a
system with a magnetic field may be established from
equations (38), (39) and (40) as

kanksfo :nggs (41)

Similarity loop equations for the resistance-elastance
model (SE) with an electric field may be written as

ke Zksio = ke €gs (42)

The loop equations (41) and (42) correspond to edge
element formulation (EEM) if vector potentials are used.
They may be derived by minimizing the functional with
respect to edge values of potentials. Although the
approach is known as the edge element method, the
branch reluctance and impedance matrices are in fact set
up using interpolating functions of the facet element, as
shown by equations (28a) and (31a). The functions of the
edge element, on the other hand, are helpful when
creating the coefficient matrix for the nodal element
method, for which the network equivalent is the edge
network. In expressions for branch conductances and
capacitances aswell asfor branch permeances of the edge
network an absence of classical shape functions of nodal
elements may be noticed, as shown by (16) and (18).
Notwithstanding, expressions for nodal permeance matrix

kg Lk, and admittance matrix k(G +pC)k,, are the
same as in classica finite element formulation using

nodal element. There are, however, differences between
the two descriptions when it comes to sources.

VIIl. BRANCH AND LOOP SOURC ES

In the models considered the branch mnfs and emfs
are described in terms of loop quantities. The branch
sources in the facet network (FN) result from loop values
in the edge network (EN), whereas branch sources in FN
from loop vaues in EN. Branch mmfs Q, in EN
correspond to loop currents iy in FN, e.g. the mnt in the
branch P;P; of the magnetic network of Fig. 5 is equal to
the current in a loop of the electric network that
surrounds the edge P;P, (Fig. 6). Branchemfs e, in EN are
found by time differentiation of loop fluxes f, in FN,
hence sourcesin (36) and (37) may be written as

Qg =io, €y =-df o/dt. (43a,b)



Branch mmfs g in FM are represented by loop currents
ioe iN the loops of the edge network, e.g. the branch mmf
in the branch Q;Qs; of the magnetic FN of Fig. 6
corresponds to the loop current in the loop P; PPy Py of the
electric edge network of Fig. 5. Thetime derivative of the
flux in the loop P;P,P4Px of the EM equals (with negative
sign) the enf in the branch Q,Qs of the FE. Sources in
(41) and (42) may therefore be written as

Qgs Zlioes €gs=- df oe/dt. (44a,b)
where the subscript oe denotes vectors of loop currents
and fluxesin the edge networks.

When loop analysis is applied to a network it is not
necessary to determine the branch sources, the knowledge
of loop sources will suffice. For examp le, when dealing
with (41) and (42), it is not essential to establish vectors
Qgs and g of the branch sources, we can focus on

deriving loop sources Qn, and &,

Qm= kgQgs )

The loop mmf corresponds to the current passing
through a loop of a magnetic network, hence the loop
mmfs Qp in the facet network are equivalent to branch
currents ig in the edge network, e.g. the mmf of the loop
shown in Fig 6 (a loop around the edge P.P;) is equal to
the current in the branch P;P, of the electric network of
Fig. 5. The loop emfs, on the other hand, may be found by
time differentiating of branch fluxes in the magnetic

network passing through loops of the electric network,
e.g. loop erfs ey, in the electric facet network are derived

from fluxes associated with branches of the magnetic
edge network as g,=- df g/dt. Thus when solving (41) and
(42) it may be convenient to take into account that

kiQgs=Qm=ig, kieg=ey=-df4/dt

In order to establish branch fluxes fq and branch
currentsigy, as well as loop fluxes f o and loop currents ige
associated with edge networks, it is not necessary to solve
the equations for these networks. Instead, quantities
associated with edge networks may be derived from by
appropriate transposition of the results for the facet
network. The required entries of the transposing matrix K
may be found as a product of interpolating functions of
the facet and edge elements — as shown by (29).
Substitution for K resultsin the following

f o= Kfg,

em=kJ egs (45a,b).

(46a,b)

(47a,b)

i = Kiy,

fg=K'fs, ig=Kis. (48a,b)
Moreover, the matrix K may be used to derive
currents i, and is, as well as fluxes f, and fs, associated

with facet networks, from currents iqe and ig, and aso
fluxes foe andf g, associated with edge networks

fo=K o, io=Klig. (49a,b)

fs=Kfg, is=Kig. (50a,b)

The abovementioned relationships are explained in
Fig. 7, where 6-facet elements are considered for which
all non-zero entriesinK are equal to 1/8.

The loop mmfs in FM may therefore be established

from: (a) branch currents iy in EE; (b) loop currents io w
FE; or (c) branch currents is in FE. Equally, to find loop
emfs in FE we may use: (a) branch fluxes fq in EM; (b)
loop fluxes fo in FM; or (c) branch fluxes fsin FM. Due
to the bigger variety of descriptions of sources, the facet
models are more universal than edge models; this aso
explains — using the language of circuit theory — why the
vector potential formulations are more universal.

