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I. INTRODUCTION 

One of the oldest techniques for electromagnetic field 
analysis and computation relies on magnetic and/or 
electric field equivalent circuits. Historically such circuits 
tended to be simple with few degrees of freedom due to 
limitations to available computing power and memory; 
notwithstanding, these methods are still helpful in 
providing efficient estimates of global parameters and are 
used for teaching purposes as they are well based 
physically and avoid complicated mathematical 
descriptions. They are also used in real time simulations 
and for analysis of complex structures. Dramatic 
increases in computer speed and available memory have 
removed many restrictions and progressively more 
accurate models are being used based mainly on the finite 
element (FE) formulations. 

The principal advantage of the equivalent networks is 
that they provide useful physical insight and rely on well 
known and understood Kirchhoff’s and Ohm’s laws for 
electric and magnetic circuits [6, 16, 18]. The solution 
uses methods from circuit theory which are generally 
considered by engineers as much simpler than finite 
element formulations. It is therefore not surprising that 
researchers have long been searching for analogies 
between field descriptions and network equivalents.  

The authors have for many years taught courses on 
finite elements and have developed a network description 
of the FE formulation which allows the method to be 
explained using the language of circuit theory [7, 8, 9, 
11]. This article presents briefly such an approach, 
discusses the use of potentials and shows various possible 
descriptions of the elements using nodal, edge, facet and 
volume formulations. An 8-node hexahedron is  used to 
illustrate the implementation of the general ideas. 

II. ELECTROMAGNETIC FIELD EQUATIONS  

The electromagnetic field may be described using the 
usual set of equations 

 JH =curl ,   t∂∂−= BEcurl  (1a,b) 

 BH ν= ,   t∂∂+σ= )(e EEJ  (2a,b) 

where the expression for current density refers to two 
components: conduction (using conductivity s of 
material) and displacement current due to time variation 
of the electric field. For brevity we introduce the notation  

 EJ γ=  (3) 

where γ=σ+pε (and p=∂/∂t) contains both components 
and may be referred to as ‘operational’ conductivity. 

In wave problems an alternative to (1a) is often used, 
in which current density is expressed in terms of a time 
derivative of an electric flux density D, which yields 

t∂∂= DHrot , while ED pε= , and an ‘operational’ 

electric constant ε+σ=γ=ε −− 11 ppp .   

From (1b) it follows that divB=0, as there may be no 
‘free’ magnetic poles, and from (1a) we can deduce 
divJ=0, which expresses the law of conservation of 
charges in the absence of free electric charge (in other 
words the continuity of conduction current, or the field 
equivalent of Kirchhoff’s current law). The equations 
divB=0 and divJ=0, together with (1a) or (1b), are 
normally used when the magnetic and electric fields are 
considered separately, for example when seeking field 
distributions due to imposed current density or solving 
equations describing current density distributions 
resulting from time variation of the prescribed flux 
density. 

Electromagnetic fields may be solved using field 
equations directly (H, B, E or D) or by introducing 
potential functions. The potential formulations are 
considered more general and will be discussed here. 
There are three main approaches based on potentials: (a) 
the Ω−T method, where the magnetic field is expressed in 
terms of a scalar potential Ω , while the electric field is 
described using an electric vector potential T; (b) the A−V  
formulation, where A is a magnetic vector potential and V  
an electric scalar potential; and (c) the A−T formulation 
based on magnetic and electric vector potentials. 

Table I. Equations for the different potential formulations  
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Table I gathers field expressions relevant to the 

various formulations. The bottom row refers to the case 
when the Ω−T and A−V formulations are reduced to 
simpler forms through the assumption of gradΩ=0 and 
gradV=0, respectively. As a result the two equations 
become decoupled and may be solved independently. 
Moreover, the solution becomes unique with appropriate 
choice of the gauge condition. Gauging of the solution is 
an important issue and appropriate conditions are often 
added to the governing equations. However, some recent 
publications on numerical methods suggest that gauging 



may not always be necessary [2, 7, 17]. By using 
numerical techniques such as relaxation methods or 
ICCG, one of the possible solutions is found satisfying 
the equations for potentials. Finding one of the solutions 
may be faster than searching for the only one satisfying 
the gauge conditions [2, 17]. 

The following discussion concentrates on the 
ungauged solutions. Using the language of the circuit 
theory, the finite element method is derived for all three 
potential formulations. 

III. FINITE ELEMENT INTERPOLTATION FUNCTIONS 

A final element may be considered as nodal, edge, 
facet or volume [3, 9, 12]. In the nodal formulation the 
distribution of a scalar quantity inside an element is 
expressed in terms of the values at nodes (e.g. vertices). 
An edge element describes a vector quantity in that 
element through the values of integrals of this quantity 
along the element edges – these integrals are known as 
edge values. In a facet element the function describing a 
distribution of a vector quantity inside is associated with 
the surface integrals of that quantity on the element facets 
– the integrals are known as facet values. Finally, a 
volume element may be defined if a distribution of a 
scalar quantity is expressed in terms of known volume 
integrals of this quantity – the integrals are called the 
volume values. As a consequence of the multiplicity of 
integration, a volume element may be referred to as an 
element of the third order, a facet element as second 
order, an edge element as first order and a nodal element 
as zero order. For the element of the ith order we can 
write 
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 (i = 0, 1, 2, 3)     (4) 

where yi,j is the jth nodal value for i=0, edge value for 
i=1, facet value for i=2 and volume value for i=3; wi,j is 
the jth interpolating function of the element of the ith 
order; and ni is the number of values of the field quantity 
yi (ni equals the number of nodes for i=0, the number of 
edges for i=1, the number of facets for i=2 and the 
number of volumes for i=3; typical elements have one 
volume, hence n3 =1). The interpolating functions for 
elements of third and zero order are scalar. 

