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A New FD Calculus: Simple Grids for Complex Problems

Abstract — In the proposed new Finite Difference (FD) calculus
of Flexible Local Approximation MEthods (FLAME), the numeri-
cal accuracy is qualitatively improved by incorporating any desir-
able local approximating functions (such as harmonic polynomials,
plane waves, cylindrical or spherical harmonics, and so on) into
the scheme. While one motivation is to minimize the notorious
’staircase’ effect at curved and slanted interface boundaries, the
new approach has much broader applications and implications. Al-
though the method usually operates on regular Cartesian grids, it is
in some cases much more accurate than the Finite Element Method
with its complex meshes. The main ideas of FLAME are reviewed
and a tutorial-style explanation of its usage is included. As illus-
trative examples, the paper presents super-high-order three-point
schemes for the 1D Schrödinger equation; classical schemes (in-
cluding the Collatz “Mehrstellen" schemes) as particular cases of
FLAME; electrostatic interactions of colloidal particles; scattering;
wave propagation in a photonic crystal; plasmon resonances.

Keywords: Generalized Finite Difference Method; Flexi-
ble Approximation; Many-Body Interactions; The Schrödinger
Equation; The Poisson-Boltzmann Equation; Wave Propagation;
Scattering; Photonic Crystals; Plasmon Particles.

I A PREVIEW

Would it not be wonderful if one could solve geometrically non-
trivial problems on simple Cartesian grids with the same accu-
racy as the Finite Element Method (FEM) provides on complex
meshes? Would it not be even better if the Cartesian grid could
me much coarser than the FE mesh and still yield the same level
of accuracy?

This is obviously a tall order, and yet for some interesting
and important classes of problems the methods described in this
paper do fill the bill. As an alternative, there is a legitimate
more conservative question: given a regular geometrically non-
conforming grid, what is – in some sense – “the best" one can
do?

In the paper, the answer to these questions involves a new
Finite Difference (FD) calculus referred to by the acronym
‘FLAME’: Flexible Local Approximation MEthods. The word
‘Flexible’ implies that any desired approximation of the solution
(exponentials, spherical harmonics, plane waves, generic or spe-
cial polynomials, etc.) can be incorporated directly into the FD
scheme. The approximation is always treated as local, with the
intention to represent local features of the solution that in many
cases may qualitatively be known a priori (for example, the be-
havior of the potential near a material interface).

As a preview, compare two meshes (Fig. 1) that give about
the same level of accuracy for a simple 2D test: a cylindrical
magnetic particle (with relative permeability µ = 100) immersed
in a uniform external field. The FE mesh has 125,665 degrees
of freedom (d.o.f.); the relative error in the potential at the nodes
is 2.07 · 10−8. The FLAME grid has 900 d.o.f. (30 × 30), and
the relative error in the potential at the nodes is 2.77 · 10−8 if
9-point (3 × 3) stencils are used. This type of problem will be
considered in more detail in Section VI.I.

The paper contains, in a condensed and revised form, part of

Figure 1: Two meshes yielding about the same level of accu-
racy for the particle problem. The FE mesh has 31,537 nodes,
62,592 second order triangular elements and 125,665 degrees of
freedom. The FLAME grid has 900 degrees of freedom.

the material that will appear in [93], [94].

II INTRODUCTION: COMPUTATIONAL METHODS WITH
FLEXIBLE APPROXIMATION

In many electromagnetic problems some salient features of the
solution are qualitatively known a priori. Such features include
singularities at point sources, edge and corners; boundary lay-
ers; derivative jumps at material interfaces; strong dipole field
components near polarized spherical particles; electrostatic dou-
ble layers around colloidal particles – and countless other ex-
amples. Such “special” behavior of physical fields is arguably a
rule rather than an exception. Clearly, taking this behavior into
account in numerical simulation will tend to produce more accu-
rate and physically meaningful results.

One motivation for developing a new class of methods is to
minimize the notorious ‘staircase’ effect at curved and slanted
interface boundaries on regular Cartesian grids. In the spirit of
“Flexible Local Approximation”, the behavior of the solution
at the interfaces is represented algebraically, by suitable basis
functions on simple grids, rather than geometrically on conform-
ing meshes. More specifically, fields around spherical particles
can be approximated by several spherical harmonics; fields scat-
tered from cylinders – by Bessel functions, and so on. Such
analytical approximations are incorporated directly into the dif-
ference scheme.

One salient example of the utility of the new approach is prob-
lems with multiple moving particles, such as for example in
magnetically driven assembly [102], [103]. Indeed, generation
of geometrically conforming FE meshes is obviously quite com-
plicated or impractical when the particles move and their num-
ber is large (say, on the order of a hundred or more). Standard
FD schemes would require unreasonably fine meshes to resolve
the shapes of all particles. Parallel adaptive Generalized FEM
has been developed [37], [38], [39], but the procedure is quite
complicated both algorithmically and computationally. The cel-
ebrated Fast Multipole Method (FMM) has clear advantages for
systems with a large number of known charges or dipoles in free



space (or a homogeneous medium). For inhomogeneous media
(e.g. a dielectric substrate, or finite size particles with dielectric
or magnetic parameters different for those of free space) FMM
can still be used as a fast matrix-vector multiplication algorithm
imbedded in an iterative process for the unknown distribution of
volume sources. However, the benefits of FMM in this case are
much less clear. An even stronger case in favor of difference
schemes (as compared to FMM) can be made if the problem is
nonlinear (for example, the Poisson-Boltzmann equation).

In addition to multiparticle simulations, FLAME techniques
can be applied to a variety of other problems. As a peculiar ex-
ample, super high-order 3-point schemes are derived for the 1D
Schrödinger equation in Section VI.F. With the 20th-order 3-
point scheme as an illustration, the solution of the harmonic os-
cillator problem is found almost to machine precision with 10-20
grid nodes. The system matrix remains tridiagonal. Other exam-
ples include the electrostatic equation and a singular equation in
1D, 2D and 3D Collatz “Mehrstellen” schemes, electrostatic in-
teractions of particles, scattering from dielectric cylinders, wave
propagation in a photonic crystal, and plasmon resonances.

Methodologically, the main new feature of FLAME is the sys-
tematic use of local approximation spaces in the FD context. It
is hoped that the proposed framework, with its extensive connec-
tions to many existing approaches, will stimulate further devel-
opment of finite difference and finite element methods.

III PERSPECTIVES

Development of the new class of methods can be approached
from several different but related perspectives and intuitive prin-
ciples.

A Perspective #1: Basis Functions Not Limited to Taylor
Polynomials

This idea has already been discussed. Taylor polynomials are
‘generic’ and may be the best option when no a priori infor-
mation about the solution is available. When the local behavior
of the solution is known, more effective approximations can be
constructed.

B Perspective #2: Approximating the Solution, Not the
Equation

In classic Taylor-based FD schemes, one approximates the un-
derlying differential equation – i.e. the operator and the right
hand side. For example, on a three-point stencil in 1D, one
can expect a second order approximation of the Poisson equa-
tion. There is, however, substantial redundancy built into this ap-
proach. Indeed, the scheme covers all sufficiently smooth func-
tions for which the Taylor approximation is valid. Yet it is only
the solution of the problem that is of direct interest; it is, in a
sense, wasteful to approximate other functions.

To highlight this point, suppose for a moment that the ex-
act solution u∗ is known. It is then trivial to find a three-point
scheme that is itself exact, e.g.:

uk−1/u∗k−1 − 2uk/u∗k + uk+1/u∗k+1 = 0 (1)

It is easy to dismiss this example as frivolous, as it requires
knowledge of the exact solution. The message, however, is that
as more information about the solution is utilized, higher accu-
racy can be achieved; equation (1) is just an extreme example of
this principle.