@

Fig. 7. Transformations of loop and branch currents in networks
(a) facet graph, (b) edge graph

IX. COUPLED NETWORK MODEL S

The finite element formulations using potentials
correspond to equations of magnetic and electric
networks coupled via sources.

A-T method
Formulations based on the vector potentials A and T

are related to loop equations arising from magnetic and
electric facet networks (FM-FE).

Is FE Iy

_ _1d8 18.
en=e+e+eg+e,=-——a f 4|| Q=0+, +a5+0, =§a lgi
=1 i=1

Fig. 8. Portion of an FM -FE model

Loop mmfs in a magnetic network are derived from
branch currents in the electric network (Fig. 8). Similarly,



from the branch fluxes of the magnetic network we can
establish the flux passing through a loop in the electric
network. Time derivatives of these fluxes correspond
(with negative sign) to loop emfs. The method is
particularly suitable for analysis of systems containing
thin conductors. In such systems, from the loop equations
of the facet electric model the loop equations for circuits
containing windings may be established. After taking
account of the presence of voltage sources, a system of
equations is accomplished containing voltage equations
for the windings and FEM equations describing loop
fluxes distribution in the magnetic facet network [10].

A-V method

The equations arising from the A—V method, which
uses magnetic vector potential and electric scalar
potential, contain loop equations of the facet magnetic
network and nodal equations of the edge electric network
[8, 11]. Coupling exists between the facet magnetic
network and edge €electric network (FM -EE). Loop mmfs
in the magnetic network are derived from branch currents
of the electric network, while branch emfs in the electric
network are found by differentiating with respect to time
of the loop fluxesin the magnetic network (Fig. 9).

S12=- % fo12

Rm G+pC
m—di1T02*(3 4=igl,2
— [Qu =t * 205+ Quign ] -
Fig. 9. Portion of an FM -EE model
W-T method

The method uses a magnetic scalar potential W and
an electric vector potential T. The resulting equations
consist of nodal expressions for the edge magnetic
network and loop equations for the facet electric network.
The model therefore contains coupled magnetic edge and
electric facet networks (EM-FE). The loop emfs are
obtained from branch fluxes of the magnetic network,
while branch mmfs in the edge network from loop
currents of the facet network, as shown in Fig. 10.

Q} FE

L
—5 em=- el+ez+%+e4:- % f 12 —é

Fig. 10. Portion of a permeance impedance network

This approach has rarely been used so far. Most
commercial codes use two potentials: global and reduced,

while the flow of conduction current is treated as a circuit
problem. Moreover, the equivalence between loop
currents and the edge values of electric vector potential T
is normally overlooked. By taking account of this
equivalence, the circuit -field models using the potential O
may be treated as a special case of the W=T formulation.

O-V method

The authors are not aware of publications addressing
specifically field analysis using only scalar potentials W
and V. From the discussion above it follows that the
network representation of the equations based on the O-V
formulation would involve nodal equations of two edge
networks, magnetic and electric. Unfortunately, it is not
possible to develop branch nmmfs in EE from branch
currents in EE, nor branch emfs in EE from branch fluxes
in EE. A separate derivation is thus required to establish
loop currents and fluxes from branch currents and fluxes,
since branch sources in edge networks are defined via
loop quantities. The loop values are network equivalents
of vector potentials. It may be concluded therefore that
the application of the W—V formulation would necessitate
an additional task of determining the distribution of
vector potentials from the knowledge of the scalar
potential distribution. For this reason the W=V method is
considered of little real practical interest and the relevant
equations are not elaborated. The equations for the other
models are summarised in Table IV.

Table V. Equations fro the coupled network models

Model Equations

EM-FE ki LkyW+Kkal Qg =0, Qg =iq
W-T k-SerSiO:em, em:_pL(kWW+Qg)
PM-EE| K& Rikf 0= Qm, QurG+PC)(kaV +eg)
A-V

kw(G+pC)kyV +ky(G+pC)ey =0, e4=- pf,

ke Roksf 0 =Qm, Qp =ki Kig

SM-SE
AT kI Zkj,=e,. e,=-kINpf,

T P . P
FE'T Ks ZKsio =€n» en=-pLi, (ig=uy)
M, A

k¢ Ruksf 0=Qm,» Qm=G+pC)pf o (- pf o=UE)