Equation (4) may be written in a matrix form 

 iiiy Yw=  (i = 0, 1, 2, 3)     (5) 

Here wi is a matrix of interpolating functions of the 
element of ith order, and Yi a vector of associated values, 
e.g. a vector of nodal (i=0), edge (i=1), facet (i=2) or 
volume (i=3) values. The values and interpolating 
functions of the edge and facet elements, that is elements 
of the first and second order, are vectors; accordingly 
they are further designated using bold letters. 

As the field quantities describing magnetic fields, as 
well as their sources, are themselves vectors, it is often 
beneficial to use interpolating functions which are also 
vectors and thus make the best use of edge and facet 
elements. 

IV. FINITE ELEMENT GRAPHS 

In electromagnetic field systems the functions w1,j of 
the edge element are used to describe: (a) a gradient of 
the electric, V, or magnetic, O, scalar potential, (b) 
electric or magnetic field strength, or (c) electric, T , or 
magnetic, A , vector potentials. The functions w2,j of the 
facet element, on the other hand, are related to the current 
density J or the magnetic flux density B. The edge values 
of the relevant field intensities represent voltages, 
whereas the edge values of the vector potentials T and A 
are linked with the loop currents and fluxes around the 
edge, respectively. The facet value of J is a current, while 
the facet value of B is a flux through the facet [9]. 

Let a vector quantity y1 be expressed in terms of a 
gradient of a scalar y0, i.e. y1 =grady0. Hence the edge 
value y1,j for the jth edge, with the start at Pp and the end 
at Pq, may be written as 
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This relationship shows that the edge value of the 
gradient equals the potential difference between the edge 
ends. This may be written in matrix form for all edges of 
a finite element mesh as 

 01 YkY w=  (7) 

where Y1 is the vector of the edge values of grady0, Y0 a  
vector of the nodal values of y0, and kw a transposed 
nodal matrix of a graph whose branches coincide with the 
edges of the discretising mesh (Fig. 1). Equation (7) is a 
network representation of the substitution y1 =grady0. For 
electromagnetic systems Y1 becomes a vector of branch 
voltages and Y0 a vector of nodal values of a scalar 
potential. For the remainder of this article, the graphs and 
networks with branches coinciding with the finite element 
mesh will be referred to as edge networks (EN) [9, 11]. 
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Fig. 1. Edge graph of 8 hexahedrons 

In the electromagnetic field analysis it is common 
practice to express the current and flux densities in terms 
of a circulation of a vector potential. The vector 
potentials represent a vector quantity y1 associated with 
an edge element, while densities B and J correspond to a 
vector quantity y2 related to a facet element. Using the 
aforementioned substitution we obtain y2 =curly1. After a 



facet value y2,j has been determined following the above 
definition of y2 and by applying the Stoke’s theorem we 
obtain 

 ∑±=
q

qj yy ,1,2  (8) 

Here the summation refers to the edge values of all edges 
of the jth facet. The sign in front of the qth edge value y1,q 
depends on the direction of the qth edge. For all mesh 
facets we can write 

 12 YkY s=  (9) 

where Y2 is a vector of the facet values, and ks is a 
transposed loop matrix of a graph whose nodes are 
positioned in the centre of element volumes and the 
branches connecting the nodes cut the facets as shown in 
Fig. 2. This type of graph and associated networks have 
been named facet networks (FN) [9, 11]. The matrix ks 
refers to loops around the edges and is also the loop 
matrix of the edge graph where edges are linked with 
relevant facets. Equation (9) is a network equivalent of 
the substitution y2 =curly1 and expresses branch values 
using loop values. 
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Fig. 2. Facet graph of 8 hexahedrons 

 

Table II. Network representations of differential operators 

Network equivalents of the differential 
operations 

Differential 
operations 

Edge graph Facet graph 

div y 1Yk T
w  2YkV  

curl y 1Yks , 2YkT
s  1Yks , 2YkT

s  

grad y 0Ykw  3YkT
V  

curl grad y=0 0=wskk  0=T
V

T
s kk  

div curl y = 0 0=T
s

T
wkk  0=sV kk  

 
Referring now to the volume value y3,j of a quantity 

y3, considering that it is a divergence of a vector y2 , and 
applying Gauss theorem, leads to the following 
expression 

 ∑±=
p

pj yy ,2,3  (10) 

where the summation involves the facet values y2,p of all 
facets of the jth volume. For all elements of the 

discretising mesh we can write 

 23 YkY V=  (11) 

where  Y3 is a vector of volume values, and kV  a matrix 
of cuts of the edge graph, with cuts associated with 
facets. These matrices are network representations of the 
differential operators as explained in Table II. 

V. BRANCH EQUATIONS FOR EDGE ELEMENT MODELS  

The vector functions which are associated with an 
edge element are: the electric and magnetic field 
intensity, the potential gradient and the vector potentials. 
The edge values of these functions for the edge Ni,j with 
the beginning at Pi and the end at Pj, are assembled in 
Table III. 

