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Solution of Magnetostatic Field Problems with the  
Integral Equation Method 
 
Abstract —For the solution of magnetostatic field problems the 
integral equation method (IEM) lived in the shadows because of 
its high computational costs. However, in recent years it was 
shown that system matrix compression techniques can make the 
IEM extremely efficient. In this regard we use the fast multipole 
method. When complex problems have to be solved, however, 
compression of the system matrix only is often not sufficient. 
Thus, we developed approaches to speed up the assembly of the 
right-hand side as well as post-processing. Several non-linear 
problems with complex geometries are presented. 

I. INTRODUCTION 

The solution of magnetostatic field problems with finite 
element methods suffers from some drawbacks, e.g. boundary 
conditions have to be defined. As on the surfaces of 
magnetically active parts, i. e. hard magnetic and soft 
magnetic material as well as coils, boundary conditions are 
often not known, the air region around them has to be meshed 
up to some distance. These additional degrees of freedom lead 
to unnecessarily high computational costs. By contrast, the 
integral equation method (IEM) requires only a discretization 
of the magnetically active parts themselves. This is why the 
IEM is very applicable for open boundary problems such as 
stray field analysis. 

Nevertheless, the main drawback of the IEM is its fully dense 
system matrix whose computational costs are of ( )2O N  
which restricts its application to small problems. Also, 
assembly of the right-hand side and post-processing may 
require large computation time when complex geometries are 
involved. However, in recent years, matrix compression 
techniques, e. g. the fast multipole method (FMM) [1] have 
proved to be efficient with the boundary element method [2]. 
Its restriction to linear problems can be overcome by using 
additional volume elements, which result in the IEM. 
Compressing the system matrix of the IEM is straightforward 
and it was shown that computational costs are reduced to 
approximately ( )O N  [3], [4], [5], [6]. 

The paper is structured as follows. After a description of the 
used IEM formulation, acceleration with the FMM is 
discussed, both for matrix compression and for right-hand side 
assembly. A superconvergent patch recovery method improves 
post-processing results. Although the FMM dramatically 
reduces the computational costs, parallelization is necessary, 
especially for an efficient use of modern computers. Several 
parallelization approaches are shown. Finally, numerical 
examples show, that all methods are applicable to complex 
non-linear problems. 

II. INTEGRAL EQUATION METHOD 

A typical configuration of the considered field problems is 
shown in Fig. 1. Magnetic fields are excited by the magnetic 
field JH  of coils with free currents J  in the domain JΩ  and 
by the magnetic field PH  of hard magnetic material in 

domain PΩ  with magnetization PM . JH  and PH  magnetize 
the soft magnetic material with permeability rµ  in domain 

MΩ . The resulting total magnetic field H  can be split into 
the sum 
 P M= + +JH H H H , (1) 

where MH  is the induced field of the soft magnetic material. 
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Fig. 1. Considered field problems. 

Whilst JH  and PH  can be computed directly, a system of 
algebraic equations has to be solved in order to compute MH . 
However, this approach can give very inaccurate results, 
because MH  is often almost anti-parallel to JH  or PH  
within MΩ . This is the so-called demagnetization effect [7]. 
In these cases large cancellation errors occur when (1) is 
evaluated. This can be prevented by computing H  
directly [8]. To obtain a minimal number of unknowns, H  
can be represented by scalar source values such as, equivalent 
magnetic surface and volume charges, double layer 
distributions or the magnetic scalar potential. We use a 
formulation based on [9], which requires only discretization 
of ΩM  and which has the total scalar potential ψ  and the 
susceptibility tensor χ  as unknowns. From (1) follows 

 P Mψ ψ ψ ψ= + +J , (2) 
where Pψ , ψ J  and ψM  are the scalar potentials of PH , JH , 
and MH , respectively. 
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is given in [10], where r  and 'r  are observation and source 
points, respectively and G  is Green's function of free space 
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which is a volume integral equation for the unknown ψ . 



To compute Jψ , line integration over JH  has to be carried 
out 

 ( ) ( )
0
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r

r

r H r r , (7) 

where the integration path must not intersect JΩ . JH  is 
obtained by Biot-Savart law 

 ( ) ( ) ( )0 ' ' , ' dJ V
G Vµ= ×∇∫H r J r r r . (8) 

The potential due to permanent magnets is 
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Discretization of (6) by means of shape functions jN  
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and with collocation method [11] yields to the system of 
algebraic equations 
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where Mn  is the number of nodes within MΩ  and ir  are node 
coordinates. 