Figure 2: Taylor approximations around two grid nodes coexist
in the overlap area.

A practical example is the use of harmonic polynomials to ap-
proximate harmonic functions (Sections VI.D, VI.E). More gen-
erally, the ‘Trefftz’ version of FLAME calculus employs basis
functions that satisfy the underlying differential equation. No
effort is wasted on trying to approximate functions that do not
satisfy the equation being solved. This ‘Trefftz’ approximation
is purely local and therefore relatively easy to construct.

C Perspective #3: Multivalued Approximation

In FD analysis, interpolation between the nodes is usually
viewed just as a postprocessing tool not inherent in the FD
method itself. However, approximation between the nodes is in
fact an integral part of the the derivation of classical FD schemes.
Indeed, this approximation involves Taylor expansions around
grid nodes (Fig. 2). Each of these expansions ‘lives’ in a neigh-
borhood of its node. The disparate Taylor expansions coexist
in the overlap region of two or more such neighborhoods. This
is precisely the viewpoint taken in FLAME, except that any de-
sirable approximating functions are allowed rather than just the
Taylor polynomials. Each of these approximations is purely lo-
cal and valid in the vicinity of a given grid stencil; as in FD, two
or more of such approximations may coexist at any given point.
The discrepancies between these approximations are expected to
tend to zero if the method converges as the grid is refined. At the
same time, these discrepancies may prove useful as an a poste-
riori error indicator.

D Perspective #4: Conformity vs. Flexibility

The following very schematic chart (Fig. 3) puts various meth-
ods into a “flexibility vs. conformity" perspective. The dashed
arrow shows the general trend: flexibility of approximation can
be gained by giving up some conformity of the method. Two
methods stand out of that trend: GFEM and classic FD.

GFEM outperforms the trend: it is fully conforming (i.e. op-
erating in a globally defined subspace of the relevant Sobolev
space) and yet allows any desirable approximating functions to
be used. However, this advantage is achieved at a high computa-
tional and algorithmic cost. Classic FD schemes underperform
relative to the general trend: they are fully nonconforming and
yet make use only of local polynomial (i.e. Taylor) expansions.

FLAME schemes fill the existing void in the upper-left corner
of the chart: they are fully nonconforming and admit arbitrary
approximations.

Clearly, it would be somewhat simplistic to ask which side
of this chart is “better”. No one would question the tremen-
dous success of conventional FE analysis lying at the ‘confor-
mal’ end. However, the conformity requirements do impose sig-
nificant limitations in many practical cases. This was understood
early on in the development of FEM – hence the notion of ‘varia-
tional crimes’ [86], the Crouzeix-Raviart elements [23], etc. The



Figure 3: A schematic “conformity vs. flexibility” view of vari-
ous numerical methods. One can gain flexibility of approxima-
tion by giving up conformity. This general trend is indicated
by the dashed arrow. GFEM outperforms this trend, at a high
computational and algorithmic cost. Classic FD schemes un-
derperform. FLAME schemes fill the existing void.

advantages of the nonconforming end of the spectrum are partic-
ularly clear for problems with multiple moving particles, where
finite element mesh generation may be inefficient or impractical.

IV AN OVERVIEW OF EXISTING METHODS FEATURING
FLEXIBLE OR NONSTANDARD APPROXIMATION

A Disclaimer

This overview of methods related to FLAME is definitely not
exhaustive and reflects not only the objective value of the meth-
ods but also their influence on the development of FLAME. Even
though all the methods reviewed below share some level of “flex-
ible approximation” as one of their features, the term “Flexible
Local Approximation MEthods” (FLAME) will in this paper re-
fer exclusively to the new difference scheme developed in Sec-
tion V. The new FLAME schemes are not intended to absorb or
supplant any of the methods reviewed in the following subsec-
tions. These other methods, while related to FLAME, are not,
generally speaking, its particular cases; nor is FLAME a partic-
ular case of any of these methods.

B Generalized FEM by Partition of Unity

In the Generalized FEM [65], [5], [30] [87], [6], [77], [76], [7],
[29] the computational domain is covered by overlapping sub-
domains (‘patches’). The solution is approximated locally over
each patch. These individual local approximations are indepen-
dent of one another and are merged by Partition of Unity (PU).
The global approximation error is guaranteed to be bounded by
the local (patch-wise) errors [5], [87], [6]. Strouboulis et al.
[87] present an extensive set of application examples with spe-
cial functions for material inclusions in stress analysis. Babuška
et al. [4] apply GFEM (still at the early stages of development
in 1994) to problems with material interfaces. Plaks et al. [76]
implemented GFEM for problems with magnetized particles.

The main advantage of GFEM is that the approximating func-
tions can in principle be arbitrary; thus GFEM definitely quali-
fies as a method with the kind of flexible local approximation we
seek. However, there is a high algorithmic and computational

price to be paid for all the flexibility that GFEM provides. Mul-
tiplication by the partition of unity functions makes the system
of approximating functions more complicated, and possibly ill-
conditioned or even linearly dependent [5]. The computation of
gradients and implementation of the Dirichlet conditions also get
more complicated. In addition, GFEM-PU may lead to a combi-
natorial increase in the number of degrees of freedom [76], [92].
An even greater difficulty in GFEM-PU is the high cost of the
Galerkin quadratures that need to be computed numerically in
geometrically complex 3D regions (intersections of overlapping
patches).

C Variational Homogenization

Moskow et al. [69] improve the approximation of the electrosta-
tic potential near slanted boundaries and narrow sheets on reg-
ular Cartesian grids by employing special approximating func-
tions constructed by a coordinate mapping [4]. Within each grid
cell, the authors seek a tensor representation of the material pa-
rameter such that the discrete and continuous energy inner prod-
ucts are the same over the chosen discrete space. The overall
construction in [69] relies on a special partitioning of the grid
(“red-black” numbering, or the “Lebedev grid”) and on a spe-
cific, central difference, representation of the gradient. As shown
in [92], this variational homogenization can be interpreted as a
Galerkin method in a broken Sobolev space.

The variational version of FLAME that was previously de-
scribed in [91] can be viewed as an extension of the variational-
difference approach of [69] – the special ‘Lebedev’ grids and
the specific approximation of gradients by central differences
adopted in [69] turn out not to be really essential for the algo-
rithm [92].

D Pseudospectral Methods

In pseudospectral methods (PSM) [12], [27], [73], [74], numer-
ical solution is sought as a series expansion in terms of Fourier
harmonics, Chebyshev polynomials, etc. The expansion coef-
ficients are found by collocating the differential equation on a
chosen set of grid nodes.

Typically the series is treated as global – over the whole do-
main or large subdomains. There is, however, a great variety of
versions of pseudospectral methods, some of which (“spectral
elements”) deal with more localized approximations and in fact
overlap with the hp-version of FEM [66].

The key advantage of PSM is their exponential convergence,
provided that the solution is quite smooth over the whole do-
main.

One major difficulty is the treatment of complex geometries.
In relatively simple cases this can be accomplished by a global
mapping to a reference shape (square in 2D or cube in 3D) but in
general may not be possible. Another alternative is to subdivide
the domain and use spectral elements (with ‘spectral’ approxi-
mation within the elements but lower order smoothness across
their boundaries); however, convergence is then algebraic, not
exponential, with respect to the parameter of that subdivision.

The presence of material interfaces is an even more serious
problem, as the solution then is no longer smooth enough to yield
the exponential convergence of the global series expansion.