Table III. Edge values of the field vectors for an edge Ni,j with 
the beginning at Pi and an end at Pj 

Quantity Edge value Description of the edge value 

gradV ij VV −  Electric potential difference between 
nodes 

gradΩ  ij Ω−Ω  Magnetic potential difference between 
nodes 

H jiHNu ,  Magnetic potential associated with 
branch permeance 

E jiENu ,  Electric potential associated with 
operational branch admittance 

A 
jiNo ,

φ  Loop flux around the edge 

T jioNi ,  Loop current around the edge 

 
Using the relationships from Table I, Ω=− gradTH  

and Vt adgr=∂∂+ AE , it is possible to establish 
correlations between the edge values of Table III. 
Integrating both sides along the edge Ni,j leads to the 
following expressions 
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 (12a) 

 ijoNEN VVtu
jiji

−=φ+ dd
,,

 (12b) 

 
P2 

P4 

Pj 

P6  

P5 

Pi 
P8 

P1  

N3,4  

Ni,j N5,6 

N2,6 

N5 ,j 
li ,j 

Vi or Ωi 

Vj  or Ωj uENi,j  or uHNi,j 

egNi,j or ΘNi,j  

igNi,j  or φgNi,j 

 
Fig. 3. An edge model of an 8-node, 12-edge element. 

The implications of expressions (12a) and (12b) are 
as follows. The potential difference between nodes of the 
branch Ni,j of the edge graph (e.g. that of Fig. 3) is a sum 
of the branch electromotive force (emf) jigNe , or 

magnetomotive force (mmf) jiN ,Θ  and the voltage drop 



jiENu , or jiHNu , across the branch elements (the branch 

Ni,j is associated with the edge Ni,j). The branch emf is 
expressed in terms of the time derivative of the flux 
around the edge, te

jiji oNgN dd
,,

φ−= . The branch mmf 

corresponds to the loop current ioi,j, jiji oNN i
,,

=Θ . 

The current jigNi , in the branch Ni,j of the edge model 

of a single element containing an electric field may be 
obtained using the following expression 

 ∫∫∫=
e

jiji
V

NgN vi d,, ,1 Jw  (13) 

where Ve is the element volume. Equation (3) should be 
used, while the E vector may be described in terms of the 
interpolating functions of the edge element, yielding 

 EuwEJ 1γ=γ=  (14) 

where w1 is a matrix of the edge element functions – see 
(5), and uE is a vector of edge values of the electric field 
strength E. Substituting (14) into (13) gives 

∑
=

+=
1

,
,,,,,,

1
,, )p(

n

N
ENNNNNgN

qp
qpqpjiqpjiji

uCGi  (15) 

where 

 vG
e

qpjiqpji
V

NNNN d,,,, ,1,1, ∫∫∫ σ= ww  (16a) 

 vC
e

qpjiqpji
V

NNNN d,,,, ,1,1, ∫∫∫ ε= ww  (16b) 

It can be deduced that when formulating an edge model 
of an element subjected to an electric field, mutual 
conductances and capacitances will emerge. The voltage 
across the admittance of the branch Np,q will create 
conduction and displacement currents in the branch Ni,j. 

Following a similar derivation as when establishing 
(15), it is possible to find an expression for the magnetic 
flux jigN ,φ associated with branch Ni,j of an edge model 

of an element in the presence of magnetic field: 
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where 

 v
e

qpjiqpji
V

NNNN d,,,, ,1,1, ∫∫∫ µ=Λ ww  (18) 

Here, expression (18) describes permeances. It can be 
seen that, in the edge model of an element with a 
magnetic field, one encounters mutual permeances. The 
magnetic potential across the permeance of the branch 
Np,q creates a flux in the branch Ni,j. In the model of a 
rectangular parallelepiped, the mutual conductances and 
capacitances between branches associated with 
perpendicular edges are equal to zero.   

It has been shown by the authors that for a mesh 
which is sufficiently fine the integrals (16) and (18) may 
be approximated using the values of the integrand in the 
element vertices [7, 8] by using the following relationship 
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A simplified model is thus established for a 
parallelepiped, where 

0,, , =qpji NNG , 0,, , =qpji NNC , 0,, , =Λ qpji NN   

  for qpji NN ,, ≠  (20a,b,c) 
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where li,j is the length of the edge Ni,j – see Fig. 3. Similar 
expressions may be obtained by applying classical 
methods, e.g. the integral formulation, or using rubes and 
slices [14]. In the edge model of a parallelepiped, if (19) 
has been applied, there will be no couplings between 
braches, that is no mutual permeances, conductances or 
capacitances. 

The edge model of an element with a magnetic field, 
as described by (17) and (18), will be referred to as the 
permeance model or edge magnetic  (EM). Following 
similar logic, the edge model of an element with an 
electric field, expressed by (15) and (16), will be known 
as the conductance-capacitance or edge electric (EE). 