Because χ  usually depends on the magnetic field, (11) is in 
general non-linear and therefore has to be solved iteratively. 
With direct iteration (11) is solved for a linear inhomogeneous 
distribution of χ . New values of χ  have to be calculated for 
each non-linear iteration step. Typical ( )Hχ  characteristics 
have a maximum. If mH  is the field strength where this 
maximum occurs, new values of iteration step k  are obtained 
by 
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with the inverse magnetization characteristic ( )H B  and 
( ) ( )( ) ( )1

0 1k k kB Hµ χ −= +% . This procedure allows global 
convergence even if the material is mainly in the steep section 
of the ( )B H -characteristic. To accelerate the iteration, super-
relaxation 

 ( ) ( ) ( ) ( )11k kkχ ωχ ω χ −= + −  (13) 

with 1ω >  is used. Iteration is stopped, when the deviations 
( )mean χ χ∆  and ( )max χ χ∆  are sufficiently small. 

There are some drawbacks when evaluating (11). First, the 
system matrix is fully dense. Computational costs for its 
assembly are of order ( )2O N . Also, at every node ir  
integration over the whole domains JΩ  and PΩ  is necessary 
to evaluate Jψ  and Pψ , which can make post-processing very 
slow. An application of the FMM to compress the system 
matrix and to accelerate computation of the right-hand side is 
therefore shown in chapter III. 

Another difficulty arises when the magnetic field H  needs to 
be computed at the nodes ir  within MΩ , e. g. to evaluate (12) 

or for post-processing purposes. It can be obtained by 
numerical differentiation 
 ( ) ( )ψ= −∇H r r , (14) 

but (14) is not unique at ir , since elements with 0C  continuity 
are used(9). A smoothing approach that allows high precision 
gradient computation such as in (14) is therefore presented in 
chapter IV. 

Modern computers are equipped with multi-core CPUs and 
computer clusters are very popular. Hence, a parallelization is 
recommended. Especially complex practical problems often 
lead to very large systems of algebraic equations. Memory of a 
single computer is then insufficient and CPU times are very 
large in the case of many time steps. Different parallelization 
approaches are shown in chapter V to overcome these 
problems. 

III. FAST MULTIPOLE METHOD 

A. System Matrix Compression 

The matrix of the linear system of equations of the IEM is 
fully dense, since each element interacts with each other. 
Fortunately, the matrix itself is not explicitly needed, if the 
system of linear equations is solved iteratively. Matrix-by-
vector products have to be computed only. In the FMM 
algorithm, the matrix-by-vector product is split into a near-
field part due to elements that are close to each other and a far-
field part for the remaining elements 

 [ ] { } [ ] { } { }near fary A x A x y= ⋅ = ⋅ + . (15) 

The division of element interactions into a near-field and a far-
field part is carried out by means of a hierarchical grouping 
scheme which is based on cubes, a so-called octree. The near-
field matrix [ ]nearA  is a sparse matrix, which equals the total 
matrix of (11) with the far-field interactions removed. 
Elements whose distance from each other is sufficiently large 
are considered group-wise, where the size of the group 
depends on the distance. Their interactions are given in 
{ }fary . Therefore, Green's function is approximated by a 
truncated series expansion of order L  into spherical 
harmonics m
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Substituting (16) into the integral of (11) yields 
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where m
nM  are the so-called multipole coefficients 

 ( ) ( )' ' ' ', ' d 'm n m
n nr Y Vθ ϕ−⎡ ⎤= ⋅∇ ⎣ ⎦M M r . (18) 

The multipole coefficients m
i nM  of a node i  needed for 

compression of the system matrix in (11) are obtained from 
(18) with (5) and (10) 
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The multipole coefficients of each cube of the octree are 
transformed to the so-called local coefficients m

nL  from which 
the magnetic field can be computed 
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Compared to BEM where only surface elements occur, it is 
much more important with the IEM to keep the number of 
near-field interactions as small as possible. This is because 
integrations with volume elements are in general much more 
time-consuming than with surface elements. In addition, 
elements in the near-field are often located in all three spatial 
directions and not only in two as in the case of BEM. The 
latter not only leads to more computation time but also to a 
lower memory compression rate. A small near-field requires 
higher order L  of series expansions. It was shown that 
computational costs are reduced with modified 
transformations of the multipole coefficients from ( )4O L  to 

( )3O L  [12]. In addition, the different sizes of surface and 
volume elements have to be considered for the grouping 
scheme [13]. 