An additional disadvantage of PSM is that the resultant sys-
tems of equations tend to have much higher condition numbers
than the respective FD or FE systems [70]. This is due to the
very uneven spacing of the Chebyshev or Legendre collocation



nodes typically used in PSM. Ill-conditioning may lead to accu-
racy loss in general and to stability problems in time-stepping
procedures.

PSM have been very extensively studied over the last 30 years,
and quite a number of approaches alleviating the above disad-
vantages have been proposed [27], [66], [70], [73]. Nevertheless
it would be fair to say that these disadvantages are inherent in
the method and impede its application to problems with com-
plex geometries and material interfaces.

E Meshless Methods

In a large variety of meshless methods – see [9], [8], [22],
[24], [55], [57], [6], the prevailing technique is the Moving
Least Squares (MLS) approximation. Consider a ‘meshless’
set of nodes (that is, nodes selected at arbitrary positions ri,
i = 1, 2, . . . n) in the computational domain. For each node
i, a smooth weighting function Wi(r) with a compact support is
introduced; this function would typically be normalized to one at
node i (i.e. at r = ri) and decay to zero away from that node. In-
tuitively, the support of the weighting function defines the “zone
of influence” for each node.

Let u be a smooth function that we wish to approximate by
MLS. For any given point r0, one considers a linear combination
of a given set of m basis functions ψα(r) (almost always polyno-
mials in the MLS framework): u

(i)
h =

∑m
α=1 cα(r0)ψα(r). Note

that the coefficients c depend on r0. They are chosen to approx-
imate the nodal values of u, i.e. the Euclidean vector {u(ri)}, in
the least-squares sense with respect to the weighted norm with
the weights Wi(r0). This least-squares problem can be solved
in a standard fashion; note that it involves only nodes containing
r0 within their respective “zones of influence” – in other words,
only nodes i for which Wi(r0) 6= 0.

Duarte and Oden [29] showed that this procedure can be recast
as a partition of unity method, where the PU functions are de-
fined by the weighting functions W as well as the (polynomial)
basis set {ψ}. This leads to more general adaptive “hp-cloud”
methods.

The trade-off for avoiding complex mesh generation is the in-
creased computational and algorithmic complexity. The expres-
sions for the approximating functions obtained by least squares
are rather complicated [8], [24], [55], [57], [6]. The derivatives
of these functions are even more involved. These derivatives are
part of the integrand in the Galerkin inner product, and the com-
putation of numerical quadratures is a bottleneck in meshless
methods. Other difficulties include the treatment of Dirichlet
conditions and interface conditions across material boundaries
[22], [24], [55], [57], [48].

In the Compumag community, meshless methods were ap-
plied to electromagnetic field computation by Maréchal et al.
[60], [59], [48].

F Discontinuous Galerkin Methods

Discontinuous Galerkin methods (DGM) [3], [11], [15], [18],
[72] relax the conformity requirements of the standard FEM. A
consolidated view of DGM with extensive bibliography is pre-
sented in [3]. Many of the approaches start with the “mixed”
formulation that includes additional unknown functions for the
fluxes on element edges (2D) or faces (3D). However, these ad-
ditional unknowns can be replaced with their numerical approx-
imations, thereby producing a “primal” variational formulation
in terms of the scalar potential alone. In DGM, the interelement
continuity is ensured, at least in the weak sense, by retaining the

surface integrals of the jumps, generally leading to saddle-point
problems even if the original equation is elliptic.

In electromagnetic field computation, DGM was applied by
Alotto et al. to moving meshes in the air gap of machines [2].

G Treatment of Material Interfaces in Finite Difference –
Time Domain Methods

Finite Difference Time Domain (FDTD) methods and Finite
Integration Techniques (FIT) [17], [80] require very extensive
computational work due to a large number of time steps and
large meshes. Therefore simple Cartesian grids are strongly pre-
ferred and the need to avoid ‘staircase’ approximations of curved
or slanted boundaries is quite acute. Due to the wave nature of
the problem, any local numerical error, including the errors due
to the staircase effect, tend to propagate in space and time and
pollute the solution overall.

A great variety of approaches to reduce or eliminate the stair-
case effect in FDTD have been proposed, including changes in
the time-stepping formulas for the magnetic field or heuristic ho-
mogenization of material parameters based on volume or edge
length ratios [26], [88], [105]. In some cases, the second order
of the FDTD scheme is maintained by including additional geo-
metric parameters or by using partially filled cells, as done by
Zagorodnov et al. [106].

The literature on FDTD is so vast that a detailed review would
not be reasonable here; please see the comprehensive database
[1], monographs [88], [75] and reviews [101] for further infor-
mation.

H Special FD Schemes

Many difference schemes rely on special approximation tech-
niques to improve the numerical accuracy. These special tech-
niques are too numerous to list, and only the ones that are closely
related to the ideas of this paper are briefly reviewed below.

For some 1D equations, Mickens [67] constructed “exact” FD
schemes – that is, schemes with zero consistency error. He then
developed a wider class of “nonstandard” schemes by modify-
ing finite difference approximations of derivatives. These mod-
ified approximations are asymptotically (as the mesh size tends
to zero) equivalent to the standard ones but for finite mesh sizes
may yield higher accuracy. Similar ideas were used by Harari &
Turkel [45] and by Singer & Turkel [83] to construct exact and
high-order schemes for the Helmholtz equation. Cole [19], [20]
applied nonstandard methods to electromagnetic wave propaga-
tion problems (high-order schemes) in 2D and 3D.

The “immersed surface” methodology [100] generalizes the
Taylor expansions to account for derivative jumps at material
boundaries but leads to rather unwieldy expressions.

Nehrbass [71] and Lambe et al. [56] modified the central co-
efficient of the standard FD scheme for the Helmholtz equation
to minimize, in some sense, the average consistency error over
plane waves propagating in all possible directions. Some simi-
larity between the Nehrbass schemes and FLAME will become
obvious in Section V. However, the derivation of the Nehrbass
schemes requires very elaborate symbolic algebra coding, as the
averaging over all directions of propagation leads to integrals
that are quite involved. In contrast, FLAME schemes are inex-
pensive and easy to construct.

Very closely related to the material of the present paper are the
special difference schemes developed by Hadley [42], [43], [99]
for electromagnetic wave propagation. In fact, these schemes are



direct particular cases of FLAME, with Bessel functions form-
ing a Trefftz-FLAME basis (although Hadley derives them from
different considerations).

For unbounded domains, an artificial truncating boundary has
to be introduced in FD and FE methods. The exact conditions at
this boundary are nonlocal; however, local approximations are
desirable to maintain the sparsity of the system matrix. One such
approximation that has gained some popularity is the so called
"Measured Equation of Invariance" (MEI) by Mei et al. [63],
[35], [47]. As it happens, MEI can be viewed as a particular case
of Trefftz-FLAME, with the basis functions taken as potentials
due to some test distributions of sources.

I Special Finite Elements

The treatment of singularities was historically one of the first
cases where special approximating functions were used in the FE
context – by Fix, Gulati and Wakoff in 1973 [32]. In problems of
solid mechanics, Jirousek in the 1970s [52], [51] proposed ‘Tr-
efftz’ elements, with basis functions satisfying the underlying
differential equation exactly. This not only improves the numer-
ical accuracy substantially, but also reduces the Galerkin volume
integrals in the the computation of stiffness matrices to surface
integrals (via integration by parts). Since then, Trefftz elements
have been developed quite extensively; see a detailed study by
Herrera [49] and a review paper by Jirousek & Zielinski [53].

