Technical article

Experiences with an Algebraic Multigrid Method for a 3D Biolog-

ical Respiration-Diffusion Model

Abstract — We present our experiences with the use of an alge-
braic multigrid method for solving the set of equations obtained af-
ter finite element discretization of a biological respiration-diffusion
model. Many of the issues encountered in this study are very similar
to issues that one is faced with in the simulation of electromagnetic
systems: finite element discretization of two- and three-dimensional
models, non-linearities, time integration methods, solution of large
linear systems. We show that the application of advanced itera-
tive solvers such as algebraic multigrid allows large problems to be
solved in a very efficient way.

I. INTRODUCTION

The research presented here is a collaboration between the
Scientific Computing Group of the Department of Computer Sci-
ence and the Laboratory of Postharvest Technology both from
the Catholic University of Leuven in Belgium. At the Laboratory
of Postharvest Technology mathematical models for moisture,
gas and heat transport inside fruit are being studied and devel-
oped [8, 9]. The ultimate goal of this research is to develop good
postharvest storage techniques, in order to extend the storage
life of harvested fruit. One of the models that is currently being
investigated is a respiration-diffusion model for the oxygen con-
sumption and carbon dioxide production inside the ‘Conference’
pear, which is particular variety of pear that is grown widely in
Belgium. This model is used to obtain a better understanding
of the respiratory activity of fruit and the circumstances that in-
fluence the onset of certain fruit disorders such as the ‘brown
and hollow’ or ‘core breakdown’ disorders (see figure 1). Such
insight is potentially of a great economical importance.

To extend the postharvest storage life ‘Conference’ pears are
stored under controlled atmospheric (CA) storage conditions, for
example, in large cooling rooms. An uncontrolled atmospheric
storage can change or accelerate the fruit metabolism, causing
disorders that result in economical losses. The most common
disorder ‘brown and hollow’ is characterized by a brown discol-
oration of the tissue and the development of cavities. This can
not easily be detected from the outside, and, as such, all too often
leads to an unpleasant surprise for the consumer.

In order to get some insight into the development of the
‘brown and hollow’ storage disorder and its dependence on the
atmospheric conditions, a respiration-diffusion model was con-
structed. The model consists of a set of two coupled non-linear
reaction diffusion equations, defined on a three-dimensional do-
main and completed with mixed type boundary conditions. In
order to simulate that model, numerical techniques are used.
Here, we present our experiences with an algebraic multigrid
(AMG) method for solving the set of equations obtained after a
finite element discretization of the mathematical model. Many
of the issues we encountered are very similar to the ones that
one is faced with in the simulation of electromagnetic devices
[4, 5]. We concentrate on the use of the recent version of the
AMG code developed by K. Stiiben [10]. We will consider its
application for solving both the steady-state problem and the
time-evolution problem. For the latter, we will discuss time-
discretization techniques using backward differentiation formu-
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Figure 1: ‘Conference’ pear with, from left to right, increasing
levels of ‘brown and hollow’ disorder (source: [8]).

lae (BDF) or implicit Runge-Kutta (IRK) methods. The AMG-
results will be compared to the results obtained with an opti-
mized direct method based on LU-factorization. The latter was
used previously mainly for robustness reasons and ease of use.

II. PDE MODEL

The mathematical model that describes the oxygen and carbon
dioxide metabolism in the pear consists of a set of two coupled
reaction-diffusion equations, defined on a three-dimensional do-
main that represents the pear. For both oxygen and carbon diox-
ide a differential equation was established based on Fick’s sec-
ond law of diffusion describing the evolution of the gas concen-
tration over time. Each equation consists of two terms. The first
one describes the diffusive gas transport, and is characterized by
a diffusion coefficient. The second term describes the oxygen
consumption or carbon dioxide production. The oxygen con-
sumption is modelled with Michaélis-Menten kinetics including
non-competitive inhibition by carbon dioxide. The carbon diox-
ide production is composed of a fermentative part, which is in-
hibited at high oxygen concentrations, and an oxidative part, al-
most absent at very low oxygen concentrations. The respiration-
diffusion model of the Conference pear is given by the following
set of two coupled non-linear partial differential equations [8]:
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Gas Do, 5-1079m¥/s

