
The Idea of an Electromagnetic Field,  
Numerical Electromagnetism, and the Geometric Perspective. 

 
Percy Hammond’s Paper and an Urge to Elaborate. 
 
Prof. Hammond’s historical insights into the idea of an electromagnetic field presented so 
eloquently in this newsletter[H1], teach timeless lessons and speak to current issues in 
both teaching and research.  Being the author of books on electromagnetism addressed to 
students [H2], practitioners [H3], and researchers [BH] of electrical engineering, he has 
clearly honed his craft. Given such a wonderful starting point for further dialogue, I could 
not resist steering it in the direction of several of Prof. Hammond’s interests: teaching, 
geometric and variational underpinnings, and the computational view of 
electromagnetism. 
 
The concept of an electromagnetic field is not only an important signpost in the history of 
ideas, but also an organizing principle on which we regularly lean when pushing 
electromagnetic design in new directions. The geometric underpinnings of 
electromagnetism can be found in Maxwell’s exposition of “tubes and slices” which, for 
the uninitiated, seems like a qualitative and conceptual framework rather than a 
quantitative one. I would like to develop the following thesis: Once one separates the 
concept of an electromagnetic field from the recipes that have evolved for extracting 
quantitative information in specific problems, one is free to choose the most “natural” 
mathematical formalism. The choice of mathematical formalism used to describe the 
electromagnetic field has profound consequences for engineers. The link between 
Maxwell’s Equations and the integral theorems of vector calculus (e.g. Stokes’ Theorem 
and the Divergence Theorem), point to Stokes’ Theorem on Manifolds and the formalism 
of exterior differential forms as the language which doesn’t constrain the choice of 
constitutive laws or any other metric considerations. This view has proven to be the most 
elegant approach to electromagnetism, but what is not so clear is that this view has also 
had a profound impact on computational electromagnetism through the adoption of 
Whitney forms. The thesis can be motivated by means of an easily understood analogy 
which, incidentally, is a formal consequence of the thesis: When one studies circuit 
theory, one separates Kirchhoff’s laws from the other equations such as those governing 
branch relations and dependent sources. Kirchhoff’s laws summarize topological aspects 
of circuit theory such as Telegen’s theorem and enable us to establish such topological 
results regardless of whether the branch relations are linear. Furthermore, Kirchhoff’s 
laws dictate the data structures we use in a circuit analysis program. In a similar way, it is 
necessary to have a formalism to separate the topological aspects of the electromagnetic 
field which dictate the data structures we use, from the details of constitutive laws.   
 
To support this thesis, I need to strip away the idea of an electromagnetic field from 
much of what is considered to be engineering electromagnetism. To help with this 
difficult task, we will consider how solution techniques are often not directly related to 
the essential electromagnetic aspect of a particular practical problem. This will help us 
focus on the mathematical tools which have proven essential to harnessing increasingly 
powerful computational resources for visualizing electromagnetic fields as only we 



imagined possible in the past. In considering historically significant solution strategies, I 
hope to make the point that increased computational power has helped us exploit a 
geometric description of the electromagnetic field to reconcile our understanding of 
Maxwell’s equations with our interaction with computers. Lack of space requires us to 
give minimal consideration to some general problems in classical electromagnetism. 
However, to stimulate further discussion, we conclude with some isolated instances of 
how our students grapple with old mathematical tools in a radically new computational 
environment.     
 
Preaching to the Choir: 
 