Also in solid mechanics, Soh & Long [85] proposed two 2D
elements with circular holes, while Meguid & Zhu [62] devel-
oped special elements for the treatment of inclusions.

In the method of Residual-Free Bubbles by Brezzi, Franca &
Russo [13], the standard element space is also enriched with ‘Tr-
efftz’ functions. The conformity of the method is maintained by
having the bubbles vanish at the interelement boundaries. Sim-
ilar ‘bubbles’ are common in hierarchical finite element algo-
rithms (see e.g. Yserentant [104]); however, traditional FE meth-
ods – hierarchical or not – are built exclusively on piecewise-
polynomial bases.

Farhat, Harari & Franca [31] relax the conformity conditions
and get higher flexibility of approximation in return. As in the
case of residual-free bubbles, functions satisfying the differential
equation are added to the FE basis. However, the continuity at
interelement boundaries is only weakly enforced via Lagrange
multipliers.

In electromagnetic analysis, Treffz expansions were used by
Gyimesi et al. in unbounded domains [40], [41].

V TREFFTZ-FLAME SCHEMES WITH FLEXIBLE LOCAL
APPROXIMATION

A The Model Problem

The variational version of FLAME was described in [91], [92].
The general setup is reviewed here for completeness. Although
the potential application areas of FLAME are broad, for illus-
trative purposes in this section we shall have in mind the model
static Dirichlet problem

Lu ≡ −∇σ∇u = f in Ω ⊂ Rn, (n = 2, 3); u|∂Ω = 0 (2)

Here σ is a material parameter (conductivity, permittivity, per-
meability, etc.) that can be discontinuous across material bound-
aries and can depend on coordinates but not, in the linear case
under consideration, on the potential u. The computational do-
main Ω is either two- or three-dimensional. At any material in-

terface boundary Γ, the usual potential and flux continuity con-
ditions hold.

B Overlapping patches

The first ingredient of the proposed setup is the same as in
GFEM: a set of overlapping patches Ω(i) covering the compu-
tational domain Ω = ∪Ω(i), i = 1, 2, . . . n. Within each patch,
there is a local approximation space

Ψ(i) = span{ψ(i)
α , α = 1, 2, . . . , m(i)} (3)

Note that no global approximation space will be considered.
Rather, the following notion is introduced:

For a given domain cover {∪Ω(i)} with corresponding local
spaces Ψ(i), a multivalued approximation uh{∪Ω(i)} of a given
potential u is just a collection of patch-wise approximations:

uh{∪Ω(i)} ≡ {u(i)
h ∈ Ψ(i)} (4)

In regions where two or more patches overlap (Fig. 4), several
local approximations coexist and do not have to be the same (see
Section III.

The second ingredient is a set of n nodes (the number of nodes
is equal to the number of patches). Although a meshless setup is
possible, we shall for maximum simplicity assume a regular grid
with a mesh size h. The i-th stencil is defined as a set of M (i)

nodes within Ω(i): Stencil(i) ≡ {nodes ∈ Ω(i)}. For any
continuous potential u, Nu will denote the set of its values at
all grid nodes (viewed as a Euclidean vector in Rn), and N (i)u
– the set of nodal values on Stencil(i). Within each patch, the

Figure 4: Overlapping patches with 5-point stencils.

approximate solution u
(i)
h is sought as a linear combination of

m(i) basis functions {ψ(i)
α }:

u
(i)
h =

∑m

α=1
c(i)
α ψ(i)

α (5)

One needs to relate the coefficient vector c(i) ≡ {c(i)
α } ∈ Rm

of expansion (5) to the vector u(i)∈RM of the nodal values of
u

(i)
h on Stencil(i). (Both M and m can be different for different

patches (i); this is understood but not explicitly indicated for
simplicity of notation.) The relevant transformation matrix N (i),

u(i) = N (i)c(i) (6)

contains the nodal values of the basis functions on the stencil; if
rk is the position vector of node k, then

N (i) =




ψ
(i)
1 (r1) ψ

(i)
2 (r1) . . . ψ

(i)
m (r1)

ψ
(i)
1 (r2) ψ

(i)
2 (r2) . . . ψ

(i)
m (r2)

. . . . . . . . . . . .

ψ
(i)
1 (rM ) ψ

(i)
2 (rM ) . . . ψ

(i)
m (rM )


 (7)



C Construction of Trefftz-FLAME Schemes

Let us initially assume that the underlying differential equation
within a patch Ω(i) is homogeneous:

Lu = 0 in Ω(i) (8)

In the remainder, we shall exclusively consider Trefftz methods,
where the approximating functions ψ(i) satisfy the underlying
differential equation (8) exactly. Trefftz methods are well known
in the variational context [49]; in contrast, here a purely finite-
difference approach is taken and will prove to be attractive in a
variety of cases.1

Since the basis functions by construction already satisfy the
underlying differential equation, so does the approximate solu-
tion u

(i)
h , automatically. As we shall see, there will typically

be fewer approximating functions than nodes within the patch –
most frequently, m functions for M = m + 1 stencil nodes. The
nodal matrix N (i) is thus in general rectangular.

In the simplest illustrative 1D example, with m = 2 basis func-
tions ψ1,2 at three grid points xi−1, xi, xi+1, matrix N (i) is

N (i) =




ψ1(xi−1) ψ2(xi−1)
ψ1(xi) ψ2(xi)

ψ1(xi+1) ψ2(xi+1)


 (9)

Since there are only two independent parameters (coefficients in
the linear combination of ψ1,2), the three nodal values on the
stencil must be linearly related: s−1ui−1 + s0ui + s+1ui+1 =
0 for some coefficients s0, s±1. More generally for an M -point
stencil, a vector of coefficients s(i) ∈ RM of the difference
scheme is sought to yield

s(i)T u(i) = 0 (10)

for the nodal values u(i) of any function u
(i)
h of form (5). Due to

(6) and (10),
s(i)T N (i)c(i) = 0 (11)

For this to hold for any set of coefficients c(i), one must have

s(i) ∈ Null(N (i)T ) (12)

If the null space is of dimension one, s(i) represents the desired
scheme (up to an arbitrary factor), and (12) is the principal ex-
pression of this Trefftz-FLAME scheme. The meaning of (12) is
quite simple: each equation in the system N (i)T s(i) = 0 implies
that the respective basis function satisfies the difference scheme
with coefficients s(i). There is thus an elegant duality feature
between the continuous and discrete problems: any linear com-
bination of the basis functions satisfies both the differential equa-
tion (due to the choice of the ‘Trefftz’ basis) and the difference
equation with coefficients s(i).

While there is no obvious way to determine the dimension
of the null space a priori, for several classes of problems con-
sidered later the dimension is indeed one. If the null space is
empty, the construction of the Trefftz-FLAME scheme fails, and
one may want to either increase the size of the stencil or reduce
the basis set. If the dimension of the null space is greater than
one, there are two general options. First, the stencil and/or the
basis can be changed. Second, one may use the additional free-
dom in the choice of the coefficients s(i) to seek an “optimal” (in
some sense) scheme as a linear combination of the independent

1The starting point for the author’s development of Trefftz-FLAME schemes
was Gary Friedman’s non-variational version of FLAME for unbounded prob-
lems [33], [44].

null space vectors. For example, it may be desirable to find a
diagonally dominant scheme.

Once the basis and the stencil are chosen, the Trefftz-FLAME
scheme is generated in a very simple way:

• Form matrix N (i) of the nodal values of the basis functions.

• Find the null space of N (i)T .