transport Dco, 41078 m?/q
Vinaz 2.1074 mOI/is
Vinfco, 10—* mol/m3g

Respiration RQox  0.76

kinetics K, 0.05 mol/m3
cho2 14.51 mOI/m3
Kmfo,  2.83-107%mol/y3

Boundary ko, 7-10""m/s

conditions  hco, 7.5-107"m/s

Table 1: The constants of the respiration-diffusion model.

with Co,, Cco, the oxygen and the carbon dioxide concentra-
tion (mol/m?), ¢ the time (s), Do, and D¢ o2 the gas diffusivities
of O3 and COy in pear tissue (m?/s), Vo, and Vo, the oxygen
consumption and carbon dioxide production (m°!/m?s), V4. and
Vintco,, respectively, the maximum aerobic oxygen consump-
tion rate and the maximal fermentative carbon dioxide produc-
tion rate (mol/m3s), K, the Michaélis-Menten constant (m°!/m?),
K,,co, the non-competitive inhibition constant of CO2 on the
O3 consumption (mol/m?), K, ro, the inhibition constant of Ox
on the fermentative C'Oz-production (m°ol/m?) and RQ),, the res-
piration quotient (-). The mixed type boundary conditions are

aCo,

DO2 on h02 (Cg.; - CO2 )7 (5)
9Cco, -
Dco, % = hco,(Céo, — Cco,), (6)

with ho, and hco, the convective mass transfer coefficients of
O and CO from the pear to the environment (m/s), which in-
cludes the mass transfer resistance of the pear skin.

In order to obtain reliable parameter values for both the res-
piration and diffusion activities, extensive measurements were
conducted considering the two phenomena separately. The pa-
rameters of the Michaélis-Menten respiration kinetics were de-
termined on intact pears, and also the effect of diffusion on the
respiration parameters was determined. A novel method, based
on the gas diffusion law of Fick, was used to measure the oxy-
gen and carbon dioxide diffusivity of pear tissue and skin. Fur-
ther details about the experiments and parameter measurements
can be found in [8, 6, 9, 7]. The values used for the different
constants of the respiration-diffusion model are listed in table 1.
Some of these coefficients are temperature dependent. The val-
ues given in the table are the ones used for the simulation, as
described in Section VI.

III. DISCRETIZATION

Because of the complexity of the shape of the domain and
the non-linearity of the respiration kinetics, there is no analyti-
cal solution for the mathematical model. Therefore, a numerical
simulation procedure is used. The first part of the procedure is a
geometry scan of the pear. From this scan a 3D tetrahedral mesh
is generated using ANSYS. An example is given in figure 2. The
mesh information is then used to discretize the PDE-model, us-
ing standard linear finite elements. The discretization results in
the stiff, non-linear system of ordinary differential equations

Cd—quKu:f(u). @)

dt
The solution vector w contains two unknowns for each node of
the finite element mesh. The mass matrix C' and the stiffness ma-
trix K are large sparse matrices. To find a steady-state solution

Figure 2: Finite element discretization (left) and computed O4
concentration (right).

the system of equations
Ku= f(u) (@)

has to be solved. For time-accurate simulations, the system of
ordinary differential equations (7) is discretized in time using
implicit time-discretization methods.

Backward differentiation formulas (BDFs) [3] use values from
one or more previous time-steps to calculate a value for the cur-
rent time-step. The first order BDF method is known as the im-
plicit Euler method (BDF1) and leads to the following equations

Up41 — Up
c“T + Kupi1 = f(uni1). ©)

With the seconder order BDF2-method we get the equations

3un+1 - 4un + Un—1
2At

These systems have the same dimensions as (8) and a very simi-
lar matrix sparsity structure.

