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Abstract − An educational approach on FEA of electromagnetic
phenomena exhibiting plane symmetry is developed. The
proposed method leads to the same formulation as the one
derived by classical approaches, as Variational Principle or
Weighted Residuals, provided first-order triangular meshes are
considered. The elemental matrices are derived by applying
Maxwell’s equations in integral form to suitably chosen contours
in the FE mesh.  The method is suitable for teaching FEA in
Electromagnetics at undergraduate level. 

I. INTRODUCTION

The use of Finite Element Analysis (FEA) in Electrical
Engineering has continuously grown in the last 30 years since
the pioneer work due to Silvester [1].

Besides the search for robust formulations, as well as efficient
computational techniques, more efforts might be done to
sparkle the interest of undergraduate students.

The main challenge is to find a proper “language” to this first
contact. In the authors’ opinion, the most straightforward way
is to start directly from the Maxwell’s equations in their
integral form, applied to domains with plane symmetry
discretized in finite elements. The main advantage of this
approach is to avoid the usual difficult, advanced
mathematical concepts of Variational Principle and Weighted
Residuals.

The proposed  methodology, when applied to two-dimensional
geometries subdivided to form a first order triangular mesh,
leads to the same algebraic system of equations that result
from variational (or Galerkin)  formulation. Moreover, a
physical meaning can be associated to the stiffness matrix.

The assembly process is accomplished by computing the
circulation of a field vector along closed contours suitably
chosen in the FE mesh, leading to a simple analytical
procedure to derive the system of algebraic equations.

The original idea was first established in 1987 [2], and has
been applied successfully to teach FE concepts to
undergraduate students of Electrical Engineering at the
University of São Paulo, Brazil, since 1989. Also, many
articles have published since then [3-5].

In the next sections the methodology is briefly outlined.

II. FIELD VECTORS AND INTEGRATION CONTOURS

In order to directly  apply Maxwell’s equations in integral
form to a given domain, one needs to properly select supports

for integrations, namely, contours and surfaces. In two
dimensions, this is limited to the definition of contours, only.

A numerical solution for the integral equations can then be
obtained by subdividing the domain in triangular finite
elements. Each node N of the FE mesh must be enclosed by a
polygonal contour C, as depicted in Fig. 1. This contour is
built by linking the mid points of those triangle edges,
connected to node N.

The field vectors E
r

 and H
r

 will then be integrated along
contour C. The procedure must be repeated for contours
enclosing all nodes of the mesh.

The FEA of several electromagnetic phenomena with plane
symmetry leads to formulations with scalar function as
unknowns. Vector fields are then obtained by differentiating
such scalar functions U(x, y).

By the hypothesis of first order discretization, the potential
function U(x, y) is defined inside the element, which has linear
variation, as seen in Fig. 2, yielding constant field vectors
inside the elements. Therefore, these vectors can be written as
a linear combination of vectors which are parallel to the
triangles edges. Fig. 2 illustrates the “vectorial sides or edges”
of a generic element.

Fig. 1 Triangular mesh, generic node N and closed contour C.

The vectorial sides are then defined by:

yx bc uuL rrr
3,2,13,2,13,2,1 −= (1)

where 
xur  and 

yur are the unit vectors of the cartesian
coordinate system. Quantities b and c in (1) are computed
from the coordinates of nodes P1 , P2 , P3  , as follows:

                      b1 = y2 − y3;         c1 = x3 − x2; 
                        b2 = y3 − y1;         c2 = x1 − x3;                  (2)
                        b3 = y1 − y2;         c3 = x2 − x1;
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Fig. 2 A generic triangular element showing vectors as its sides, as well as the
potential function U(x,y).

It should also be noted that the sides of polygon C in Fig. 1 are
parallel to the sides of the triangles with node N as vertex.
According to Fig. 2, segment RS represents one side of the
contour involving node 1 (point P1), that is, RS

2
1 =

L
r

.

On the other hand, the line integration over first-order
elements does not depend upon the contour, since the vector
field is constant; therefore, the integration can be computed
over any other contour with the same end points, for instance
RGS in Fig. 2, where G is the barycenter of the triangle. Note
that in all cases points R and S have to be the mid points of the
corresponding sides. The choice of this contour yields the
same element matrix obtained by applying the classical
approach [1].

