
Technical Article 
 
Design and Analysis of Radial Active Magnetic Bearings 
 
Abstract — Active magnetic bearings (AMBs) are a system of 
electromagnets, which make possible contact-less suspension of a 
rotor. This paper deals with the numerical design and analysis of 
radial AMBs. The AMB geometry is optimized using the finite 
element method (FEM) and differential evolution, thus the 
maximum AMB force is considerably increased. However, AMB 
performances may deteriorate due to magnetic nonlinearities and 
cross-coupling effects. A FEM-based parametrization coupling 
model is analyzed in order to evaluate the influences of these 
disturbing effects. Moreover, the presented AMB model is used in 
numerical calculations of open-loop and closed-loop controlled 
system. The results presented show that the magnetic 
nonlinearities and cross-coupling effects can change the 
electromotive forces and the radial force considerably. 
 

I. INTRODUCTION 
 
Active magnetic bearings (AMBs) are used in technical 
applications to provide the contact-less suspension of a 
rotor [1]. Two radial AMBs and one axial AMB are used to 
control the five degrees of freedom of the rotor, while an 
independent driving motor is used to control the sixth degree 
of freedom. No friction, no lubrication, precise position 
control, and vibration damping make AMBs particularly 
appropriate and desirable for high-speed rotating machines [2]. 
Technical applications include compressors, centrifuges, 
precise machine tools, etc. 
 
The basic functional principle of AMBs is illustrated in Fig. 1. 
Such a system of an electromagnet and a ferromagnetic rotor 
is unstable, since the attractive force of an electromagnet 
increases with shrinking air gap. Closed-loop control is 
required to stabilize the rotor’s position – a PID feedback is 
typically employed. AMB applications require different 
control technologies [3] to achieve advanced features, e.g. 
higher operating speeds or lower power loss. In-depth debate 
about this research and development has taken place the last 
two decades throughout the magnetic bearings community. 
However, in the future it is likely to be focused towards the 
superconducting applications of magnetic bearings [4]–[6].  
 

 
 

Fig. 1. Basic functional principle of AMBs. 
 
The design of AMBs is expected to satisfy static and dynamic 
requirements in the best possible way. It can be found either 
by experience and trials [7] or by applying numerical 

optimization methods [8]–[10]. AMBs are nonlinear systems. 
The dependency of the objective function and its gradients on 
the design parameters is unknown. The use of stochastic 
search methods in combination with the finite element method 
(FEM)-based analysis is recommended for the optimization of 
such constrained, nonlinear electro-mechanical systems [11]–
[13].  
 
An eight-pole radial AMB, shown in Fig. 2, is discussed in 
this paper. The windings are supplied in such a way, that a 
NSSNNSSN pole arrangement is achieved. Four independent 
magnetic circuits, i.e. electromagnets, are obtained in this way. 
Moreover, a quasi-linearization of the attractive bearing force 
is achieved by the differential driving mode. Here, the same 
bias current is supplied into the windings of all the 
electromagnets, while the force control is achieved in the x- 
and y-axes, independently. In the vicinity of the operating 
point, i.e. when the rotor is in the central position and the load 
force is within the nominal value, the radial AMBs show good 
dynamic properties according to the linear model. However, in 
the case of high signal amplitudes AMBs behaviour is 
magnetically nonlinear. The individual electromagnets are, 
therefore, magnetically coupled, and thus deteriorate the static 
and dynamic performances of the overall system. In order to 
compensate for these disturbing effects, they must be 
determined over the entire operating range and incorporated 
into the nonlinear control algorithm.  
 