VI.  BRANCH EQUATIONS FOR FACET ELEMENT MODELS  

The vector quantities which are associated with a facet 
element are: (a) magnetic flux density B, and (b) current 
density J. The facet values of these quantities, related to 
the ith facet, are: (a) magnetic flux φsj passing through the 
facet, and (b) current isj flowing through the facet. These 
values correspond to the branch flux and current in the 
branch Q1Sj of the facet model of the element, as shown 
in Fig. 4. By making the substitutions B=curlA and 
J=curlT, and applying (9), these values may be expressed 
in terms of edge vector potentials, that is using loop 
currents and fluxes 

∑ φ=φ
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where qpNsjk ,, is an element of the jth row and Np,qth 

column of the matrix ks for a graph of a single element. 
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Fig. 4. A facet model of an 8-node, 12-edge element. 



An expression for the magnetic potential between 
nodes for the branch Q1Sj of the facet model may be 
derived using the following relationship 

 ∫∫∫∫∫∫∫∫∫ −=Ω
eee V
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j vvv dddgrad ,2,2,2 TwHww  (23) 

The above expression is a result of the multiplication of 
the substitution H−T=gradΩ  by the jth interpolating 
function w2,j of a facet element and subsequent 
integration. By applying the identity 

 jjj ,2,2,2 div)div(grad www Ω−Ω=Ω   (24) 

and taking into account that Vjj kww 3,2div = , where kVj 

is the jth column of the matrix kV, then for an element of 
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where jSΩ  is an average value of the potential of the jth 

facet associated with the node Sj, and  
1QΩ  is an average 

value of the potential within the volume of the element 
associated with the node Q1 of the edge graph. Thus the 
left hand side of (23) represents the voltage between 
nodes. When considering the right hand side of (23) the 
following relationships are helpful 

 sφ2wBH ν=ν= ,   oiwT 1=  (26a,b) 

Here φs denotes the vector of fluxes passing through 
facets, thus branch fluxes, and io the vector of loop 
currents ioi,j. Substituting (26) into (23) via (24) yields 
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and 
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In the branch equation (27) mutual reluctances 

ji QQR ,1,1 ,µ may be recognised. The magnetic flux in the 

ith branch, that is in the branch between nodes Q1 and Si 
(Fig. 4), creates a flux in the jth branch between nodes Q1 
and Sj. The branch mmf Θgsj may be expressed in terms of 
loop (mesh) currents in the loops ‘embracing’ element 
edges. 

In a similar way an expression may be derived for a 
magnetic voltage between nodes in the branch Q1Sj of the 
facet model of an element with an electric field: 
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In the branch equation (30) there are mutual 
impedances of the capacitive type. A current in the ith 
branch triggers a voltage in the jth branch. 

From the relationship (31a) one can deduce 
expressions for branch resistances for models without 
displacement currents, as well as branch ‘elastances’ [9], 
if such currents are present and conduction currents are 
negligible. The facet model of an element with an electric 
field has been named the impedance or facet electric (FE) 
model. The facet model of an element with a magnetic 
field is known as the reluctance or facet magnetic (FM) 
model. 

The branch parameters of facet models may be 
established using (19). For example, for a parallelepiped, 
the following expressions are found 

 0,1,1 , =µ ji QQR ,   0,1,1 , =ji QQZ   for ji ≠  (32a,b) 
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where Sj is the surface area of the ith facet. As a result, a 
simplified model of the parallelepiped element is 
achieved, without couplings between branches, whose 
parameters are the same as those found using classical 
approaches, for example a method described in [14]. 

VII.  MODELS OF CONNECTED ELEMENTS  

Edge models 

Network models of a meshed region are obtained by 
connecting element models. In the case of an edge model 
the branches associated with common element edges are 
connected in parallel. As a result a multi-branch 
permeance model (EM) is established for a magnetic field 
or multi-branch conductance-capacitance model (EE) for 
an electric field. 

The vectors ig and φg of branch currents in EE and 
branch fluxes in EM may be written in the matrix form 

 Eg uCGi )p( += ,   Hg uΛφ =  (34a,b) 

where G, C and Λ  are the matrices of branch 
conductances, capacitances and permeances, respectively; 
and uE, uH refer to the vectors of potential differences 
across elements of the branches of EE or EM. Taking 
account of (12) allows for these vectors to be written as 

 gwE eVku += ,   gwH ΘΩ += ku  (35a,b) 

where V and Ω  are vectors of node potentials; eg and Θg 
are vectors of branch emfs and mmfs; and kw is a 
transposed nodal matrix for the edge graph of the system 
of connected elements. 

In models created using 6-facet elements the 
branches contain four capacitances and conductances or 
permeances connected in parallel, such as the branch PiPj 
in Fig. 5. 



From the above relationships the nodal equations for 
the permeance network may be established  

 0=+ g
T
ww

T
w ΛΘΩΛ kkk  (36) 

and similarly for the conductance-capacitance network 

 0=+++ g
T
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T
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The derived equations correspond to the description of 
the nodal element method (NEM) using scalar potentials. 
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Fig. 5. Part of an edge model of four elements with details of a 

branch associated with the edge PiPj 

Facet models 
When assembling elements for the facet electric (FE) 

or facet magnetic (FM) model of a meshed region, the 
branches associated with common facets are connected in 
series. As a result, a network is established whose nodes 
are points Qi associated with centres of the volumes, as 
shown in Fig. 6. Voltage equations for a branch 
containing nodes Qi may be written as 

 sHs φµ= Ru ,   sEs iZu =  (38a,b) 

where Rµ and Z are the matrices of branch reluctances 
and branch operational impedances; whereas φs and is are 
vectors of branch fluxes and currents. The vectors uHs and 
uEs may be written in the following form 

 gso
T
VHs ΘΩ += ku ,   gso

T
VEs eVku +=  (39a,b) 

where Ω o and Vo are vectors of the nodal potentials 
associated with centres of elements; Θgs and egs are 
vectors of branch mmfs and emfs; finally kV is the matrix 
mentioned previously of cuts for the network of 
connected edge element models. 