Given how dramatically Maxwell’s theory has changed our culture in less than a century 
and a half, it is futile to summarize its applications and implications. However, as 
educators and researchers, we are obliged to clarify the fundamental concepts and chip 
away at new and exciting applications. It is clearly a challenge to present Maxwell’s 
theory as a practical tool for answering design questions, while stressing the underlying 
geometric and topological insights which were apparent in the 19th century. The latter 
was articulated mathematically a century ago, but can still seem esoteric. As Einstein 
discovered, Maxwell’s equations in empty space and the definition of mass lead us 
logically into general relativity and cosmology! We can also marvel at conceptual 
elegance by studying superconductivity in the context of abelian gauge theories. On the 
other hand, Maxwell’s equations cannot be presented as a self contained theory since 
constitutive laws governing material media are not part of Maxwell’s equations; they rely 
on materials science and other branches of physics such as solid state physics, 
thermodynamics and quantum mechanics. The gap between conceptual elegance and 
practical applications is a challenge: If Maxwell’s theory was as easy to use as it is 
conceptually beautiful, engineers would have no need for intermediate models such as 
geometric optics, physical optics, microwave circuit theory, transmission line models, or 
circuits modeled by Kirchhoff’s laws. Clearly, simple models, sub-disciplines and 
interdisciplinary topics are here to stay.   
 
If we strive to present electromagnetism as a unified subject will we have an audience? 
Put differently, if we show our students the big picture and include the practical details, 
will they get neck cramps and little more? There are many good presentations of the 
modern geometric approach to classical electromagnetism. For example, the recent book 
of Hehl and Obukhov [HO] is particularly useful in terms of presenting the foundation 
and modern developments while pulling together literature from both sides of the former 
iron curtain. Many authors, including Prof. Hammond [BH], have definite ideas on how 
the modern formalism can be put to work for engineers, and this author is no exception 
[GK]. One cannot appreciate electromagnetism without having applications or a concrete 
method for performing calculations and in the three references mentioned above, the 
mathematical model appears when multivariable calculus is recast in the formalism of 
differential forms. It is important to stress that this mathematical description of  
electromagnetism is implicit in the first chapter of Maxwell [JCM] and leads to profound 
practical, pedagogical, and conceptual uses which transcend the models on which we rely 
for “answers”. Differential forms also yield the tools for handling topological aspects 



which were first being articulated in Maxwell’s time [L], [M]. The rumblings of the 
modern geometric approach can be found in many inspiring sources [RH], [We], [Wh]. 
More recently, ties between mathematics and physics have made it easier for students to 
learn basic mathematical tools and the foundations of classical 
electromagnetics[B],[F],[D].  
 
How computation defines Engineering Electromagnetics. 
 
As mentioned above, geometric intuitions which underlie the notion of an 
electromagnetic field and Maxwell’s view of electrodynamics fit beautifully with the 
modern reformulation of multivariable calculus in terms of differential forms. In the 
context of computational electromagnetics and the finite element method, Whitney forms 
enable the properties of the electromagnetic field to be mimicked in the discrete setting 
[AB]. However, in the engineering community it should be stressed that the hard earned 
success enjoyed by Whitney forms has come about by finding the “proof in the pudding” 
(e.g. not having spurious modes in resonator calculations), rather than having acceptance 
based on mathematical truth and beauty arguments associating differential forms to the 
electromagnetic field, foliations to “tubes and slices”, and Tonti-like diagrams (elliptic 
complexes) to models involving partial differential equations. Regardless of the rationale 
that drives engineers back to the geometric and/or topological roots of classical 
electromagnetism, few will dispute that the finite element method has been around for 
half a century yet the notion of edge interpolation was unheard of a quarter century ago. 
The “big picture” rationale for Whitney forms still seems to lie in a variational approach 
to combinatorial Hodge theory via a discrete notion of differential forms. The fact that 
Whitney forms have become an essential tool for the analysis of electric motors, 3-d eddy 
current nondestructive testing, photonic crystal fibers, and other band gap structures 
[GNZL], reinforces the idea that the notion of an electromagnetic field is an unifying 
theme in engineering electromagnetism, and that the underlying mathematical formalism 
is apparent in the software developed in seemingly unrelated applications.      
 
Historically, solutions to Maxwell’s equations were hard to come by. The mathematical 
techniques used for finding solutions were those which engineers found useful in a 
variety of contexts but were not necessarily those which best capture our understanding 
of the electromagnetic field. This is important to remember as we consider the relative 
importance of mathematical techniques engineers have accumulated. Like it or not, we 
try to turn the art of electromagnetic design into a science. We count on computers to 
help automate design processes and present us with answers which correlate immediately 
with our experience, senses, and geometric/topological intuitions. As we use computers 
and spatial reasoning to communicate more directly with our designs and let go of certain 
well established techniques, it is interesting to make our peace with why certain analytic 
techniques became so prominent in the days before digital computers became an 
engineering tool. 
 