The aim of FE simulations is calculating the nodal values of
the potential function in the entire mesh. A scalar function
U(x,y)  is introduced, which is defined inside one element as a
function of its values at the triangle vertices (U1, U2, U3),
yielding:
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where Di is the height associated to node i, di is the distance
between a generic point (x,y) and the side iL

r
 and ∆ is the area

of the triangle. Quantities bi, ci, are defined in (2) and  ai = xjyk

− xkyj .

Functions Ni(x,y) are the usual nodal shape functions. In the
triangular element, the side opposite to node i represents a line
of constant value for the shape function Ni(x,y). Then, the side
P2P3 corresponds to the null isovalue of U(x,y), and along
segment RS,  potential at node 1 is

U1(x,y)  = U1/2.

Equation (3) means that Ui(x,y) has 3 components, for i =
1,2,3. Hence, the field vectors have also 3 components, either
normal or parallel to the element sides, depending on the field

operator used.

In Magnetostatics, the curl operator is used to derive the
magnetic field  H

r
 from magnetic vector potential A

r
, yielding

3 components of H
r

which are parallel to the element sides. In
Electrostatics, the grad operator applied to the electric scalar
potential yields 3 components of the electric field E

r
which are

normal to the sides of the triangle, as will be shown next

III. MAGNETOSTATICS

The second Maxwell’s equation can be written as

∫∫
→→

⋅=⋅
SC

dSd JH
r

l
r

(5)

The final system of algebraic equation can be assembled by
applying this equation to the contours enclosing all nodes of
the FE mesh.

The magnetic field can be calculated by:
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It can be seen by (6) that the three components of H
r

 are
parallel to the sides of the triangle. The magnetic vector
potential has a unique component, normal to the domain Ω,
i.e.:

zyxA uA rr
),(=

where the scalar function A(x,y) is written as in (3). It is then
easy to derive the field vector, for instance 1H

r
, as follows:
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As it can be noticed in (6), each nodal potential only affects its
own component of field vector, i.e. that with same node index.
On the other hand, if the three nodal potentials are equal, the
potential in the element will be an isovalue and the resulting
field is null, since 0321 =++ LLL

rrr
. The left hand side of (5)

must be evaluated along the oriented contour C, a polygon
with “vectorial” edges. These edges are the vectors iL

r
 of the

triangular finite elements, divided by 2. Then, the circulation
of the field vectors along C yields a summation of dot
products of  “edge vectors” of a triangle having segments of C.
As an example, segment RS in Fig. 2 is a section of a contour
that encloses node 1; the line integration of magnetic field
evaluated in RS is:
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Then, with the aid of (1) and (2), (7) can be written in terms of
nodal coordinates, leading to the following analytical
expression for the stiffness matrix of 3-node triangular
elements:
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This matrix can be obtained by evaluating the three line
integrations of an element, namely, RS, ST e TR of Fig. 2, as
follows:
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The matrix of dot products above can also be expressed in
terms of the internal angles of the element. For i≠j, it can be
written as:
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where θij is the angle formed by edges i and j, as shown in
Fig. 2. Then, the same expression for the stiffness matrix, as
presented in [1], can be achieved by doing:
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The diagonal terms (marked as *) are given by:
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The element stiffness matrix has all the contributions to
evaluate the circulation of H

r
along each contour C (around

each node N). This procedure, extended to all mesh nodes  (all
contours C), corresponds to the assembly process.

As an example, by taking node N in Fig. 1, as being the same
as node 1 of Fig. 2, its contour is C. It can be noted in Fig. 1
that seven triangles contribute to this contour, and the
evaluation of Ampere’s circuital law along such contour leads

to:
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The summation in (10) is equivalent to the summation of each
first row of the m elemental matrices, associated with the m
finite elements which share node 1. Therefore, the integration
in (10) has been replaced by an algebraic expression.

The right hand side of (5) still remains to be evaluated, which
yields:
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where S1 is the surface defined by C1, assuming that the
current density is constant inside each element. The total
current flowing in an element is then equally divided among
the nodes.