In the bottom row of Table 1V, the ‘decoupled
equations are presented describing loop currents and
fluxes in facet models. The relationship for loop fluxes f,
is obtained from equations of the FM-EE model, after
imposing the condition kW =0. The appropriateness of
this condition may be considered by examining the
structure of the graph matrices of the facet and edge
networks and the properties of the vector Qp, on the right
hand side of loop equations for magnetic network in the
FM-EE model. This vector is a factor in the system of
nodal equations of the network EE. The nodal equations

of EE may be written as k;,Q,, =0. The transposed
matrix ky, is the nodal matrix of the edge network. At the

same time, the matrix ks appearing in the equations of the
FM-EE model, is the loop matrix of this network (loops



are associated with element facets). Consequently,
kiki =0, and thus multiplying both sides of the

eguation kl Riksf o =Qm by a transposed matrix ki,

leads to k\I,Qm =0. Thus the solution satisfying loop

equations for FM for the loops around the edges, also
satisfies nodal equations for EE, even for k,V=0. If in the
system considered there are no enforced voltages, then
when computing the field distribution we may assume
that V=0. As aresult the task of solving equations of the
FM-EE model reduces to a solution of a system of
equations describing the loop fluxes f,, i.e. the system
included in the bottom row of Table 1V. Hence the
electric field distribution may be established by
differentation in time of these fluxes, since, as V=0, then
from (35b) and (43b) it follows that ug=- pf,. In asimilar
way, by substituting W=0 in the eguations of the W-T
method, equations describing currents i, may be derived
and are included in the bottom row of Table IV. The
relationships in that row may be considered as equations
of the edge element method for field formulations.

The loop equations for facet networks presented in
Table IV for coupled models are ill-posed
(underspecified), as the number of independent loops
around edges is larger than the number of available
independent equations. The loop reluctance and
impedance matrices are therefore singular. In early
publications about the implementations of EEM the
solution algorithms were preceded by procedures to form
additional equations to arrive at a well posed system.
Several methods were put forward, for example a method
utilising the tree of the graph constructed from element
edges [13, 15]. In the FM-EE and EM-FE models a well
posed system will be accomplished by adding the
conditions V=0 and W=0. Unfortunately, the known
iterative procedures for solving large system of equations
are in this case known to be converging rather slowly [2,
17].

Converting EEM equations into a well posed system
is not a necessary requirement to obtain a solution. Using
an appropriate iterative method, such as ICCG or block
relaxation, it is possible to solve these equations, or — to
be more precise — find one of the equations satisfying
EEM. The iterative process of seeking one of the
solutions is converging faster than the process of finding
one unique solution of a well posed system [2, 17]. The
authors have conducted some tests using the FM-EE
model. The comparison concerned the convergence of the
well posed system, obtained by adding the condition
V=0, and the convergence of an iterative process applied
to an underspecified system of equations established
using FM and EE models. Despite the fact that
incorporating the condition V=0 reduces the number of
equations, as there is no need to consider EE, the solution
times are longer than for the underspecified system. The
number of iterations for solving equations for FM under
the condition V=0 was sometimes even two orders of
magnitude higher then for the combined FM and EE set.

Using the presented network descriptions it is
possible to form models ‘tuned in" to a particular
structure, material properties and imposed conditions. As
an example, a system is considered containing thin

conductors. First, a task of computing magnetic field
distribution due to known currents in windings is
undertaken, assuming negligible displacement currents.
To solve this problem it is convenient to use a permeance
model, whose nodal equations correspond to eguations
NEM using a formulation based on the scalar potential O.
In the system under investigation containing thin
filamentary conductors, the branch mmfs may be
determined from loop currents in the loops of the winding
arrangement, after dividing the winding loops into loops
around the edges, as described in detail in [10]. Fig. 11
shows an example of a double-turn loop with current and
a portion of the permeance network (EM), representing
the region within the boundary of the loop. The nodes of
the presented portion of the network lie on the plane z=0.
The given values of the branch mmfs have been
determined by considering the number of cuts of the
element edges with the loop surface [10]. From the
distribution of these mns it follows that, in the portion of
the network shown, the non-zero values of mmifs are only
in loops O, and O, through which the current carrying
conductors pass (Fig. 11). It will also be noted that,
thanks to expressing field sources using branch mnfs, it is
feasible to employ only one global scalar potential [10].
In the actual algortihm of the nodal method, the branch
mmfs are coverted into nodal ‘injections’ of flux (nodal
sources). Thevector F of theseinjectionsis described by

theterm ky,L Qg in (36).

|Two turn winding Ioopl

|Loop of permeance network (EM)|

Fig. 11. A portion of the permerance model of aregion
with atwo-turn coil

It has already been noticed that, in order to describe
current distributions in thin conductors supplied from
voltage sources, it is most convenient to use the vector
potential T. If displacement currents are absent or
negligible, then the corresponding to this formulation
loop equations of the impedance network may be greatly
simplified. By using methods presented in [10], from
loop equations of FE, the equations for currents iy, in the
loops of the thin conductors forming the winding may be
determined. These equations may be written in a matrix
form

Roio =Kim * Uz (51)
where R, is the loop resistance matrix of the system of
thin conductors; and uy is the vector of imposed loop
supplying voltages. The matrix Kk, describes the



distribution of the winding in the edge element domain
[10]. The product of the transposed matrix Kk, and the
vector &, (from Table IV) corresponds to the vector of
enfs set up by the flux coupled with the winding loops.
The matrix equation (51) may be solved together with the
equations for model EM or model FM. When defining the
sources it should be remembered that i =K 0.