The vectors φs and is of branch fluxes and currents 
are edge vector values of flux and current density, 
respectively. They may be expressed in terms of edge 
values of vector potentials, thus in terms of loop fluxes φo 
and loop currents io in the loops around the edge of a set 
of connected elements. We may write 

 oss φφ k= ,   oss iki =  (40a,b) 

where ks is the aforementioned transposed loop matrix of 
the facet graph of the connected elements. Fig. 6 depicts 
part of the facet model of four elements showing a loop 
‘embracing’ the edge PiPj. 
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Fig. 6. Part of a facet model of four elements with a loop around the 

edge PiPj 

Loop equations for a reluctance model (SM) of a 
system with a magnetic field may be established from 
equations (38), (39) and (40) as 

 gs
T
sos

T
s Θφ kkRk =µ  (41) 

Similarity loop equations for the resistance-elastance 
model (SE) with an electric field may be written as 

 gs
T
sos

T
s ekikZk =  (42) 

The loop equations (41) and (42) correspond to edge 
element formulation (EEM) if vector potentials are used. 
They may be derived by minimizing the functional with 
respect to edge values of potentials. Although the 
approach is known as the edge element method, the 
branch reluctance and impedance matrices are in fact set 
up using interpolating functions of the facet element, as 
shown by equations (28a) and (31a). The functions of the 
edge element, on the other hand, are helpful when 
creating the coefficient matrix for the nodal element 
method, for which the network equivalent is the edge 
network. In expressions for branch conductances and 
capacitances as well as for branch permeances of the edge 
network an absence of classical shape functions of nodal 
elements may be noticed, as shown by (16) and (18). 
Notwithstanding, expressions for nodal permeance matrix  

w
T
w kk Λ  and admittance matrix w

T
w kCGk )p( + are the 

same as in classical finite element formulation using 
nodal element. There are, however, differences between 
the two descriptions when it comes to sources. 

VIII. BRANCH AND LOOP SOURC ES 

In the models considered the branch mmfs and emfs 
are described in terms of loop quantities. The branch 
sources  in the facet network (FN) result from loop values 
in the edge network (EN), whereas branch sources in FN 
from loop values in EN. Branch mmfs Θb in EN 
correspond to loop currents io in FN, e.g. the mmf in the 
branch PiPj of the magnetic network of Fig. 5 is equal to 
the current in a loop of the electric network that 
surrounds the edge PiPj (Fig. 6). Branch emfs eb in EN are 
found by time differentiation of loop fluxes φo in FN, 
hence sources in (36) and (37) may be written as 

 og i=Θ ,     tog ddφ−=e . (43a,b) 



Branch mmfs θ  in FM are represented by loop currents 
ioe in the loops of the edge network, e.g. the branch mmf 
in the branch Q1Q3 of the magnetic FN of Fig. 6 
corresponds to the loop current in the loop PiPjPqPk of the 
electric edge network of Fig. 5. The time derivative of the 
flux in the loop PiPjPqPk of the EM equals (with negative 
sign) the emf in the branch Q1Q3 of the FE. Sources in 
(41) and (42) may therefore be written as 

 oegs i=Θ ,    toegs ddφ−=e . (44a,b) 

where the subscript oe denotes vectors of loop currents 
and fluxes in the edge networks.   

When loop analysis is applied to a network it is not 
necessary to determine the branch sources, the knowledge 
of loop sources will suffice. For examp le, when dealing 
with (41) and (42), it is not essential to establish vectors  
Θgs and egs of the branch sources, we can focus on 
deriving loop sources Θm and em 

 gs
T
sm ΘΘ k= ,    gs

T
sm eke =  (45a,b).  

The loop mmf corresponds to the current passing 
through a loop of a magnetic network, hence the loop 
mmfs Θm in the facet network are equivalent to branch 
currents ig in the edge network, e.g. the mmf of the loop 
shown in Fig 6 (a loop around the edge PiPj) is equal to 
the current in the branch PiPj of the electric network of 
Fig. 5. The loop emfs, on the other hand, may be found by 
time differentiating of branch fluxes in the magnetic 
network passing through loops of the electric network, 
e.g. loop emfs em in the electric facet network are derived 
from fluxes associated with branches of the magnetic 
edge network as em =−dφg/dt. Thus when solving (41) and 
(42) it may be convenient to take into account that 

 gmgs
T
s ik == ΘΘ ,     tgmgs

T
e ddφ−== eek  (46a,b) 

In order to establish branch fluxes φg and branch 
currents ig, as well as loop fluxes φoe and loop currents ioe 
associated with edge networks, it is not necessary to solve 
the equations for these networks. Instead, quantities 
associated with edge networks may be derived from by 
appropriate transposition of the results for the facet 
network. The required entries of the transposing matrix K    
may be found as a product of interpolating functions of 
the facet and edge elements – as shown by (29). 
Substitution for K results in the following 

 ooe φφ K= ,     ooe Kii = ,  (47a,b) 

 s
T

g φφ K= ,     s
T

g iKi = . (48a,b) 

Moreover, the matrix K  may be used to derive 
currents io and is, as well as fluxes φo and φs, associated 
with facet networks, from currents ioe and ig, and also 
fluxes  φoe and φg , associated with edge networks 

 oe
T

o φφ K= ,   oe
T

o iKi = . (49a,b) 

 gs φφ K= ,   gs Kii = . (50a,b) 

The abovementioned relationships are explained in 
Fig. 7, where 6-facet elements are considered for which 
all non-zero entries in K are equal to 1/8. 