The 1930s and 40s can be seen as the golden age of complex variable methods in 
electrical engineering. Not only did phasors become a necessity for solving large linear 
circuits, filter design required the introduction of the frequency domain. Linear systems 



theory grew up around amplifier design, and the constraint of causality brought complex 
variable methods to the fore via the Payley-Wiener Theorem. Amplifier designers also 
used the Nyquist stability criterion, justified by the  principle of the argument. Starting 
with Bode plots, Kramers-Kronig dispersion relations and single sideband modulation 
schemes, Hilbert transform pairs appeared everywhere and anywhere electrical engineers 
found a function analytic in a half plane. Moving past analog signal processing, the 
sampling theorem stood on the shoulders of the Poisson resummation formula. In 
addition to being used for solving 2-d potential problems, electrical engineers found use 
for conformal mappings in the Nichols chart and the Smith chart.  Potential theory 
reinforced both the understanding of analytic functions in terms of poles and zeros, and 
kept students busy computing the lumped parameters associated with certain transmission 
line cross sections. Conjugate analytic functions made perfect sense when one verified 
that the electromagnetic disturbance on an ideal transmission line traveled at the speed of 
light. Furthermore, conjugate analytic functions are the basis of graphical solution 
methods (curvilinear squares) and in 2-d are the analogs of tubes and slices!  Before the 
days of cheap computation and visualization, the conceptual framework given by 
complex variable methods served the electrical engineer well. Everything was understood 
in terms of 2-d theory even when it made little sense to do so. For the most part, the use 
of complex variable methods has atrophied and has been supplanted by numerical 
algorithms. Occasionally, they outperform the obvious numerical approaches, but they 
eventually get absorbed into the world of numerical algorithms; just as Bode’s gain and 
phase margins in stability theory have evolved into H∞ control theory. Today, analytic 
function techniques still can defy numerical analysts in the context of asymptotic 
expansions. Be that as it may, the geometric techniques come to the fore when we need to 
visualize a 3-d electromagnetic field and escape from the traps that our 2-d tools have set 
for us.  
 
Useful 3-d solutions appeared early on and most often were a result of separating 
variables. Glancing at the last chapter of Stratton[S], we get a glimpse of how 
electromagnetism was taught on the eve of WW II; the advent of microwave technology 
and radar. Waveguide analysis and the classification of modes into TE, TM and TEM 
was performed by Rayleigh in the 1897, (and would become a classified wartime secret 
45 years later), Mie’s analysis of the scattering of light by a dielectric sphere was well-
known and applications to atmospheric physics abounded, as were other wonderful 
applications of the separation of variables in a vector context. However, separation of 
variables, as a general method for finding 3-d solutions was identified as a dead end in 
the late 1890’s when Laplace’s and Helmholtz’ equations were shown to separate in only 
a limited number of orthogonal curvilinear coordinate systems, where the coordinate 
surfaces are given by algebraic equations of degree no greater than four. However, 
because of limited possibilities for solution techniques, “spherical cow jokes” had to wait. 
With the acceptance of numerical methods exploiting unstructured meshes, it became 
apparent that  analytic solutions in general, and separation of variables in particular, make 
one numb to the possibility of separating metric and constitutive law information from 
the geometric insights gained from the distinction between field intensities and flux 
densities. Although this distinction is apparent in the first chapter of Maxwell’s treatise, it 
is only in the last two decades that Whitney forms have enabled us to appreciate this 



distinction as a fundamental aspect in the context of numerical solution schemes. In 
retrospect, the analytic function theory that helped us in 2-d and the special function 
techniques that were advocated for 3-d left us largely unprepared for “thinking out of the 
box” when it came to visualizing the electromagnetic field in three spatial dimensions. 
Fortunately, we can still take refuge in Faraday’s and Maxwell’s notion of an 
electromagnetic field within a precise modern language.  
 