The additional ‘external’ circuit currents iy may be
considered as the edge values of a vector potential To,
used otherwise in description of multiply connected
conductors [4], including analysis of eddy currents in
solid conductors with ‘holes' [1, 5]. After applying EEM
to the T formulation, equations representing loop
equations of facet network are established. These
equations refer to loops with eddy currents around the
element edge. Although the number of these loops
exceeds the number of independent loops, for a system
which is not singly connected it is impossible to set up
the system of fundamental loops. It is therefore
necessary, for loops around the edges, to supplement the
loop equations with equations for additional loops
surrounding the ‘holes'. The currents of these loops
provide edge values for the potential To. The authors are
of the opinion that the above explanation, expressed using
the language of circuit theory, of the need for the
introduction of the additional potentia T,, is more
convincing than the purely ‘field oriented’ arguments
available in the literature.

The network representation of FEM eguationsis also
applicable to the analysis of wave propagation. Fig. 12
shows a network model of a plane electromagnetic wave.
The model consists of two coupled networks: facet
magnetic and edge electric. Even a short voltage impulse
applied to a capacitance in an arbitrary kth branch will
create currents even in very distant branches.

|Loop of magnetlc network (FM)

Reluctance

Equations of the nodal element method for
formulations employing scalar potentials correspond to
nodal equations of edge networks: electric conductance-
capacitance and magnetic permeance. Nodes of the edge
network coincide with the element nodes. Equations of
the edge element method, on the other hand, for
formulations using vector potentials correspond to loop
equations of facet networks. magnetic reluctance and
electric resistance-elastance. The nodes of the facet
network lie in the volume centres of the elements, while
loops ‘embrace’ the element edges. The field analysis
methods based on scalar potentials represent therefore
nodal methods of analysis of electric and magnetic
circuits, whereas the field methods employing vector
potentials represent the loop approach in circuits.

A particular characteristic of the circuits which serve
as analogies to magnetic or electric field systemsis the
‘loop’ character of the sources. From the distribution of
the current density aloop mmf may be specified, whereas
the time variation of the flux density determines the loop
emf. For this reason, in the algorithms for the scalar
potential method, the routines for solution of FEM are
preceded by a procedure forming the sources associated
with nodes. In the cases discussed in this article the
sources are expressed in terms of edge values of vector
potentials, that is in terms of loop currents and fluxes.
From these values the branch emfs and rn¥s are derived,
which — in the process of setting up nodal expressions —
are then converted into current and flux injections. As a
result, in models of even very non-homogenous regions
the sum of the sources associated with nodes is equal to
zero and there is no need to use two potentials, global and
reduced.

As mentioned already, it is possible to tune the
models to cater for particular specific conditions or
properties. For example, resistance models can be created
of systems containing windings with rod

conductors (such as in cage induction
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fundamentally different to the classical
way of deriving the finite element

Fig.12. Network model of aregion with a plane wave,
E=1E/(x), H=1,H,(x)

X. CONCLUSIONS

The article has introduced a notation for the finite
element formulation where the description of field
quantities is in terms of interpolating functions of an
element considered as edge or facet element. In the
formulation using functions of an edge element, the edge
values of a gradient of a scalar potential are expressed in
terms of nodal values. This approach may therefore be
caled a nodal element method, for brevity, even if the
field quantities are described using the functions of the
edge element. On the other hand, in the formulation based
on the functions of the facet element, the facet values are
expressed using edge values of avector potential, hence it
isjustifiableto call the method an edge element method.

equations. Probably the most popular derivation relies on
a variational principle where the conditions are sought
through differentiating the function with respect to nodal,
edge or facet values. It important to emphasise, however,
that the final equations are identical to those presented in
this article. One of the aims of this presentation is to
demonstrate that the finite element formulation may be
derived entirely from circuit theory without the
introduction of the concept of energy functional.

The presented anal ogies between FEM equations and
circuit equations may aso be useful to update and
enhance the well known and long-in-use network
methods of analysis of magnetic circuits, including the
permeance networks [6, 16] and reluctance networks
[18]. To improve the accuracy of representation of
regions of high energy density, the parameters of these
models should be established using the expressions
presented in thisarticle.



Details of the solution of large systems of equations
resulting from the various networks discussed have not
been addressed here. Nevertheless, it was noted that the
iterative procedures of solving ill-posed (underspecified)
loop equations for facet elements are very efficient.
Careful analysis has shown that the loop method does not
require the dependent loops to be eliminated.
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