The loop mmfs in FM may therefore be established 

from: (a) branch currents ig in EE; (b) loop currents io w 
FE; or (c) branch currents is in FE. Equally, to find loop 
emfs in FE we may use: (a) branch fluxes φg in EM; (b) 
loop fluxes φo in FM; or (c) branch fluxes φs in FM. Due 
to the bigger variety of descriptions of sources, the facet 
models are more universal than edge models; this also 
explains – using the language of circuit theory – why the 
vector potential formulations are more universal. 
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Fig. 7. Transformations of loop and branch currents in networks 

(a) facet graph, (b) edge graph 

IX. COUPLED NETWORK MODELS  

The finite element formulations using potentials 
correspond to equations of magnetic and electric 
networks coupled via sources. 
A–T method 

Formulations based on the vector potentials A and T 
are related to loop equations arising from magnetic and 
electric facet networks (FM-FE). 
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Fig. 8. Portion of an FM-FE model 

Loop mmfs in a magnetic network are derived from 
branch currents in the electric network (Fig. 8). Similarly, 



from the branch fluxes of the magnetic network we can 
establish the flux passing through a loop in the electric 
network. Time derivatives of these fluxes correspond 
(with negative sign) to loop emfs. The method is 
particularly suitable for analysis of systems containing 
thin conductors. In such systems, from the loop equations 
of the facet electric model the loop equations for circuits 
containing windings may be established. After taking 
account of the presence of voltage sources, a system of 
equations is accomplished containing voltage equations 
for the windings and FEM equations describing loop 
fluxes distribution in the magnetic facet network [10]. 
A–V method 

The equations arising from the A–V method, which 
uses magnetic vector potential and electric scalar 
potential, contain loop equations of the facet magnetic 
network and nodal equations of the edge electric network 
[8, 11]. Coupling exists between the facet magnetic 
network and edge electric network (FM -EE). Loop mmfs 
in the magnetic network are derived from branch currents 
of the electric network, while branch emfs in the electric 
network are found by differentiating with respect to time 
of the loop fluxes in the magnetic network (Fig. 9). 
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Fig. 9. Portion of an FM-EE model 

Ω–T method 

The method uses a magnetic scalar potential Ω  and 
an electric vector potential T. The resulting equations 
consist of nodal expressions for the edge magnetic 
network and loop equations for the facet electric network. 
The model therefore contains coupled magnetic edge and 
electric facet networks (EM -FE). The loop emfs are 
obtained from branch fluxes of the magnetic network, 
while branch mmfs in the edge network from loop 
currents of the facet network, as shown in Fig. 10. 
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Fig. 10. Portion of a permeance-impedance network 

This approach has rarely been used so far. Most 
commercial codes use two potentials: global and reduced, 

while the flow of conduction current is treated as a circuit 
problem. Moreover, the equivalence between loop 
currents and the edge values of electric vector potential T 
is normally overlooked. By taking account of this 
equivalence, the circuit -field models using the potential O 
may be treated as a special case of the Ω–T formulation. 

O–V method 
The authors are not aware of publications addressing 

specifically field analysis using only scalar potentials Ω 
and V. From the discussion above it follows that the 
network representation of the equations based on the O–V 
formulation would involve nodal equations of two edge 
networks, magnetic and electric. Unfortunately, it is not 
possible to develop branch mmfs in EE from branch 
currents in EE, nor branch emfs in EE from branch fluxes 
in EE. A separate derivation is thus required to establish 
loop currents and fluxes from branch currents and fluxes, 
since branch sources in edge networks are defined via 
loop quantities. The loop values are network equivalents 
of vector potentials. It may be concluded therefore that 
the application of the Ω–V formulation would necessitate 
an additional task of determining the distribution of 
vector potentials from the knowledge of the scalar 
potential distribution. For this reason the Ω–V method is 
considered of little real practical interest and the relevant 
equations are not elaborated. The equations for the other 
models are summarised in Table IV. 

Table IV. Equations fro the coupled network models  

Model Equations 

EM-FE 
Ω−T 

0=+ g
T
ww

T
w ΛΘΩΛ kkk ,   og i=Θ  

mos
T
s eikZk = ,   )(p gwm ΘΩΛ +−= ke  

FM-EE 
A−V 

mos
T
s Θφ =µkRk ,   ))(p( gwm eVkCG ++=Θ  

0=+++ g
T
ww

T
w eCGkVkCGk )p()p( ,   og φp−=e  

SM-SE 
A−T 

mos
T
s Θφ =µkRk ,   o

T
sm iKk=Θ  

mos
T
s eikZk = ,   o

T
sm φpNke −=  

FE, T 

 FM, A 

mos
T
s eikZk = ,   om ie Λp−=    ( Ho ui = ) 

mos
T
s Θφ =µkRk , om φΘ p)p( CG+=  ( Eo u=− φp ) 