Linear algebra and matrices took on a new life with the development of scientific 
computing in the 1950’s but didn’t make a splash in the EE curriculum for another 
decade. Unfortunately learning to compute the Jordan canonical form by appealing to the 
characteristic polynomial of a matrix, largely kept students in the dark about how 
eigenvalues were actually computed. Needless to say, the appearance of state-space 
methods in control theory in the 1960’s secured the role of linear algebra in the EE 
curriculum. Discrete time signal processing and the FFT also taught us the importance of 
exploiting structured matrices and fast algorithms. The notion of a fast algorithm and the 
techniques of signal processing in turn, made a great impact on integral equation solvers. 
Condition numbers and singular value decompositions eventually became important 
notions to have in one’s tool box. 
 
The 1960’s also brought a revival of the calculus of variations via optimal control theory. 
Optimization theory did a lot to focus our attention on duality and analytic details. 
Unfortunately, for those studying electromagnetism, Lagrangian mechanics now played a 
secondary role and the description of variational problems posed on manifolds in terms of 
differential forms, was appreciated by only a small group who were rediscovering the 
works of Elie Cartan. Texts which reinforced Cartan’s view [MTW] certainly didn’t seem 
to be swimming with the flow. Although the generalities of optimization theory offered a 
framework for inverse problems and electromagnetic design, the abstract framework did 
not make concrete prescriptions for exploiting the geometric and topological structure of 
electromagnetism. For members of the COMPUMAG community versed in both classical 
electromagnetism and effective numerical methods, it is irresistible to meditate on the 
changing role of and reason for variational methods. Just think of Maxwell’s appreciation 
of Lagrangian mechanics, stress tensors, Hamilton-Jacobi theory, and the Rayleigh 
quotient, and then consider how direct variational methods and the symmetric eigenvalue 
problem took center stage early in the twentieth century.   
 
In the 1970’s computing power was available for independent research, and the linear 
algebra, optimization theory, and graph algorithms made the well established integral and 
differential equation formulations of electromagnetism amenable to solution by programs 
written by small research groups. The intrinsic challenge of three dimensional vector 
problems was blissfully obscured by a lack of computing power. Old tricks like using a 
stream function to represent a 2-d solenoidal vector field couldn’t be recycled in three 
dimensions and one had to learn to deal with the vector potential and honest vector fields. 
This set the stage for the Whitney form revolution in the 1980’s, yet we still struggle to 
use the coordinate-free geometric language to communicate visually and effectively with 
computers. 
 



On Professing Maxwell’s theory.  
 
The beauty of Maxwell’s theory is that four equations (or two in space-time) 
fundamentally changed physics. Maxwell’s theory unified electricity, magnetism, and 
optics, and in the process, forced us to search for radio waves. In the short time between 
Maxwell’s analyses, Hertz’s experiments, and Marconi broadcasting across the Atlantic, 
our evolving means of communication was revolutionized. As teachers, we are now 
challenged to articulate modulation techniques, Shannon’s theory, cell phone networks, 
and the terabit capacity of optical fibers to students, within a framework useful for 
understanding both historic and future developments in engineering electromagnetics.  
 