B. Acceleration of the Right-Hand Side 

Because permanent magnets often border the soft magnetic 
material directly, their discretization has to be of equal 
refinement on the interface. In these cases a large number of 
permanent magnet elements may occur. In order to give 
respect to the field of permanent magnets in the right-hand 
side of (11), at every node within MΩ  the potential Pψ  has to 
be computed by using (9). If the permanent magnets are 
meshed with Pn  elements, the time complexity of this task is 

P Mn n . If the permanent magnets are discretized with a high 
number of elements, assembly of the right-hand side may 
therefore even take longer than assembly of the system matrix. 
It is therefore recommendable to apply the FMM to 
compute (9). This can easily be done by using (17) to obtain 
the multipole coefficients of the field of the permanent 
magnets. 

This approach is similar to the one for the post-processing 
[14]. There, the multipole coefficients are computed from all 
sources in the cubes, impressed sources and calculated 
equivalent sources. Then the FMM algorithm is executed in 
the common way. Finally, the local expansion is evaluated in 
the cubes of the finest level of the octree. The field, which is 
caused by elements in the same cube or its neighboring cubes, 
is obtained by evaluating classical nearly singular integrals. 

Though exciting coils can usually be discretized with a coarse 
mesh, long computation times may also occur when Jψ  has to 
be computed on the right-hand side in (11). This is, because 
the line integration (7) has to be carried out for each node of 
the soft magnetic material. An acceleration of (8), however, is 
somewhat different to the one described above because the 
integrand in (8) has vector character. In addition, the 
differential operator cannot be put in front of the integral. 
However, the usual substitution of Green's function of its 
multipole expansion is still possible. Starting from this 
approach insertion of (16) into (8) gives 
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with the coefficients 

 ( ) ( )m
n '' ' ', ' d 'n m

nV
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This approach allows an application of a standard FMM 
implementation, if each component of (22) is treated as a 

scalar potential. Threefold execution of the algorithm, one for 
each component gives the three components of farH . The 
contribution of the near-field nearH  needs to be computed only 
once and can be performed during one of the steps to compute 
a far-field component. 

IV. SUPERCONVERGENT PATCH RECOVERY 

H  needs to be computed at the nodes of MΩ  after each 
nonlinear iteration step to iteratively solve the non-linear 
problem,. Hereby, (14) is usually computed using (10) 

 ( ) ( )
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Nψ
=

= − ∇∑H r r . (23) 

With elements of 0C  continuity the gradients at a node of MΩ  
are discontinuous. This is usually tackled by taking the mean 
value of the elements that surround the node. This simple 
procedure often leads to a slow convergence rate. A more 
precise approach to compute (23) is the superconvergent patch 
recovery method (SPR). It has been developed originally to 
obtain nodal values from solution values at Gaussian 
points [15]. Hereby a continuous approximation of the 
solution distribution within a local 'patch' is obtained. Patches 
are the elements that surround a node where the gradient has 
to be computed. For better graphical representation, a 
2D example of a patch is shown in Fig. 2. 

i

 
Fig. 2. Local patch with four elements around node i .  

The crosses denote positions of Gaussian points. 

This has already been extended for structural mechanic 
problems from two to three dimensions [16]. Hereby an 
approximated potential distribution ( )ψ r%  around a node i  is 
computed by means of values Giψ  at Gaussian point 
coordinates Gir  of the N  elements that surround this node. 
The coefficients 

 11 12 12 14 22 23 24 33 34 44[ , , , , , , , , , ]Ta a a a a a a a a a=a  (24) 
of the polynomial approximation function 

 ( ) ( ), , , ,x y z x y zψ = P a% , (25) 

 ( ) 2 2 2, , , , , , , , , , ,1x y z x xy xz x y yz y z z⎡ ⎤= ⎣ ⎦P  (26) 
are obtained by a 4D regression approach which yields to 
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The gradient of (25) is 

 ( ) ( ), , , ,x y z x y zψ∇ = ∇P a%  (28) 
and therefore (14) can be computed by 

 ( ) ( ), ,x y z= −∇H r P a . (29) 

V. PARALLELIZATION 

Integral equation methods in combination with a matrix 
compression technique are very powerful. Nevertheless, 
demands of users grow, too. Furthermore, current 



developments of standard computers show that clock speed of 
processors is not increased any longer but the number of 
processor cores or the number of processors of a single 
computer is increased. Even laptops posses a dual core 
processor. 

Parallelization is necessary to keep up with user demands and 
future computers. Two well established standards for 
parallelization exist. The message passing interface (MPI) [17] 
enables communication between multiple processes, which 
normally run on distributed memory machines, e. g. a PC 
cluster. A second approach is to split time-consuming parts of 
a program into several threads based on the OpenMP standard 
[18]. OpenMP is very easily to implement and recommended 
on shared memory computers. 