Finally, the finite element approach applied to the problem
formulated by the continuous equation (5) leads to the
following algebraic equations:
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where (10) is evaluated around node N, which is shared by M
elements.

IV. ELECTROSTATICS

The following equation holds for the Electrostatics:

∫∫
τΣ

→

ρ=⋅ dvdSD
r

.  (13)

The closed surface Σ defines the volume τ, which contains the
electric charges that are distributed according to density
ρ(x,y,z).

The plane symmetry is obtained by considering domain Ω in
Fig. 1 as a cross section of the problem’s original domain.
Surface Σ then becomes the surface of a prism that is
orthogonal to Ω and has its base surface S defined by contour
C. Equation (13) can therefore be rewritten as:

                      ∫∫ ρ=⋅
SC

dxdyyxhdlh ),(nD rr
 , (14)

where h is the undefined height of the domain and nr  is the
unit vector normal to contour C.

The unknown potential function is represented by the
electrostatic potential V. Through equations (3) and (4) the
electric field vector can be obtained as follows:
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The following expression can be derived from equation (1)
and the vector product:
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The electric field vector components are perpendicular to the
edges of the triangular element. Fig. 5 shows the components
of vectors E

r
 and H

r
, which are perpendicular and parallel to

the equipotential lines, respectively.

Equation (14) should be replaced by a new expression similar
to (12). By considering again node 1 in Fig. 2 and equation
(15), it follows that:
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since the angle between two vector sides is the same between
the unit vectors normal to these sides.

Equation (16) is similar to equation (7); the element matrix
and the global matrix are obtained in the same way as in the
section III. The integration in (14), performed along contour C
of Fig. 1 (which encloses node 1 of Fig. 2), is replaced by:
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 ,

and also by the algebraic equation:
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assuming  constant charge inside the element.

The element matrix for Electrostatics is nearly the same as in
Magnetostatics. The physical property must be changed
accordingly:
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V. SETTING THE SOURCE TERMS

The sources of electromagnetic fields, which are distributed
across the finite elements, are then replaced by an equivalent
distribution which is concentrated in the mesh nodes. The
integration contours C enclose these nodal sources.

One possible criterion for concentrating the sources in nodal
values is to preserve the total value within the element. In
equations (12) and (17) densities Jm and ρm are constant in the
M elements that are crossed by the integration contour. Each
vertex is associated with 1/3 of the total value of current or
electric charge.

If the source density varies along the element, as the potential
function U(x,y) does, it can be approximated through
equations (3) and (4).

In case of a linear variation of J inside the element, the total
current crossing the element is:
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since, according to Fig. 2, G is the barycenter of the triangle.

The distribution of the total current of an element in three
symmetrical nodal values is given by:
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The proof that the total current is preserved after the
distribution is straightforward, that is,

∑
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Fig. 3 and 4 illustrate the concept of this equivalent source
distribution.

The centroid G and the midpoints R, S and T divide the
triangular element in three polygons with same surface area,
∆/3. A constant current density value is then set to each
surface Si:
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Fig. 3 Distributions of source to nodes 1 and 2.

Fig. 4 Influence of the source weighting factor.

The average values JSi are associated to internal points of the
surfaces Si. A particular value of the weighting factor p is
associated to a particular point along the median emerging
from vertex Pi. As an example, the median P1T in Fig. 4 has
the sampling points of the current density for node 1. With
p=1, the point to be considered is the centroid of the triangle.

The centroid G1 of surface S1 gives p = 22/7. Values belonging
to the interval [0,1[ correspond to points outside surfaces Si,
and therefore are discarded.

The symmetrical distribution of the source value leads to (20),
which stands for points along the medians. An additional
criterion is to be imposed to define the given point.

In the case of conservation of stored energy Wmag inside the
element:

][][][ 
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rr
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The resulting point for vertex P1 is M1, as depicted in Fig. 4,
since both A and J have linear variation, according to (4).
Thus, the weighting factor is p=2. The weighting matrix [P] of
the source term becomes the same as the matrix [T], defined in
[1]:
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VI. MAGNETIC  INDUCTION

In the study of magnetic induction phenomena, the electric
field vector possesses a component arising from the time
variation of the magnetic field:
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The total current density crossing the element in direction zur

is obtained by using the constitutive equation EJ
rr

σ= :
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where 
VJ
r

 represents the impressed current density and 
AJ
r  is

the element’s induced current density.