 
In the bottom row of Table IV, the ‘decoupled’ 

equations are presented describing loop currents and 
fluxes in facet models. The relationship for loop fluxes φo 
is obtained from equations of the FM-EE model, after 
imposing the condition kwV=0. The appropriateness of 
this condition may be considered by examining the 
structure of the graph matrices of the facet and edge 
networks and the properties of the vector Θm on the right 
hand side of loop equations for magnetic network in the 
FM-EE model. This vector is a factor in the system of 
nodal equations of the network EE. The nodal equations 

of EE may be written as 0=m
T
wΘk . The transposed 

matrix kw is the nodal matrix of the edge network. At the 
same time, the matrix ks appearing in the equations of the 
FM-EE model, is the loop matrix of this network (loops 



are associated with element facets). Consequently, 
0=T

s
T
wkk , and thus multiplying both sides of the 

equation mos
T
s Θφ =µkRk  by a transposed matrix kw  

leads to 0=m
T
wΘk . Thus the solution satisfying loop 

equations for FM for the loops around the edges, also 
satisfies nodal equations for EE, even for kwV=0. If in the 
system considered there are no enforced voltages, then 
when computing the field distribution we may assume 
that V=0. As a result the task of solving equations of the 
FM-EE model reduces to a solution of a system of 
equations describing the loop fluxes φo, i.e. the system 
included in the bottom row of Table IV. Hence the 
electric field distribution may be established by 
differentation in time of these fluxes, since, as V=0, then 
from (35b) and (43b) it follows that uE =−pφo. In a similar 
way, by substituting Ω =0 in the equations of the Ω–T 
method, equations describing currents io may be derived 
and are included in the bottom row of Table IV. The 
relationships in that row may be considered as equations 
of the edge element method for field formulations. 

The loop equations for facet networks presented in 
Table IV for coupled models are ill-posed 
(underspecified), as the number of independent loops 
around edges is larger than the number of available 
independent equations. The loop reluctance and 
impedance matrices are therefore singular. In early 
publications about the implementations of EEM the 
solution algorithms were preceded by procedures to form 
additional equations to arrive at a well posed system. 
Several methods were put forward, for example a method 
utilising the tree of the graph constructed from element 
edges [13, 15]. In the FM-EE and EM-FE models a well 
posed system will be accomplished by adding the 
conditions V=0 and Ω=0. Unfortunately, the known 
iterative procedures for solving large system of equations 
are in this case known to be converging rather slowly [2, 
17].  

Converting EEM equations into a well posed system 
is not a necessary requirement to obtain a solution. Using 
an appropriate iterative method, such as ICCG or block 
relaxation, it is possible to solve these equations, or – to 
be more precise – find one of the equations satisfying 
EEM. The iterative process of seeking one of the 
solutions is converging faster than the process of finding 
one unique solution of a well posed system [2, 17]. The 
authors have conducted some tests using the FM-EE 
model. The comparison concerned the convergence of the 
well posed system, obtained by adding the condition 
V=0, and the convergence of an iterative process applied 
to an underspecified system of equations established 
using FM and EE models. Despite the fact that 
incorporating the condition V=0 reduces the number of 
equations, as there is no need to consider EE, the solution 
times are longer than for the underspecified system. The 
number of iterations for solving equations for FM under 
the condition V=0 was sometimes even two orders of 
magnitude higher then for the combined FM and EE set. 

Using the presented network descriptions it is 
possible to form models ‘tuned in’ to a particular 
structure, material properties and imposed conditions. As 
an example, a system is considered containing thin 

conductors. First, a task of computing magnetic field 
distribution due to known currents in windings is 
undertaken, assuming negligible displacement currents. 
To solve this problem it is convenient to use a permeance 
model, whose nodal equations correspond to equations 
NEM using a formulation based on the scalar potential O. 
In the system under investigation containing thin 
filamentary conductors, the branch mmfs may be 
determined from loop currents in the loops of the winding 
arrangement, after dividing the winding loops into loops 
around the edges, as described in detail in [10]. Fig. 11 
shows an example of a double-turn loop with current and 
a portion of the permeance network (EM), representing 
the region within the boundary of the loop. The nodes of 
the presented portion of the network lie on the plane z=0. 
The given values of the branch mmfs have been 
determined by considering the number of cuts of the 
element edges with the loop surface [10]. From the 
distribution of these mmfs it follows that, in the portion of 
the network shown, the non-zero values of mmfs are only 
in loops O1 and O4, through which the current carrying 
conductors pass (Fig. 11). It will also be noted that, 
thanks to expressing field sources using branch mmfs, it is 
feasible to employ only one global scalar potential [10]. 
In the actual algortihm of the nodal method, the branch 
mmfs are coverted into nodal ‘injections’ of flux (nodal 
sources). The vector  Φ  of these injections is described by 

the term g
T
wΛΘk  in (36). 
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Fig. 11. A portion of the permerance model of a region 
with a two-turn coil  

It has already been noticed that, in order to describe 
current distributions in thin conductors supplied from 
voltage sources, it is most convenient to use the vector 
potential T. If displacement currents are absent or 
negligible, then the corresponding to this formulation 
loop equations of the impedance network may be greatly 
simplified. By using methods presented in [10], from 
loop equations of FE, the equations for currents iuo in the 
loops of the thin conductors forming the winding may be 
determined. These equations may be written in a matrix 
form 

 zom
T
muoo uekiR +=  (51) 

where Ro is the loop resistance matrix of the system of 
thin conductors; and uzo is the vector of imposed loop 
supplying voltages. The matrix km describes the 



distribution of the winding in the edge element domain 
[10]. The product of the transposed matrix km and the 
vector em (from Table IV) corresponds to the vector of 
emfs set up by the flux coupled with the winding loops. 
The matrix equation (51) may be solved together with the 
equations for model EM or model FM. When defining the 
sources it should be remembered that io=kmiuo. 