Implicit Runge-Kutta (IRK) methods [3] use one previous
value to calculate a number of so-called stage values U;. Those
are then used to find a new value at the current time-step. The
update can be described by the equations

C

+ Ktngr = f(tngr).  (10)

Cunt1 = Cup + At > bj(-KU; + f(U;)),  (11)
j=1

where the stage values U; are calculated from the system

CUi = Cup + At Y aij(—KU; + f(U;)).

j=1

12)

The latter system is s times larger than the steady-state or BDF
system. The values U; can be interpreted as approximating the
solution at the points ¢,, ; = t,, + ¢;At. An IRK method can be
compactly characterized by a so-called Butcher tableau
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For the numerical experiments we used the popular three-stage
Radau ITA method of order 5 [3], characterized by the tableau

46 88—76 296—-169v6 —24+3V6
10 360 1800 225
446 | 29641696 88476 —2-3v6
10 1800 360 225
1 16—6 16+v6 1

36 36 9
16—/6 16+v6 1
36 36 9



Since b; = ag;, for s =3 and for all ¢, no extra computations are
needed for determining the update (11).

IV. NEWTON ITERATION

In this section, we briefly discuss the linearization of the non-
linear set of equations derived in the previous section. We ex-
plain how the starting values are chosen for the steady-state and
for the time-dependent problem. Finally, we mention how to
avoid convergence to unphysical negative solutions.

In the original procedure a standard Newton iteration was
used. In order to speed up the simulation, we now apply a mod-
ified Newton iteration, that is, the Jacobian is held constant over
a number of iterations. Furthermore, we replace the Newton
method by an inexact or truncated Newton iteration. Instead of
solving the sequence of linear systems in the modified Newton
iteration exactly, only a few steps of an iterative method are per-
formed. In our case, we typically use two or three multigrid
cycles. This procedure may result in extra Newton steps, but the
total computing time is usually reduced. For the implicit Runge-
Kutta time-discretization, a further simplification to Newton’s
method is applied. All Jacobians 0 f/0u(U;) are replaced by the
approximation J ~ 0 f/0u(u,, ), which results in the following
simplified Newton step,

(C— AtA® J)AUP
U (k+1)

—CUW + At(A® D) F(UW)
U® 4 AUR (13)

with (C' — AtA ® J) constant over several Newton iterations.

When computing the solutions for the coupled steady-state
pear model with different temperature values and different am-
bient oxygen and carbon dioxide concentrations, we noticed the
problem of convergence to unphysical, negative solutions, for
certain parameter values. At high temperatures, for example,
rapid oxygen consumption can push the iterates to negative oxy-
gen concentrations. The mathematical model is no longer phys-
ically relevant in such a case, but a solution continues to exist
(the nonlinear reactions terms can still be evaluated, but produce
meaningless results). A possible remedy is to use a parameter
continuation strategy. We can, for example, start with a solu-
tion at low temperature and use this solution as the starting value
for a slightly higher temperature. For the time-dependent pear
model, we can use the solution of the last time-step as a new
starting value. Itis of course also possible to use time-stepping to
find steady-state solutions. If a solution can be found using only
Newton iteration, however, this will generally be much more ef-
ficient. It turns out that in some cases parameter continuation is
no longer sufficient. The model needs to be changed in order
to force it to converge to physical solutions. For positive con-
centrations the reaction term remains the same, but for negative
oxygen concentrations the oxygen production term is set to zero.
Another approach is to perform a mathematical transformation
of the form

Co, =

Cco, =

(14)
5)

exp(Uo,)
exp(Uco,)