In the analysis of eddy-current problems the source current
density will be interpolated in the same way as the potential
function. In Magnetodynamics, for example, the total current
density is calculated by:
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Quantities AJH V
ˆ,ˆ,ˆ  are complex in this case. Operator ∂/∂t has

been replaced by jω.

The second term in the right-hand side gives the eddy-current
density, Ja = jωσA, inside the first-order element, which has
also linear interpolation, as the vector potential A does. JV
stands for the current impressed by the drop of the electrostatic
scalar potential inside the element.

By considering that the source current density is constant in
the element (

0
ˆ),(ˆ JyxJV = ), the nodal values of current in the

generic element can be expressed as:
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These values represent the contributions of the element to the
second member of equation (23). The corresponding first
member is developed as in (10).

VII. WAVEGUIDES

In the study of electromagnetic wave propagation in
waveguides, functions ),(ˆ yxzH  and ),(ˆ yxzE  are taken as
unknowns for the TE and TM modes, respectively. These
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functions are phasors that represent the time variation of field
vectors in the propagation direction zu

r
.

The wave equations for an incoming wave in lossless
dielectric media are as follows [6]:
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where µεω= 22k .

Mode TM is characterized by the constraint 0=zH , which
leads to:
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Equations (28) and (29) result from the linear variation of
),(ˆ yxzE , which is computed from the shape functions (2).

These equations suggest the representation of the vector-field
components in a generic element, as shown in Fig. 5. Equation
(28) shows a vector whose components are parallel to the side
of the triangle. The other equations represent the components
which are perpendicular to the vectorial sides.

Fig. 5 TM wave: components of both electric and magnetic fields on the sides
of a triangular element.

In this work, Maxwell’s second equation is written as:
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which produces the global system of equations, when applied
to  contours in the mesh. As an example, by looking at Fig. 1,
the n-th equation of the global system will have seven
coefficients regarding the seven sides of polygon C.

For a generic element, the corresponding local matrix is
obtained by computing the line integration (30) over the
partial contours within the element, and by distributing the
total source value over the 3 nodes of the element:
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The matrix of dot products in (31) represents the line integral
computed for segments RS, ST and TR in Fig. 2. Equation
(32) gives the displacement currents associated with each
node, yielded by the symmetrical distribution of the total
current crossing the element.
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The general expression for this distribution is as follows:
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The value p = 2 corresponds to a symmetrical distribution that
preserves the energy stored in the element.  The value of the
displacement current is calculated and distributed
symmetrically among its nodes.

The global system of equations is of the form:

[ ] [ ] 0ˆTM =⋅ zE . (34)

Modal analysis is then performed to solve (34) in order to
obtain cutoff frequencies and the wave propagation modes.
The same procedure can be applied for mode TE, yielding the
following system of equations:

[ ] [ ] 0ˆTE =⋅ zH . (35)

In this case, Maxwell’s first equation is applied by computing
the circulation of the electric field around each node. The total
magnetic flux crossing the element is distributed among its
nodes, corresponding to the second term in the equation.

VIII. SUMMARY

An approach has been presented, which is suitable to teach the
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FEA of Electromagnetic phenomena with plane symmetry to
undergraduate students of Electrical Engineering. It is based
on the direct integration of the Maxwell´s equations and the
use of first-order triangular elements, thereby avoiding the
complex mathematical treatment of this theory that is often
encountered in the literature.

By applying the integral form of Maxwell equations to
electromagnetic phenomena, the developed approach leads to
a numerical formulation.

For both first and second Maxwell equations, a suitably
chosen polygon C, enclosing each node of the finite element
mesh, is used as the integration contour for computing field
vectors E and H.

In case of both third and fourth Maxwell equations, polygon C
is the cross section of a closed surface Σ, through which the
fluxes of field vectors B and D are computed.

In both cases, the choice of mid points R, S and T of triangles
edges for defining polygon C has led to the same stiffness
matrix as those of classical FE formulations, when applied to
first order triangular meshes.
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