It is easy to show that the Trefftz-FLAME scheme defined by
(12) is invariant with respect to the choice of the basis in the
local space Ψ(i) ≡ span{ψ(i)

α }.
The algorithm can be sketched as a ‘machine’ for generating

Trefftz-FLAME schemes (Fig. 5). It should be stressed that

Figure 5: A ‘machine’ for Trefftz-FLAME schemes.

the algorithm is heuristic and no blanket claim of convergence
can be made. The schemes need to be considered on a case-by-
case basis, which is done for a variety of problems in Section
V. However, consistency can be proven (Section F) in general,
and convergence then follows for the subclass of schemes with a
monotone difference operator [93].

D The Treatment of Boundary Conditions

Note that in the FLAME framework approximations over dif-
ferent stencils are completely independent from one another.
Therefore, if the domain boundary conditions are of standard
types and no special behavior of the solution at the boundaries is
manifest, one can simply employ any standard FD scheme at the
boundary.

If the solution is known to exhibit some special features at the
boundary, it may be possible to incorporate these features into
the FLAME scheme. One example is Perfectly Matched Layers
(PML) for electromagnetic and acoustic wave propagation con-
sidered briefly in Sections VI.K, VI.M and in some more detail
in [93]. The research on FLAME-PML conditions is ongoing.

E Trefftz-FLAME Schemes for Inhomogeneous and
Nonlinear Equations

So far we considered Trefftz-FLAME schemes only for homo-
geneous equations (i.e. with the zero right hand side within a
given patch). For inhomogeneous equations of the form

Lu = f in Ω(i) (13)

a natural approach is to split the solution up into a particular
solution u

(i)
f of the inhomogeneous equation and the remainder

u
(i)
0 satisfying the homogeneous one:

u = u
(i)
0 + u

(i)
f (14)



Lu
(i)
0 = 0; Lu

(i)
f = f (15)

Superscript (i) emphasizes that the splitting is local, i.e. needs to
be introduced only within its respective patch Ω(i) containing the
grid stencil around node i. Since u

(i)
f is local (and in particular

need not satisfy any exterior boundary conditions), it is usually
relatively easy to construct.

Let a Trefftz-FLAME scheme L
(i)
h be generated for a given

set of basis functions and assume that the consistency error ε for
this scheme tends to zero as h → 0; that is,

L
(i)
h N (i)u

(i)
0 = ε ≡ ε(h, u

(i)
0 ) → 0 as grid size h → 0 (16)

where N (i), as before, denotes the nodal values of a function on
stencil (i). Then clearly

L
(i)
h N (i)u = L

(i)
h N (i)u0 + L

(i)
h N (i)uf = L

(i)
h N (i)uf + ε

This immediately implies that the consistency error of the differ-
ence scheme

L
(i)
h uh = L

(i)
h N (i)uf (17)

is ε, i.e. exactly the same as for the homogeneous case. (The
Euclidean vector uh of nodal values does not need the super-
script because the nodal values are unique and do not depend
on the patch.) Note that there are absolutely no constraints on
the smoothness of u

(i)
f , provided that its nodal values are well

defined. The particular solution u
(i)
f can even be singular as

long as the singularity point does not coincide with a grid node.
For example, in [90] difference schemes of this kind were con-
structed for the Coulomb potential of point charges. An electro-
static problem with a line charge source is solved in a similar
way in [93].

For nonlinear problems, the Newton-Raphson method is tra-
ditionally used for the discrete system of equations. In connec-
tion with FLAME schemes, Newton-Raphson-Kantorovich iter-
ations are applied to the original continuous problem rather than
the discrete one. Details are given in [93], [94].

F Consistency of the Schemes

The consistency error of scheme (17) is, by definition, obtained
by substituting the nodal values of the exact solution u∗ into the
difference equation. For FLAME schemes, as shown in [94],
consistency follows directly from the approximation properties
of the basis set. Convergence can then be proved if the scheme
is monotone [94].

VI TREFFTZ-FLAME SCHEMES: CASE STUDIES

A The 1D Laplace Equation

The 1D Laplace equation is trivial and is used here only to fix
ideas. For convenience, consider a uniform grid with size h,
choose a 3-point stencil and place the origin at the middle node.
Two basis functions satisfying the Laplace equation are

ψ1 = 1; ψ2 = x

Then, since the coordinates of the stencil nodes are [−h, 0, h],
the (transposed) nodal matrix (7) is

NT =
(

1 1 1
−h 0 h

)

and the Trefftz-FLAME difference scheme is2

s = Null(NT ) = [1,−2, 1] (times an arbitrary coefficient)

which coincides with the standard 3-point scheme for the
Laplace equation.

B The Helmholtz and Electrostatic Equations in 1D

A less trivial case is the 1D Helmholtz equation

d2u/dx2 − κ2u = 0

with any complex κ. Let us choose the same 3-point sten-
cil [−h, 0, h] as before and two basis functions satisfying the
Helmholtz equation:

ψ1 = exp(κx); ψ2 = exp(−κx)

Then the matrix of nodal values (7) is

NT =
(

exp(−κh) 1 exp(κh)
exp(κh) 1 exp(−κh)

)

and the resultant difference scheme is

s = Null(NT ) = [1, − 2 cosh(κh), 1] (18)

Since the theoretical solution in this 1D case is exactly repre-
sentable as a linear combination of the chosen basis functions,
the difference scheme yields the exact solution (in practice, up
to the round-off error). This scheme is known and has been de-
rived in a different way by Mickens [67] (see also Farhat et al.
[31] and Harari & Turkel [45]).

A very similar analysis applies to the 1D linear electrostatic
equation with a variable (and possibly discontinuous) permittiv-
ity ε. The resultant scheme is exact (i.e. the theoretical solution
satisfies the FD equation) even if ε is discontinuous. The scheme
has a clear interpretation as a flux balance equation [94]. Such
schemes are indeed typically derived from flux balance consid-
erations (see e.g. the “homogeneous schemes” in [79]) but are a
seen to be a natural particular case of Trefftz-FLAME.

C The 2D and 3D Laplace Equation

Consider a regular rectangular grid, for simplicity with spacing
h the same in both directions, and the standard 5-point stencil.
The origin of the coordinate system is placed for convenience
at the central node of the stencil. With four basis functions
[1, x, y, x2 − y2] satisfying the Laplace equation, the nodal ma-
trix (7) becomes

NT =




1 1 1 1 1
0 −h 0 h 0
h 0 0 0 −h
−h2 h2 0 h2 −h2




The difference scheme is then Null(NT ) = [−1,−1, 4,−1,−1]
(times an arbitrary constant), which coincides with the standard
five-point scheme for the Laplace equation. A more general case
with different mesh sizes in the x- and y- directions can be han-
dled in a completely similar way.

The 3D case is fully analogous. With six basis functions
{1, x, y, z, x2 − y2, x2 − z2} and the standard 7-point stencil
on a uniform grid, one arrives, after computing the null space of
the respective 6 × 7 matrix NT , at the standard 7-point scheme
with the coefficients [−1,−1,−1, 6,−1,−1,−1]. As in 2D, the
case of different mesh sizes in the x-, y- and z-directions does
not present any difficulty.

2As a slight abuse of notation, the square-bracketed arrays (such as
[1,−2, 1]) do not distinguish between row and column vectors.



D The Fourth Order Nine-Point Mehrstellen Scheme for the
Laplace Equation in 2D

The solution is, by definition, a harmonic function. Harmonic
polynomials are known to provide an excellent (in some sense,
even optimal [5]) approximation of harmonic functions [5], [64].
Indeed, for a fixed polynomial order p, the FEM and harmonic
approximation errors are similar [5]; however, the FEM approx-
imation is realized in a much wider space containing all polyno-
mials up to order p, not just the harmonic ones. For solving the
Laplace equation, the standard FE basis set can thus be viewed
as having substantial redundancy that is eliminated by using the
harmonic basis.