When teaching, an aspect we emphasize about Maxwell’s theory is that it left no room for 
the Galilean invariance of Newton’s mechanics, and in doing so it pulled the rug out from 
under Newton’s theory. It is easy to point to the Michelson-Morley experiment and 
Einstein’s 1905 paper on electrodynamics as an isolated stroke of genius, but a cleaner 
but a less sanitized perspective can be gained by reading a reprint[P] of Poincare’s 
summary, a century ago, of fundamental problems in mathematical physics. Poincare, 
touches on all the topics of the papers of Einstein’s “golden year” (special relativity, 
Brownian motion, and photoelectric effect). These topics clearly fall in the areas where 
Maxwell made fundamental contributions and seeing it in this light gives more insight 
into Einstein’s genius. The marvelous development of classical electromagnetics, pointed 
the way to the General theory of relativity [We]. Long before the Bohm-Aharanov 
experiment, it laid the foundation for the role of gauge invariance in quantum mechanics, 
when in the 1920’s London reformulated superconductivity in terms of an abelian gauge 
theory and Dirac discovered a relativistic quantum mechanical theory of the electron. It is 
clear that deep ideas have to be mastered if one is to extract revolutionary new 
technology: It took well over a half century to build an optical gyroscope by appreciating 
the Sagnac effect as a four-dimensional electromagnetic phenomenon. Even the teaching 
of magnetics is still quite a disgrace; quantum mechanics is required to explain why 
ferromagnetic materials have domains, and the road from the Dirac equation to the 
Landau-Lifschitz equation seems untraveled!   
 
The conceptual beauty of electromagnetic theory is appreciated in four dimensions, and 
the formalism of differential forms and Whitney forms prepare us for a life in n-
dimensions, yet when we seek explicit solutions to Maxwell’s equations we seem 
condemned to curse about dimensionality as we pass from two to three dimensions!  
 
Some speculations. 
 
We have separated the truth and beauty description of the electromagnetic field in terms 
of differential forms from constitutive laws, metric considerations, and solution 
techniques. This let us focus on the four dimensional aspects which have impacted 
theoretical physics, as well as Whitney form techniques which have impacted 
computational electromagnetics. At this point it would be natural to speculate about the 
metric and the constitutive laws I have chosen to ignore and the interaction with 
Materials science and thermodynamics. It may also be unwise to do so, as these 



speculations take time to articulate and there has been more than a century of such 
speculations. One merely has to look at a recent book[FM] to see how wonderfully these 
questions can be developed in specific instances yet seem to defy a “one size fits all” 
treatment. I would like to take the reader on a different path.    
  
Above, we strived to separate the electromagnetic field from the specifics of solution 
methods in order to focus on the current relevance of the notion of an electromagnetic 
field. It would seem that the mathematical tools for describing the electromagnetic field 
are timeless, but that mathematical and algorithmic tools for obtaining solutions 
constantly adapt to the hardware involved in obtaining solutions. I would now like to turn 
things around and examine how the algorithmic tools which have evolved since 
Maxwell’s time can be recycled to fit the needs and interests of our students. I hope this 
will provoke some further comment. 
 
To fix ideas of how traditional variational methods and eigenvalue problems fit into the 
modern world, consider the following. After grasping the notions of a condition number, 
and conditioning, students can easily understand why one can neither compute the 
characteristic polynomial of a large matrix accurately, nor find the roots of a generic high 
degree polynomial accurately. Once this knowledge is used to discredit the simple-
minded approach to finding eigenvalues, students can turn to Matlab, and experience the 
irony that roots of polynomials can be computed effectively by forming a companion 
matrix and finding its eigenvalues by using the QR method with implicit shifting and 
preprocessing to Hessenberg form! This is just one example of how our teaching of 
numerical methods has become organized around algorithms that have proven to be 
“unreasonably effective”, but not necessarily easy to analyze. The conjugate gradient 
method is probably another good example. Similarly, we have deemphasized the Jordan 
canonical form in favor of the singular value decomposition which is based on the 
symmetric eigenvalue problem and its interpretation as a variational problem. 
  
Gone are the days when students get excited about eigenvalue problems by identifying 
the principal axies of conic sections. Eyes do light up however, when one shows students 
how the search engine Google finds page rankings through the use of Rayleigh quotients 
and doubly stochastic matrices[C]! Old timers like me find it mind-boggling that Google 
depends on finding dominant eigenvectors of matrices with ranks in the billions, while 
processing thousand of such requests a second. What would Maxwell or Raleigh say? We 
will never know. What we do know is that the fundamentals of Maxwell’s theory will 
endure, and equally enduring is the never ending quest to bring the history alive through 
modern applications, explanations, and uses of algorithms. 
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