A. Parallelization with MPI 

A popular parallelization technique is MPI. The program runs 
in multiple processes. In most cases, one process per processor 
is started. When the program reaches a parallel region, each 
process executes only a part of instructions (Fig. 3). Data 
between the processes along with all communication is done 
with MPI. Note the whole program must be parallelized for an 
efficient implementation. Otherwise, CPU time is wasted, 
since all processes execute exactly the same instructions in the 
serial region of the program. 
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Fig. 3  Illustration of multiprocessing program execution, P x is the process 

number. 

The most important advantage of a parallelization with MPI is 
that memory is split, too. E. g. the system matrix can be 
divided into multiple blocks which are stored each in one 
process. 

Unfortunately, the software developer must define a 
parallelization strategy in advance. Hence, it is very difficult 
to find a good load balance between the processes in practice. 
A computer with identical nodes is required in most cases and 
processes must run exclusively on each node. 

B. Parallelization with OpenMP 

OpenMP was developed in recent years. The main advantage 
of OpenMP is that parallelization of a well-structured software 
can be relatively easily done. The program is executed in 
serial. When a parallel region is reached, the process is split 
into multiple threads (Fig. 4). The threads are managed by the 
operating system. Load among the threads is distributed 
dynamically during runtime. 

It suffices to parallelize time consuming functions only. The 
rest of the program runs in serial on a single CPU. Since a 
shared memory is used, a data exchange isn’t necessary. 
Hence, a very high speedup is obtained in practice. 

This year, cluster OpenMP was introduced [19]. It is based on 
OpenMP but distributed memory is mapped to a virtual shared 

memory. Data transfer between the nodes of a cluster is done 
automatically in contrast to MPI. 
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Fig. 4  Illustration of multithreading program execution, T x is the thread 

number. 

C. Parallelization of the IEM and FMM 

Since every modern computer is equipped with a multi-core 
CPU or multiple CPUs, OpenMP is always used to solve a 
numerical field problem. 

Assembly of the system matrix is very time consuming. The 
near-field matrix of the FMM consists of singular and nearly 
singular integrals. However, parallelization of matrix assembly 
is very easy. Computation of integrals is distributed 
dynamically between the threads. Then variations in 
computing time of singular integrals, which depends strongly 
on the position of the field point with respect to the element, 
are absorbed. 

The matrix–by-vector product of the FMM is expensive. 
Furthermore, the amount of transferred data is very high, too. 
Fortunately, a shared memory can be used and parallelization 
with OpenMP is very efficient. Implementation is very easily. 
Dependencies of FMM operations are very well structured. 
Only a few operations may cause memory write conflicts. 
These can be avoided by duplicating the very small output 
array of the matrix-by-vector product. 

If a time varying problem is solved, time steps of a quasi-static 
solution are independent of each other. Hence, they can be 
distributed among the cluster nodes. 

VI. NUMERICAL RESULTS 

To demonstrate the applicability of the IEM, the results of 
three examples are presented. It is shown that the combination 
of the FMM with parallelized coding techniques leads to a 
strong reduction of computational costs. In addition, using the 
SPR for gradient computation improves the accuracy of 
magnetic field computations. All computations were run on a 
dual AMD Opteron 248 PC with 2.2 GHz. OpenMP was used 
to use both CPUs. 

A. TEAM Workshop Problem No. 20 

The presented IEM has been applied to the static force TEAM 
Workshop Problem No. 20 shown in Fig. 5 [20]. The ampere-
turns are 3000. The yoke and the center pole have been 
discretized with second-order tetrahedrons and the coil with 
second-order hexahedrons. 13 non-linear iterations, i. e. 
13 linear inhomogeneous problems had to be solved  
until the stopping criterions ( )mean 1%χ χ∆ <  and 

( )max 5%χ χ∆ <  were fulfilled. Computing the magnetic 
field by means of the SPR after a linear problem has been 
solved took 9s which is negligible compared to the whole 



computation time of 14h 37m to solve the problem for the 
23589 unknowns. Memory requirements were 591 Mbytes, 
which equals a compression rate of 86 %. 

The magnetic force acting on the center pole has been 
computed for different ampere-turns with the Maxwell stress 
tensor method 
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which requires integration over a surface A  that encloses the 
center pole. The magnetic field has been computed by using 
(1) where the induced magnetic field MH  is 
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where SOr  is the vector from source to observation point and 

JH  is obtained by (8). Evaluation of (30) took 3m04s, 
whereupon the surface A  was discretized with 5738 nodes. 
The obtained forces agree well with measurements, which can 
be seen from Fig. 6. 