The additional ‘external’ circuit currents iuo may be 
considered as the edge values of a vector potential T0, 
used otherwise in description of multiply connected 
conductors [4], including analysis of eddy currents in 
solid conductors with ‘holes’ [1, 5]. After applying EEM 
to the T formulation, equations representing loop 
equations of facet network are established. These 
equations refer to loops with eddy currents around the 
element edge. Although the number of these loops 
exceeds the number of independent loops, for a system 
which is not singly connected it is impossible to set up 
the system of fundamental loops. It is therefore 
necessary, for loops around the edges, to supplement the 
loop equations with equations for additional loops 
surrounding the ‘holes’. The currents of these loops 
provide edge values for the potential T0. The authors are 
of the opinion that the above explanation, expressed using 
the language of circuit theory, of the need for the 
introduction of the additional potential To, is more 
convincing than the purely ‘field oriented’ arguments 
available in the literature. 

The network representation of FEM equations is also 
applicable to the analysis of wave propagation. Fig. 12 
shows a network model of a plane electromagnetic wave. 
The model consists of two coupled networks: facet 
magnetic and edge electric. Even a short voltage impulse 
applied to a capacitance in an arbitrary kth branch will 
create currents even in very distant branches. 

 
Fig.12. Network model of a region with a plane wave, 

E=1zEz(x), H=1yHy(x) 

X. CONCLUSIONS  

The article has introduced a notation for the finite 
element formulation where the description of field 
quantities is in terms of interpolating functions of an 
element considered as edge or facet element. In the 
formulation using functions of an edge element, the edge 
values of a gradient of a scalar potential are expressed in 
terms of nodal values. This approach may therefore be 
called a nodal element method, for brevity, even if the 
field quantities are described using the functions of the 
edge element. On the other hand, in the formulation based 
on the functions of the facet element, the facet values are 
expressed using edge values of a vector potential, hence it 
is justifiable to call the method an edge element method. 

Equations of the nodal element method for 
formulations employing scalar potentials correspond to 
nodal equations of edge networks: electric conductance-
capacitance and magnetic permeance. Nodes of the edge 
network coincide with the element nodes. Equations of 
the edge element method, on the other hand, for 
formulations using vector potentials correspond to loop 
equations of facet networks: magnetic reluctance and 
electric resistance-elastance. The nodes of the facet 
network lie in the volume centres of the elements, while 
loops ‘embrace’ the element edges. The field analysis 
methods based on scalar potentials represent therefore 
nodal methods of analysis of electric and magnetic 
circuits, whereas the field methods employing vector 
potentials represent the loop approach in circuits. 

A particular characteristic of the circuits which serve 
as analogies to magnetic or electric field systems is the 
‘loop’ character of the sources. From the distribution of 
the current density a loop mmf may be specified, whereas 
the time variation of the flux density determines the loop 
emf. For this reason, in the algorithms for the scalar 
potential method, the routines for solution of FEM are 
preceded by a procedure forming the sources associated 
with nodes. In the cases discussed in this article the 
sources are expressed in terms of edge values of vector 
potentials, that is in terms of loop currents and fluxes. 
From these values the branch emfs and mmfs are derived, 
which – in the process of setting up nodal expressions – 
are then converted into current and flux injections. As a 
result, in models of even very non-homogenous regions 
the sum of the sources  associated with nodes is equal to 
zero and there is no need to use two potentials, global and 
reduced. 

As mentioned already, it is possible to tune the 
models to cater for particular specific conditions or 
properties. For example, resistance models can be created 

of systems containing windings with rod 
conductors (such as in cage induction 
motors) where skin effects need to be 
considered. It is also possible to create 
models for systems containing 
displacement currents. 

The presented approach is 
fundamentally different to the classical 
way of deriving the finite element 

equations. Probably the most popular derivation relies on 
a variational principle where the conditions are sought 
through differentiating the function with respect to nodal, 
edge or facet values. It important to emphasise, however, 
that the final equations are identical to those presented in 
this article. One of the aims of this presentation is to 
demonstrate that the finite element formulation may be 
derived entirely from circuit theory without the 
introduction of the concept of energy functional. 

The presented analogies between FEM equations and 
circuit equations may also be useful to update and 
enhance the well known and long-in-use network 
methods of analysis of magnetic circuits, including the 
permeance networks [6, 16] and reluctance networks 
[18]. To improve the accuracy of representation of 
regions of high energy density, the parameters of these 
models should be established using the expressions 
presented in this article. 
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Details of the solution of large systems of equations 
resulting from the various networks discussed have not 
been addressed here. Nevertheless, it was noted that the 
iterative procedures of solving ill-posed (underspecified) 
loop equations for facet elements are very efficient. 
Careful analysis has shown that the loop method does not 
require the dependent loops to be eliminated. 
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