With these observations in mind, one may choose the basis
functions as harmonic polynomials in x, y up to order 4, namely,
{1, x, y, xy, x2 − y2, x(x2 − 3y2), y(3x2 − y2), (x2 − y2)xy,
(x2 − 2xy − y2)(x2 + 2xy − y2)}. Then for a 3 × 3 stencil
of adjacent nodes of a uniform Cartesian grid, the computation
of the nodal matrix (7) (transposed) and its null space is simple
with any symbolic algebra package. If the mesh size is equal
in both x- and y- directions, the resultant scheme has order 6.
Its coefficients are 20 for the central node, −4 for the four mid-
edge nodes, and −1 for the four corner nodes of the stencil. In
the standard texts [21], [79], this scheme is developed by manip-
ulating the Taylor expansions for the solution and its derivatives.

E The 4th order 19-point Mehrstellen Scheme for the Laplace
Equation in 3D

Construction of the scheme is analogous to the 2D case. The
19-point stencil is obtained by considering a 3× 3× 3 cluster of
adjacent nodes and then discarding the eight corner nodes. The
basis functions are chosen as the 25 independent harmonic poly-
nomials in x, y, z up to order 4. Computation of the matrix of
nodal values (7) and of the null space of its transpose is straight-
forward by symbolic algebra. The resultant difference scheme
is well known (it was introduced and called a ‘Mehrstellen’
scheme by Collatz [21]; see also [79]) but is typically derived
from totally different considerations.3 We see again that for
the Laplace equation it is a natural particular case of Trefftz-
FLAME. This scheme, due to its geometrically compact stencil,
reduces processor communication in parallel solvers and there-
fore has gained popularity in computationally intensive applica-
tions of physical chemistry and quantum chemistry: electrosta-
tic fields of multiple charges, the Poisson-Boltzmann equation in
colloidal and protein simulation, and the Kohn-Sham equation of
Density Functional Theory [14].

F The 1D Schrödinger equation

This test problem is borrowed from the comparison study by
Chen, Xu & Sun [16] of several FD schemes for the boundary
value (rather than eigenvalue) problem for the 1D Schrödinger
equation over a given interval [a, b].

− u′′ + (V (x)− E)u = 0, u(a) = ua, u(b) = ub (19)

The specific numerical example is the 5th energy level of the
harmonic oscillator, with V (x) = x2 and E = 11 (= 2×5+1).
For testing and verification, boundary conditions are taken from
the analytical solution, and as in [16] the interval [a, b] is [−2, 2].
The exact solution is

uexact = (15x− 20x3 + 4x5) exp(−x2/2) (20)
3A generalization of the Mehrstellen schemes, known as the HODIE schemes

[58] (Lynch and Rice), will not be considered here.

To construct a Trefftz-FLAME scheme for (19) on a stencil
[xi−1, xi, xi+1] (where xi±1 = xi ± h), one would need to take
two independent local solutions of the Schrödinger equation as
the FLAME basis functions. The exact solution in our example
is reserved exclusively for verification and error analysis. We
shall construct Trefftz-FLAME scheme pretending that the theo-
retical solution is not known, as would be the case in general for
an arbitrary potential V (x).

Thus in lieu of the exact solutions the basis set will contain
their approximations. Such approximations, with arbitrary de-
gree of accuracy, can be found by Taylor expansion and lead
to 3-point schemes of arbitrarily high order. For the 20th-order
scheme as an example, the roundoff level is reached for the uni-
form grid with just 10-15 nodes (Table I). For a fixed grid size
and varying order of the scheme, the error falls off very rapidly
as the order is increased and quickly saturates at the roundoff
level (Fig. 6).

Table I. Errors for the 3-point FLAME scheme of order 20
Number of nodes Mean absolute error

7 2.14E-10
11 2.06E-14
15 1.75E-15

Figure 6: Error vs. order of the Trefftz-FLAME scheme for the
model Schrödinger equation.

Trefftz-FLAME schemes for a 1D singular equation and for a
time-domain equation in one spatial dimension are described in
[94].

G Line Charge Near a Slanted Boundary [93]

This problem was chosen to illustrate how FLAME schemes can
rectify the notorious ‘staircase’ effect that occurs when slanted
or curved boundaries are rendered on Cartesian grids. The elec-
trostatic field is generated by a line charge located near a slanted
material interface boundary between air (dielectric constant ε =
1) and water (dielectric constant ε = 80). This can be viewed as
a drastically simplified 2D version of electrostatic problems in
macro- and biomolecular simulation [82], [78], [36].

Four basis functions on a five-point stencil at the interface
boundary were found by matching polynomial approximations
in the two media via the boundary conditions. The Trefftz-
FLAME result is substantially more accurate [93] than solutions
obtained with the standard flux-balance scheme and with the pre-
viously used variational version of FLAME.

H A Polarized Elliptic Particle [93]

A dielectric cylinder, with an elliptic cross-section, is immersed
in a uniform external field. An analytical solution [84] is im-



posed, for testing and verification purposes, as a Dirichlet condi-
tion on the exterior boundary of the domain. The usual 5-point
stencil in 2D is used.

A nonstandard feature of the Trefftz-FLAME scheme in this
problem is that, four basis functions being difficult to generate,
only three are used. (The first basis function is simply equal
to one, and the other two correspond to the analytical solutions
for the external field applied in the x- and y-directions, respec-
tively.) This arrangement gives rise to a two-dimensional null
space of the nodal matrix in FLAME. It then turns out to be pos-
sible to find a linear combination of the two independent differ-
ence schemes with a dominant positive diagonal entry and nega-
tive off-diagonal ones, yielding a monotone difference operator
[96], [97].

I Static Fields of Polarized or Magnetized Spherical Particles

Problems of this type arise, in particular, in the simulation of
colloidal systems [28], [25]. Colloidal particles typically carry a
surface electric charge giving rise to an electrostatic field. In
some cases, particles can also be magnetic; controlling them
by external magnetic fields may have interesting applications in
some emerging areas of nanoscale assembly [102], [103], [76].
Although the equation itself is simple, computationally the prob-
lem is quite challenging due to many-body interactions and the
inhomogeneities.

In a solvent without salt (or in air) the electrostatic poten-
tial is governed by the Laplace equation both inside and outside
the particles, with the standard conditions at particle boundaries.
The Trefftz-FLAME approximation in the vicinity of a particle
is obtained with spherical harmonics:

u
(i)
h =

∑nmax

n=0

∑n

m=−n
Pm

n (cos θ) exp(jmφ)amnrn

inside the particle, and

∑nmax

n=0

∑n

m=−n
Pm

n (cos θ) exp(jmφ)(bmnrn + dmnr−n−1)

outside the particle. The standard notation for the associated
Legendre polynomials Pm

n is used. These harmonics satisfy the
Laplace equation inside and outside the particle and, with a suit-
able choice of coefficients a, b and d, conditions at the particle
boundary (details are given in [93]). Note that the rn term is
retained outside the particle because the harmonic expansion is
considered locally, in a finite (and small) patch Ω(i).

To study convergence of Trefftz-FLAME, a classical example
of a polarizable particle in a uniform external field is used. A
simple analytical solution is readily available for this problem.
For error analysis and verification, this analytical solution is im-
posed as a Dirichlet condition in the Trefftz-FLAME system.