 
Fig. 5. Mesh of TEAM Workshop Problem No 20 with yoke (a), coil (b), 

center pole (c) and surface mesh for force computation with Maxwell stress 
tensor method (d). Some elements where omitted for better graphical 

representation. 
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Fig. 6. Computed and measured forces of TEAM Workshop Problem No. 20. 

To draw magnetic flux tubes of the setup which are shown in 
Fig. 7 at 5000AT, the magnetic field was computed at 120631 
nodes within the air region by using (1). Instead of the 

previous mesh, a finer one with 81080 unknowns was used. To 
compute H  with (1) the induced field MH  was computed 
with the FMM. If JH  is computed by direct evaluation of 
Biot-Savart law, post-processing takes 2h 33m. If JH  is 
obtained by means of the FMM, this was reduced to 1h 16m. 

 
Fig. 7. Magnetic flux tubes. 

B. Magnetic Gear 

A novel wear-free magnetic gear shown in Fig. 8 has been 
developed by INDEX-Werke GmbH & Co. KG that allows for 
converting the low rotational speed of the rigidly coupled 
modulators to a high rotational speed of the rotor. It consists 
solely of St37 steel and permanent magnets, i.e. there are no 
electrical windings. The flat geometrical configuration 
requires a 3D simulation in order to give respect to stray fields 
on the front sides. A fine discretization of the permanent 
magnets with 14742 elements was necessary because of the 
small air gaps within the gear and in order to obtain 
compatible meshes at material interfaces. Nevertheless, 
because the FMM was used to compute Pψ  in (11), assembly 
of the right-hand side took only 7m instead of 2h 7m without 
the FMM. The nonlinear problem with 23529 unknowns was 
solved in 9h 56m and 15 nonlinear iterations. It required 
595 bytes of memory. Computing the force acting on the rotor 
with Maxwell stress tensor method took 2m 56s. 

The magnetic flux density B  depicted in Fig. 9 was computed 
within the soft magnetic material from the total scalar 
potential ψ  with  

 ( )0 1µ χ ψ= − ∇B . (32) 

Therein the gradient was computed with the SPR. B  at the 
surface of a modulator is presented in Fig. 10. It has been 
computed with SPR and by using shape function derivatives 
with (23). For comparison, results of a 2D computation [21] 
are also shown. The field distribution with SPR is smooth and 
shows no erroneous mavericks. 

(b) 

(c) 
(d) 

(a) Flux Density (T) 
>1.00 
<1.00 
<0.83 
<0.67 
<0.50 
<0.33 
<0.17 
<0.12 



 
 

Fig. 8. Magnetic gear with rotor (a), rotor permanent magnets (b), 
modulators (c), one fourth of the surface for force computation (d), stator (e) 

and stator permanent magnets (f). 

 
Fig. 9. Magnetic flux density within the magnetic gear. 

 

Fig. 10. Magnetic flux density at a modulator by using SPR (a), 
without SPR (b) and with 2D computation (c). 

C. Magnetic circuits for MTXM Microscope 

For the Magnetic Transmission X-ray Microscopy Project at 
BESSY II [22] the field distribution in the air region between 
the magnetic circuits shown in Fig. 11 was investigated. The 
current in the coils of the out-of-plane circuit was 10kAT and 

zero in the coils of the in-plane magnetic circuit. The in-plane 
pole shoes lead to a disturbance of the field homogeneity in 
the air gap, which had to be investigated. Solving the problem 
with 29980 unknowns took 11 nonlinear iterations and took 
11h 50m. Memory requirements were 589Mbytes. 
Computation of the magnetic flux density at 5303 observation 
points within the air gap required only 28s because the FMM 
was applied. Despite the large range of element sizes, which 
can be seen from the blow-up of the air gap in Fig. 12, the 
number of linear iterations for solving the system of linear 
equations did not exceed 83. 
 
 

 
Fig. 11. MTXM setup with out-of-plane magnetic circuit (a),  

auxiliary mesh (b) and in-plane magnetic circuit (c). 
 

zz  

Fig. 12 Blow-up of air gap and surrounding pole-shoes. 

CONCLUSIONS 

An application of the IEM to non-linear magnetostatic field 
problems was shown. The IEM in combination with a matrix 
compression technique like the FMM is very efficient. Only 
the magnetic parts of the problem must be discretized and a 
relatively small number of unknowns is obtained. The FMM 
keeps the memory requirements of the fully dense matrix very 
small. The superconvergent patch recovery method improves 
stability of the non-linear iterative solver. Parallelization, 
especially with OpenMP, makes use of modern computer 
architectures. Hence, integral equation methods are very 
efficient and easy to use. 
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