In this paper, radial AMB design is optimized using 
differential evolution (DE) [14] – a direct stochastic search 
algorithm – in combination with FEM-based analysis. The 
optimization aim is to achieve a maximum force at a minimum 
mass of the entire construction. The parameters of the 
optimized and non-optimized bearings are compared. 
Furthermore, an extended dynamic AMB model [15] is 
presented, which is based on the current and position-
dependent partial derivatives of flux linkages and the radial 
force characteristics. This model is used to evaluate the impact 
of magnetic nonlinearities and cross-coupling effects on the 
performances of the discussed radial AMBs. Static 
characteristics are determined, as well as the time responses of 
the open-loop and closed-loop controlled system. 
 

II. RADIAL AMB – BASICS 
 
The current through the coils of an electromagnet generates an 
attraction force. It attracts the ferromagnetic rotor to the core 
of the electromagnet. In general, two pairs of electromagnets 
are used in radial AMBs, as shown in Fig. 2. The force of a 
pair of electromagnets in the same axis, e.g. in the y-axis can 
be expressed by (1), where α is the angle shown in Fig. 3 (for 
an eight-pole radial AMB α = π/8), B3 and B4 are the flux 
densities in the air gap of the electromagnets in the y-axis, µ0 
is the permeability of the vacuum, and A is the area of one 
pole.  
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Fig. 2. Coils and currents of an eight-pole radial AMB. 
 
The flux densities B3 and B4 are caused by the currents i3 and 
i4. If the nonlinearity of iron is neglected, (1) can be 
transformed to (2), where Ni3 and Ni4 are the magneto-motive 
forces of those electromagnets in the y-axis that generate the 
attraction forces acting on the rotor in opposite directions, and 
δ0 is the nominal air gap. 
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Let us introduce the differential driving mode of currents 
using the definitions in (3), where I0 is the constant bias 
current, iy∆ is the control current in the y-axis, and |iy∆| ≤ I0. 
The relationship between the control current and the resultant 
force (4) is obtained by inserting expressions in (3) into (2). 
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Equation (4) can be linearized about the operating point (y = 0, 
iy∆ = 0). The so obtained equation (5) is valid only in the 
vicinity of the point of linearization, where the current gain ki 
and the position stiffness kδ are defined by (6). 
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III. GEOMETRY OPTIMIZATION 

 
The design of the radial AMB should satisfy the required 
performances and design constraints shown in Table I and 
Fig. 3. The aim is to achieve maximum force at a minimum 
mass. The objective function is given by (7), where m0 and F0 
are the initial mass and the initial force of the bearing. m and F 
are the mass and the force for actual parameter values, p1 and 
p2 denote the penalties (8). 
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Fig. 3. Design constraints and optimization parameters. 
 

TABLE I. REQUIRED PERFORMANCES AND DESIGN CONSTRAINTS. 
parameter value 
maximal bearing force F [N] 500 at least 
nominal air gap δ0 [mm] 0.4 
stator radius rs [mm] 52.5 
shaft radius rsh [mm] 17.5 
bias current I0 [A] 5 

 
The optimization of the radial AMB was carried out in a 
special environment tuned for FEM-based numerical 
optimizations [16]. The optimization procedure is briefly 
described in the following five steps: 
 
• Step 1: The geometry of the bearing is described 

parametrically and the initial parameter values are 
determined by a first analytical design. The bearing 
geometry parameters are: the stator yoke wsy, the rotor yoke 
wry, the pole width wp (all shown in Fig. 3) and the bearing 
axial length l. 

• Step 2: The new parameter values are determined by DE. 
The rotor position is placed in the centre (x = y = 0). The 
electromagnets in the x-axis are supplied by the bias current 
I0, while the electromagnets in the y-axis are supplied in such 
a way that the maximal force is reached (i3 = I0 and i4 = 0). 

• Step 3: The bearing geometry, the material, the current 
densities and the boundary conditions are defined. The 
procedure continues with step 2 if the parameters of the 
bearing are outside the geometrical constraints. 

• Step 4: The nonlinear solution of the magnetic vector 
potential is determined using the 2D FEM computations. 
The force is calculated by Maxwell’s stress tensor method. 