Fig. 7 shows the relative error in the potential and field as a
function of mesh size. The standard seven-point stencil is used
throughout the computational domain. The observed conver-
gence rate for the nodal values of the potential in the 2-norm
is O(h2) – i.e. the same as it would be for the identical 7-point
stencil in the absence of the particle (i.e. for the Laplace equa-
tion). In other words, the presence of the particle does not de-
grade the performance of Trefftz-FLAME. Moreover, the field
inside the particle exhibits very rapid convergence due to the fact
that the approximation of the potential in and near the particle by
spherical harmonics is in this example exact.

Figure 7: Superior performance of FLAME for the test problem
with a polarized particle. The error in the potential is much lower
than for the standard flux-balance scheme. Convergence of the
field inside the particle is remarkably rapid.

J Spherical Particles in Solvent: the Poisson-Boltzmann
Equation

For monovalent salts, the potential in the solvent can be
described, with a good level of accuracy, by the Poisson-
Boltzmann equation (PBE):4

−∇ · ε∇φ + κ2 sinhφ = ρ (21)

where φ is the normalized electrostatic potential, ε is the permit-
tivity, κ is the Debye–Hückel parameter and ρ is the normalized
charge density of sources (macroions / particles). The hyper-
bolic sine term arises from the Boltzmann distribution of the mi-
croions of salt in potential φ.

As in the previous subsection, Trefftz-FLAME basis func-
tions can be constructed (for the linearized PBE in the Newton-
Kantorovich procedure) by spherical harmonics that in this case
involve spherical Bessel functions of the radius [93].

K Scattering from a Dielectric Cylinder

In this classic example, a monochromatic plane wave impinges
on a dielectric circular cylinder and gets scattered. In this
Section and the following one, we consider the E-mode (one-
component E field and a TM field) governed by the standard 2D
equation

∇ · (µ−1∇E) + ω2εE = 0 (22)

with some radiation boundary conditions for the scattered field.
The analytical solution is available via cylindrical harmonics
[46] and can be used for verification and error analysis.

We consider Trefftz-FLAME schemes on a nine-point (3× 3)
stencil. It is natural to choose the basis functions as cylindri-
cal harmonics in the vicinity of each particle and as plane waves
away from the particles. ‘Vicinity’ is defined by an adjustable
threshold: r ≤ rcutoff , where r is the distance from the midpoint
of the stencil to the center of the nearest particle, and the thresh-
old rcutoff is typically chosen as the radius of the particle plus a
few grid layers.

4For multivalent salts, the correlation effects between the ions of the salt
complicate the matter.



Away from the cylinder, eight basis functions are chosen as
plane waves propagating toward the central node of the nine-
point stencil from each of the other eight nodes. As usual in
FLAME, the 9 × 8 nodal matrix N (7) of FLAME comprises
the values of the chosen basis functions at the stencil nodes. The
Trefftz-FLAME scheme (12) is s = Null(NT ). Straightforward
symbolic algebra computation shows that this null space is in-
deed of dimension one, so that a single valid Trefftz-FLAME
scheme exists. The expression for the scheme is given in [93],
[94]. The scheme can be shown to be of order six with respect
to the grid size.

Obviously, nodes at the domain boundary are treated differ-
ently. At the edges of the domain, the stencil is truncated in a
natural way to six points: ‘ghost’ nodes outside the domain are
eliminated, and the respective incoming plane waves associated
with them are likewise eliminated from the basis set. The basis
thus consists of five plane waves: three strictly outgoing and two
sliding along the edge.

A similar procedure is applied at the corner nodes: a four-node
stencil is obtained, and only three plane wave remain in the basis.
The elimination of incoming waves from the basis thus leads, in
a very natural way, to a FLAME-style Perfectly Matched Layer
(PML). A detailed study of this and other versions of FLAME-
PML will be reported elsewhere.

In the vicinity of the cylinder, the basis functions are chosen
as cylindrical harmonics:

ψ(i)
α = anJn(kcylr) exp(inφ), r ≤ r0

ψ(i)
α = [bnJn(kairr) + H(2)

n (kairr)] exp(inφ), r > r0

where Jn is the Bessel function, H
(2)
n is the Hankel function

of the second kind [46], and an, bn are coefficients to be deter-
mined. These coefficients are found via the standard conditions
on the particle boundary; the actual expressions for these coeffi-
cients are too lengthy to be worth reproducing here but are easily
usable in computer codes.

Eight basis functions are obtained by retaining the monopole
harmonic (n = 0), two harmonics of orders n = 1, 2, 3 (i.e. di-
pole, quadrupole and octupole), and one of harmonics of order
n = 4. Numerical experiments for scattering from a single cylin-
der, where the analytical solution is available for comparison and
verification, show convergence (not just consistency error!) of
order six for this scheme [93].

Fig. 8 shows the relative nodal error in the electric field as a
function of the mesh size. Without the PML, convergence of the
scheme is of the 6th order; no standard method has comparable
performance. The test problem has the following parameters:
the radius of the cylindrical rod is normalized to unity; its index
of refraction is 4; the wavenumbers in air and the rod are one and
4, respectively. Simulations without the PML were run with the
exact analytical value of the electric field on the outer bound-
ary imposed as a Dirichlet condition. The field error with the
PML is of course higher than with this ideal Dirichlet condition5

but still only on the order of 10−3 even when the PML is close
to the scatterer (1 – 1.5 wavelengths). For the exact boundary
conditions (and no PML), very high accuracy is achievable.

L Wave Propagation in a Photonic Crystal

As a specific but consequential example, we next consider a
photonic crystal analyzed by Fujisawa & Koshiba [34]. The

5It goes without saying that the exact field condition can only be imposed in
test problems with known analytical solutions.

Figure 8: Relative error norms for the electric field. Scattering
from a dielectric cylinder. FLAME, 9-point scheme.

waveguide with a bend is formed by eliminating a few dielec-
tric cylindrical rods from a 2D array (Fig. 9, Fig. 10, Fig. 11)6.
Fujisawa & Koshiba used a specialized finite element method
to analyze time-domain beam propagation in such a waveguide,
with nonlinear characteristics of the rods. The use of complex
geometrically conforming finite element meshes may well be
justified in this 2D case. However, regular Cartesian grids have
the obvious advantage of simplicity, especially with extensions
to 3D in mind. To this end, numerical experiments with FLAME
schemes (as usual, operating on regular Cartesian grids) were
run to test their applicability to this type of problems.

The problem is solved in the frequency domain and the mate-
rial characteristic of the rods is assumed linear, with the index of
refraction equal to 3. The field distribution is shown in Fig. 9.

For comparison, FE simulations (FEMLABTM) with three
meshes were run: the initial mesh with 9702 nodes, 19276 el-
ements, and 38679 degrees of freedom (d.o.f., i.e. unknowns);
a mesh obtained by global refinement of the initial one (38679
nodes, 77104 elements, 154461 d.o.f.); and an adaptively refined
mesh with 27008 nodes, 53589 elements, 107604 d.o.f. The el-
ements were 2nd order triangles in all cases. The agreement be-
tween FLAME and FEM results is excellent [93]. Fig. 10 and
Fig. 11 give a visual comparison of FEM and Trefftz-FLAME
meshes that provide the same accuracy level.

Note that for the 50 × 50 grid there are about 10.5 points per
wavelength (ppw) in the air but only 3.5 ppw in the rods, and
yet the FLAME results are very accurate because of the special
approximation used. Any alternative method (FE or FD) that
employs generic (piecewise-polynomial) approximation would
require a substantially higher number of ppw to achieve the same
accuracy.