V. MULTIGRID METHODS

The numerical simulation system developed at the Laboratory
of Postharvest Technology is written in MATLAB and uses the
highly optimized direct sparse solver provided by the MATLAB
backslash operator. It is well known, however, that direct sparse
solvers are often not computationally efficient and have a very
high memory cost especially for 3D problems. It is therefore

necessary to consider iterative methods. Such iterative meth-
ods may have to be adapted to the problem. Multigrid methods
are very well suited for solving the linear systems of equations
derived from diffusion problems. Unless one is dealing with a
model problem, in which case the selection of the algorithmic
components and parameters is well understood, the multigrid
method must be made more robust by using it as a precondi-
tioner for a Krylov method, such as the conjugate gradient (CG)
algorithm. In this section, we explain the basic ideas behind
the geometric multigrid method, the classical algebraic multi-
grid method and algebraic multigrid for systems of PDEs.

A. Geometric Multigrid

Multigrid methods are iterative methods that combine PDE
discretizations on meshes of varying density, see, e.g., figure 3
for a hierarchy of meshes for a 2D pear model. High frequency
error components are damped on a fine grid, whereas low fre-
quency error components are transferred to the next coarser grid.
On this next coarser grid, low frequency components appear as
high frequency ones and thus the multigrid idea can be applied
recursively. This recursion terminates when the cost of solving
the linear system on the coarse grid becomes negligible. We
describe the algorithm more formally for two grids. Extension
to the general case is straightforward. Let A"z" = b" and
A xH — pH be a fine and coarse grid PDE discretization. The
two-grid method uses the following steps,

e Given an approximation 2", for the fine grid equation, first
high frequency components in the error (¢, = z" — 2l
are damped by applying a few (typically one or two) steps
of a stationary iterative scheme. This step is called pre-
smoothing.

e The residual 7" = b" — APx" is transferred to the coarser

grid by the restriction operator I[/1:  rH — [Hyh .
. . H H _ H .
e On the coarser grid the defect equation A”e,; = 7, is

solved exactly.

e The coarse grid correction is transferred back to the fine
grid using the interpolation operator I and added to the
existing approximation: ~ z? « 2f + Ihell.

e As the last operation can introduce high frequency compo-
nents again, a few post-smoothing steps may be performed.

If we recursively use the same iteration once to approximate the
solution of the defect equation, we get the so called V-cycle
multigrid iteration. If we apply two iterations, we get the W-
cycle. For more information on multigrid methods we refer to
[1, 11]. For a detailed analysis of geometric multigrid for the
systems that arise from a BDF and IRK discretization of time
dependent problems see [12].

B. Algebraic Multigrid

For difficult problems, with, e.g., complex geometries, irreg-
ular meshes, or strongly varying PDE coefficients, efficient geo-
metric multigrid methods may be cumbersome to develop and
implement. It is often not immediately clear how a sequence of
coarser meshes can be constructed or which smoothers are ap-
propriate for a given problem. Algebraic multigrid (AMG) meth-
ods offer a solution to this problem by providing the advantages
of geometric multigrid techniques in a more or less black box
solver. An AMG solver requires as sole input the linear system
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Figure 3: Grid hierarchy for a pear model.

to be solved. In the following we will describe the Brandt-Ruge-
Stiiben approach to AMG for real symmetric positive definite
problems [11, App. A] and [10].

The AMG solution process can be divided into two phases.
In a setup phase, the algorithm constructs fully automatically
(i.e., without user intervention) a hierarchy of coarser meshes
and the corresponding linear systems. To do so, the algorithm
extracts from the fine grid matrix information about the strength
of coupling between different nodes. In the solution phase, this
hierarchy of discrete problems is used to solve the problem by
multigrid cycling. When constructing the hierarchy of coarser
discretizations, algebraic multigrid tries to balance the quality
of the smoother with that of the coarse grid correction. Error
components not damped by the coarse grid correction must be
taken care of by the smoother and vice versa. The smoother
in AMG is typically a simple point Gauss-Seidel method and
a major part of the work is invested in building a coarse grid
correction that makes up for the simplicity of the smoother. The
coarse grid equivalent A of the system matrix A" is built by
using the Galerkin formula