• Step 5: The value of the objective function (7) is minimized 
in the optimization procedure. The optimization proceeds 
with step 2 until a minimal parameter variation step or a 
maximal number of evolutionary iterations are reached. 

 
The results, given in Table II, show that optimization 
increased the maximal force of the radial AMB by more than 
8.6 %, while the mass remained unchanged.  
 
 

TABLE II. DATA OF THE NON-OPTIMIZED AND THE OPTIMIZED AMB. 
parameter non-optimized optimized 
stator yoke wsy [mm] 8.5 7.2 
rotor yoke wry [mm] 9.0 7.8 
pole width wp [mm] 10.0 9.0 
axial length l [mm] 53.0 56.3 
total mass m [kg] 2.691 2.688 
maximal force F [N] 580 630 
objective function q 1 0.92 



 
 

Fig. 4. The circuit AMB model. 
 

 IV. DYNAMIC AMB MODEL 
 
The dynamic AMB model is, according to the circuit model 
presented in Fig. 4, given by: 
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where u1,…,u4 are the supply voltages, I0 is the constant bias 
current, ix∆ and iy∆ are the control currents in the x- and y-axes. 
ψ1,…,ψ4 are the flux linkages of the corresponding 
electromagnets. R stands for the coil resistances. Fx and Fy are 
the radial force components in the x- and y-axes, m is the mass 
of the rotor. 
 
The EMFs due to magnetic nonlinearities are reflected in 
terms such as (∂ψ3/∂iy∆) and (∂ψ3/∂y), which are normally 
given as constant inductance and speed coefficient, 
respectively [1]. In [17], magnetic nonlinearities are partially 
considered with dynamic inductance but the EMFs due to 
cross-coupling effects, which are reflected in terms such as 
(∂ψ1/∂iy∆) and (∂ψ1/∂y), are neglected. In [18] reluctance 
network method-based dynamic AMB model is proposed in a 
similar way to the discussed model (9), (10), [15]. 
Furthermore, an extended dynamic AMB model (9), (10) is 
appropriate for nonlinear control design and is compact and 
fast enough for real-time realization.  
 
Eddy currents in the rotor are not taken into account in the 
proposed AMB model. In any case, up to a certain rotational 
speed, eddy current effects can be neglected [19]. 
 

V. NUMERICAL ANALYSIS 
 
The geometry and magnetic field distribution of the discussed 
radial AMB is shown in Fig. 5. The stator and rotor are both 
made of laminated steel sheets. Ferromagnetic material 330-
35-A5 is used (according to the IEC standard). Lamination 
thickness is 0.35 mm. Eddy currents in the rotor were 
considerably reduced in this way and were, therefore, not 
taken into account in numerical calculations.  

 
 

Fig. 5. Geometry and equipotential plot. 
 
The problem is formulated by Poisson’s equation (11), where 
A denotes the magnetic vector potential, ν is the magnetic 
reluctivity, J is the current density, and ∇ is Hamilton’s 
differential operator. Magnetostatic computation was 
performed by 2D FEM [16] over the entire operating range 
(ix∆∈[−5 A, 5 A], iy∆∈[−5 A, 5 A], x∈[−0.1 mm, 0.1 mm], 
y∈[−0.1 mm, 0.1 mm]). 
 
 ( ) JA −=∇⋅∇ ν  (11) 
 