M Coupled Plasmon Nanoparticles

The plasmon resonance phenomenon. The field inside a po-
larized particle immersed in a uniform external field can be ex-
pressed as [46], [84]

E = E0
3εp

εp + 2εout
(23)

where εp, εout are the dielectric constant of the particle and the
surrounding medium, respectively. Other related physical quan-
tities (the dipole moment, the polarizability, the field outside the

6The author is very grateful to Prof. Jon Webb for pointing out this example
to him.



Figure 9: The imaginary part of the electric field in the photonic
crystal waveguide bend.

particle) are expressed similarly and all share a singularity point
at εp =−2εout. Under normal electrostatic conditions, the singu-

Figure 10: Finite element mesh with 38679 nodes, 77104 ele-
ments, 154461 d.o.f.

larity never manifests itself because the dielectric constants are
all positive. However, in time-harmonic fields, the effectivle di-
electric constant of materials generally becomes complex. For
metals, at frequencies below the plasma frequency the effective
permittivity happens to have a negative real part. This is of sig-
nificant practical interest because the resonance condition (oc-
curring at εp = −2εout for spheres, and at other negative values
of εp for other shapes) can indeed be approached. These “plas-
mon" resonances of nanoparticles are becoming increasingly im-
portant in applications ranging from nano-optics to nanosensors
to biolabels. The high frequency case that gives rise to negative
effective permittivities is, by definition, generally very far from
electrostatics. However, when the particle size is very small
compared to the wavelength, the electrostatic approximation is
reasonable, and a strong field enhancement is indeed possible.
A true singularity, though, is never obtainable, for two reasons.
First, the electrostatic treatment is precise only in the limit when
the particle size tends to zero relative to the wavelength; for ac-

Figure 11: This 50 × 50 FLAME grid (2500 d.o.f.) gives the
same accuracy as the FE mesh with 154461 d.o.f.

Figure 12: Two cylindrical plasmon particles. Setup due to
Kottmann & Martin [54].

tual finite sizes of the particle the field enhancement is dimin-
ished due to dephasing effects. Secondly, and perhaps more im-
portantly, the actual values of the dielectric constants are never
purely real – the nonzero imaginary parts reflect the presence of
losses in the material and blur the resonances.

Although the electrostatic approximation does provide a very
useful insight, accurate evaluation of the resonance conditions
and the field enhancement requires electromagnetic wave analy-
sis. The governing equation for the H-mode (one-component
H-field perpendicular to the computational plane and the TE-
field in the plane) is

∇ · (ε−1∇H) + ω2µH = 0 (24)

The standard notation for frequency ω, permittivity ε and mag-
netic permeability µ is used. In the plasmon problem, the per-
meability can be assumed equal to µ0 throughout the domain;
the permittivity is ε0 in air and has a complex and frequency-
dependent value within plasmon particles. Any standard radia-
tion boundary conditions for the scattered wave can be used.

Note that in the H-mode (but not in the complementary E-
mode) the electric field “goes through" the plasmon particles, as
it does in the electrostatic limit, thereby potentially giving rise to
plasmon resonances.

Numerical results. As an illustrative example, the following
subsections describe the application of Trefftz-FLAME schemes
for the problem proposed by Kottmann & Martin [54]. The phys-
ical setup involves two cylindrical plasmon particles (Fig. 12)
and leads to some interesting physical effects [54]. Kottmann &
Martin used integral equations in their simulation.

Nine-point Trefftz-FLAME schemes are derived in the same



Figure 13: The magnitude of the electric field along the line con-
necting two silver plasmon particles. Comparison of FLAME
and multipole-multicenter results. Particle radii 50 nm; varying
wavelength of incident light.

way as for the scattering problem (Section K). In Fig. 13, re-
sults of the FLAME simulation are compared with the quasi-
analytical solution via the multicenter-multipole expansion of
the wave [95], [68].7 The radius of each silver nanoparticle is
50 nm. The results of FLAME simulation are in excellent agree-
ment with the quasi-analytical computation.

VII DISCUSSION

The “Flexible Approximation” approach combines analytical
and numerical tools: it integrates local analytical approximations
of the solution into numerical schemes in a simple way. Existing
applications and special cases of FLAME fall under two cate-
gories. The first one contains standard difference schemes re-
vealed as direct particular cases of Trefftz-FLAME. The second
category contains FLAME schemes that are substantially more
accurate than their conventional counterparts, often with a higher
rate of convergence for identical stencils. Practical implemen-
tation of Trefftz-FLAME schemes is substantially simpler than
FEM matrix assembly and comparable with the implementation
of conventional schemes (e.g. flux-balance schemes).

It is important to note that FLAME schemes do not have any
hidden parameters to contrive better performance. The schemes
are completely defined by the choice of the basis set and sten-
cil; it is the approximating properties of the basis that have the
greatest bearing on the numerical accuracy.

The collection of examples given in the paper inspires further
analysis and applications of FLAME – for example, to boundary
layers in eddy current problems and in semiconductor simulation
(the Scharfetter-Gummel approximation [81], [33]), to varying
material parameters in some protein models [36], [98], to edge
and corner singularities, etc. Naturally, the author is hopeful that
FLAME schemes will eventually find their use in these and other
areas.

The method is most powerful when good local analytical ap-
proximations of the solution are available. For example, the ad-
vantage of the special field approximation in FLAME for the
photonic crystal problem is crystal clear. Similarly, problems

7The analytical expansion was implemented by Frantisek Čajko.

with magnetizable or polarizable particles admit an accurate rep-
resentation of the field around the particles in terms of spherical
harmonics, and the resultant FLAME schemes are substantially
more accurate than the standard control volume method.

The Trefftz-FLAME schemes are not variational, which
makes their construction quite simple and sidesteps the notori-
ous bottleneck of computing numerical quadratures. At the same
time, given that this method is non-variational and especially
non-Galerkin, one cannot rely on the well-established conver-
gence theory so powerful, for example, in Finite Element analy-
sis. For the time being, FLAME methods need to be considered
on a case-by-case basis, with the existing convergence results
and experimental evidence in mind. Furthermore, again because
the method is non-Galerkin, the system matrix is in general not
symmetric, even if the underlying continuous operator is self-
adjoint. In many – but not all – cases, this shortcoming is well
compensated for by the superior accuracy and rate of conver-
gence.

FLAME schemes described in the paper use nodal values as
the primary degrees of freedom (d.o.f.). Other d.o.f. could cer-
tainly be used, for example edge circulations of the field, in full
analogy with edge elements and related differential-geometric
treatments [10], [50], [61], [89]. The matrix of edge circulations
would then be introduced instead of the matrix of nodal values
in the algorithm, and the notion of the stencil would be modified
accordingly.

In addition to practical usage and to the potential of gen-
erating new difference schemes in various applications, there
is also some intellectual merit in having a unified perspective
on different families of FD techniques such as low- and high-
order Taylor-based schemes, the Mehrstellen schemes, the ‘ex-
act’ schemes, some special schemes for electromagnetic wave
propagation, the “measured equation of invariance", and more.
This unified perspective is achieved through systematic use of
local approximation spaces in the finite difference context.

VIII FUTURE WORK

Short-term goals: large-scale Trefftz-FLAME simulations
of colloidal suspensions for the nonlinear Poisson-Boltzmann
model, with computation of phase diagrams8; a detailed study
of FLAME PML in the frequency domain; Trefftz-FLAME
schemes for electromagnetic wave propagation in the time do-
main, for two spatial dimensions.
Mid-term goals: FLAME – Time Domain schemes for electro-
magnetic wave propagation in 3D.
Long-term goals: once the short- and mid-term goals have been
achieved, develop a new method that will be as much fun to work
with as FLAME.
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