A" =l AlT]. (16)
For symmetric problems the restriction operator is chosen to be
the transpose of the prolongation operator: ,{1 = }})T Given
the smoother, the restriction and the coarse level discretization,
only the selection of coarse grid points and the construction of
the interpolation operator remains to be detailed. The coarse grid
selection includes a partition of the fine grid variables Q" into
two disjoint sets Q" = C" U F, with C" and F* the coarse
grid and fine grid variables respectively. The next coarse grid
QO is then identified with C*. Each fine grid point i € F" is
interpolated from a subset P* C C" of the coarse grid variables,
called the interpolatory variables to point ¢. The interpolation
operator has the form:

h ( h _H el
e, = I e ;= L
’ et { 2jenp, wiyef!

ifi e Ch,
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The interpolation is constructed by requiring that smooth errors
are accurately transferred from coarse to fine grids. The concept
of smoothness can be defined purely algebraically: algebraically
smooth errors satisfy

Ajiei + E Aijej =0,
JEN;

(18)

with N; = {j # ¢; A;; # 0}. This simple fact about smooth
errors gives the basic information from which the interpolation

operators are deduced. The construction of interpolation based
solely on (18) results in an interpolation for which the size of
the sets of interpolation variables P,L-h,z' e F", is too large, re-
sulting in cycles that are computationally too expensive. When
truncating the size of these sets, each fine grid point has to re-
main sufficiently connected to its set of interpolatory coarse grid
points. The truncation strategy leads to heuristics for selecting
the coarse grid. Once the coarse grid has been selected, the in-
terpolation weights wfj in (17) can be calculated.

C. Algebraic Multigrid for Systems

The original AMG methods were designed to handle the type
of systems that result from the discretization of a scalar elliptic
PDE. More recent algorithmic variants exist for coupled systems
of PDEs. The SAMG code [10], which is used for our sim-
ulations, can handle both scalar PDEs and coupled systems of
PDEs. For coupled systems, SAMG offers three basic solution
strategies. We use the terminology from the SAMG user’s man-
ual to describe them. A variable is a solution component of the
linear system. An unknown is a (scalar) physical function being
approximated. In our case the oxygen and carbon dioxide con-
centration are the two unknowns. A point is a location in space
where one or more variables are defined. In our case the points
are the nodes of the finite element mesh.

In the variable-based approach, the coupled system is treated
just like a scalar one. That is, SAMG’s coarsening process is on
the level of variables without distinguishing unknowns or points.
This approach is not appropriate for the respiration-diffusion
model since it only works when the coupling between the un-
knowns is very weak. In the unknown-based approach, coars-
ening is on the level of variables, but variables corresponding
to different unknowns are treated independently. The coupling
between the unknowns is neglected when constructing the re-
striction and interpolation operators. The coupling is not ne-
glected when constructing the coarse grid Galerkin matrices, but
the smoother is simplified by updating unknowns separately. In
our case, for example, first all oxygen concentration variables are
updated and then all carbon dioxide concentration variables. The
third strategy is the point-based approach, with coarsening on the
level of points. The structure of the coarse grids is the same for
each unknown and can, for example, be based on the connectiv-
ity pattern of one of the unknowns. In our experiments interpola-
tion and restriction are separate for each physical unknown. For
the point-based approach a block Gauss-Seidel smoother is used
that updates all unknowns at a point simultaneously by solving a
small system of equations.

VI. RESULTS

We will give some results of applying AMG as a solver in the
numerical simulation of the respiration-diffusion model. First
we use the code on a simplified test problem. Then we consider
the use of SAMG for the steady-state pear model. The last ex-
ample uses SAMG for the time-dependent pear model. For all
the experiments, the MATLAB software developed by the Labo-
ratory of Postharvest Technology is used. For the multigrid ex-
periments, the MATLAB direct sparse solver is replaced by calls
to the AMG software, which is written in Fortran.