The flux linkage characteristics ψ1(ix∆,iy∆,x,y),…,ψ4(ix∆,iy∆,x,y) 
were calculated over the entire operating range from the 
average values of the magnetic vector potential in the stator 
coils. The radial force characteristics Fx(ix∆,iy∆,x,y) and 
Fy(ix∆,iy∆,x,y) were also calculated over the entire operating 
range, using two different methods: Maxwell’s stress tensor 
method, where integration was performed over a contour 
placed along the middle layer of the three-layer air gap mesh, 
and the virtual work method. The difference between the 
results obtained by both methods was negligible in the studied 
case. The obtained FEM-based results were incorporated into 
the extended dynamic AMB model (9), (10). 
MATLAB/Simulink-based numerical calculations were 
performed. The time responses of the rotor position x(t), y(t), 
differential supply voltages ∆u12(t) = u1(t)−u2(t), 
∆u34(t) = u3(t)−u4(t), control currents ix∆(t), iy∆(t), radial force 
components Fx(t), Fy(t) and flux linkages ψ1(t),…,ψ4(t) were 
calculated for the open-loop controlled system, as well as for 
the closed-loop controlled system. 
 

A. Static characteristics 
 
When manufacturing the rotor steel sheets, the magnetic 
properties of the rotor surface may change in a narrow 
layer [17]. In order to obtain good agreement between the 
calculated and measured forces, the air gap was increased in 
FEM computation from 0.4 to 0.45 mm. The radial force 
characteristic (FEM-based and measured) is shown in Fig. 6. 
 

 
 

Fig. 6. Radial force characteristic. 



 
 

Fig. 7. Flux linkage partial derivatives. 
 
It is established, from the obtained results, that the radial force 
characteristic Fy(iy∆,y) is surprisingly linear inside the expected 
operating range (ix∆∈[−2 A, 2 A], iy∆∈[−2 A, 2 A], 
x∈[−0.05 mm, 0.05 mm], y∈[−0.05 mm, 0.05 mm]). However, 
in the case of high signal amplitudes (|ix∆| > 2 A, |iy∆| > 2 A, 
|x| > 0.05 mm, |y| > 0.05 mm) the radial force is reduced, due 
to the magnetically nonlinear behaviour of electromagnets. 
Furthermore, due to the control current ix∆ and the rotor 
position in the x-axis, the radial force component Fy can be 
reduced by up to 8 % within the expected operating range, and 
even by up to 43 % in the case of high signal amplitudes. 
 
The current and position-dependent flux linkage partial 
derivatives were calculated numerically by differential 
quotients between two neighbouring points of the numerically 
expressed functions ψ1(ix∆,iy∆,x,y),…,ψ4(ix∆,iy∆,x,y). In the 
results shown in Fig. 7, it can be seen that the flux linkage 
partial derivatives (∂ψ3/∂iy∆) and (∂ψ3/∂y) are not constant, 
which indicates the influence of magnetic nonlinearities. The 
influence of magnetic cross-coupling effects can be seen in the 
results shown in Fig. 8, where the flux linkage partial 
derivatives (∂ψ1/∂iy∆) and (∂ψ1/∂y) are not zero. 
 

B. Time Responses 
 
When considering the differential driving mode of the currents 
i1 = I0 + ix∆, i2 = I0 − ix∆, i3 = I0 + iy∆ and i4 = I0 − iy∆, the time 
derivatives of the currents are expressed by: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ −−⋅= −

dt
dtRt

dt
d yKiuLi )()(1  (12) 

 
where y(t) = [x(t), y(t)]T, i(t) = [i1(t), i2(t), i3(t), i4(t)]T and 
u(t) = [u1(t), u2(t), u3(t), u4(t)]T denoting the position, current 
and voltage vectors, respectively. 

 
 

Fig. 8 Flux linkage partial derivatives. 
 
The matrices L and K are: 
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The control currents ix∆ = (i1 − i2)/2 and iy∆ = (i3 − i4)/2 are 
obtained afterwards using numerical integration. Furthermore, 
by the numerical integration of (10) the rotor position in the x- 
and y-axes is obtained. The proposed numerical calculations 
were performed for the open-loop, as well as closed-loop 
controlled system. 
 
1) Open-loop controlled system: AMBs constitute an 
inherently unstable system. A closed-loop control is required 
to stabilize the position of the rotor. However, for analyzing 
the dynamic behaviour of AMBs, an open-loop controlled 
system should also be tested. This could not be done by 
measurements, therefore, the proposed numerical analysis was 
applied. The supply voltages and the rotor position were 
controlled, independently. In the corresponding time responses 
of the control currents, radial force components and flux 
linkages, shown in Fig. 9, it can be seen that magnetic 
nonlinearities and cross-coupling effects influence the static 
and dynamic behaviour of the discussed AMBs. The cross-
coupling effect is noticed in a case where one or two 
electromagnets are highly saturated. The flux linkages of all 
other electromagnets can be changed by changing the flux 
linkage of the saturated electromagnet, either by the supply 
voltages or by the rotor position. Consequently, overshoots 
and undershoots appear in the time responses of the control 
currents, moreover, the radial force is considerably reduced, as 
shown in Fig. 9. 



 
 

Fig. 9. Time responses for the open-loop controlled AMBs. 
 
2) Closed-loop controlled system: The control structure is 
shown in Fig. 10, where the reference current and position 
vectors are denoted as ir(t) = [i1r(t), i2r(t), i3r(t), i4r(t)]T and 
yr(t) = [xr(t), yr(t)]T, respectively. f = [Fx, Fy]T is a vector of 
AMBs forces, and d = [Fdx, mg + Fdy]T is the disturbance force 
vector. Current control loops are realized by four independent 
PI controllers, while position control loops are realized by two 
independent PI/PD controllers, i.e. a cascade connection of PI 
and PD position controllers [20]. The reference position and 
the disturbance forces were stepwise controlled. In the 
corresponding time responses of the rotor position, control 
currents, radial force components and flux linkages, shown in 
Fig. 11, it can be seen that the magnetic nonlinearities and 
cross-coupling effects mostly influence the dynamic behaviour 
of the closed-loop controlled system. The magnetic cross-
couplings are reflecting in overshoots and undershoots in the 
time responses of the rotor position and the control currents, 
moreover, the control currents are slightly increased in steady-
state, as shown in Fig. 11. 
 

 
 

Fig. 10. Control structure. 

 
 

Fig. 11. Time responses for the closed-loop controlled AMBs. 
 
 

VI. CONCLUSION 
 
This paper describes an application of numerical techniques 
for solving a practical problem – the design and analysis of an 
eight-pole radial AMB. It has been shown that the use of 
optimization methods in combination with the FEM can 
increase the maximum AMB force at an unchanged mass. 
However, in the case of high signal amplitudes, i.e. at extreme 
rotational speed and heavy load, AMBs behaviour is 
magnetically nonlinear. Therefore, an analysis of current and 
position-dependent flux linkage partial derivatives and radial 
force characteristics was performed by FEM computations. 
The obtained results have been incorporated into the extended 
dynamic AMB model, which was used in 
MATLAB/Simulink-based numerical calculations. Based on 
the obtained time responses for the open-loop controlled and 
closed-loop controlled system, it can be concluded that the 
magnetic nonlinearities and cross-coupling effects deteriorate 
the static and dynamic behaviour of the discussed AMBs. 
Moreover, the presented results show that these disturbing 
effects may reduce the radial force, even by 43 %. In order to 
improve the system’s dynamics, and to ensure the system’s 
stability, the presented dynamic AMB model has to be 
incorporated into the nonlinear control. In this way, direct 
compensation could be achieved for the magnetic 
nonlinearities and cross-coupling effects. 



 
 

Fig. 12. Optimized radial AMB: A – stator, B – rotor, C – housing. 
 

VII. APPENDIX 
 
The discussed radial AMBs (Fig. 12), an axial AMB, a driving 
motor, a digital control system and a power supply constitute 
an experimental system of AMBs, shown in Fig. 13. This 
system was developed in the Laboratory for Electro-
mechanical System Control, Faculty of Electrical Engineering 
and Computer Science, Maribor, Slovenia. A detailed 
description of the system is given in [21]. 
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