A. Scalar Steady-State Test Problem

We simplify the pear model by considering a steady-state,
scalar, linearized model problem where the oxygen concentra-
tion is the only unknown.

V- (Do,VCo,) — Vo, =0 (19)



Variables | V(1,1) | V(I,1)/CG | V(2,2) | W(1,1)
1626 0.19 0.05 0.0 | 0.19
2720 0.13 0.04 0.0l | 0.13
6514 0.15 0.04 0.0l | 0.15
11745 | 0.17 0.05 0.0l | 0.17

Table 2: Convergence factors of the different multigrid cycles
for four different meshes, with 1626 up to 11745 variables.
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Figure 4: Number of iterations as a function of the number of
variables, for different multigrid cycle types.

The oxygen consumption term V, is a linear function; its value
is proportional to the oxygen concentration Cp, . This is the type
of equation for which the original AMG algorithm was designed.
The scalar test problem is solved using four different finite ele-
ment meshes, see table 2 for the number of variables. We use
Stiiben’s original AMG1RS multigrid code with different multi-
grid cycles to solve the linear system that results from the finite
element discretization. The cycles are of type V(1,1), V(2,2),
or W(1,1), where the numbers between the parentheses indicate
the number of pre-smoothing resp. post-smoothing steps. The
V(1,1)-cycleis also used as a preconditioner for a CG algorithm.

The number of iterations needed to reduce the norm of the
residual of the initial approximation by a factor 1012 is plotted in
figure 4. This figure shows that each multigrid cycle needs about
a constant number of iterations for the different grids. Table 2
shows the averaged convergence factors for the different cycle
types. It illustrates that the convergence factor is more or less
independent of the mesh size.

B. Steady-State Pear Model

Next, we illustrate the performance of the AMG code for the
full 3D pear model, consisting of two coupled non-linear reac-
tion diffusion equations with mixed type boundary conditions. A
problem was selected with the following parameters for the envi-
ronment: T' = 20°C, Cg, = 20.8%, C&Y, = 0%. We compare
the performance of the direct sparse solver with the performance
of the SAMG-code. Both techniques are used as linear system
solvers inside an optimized modified Newton strategy. The di-
rect sparse solver is based on an LU factorization, which needs
to be done only when the Jacobian is recomputed. The back-
substitution, using the computed L and U factors is done once
per Newton step. The SAMG-code employs the unknown-based
approach, and uses V(2,1) multigrid cycles with CG accelera-
tion. Only two iterations are done per Newton step. This turned

Mesh | Nodes | Unknowns | Non-zeroes | Gauss | AMG
1 1544 3088 75624 4s 0.35s
2 3447 6894 174156 44s 0.62s
3 4533 9066 229692 77s 0.85s
4 6469 12938 332636 167s | 1.35s
5 11699 23398 615188 2.85s
6 13933 27866 735324 3.45s
7 20421 40842 1084316 4.51s

Table 3: Characteristics of the meshes for the 3D pear model,
and execution time in seconds, per Newton step, for the direct
solver (Gauss) and the iterative method (AMG).

out to be sufficient to avoid any increase in the number of New-
ton steps.

Seven different finite element meshes are considered for this
problem, the characteristics of which are summarized in table 3.
The table also gives the number of nonzero elements in the stiff-
ness matrix. In that table we report the averaged execution times
per Newton step for both the Gauss method and AMG. These re-
sults were obtained on a standard 1.7GHz P4 computer with 1GB
RAM. From these results we conclude that the AMG method
is much more efficient. Its computational cost is approximately
proportional to the size of the system. For the sparse direct solver
the work is proportional to a quantity between the square and the
cube of the problem size.

We would also like to comment on the memory usage. We
consider only the smallest problem with a stiffness matrix con-
taining 75,624 nonzero elements. The direct solver created very
significant fill-in, which is typical for 3D problems, and needed
storage for a total of 5,184,090 nonzero values. This is about
68 times the storage needed for representing the original prob-
lem! For the SAMG code, however, a storage of a mere 127,948
nonzero elements turned out sufficient. That is less than two
times the storage of the stiffness matrix.

C. Time-Dependent Pear Model

To solve the time-dependent pear model, we use an implicit
time discretization method and solve in each time-step the dis-
crete problem with the SAMG solver. The implicit schemes con-
sidered in our study are the implicit Euler method (BDF1), the
backward difference formula of order 2 (BDF2) and the Radau
ITA implicit Runge-Kutta method of order 5 (IRK).

For the first two schemes an unknown-based approach is used
with standard coarsening, variable-wise Gauss-Seidel relaxation
(first all O4, then all C'O5 concentrations), and a V(2,1)-cycle
as a preconditioner for CG. The total CPU-time for BDF1 and
BDF?2 time-integration using the direct sparse solver and using
the SAMG solver are shown in figure 5. Note that the curves for
BDF1 and BDF2 cannot be distinguished. This is to be expected
as the linear systems have the same size and a similar structure.
It is clear that the SAMG solver is much more efficient. It can
easily be used for much larger problems.

Our final results show that the multigrid approach is equally
promising when IRK time discretization is used. In this case
there are 6 unknowns for each grid-point: 2 concentrations and
3 stages values for each. The dimension of the linear system is
therefore 6 times the number of nodes in the finite element mesh,
i.e., 3 times larger than in the BDF case. Because the coupling
between the stage values for each concentration is strong, the
point-based approach of SAMG is used. Coarsening is done on
the level of points with interpolation separate for each of the 6
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Figure 5: Timing results for BDF1 and BDF2 time integration of
the 3D pear model.

Gauss | AMG
CPU-Time(s) 148 40
# Newton iter 493 493

Table 4: Results for time integration of a 2D pear model with
332 mesh points, using the Radau ITA IRK-method.

Gauss | AMG
CPU-Time(s) | 12376 | 339
# Newton iter 364 423

Table 5: Results for time integration of the 3D pear model with
1544 mesh points, using the Radau ITA IRK-method.

unknowns. A block Gauss-Seidel relaxation with 6 by 6 blocks
is used as smoother. A multigrid iteration with V(1,1) cycle is
used as a preconditioner for CG. Table 4 shows timing results for
the numerical simulation of a discretization of a 2D pear model
with 2 X 3 x 322 = 1932 variables. Table 5 shows timing results
for the discretization of the 3D model with 2 x 3 x 1544 = 9264
variables. For the 2D problem, the Gauss method is somewhat
slower, but still quite acceptable. For the 3D problem, however,
the SAMG solver clearly outperforms the direct method, even
for this relatively small problem.

VII. CONCLUDING REMARKS

We have reported in this paper on our experiences with an al-
gebraic multigrid code for solving a mathematical model for the
respiratory activity in a Conference pear. The use of AMG has
enabled us to perform both stationary and time-dependent simu-
lations with an accuracy and computational efficiency that could
not be achieved with the algorithmic components that were used
before. Currently, our research activities progress in different di-
rections. First, we try to quantify the effect on the solution values
of the Oy and C'O4 concentration of uncertainties in the model
parameters (diffusion coefficients, reaction rates, etc.), charac-
terized by a probability density function. For this, a stochastic
finite element model is being developed and solved [2]. An-
other application deals with water transport in pear tissue which
may cause shrivelling and, consequently, loss of appearance and
commercial value. As pear tissue is cellular it is not really a
continuum, multi-scale models for water and gas transport are
currently being developed. We believe that such models may
provide valuable insight into the relevant postharvest processes
and eventually will lead to fruit of improved quality.
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