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Reformulation and Generalisation of the Air-Gap Element

Abstract — The air-gap macro element is reformulated such that
rotation, rotor or stator skewing and rotor eccentricity can be incor-
porated easily. The air-gap element is evaluated using Fast Fourier
Transforms which in combination with the Conjugate Gradient al-
gorithm leads to highly efficient and memory inexpensive iterative
solution scheme. The improved air-gap element features beneficial
approximation properties and is competitive to moving-band and
sliding-surface technique.

I. INTRODUCTION

In 1982, Abdel Razek et al. proposed the air-gap macro ele-
ment to couple stator and rotor finite element (FE) models taking
their relative motion into account [1]. In this paper, it is shown
that the air-gap element is not only convenient for modelling ro-
tation, but also for modelling skew and eccentricity. Despite the
clear advantages, the air-gap element did not become standard
in electrical machine simulation. This has a practical, numeri-
cal reason: the air-gap element introduces a cumbersome, dense
block in the sparse FE system of equations. With the rising pop-
ularity of iterative solvers as e.g. the Conjugate Gradient algo-
rithm, the air-gap element approach was abandoned in favour of
moving-band and sliding-surface techniques which both guaran-
tee sparse matrices.

In this paper, we want to rehabilitate the air-gap element ap-
proach by showing its advantages over other techniques and by
alleviating its numerical drawbacks.

II. FE MACHINE MODEL

For convenience, we only consider 2D FE models of cylindri-
cal machines. The generalisation of all discussed techniques to
3D machine models is straightforward. Moreover, the benefits of
the presented techniques are even more pronounced for 3D mod-
els. We assume the stator to be fixed and the rotor to be rotating
at the mechanical velocity ωm(t). The center line of rotation
is not necessarily at the center of the stator (Fig. 1). Both cen-
ter lines differ in the considered 2D cross-section by the vector
(decc cos γecc, decc sin γecc) where decc and γecc denote the mag-
nitude and the angle of the eccentricity, respectively. Both static
and dynamic eccentricities are considered. Hence, decc and γecc

may depend on time. It is common to take the skewing of the sta-
tor or the rotor into account, also when simulating 2D models.
Here, we assume that the rotor is skewed by an angle γskew. The
standstill cartesian and polar coordinate systems (x, y) and (r, θ)
are attached to the stator whereas the moving cartesian and polar
coordinate systems (x′, y′) and (ρ, ϕ) are considered at the rotor.
The relation between both coordinate systems can be expressed
by

reθ = ρe(ϕ+ωmt) + decce
γecc . (1)

The computational domain Ω = Ωst∪Ωag∪Ωrt consists of the
stator part Ωst, the rotor part Ωrt and the air gap part Ωag (Fig. 2).
The interfaces between the stator and rotor parts and the air gap
part are denoted by Γst = Ωst ∩ Ωag and Γrt = Ωrt ∩ Ωag. The
radii of both interfaces are denoted by rst and ρrt respectively.
When the air gap part is empty Ωag = ∅, the air-gap element is

rst

ρrt

decc

γecc

Figure 1: Eccentric geometry.

reduced to an interface condition applied at the common inter-
face Γst = Γrt and weighted by harmonic functions [2]. The
air-gap part Ωag of the computational domain does not necessar-
ily coincide with the physical air gap, i.e., parts of the air gap
may be comprised in Ωst and Ωrt.

A magnetoquasistatic formulation based on the magnetic vec-
tor potential A is discretised at the 2D cross-sections Ωst and
Ωrt by linear triangular finite elements (FEs) yielding a system
of equations of the form

M
d

dt
u + Ku + g = f (2)

for each FE model part. In (2), M denotes the mass matrix re-
lated to the conductivity, K is the curl-curl stiffness matrix in-
corporating the reluctivity, f is the discretisation of the applied
current density and u contains the degrees of freedom for the
z-component of the magnetic vector potential. The contribution

gi = −
∫

Γ

Hθ(θ)Ni(θ) dΓ (3)

represent the magnetic field strength Hθ tangential to the inter-
face Γ weighted by the FE shape functions Ni. The two dis-
connected FE domains Ωst and Ωrt give raise to two decoupled
FE systems of equations of the form (2) which are here dis-
tinguished by subscripts ·st and ·rt. When Ωag = ∅ and both
FE model parts have a matching mesh at the common inter-
face, the surface currents at the common boundary vanish, i.e.,
gst + grt = 0 and the standard FE system of equations can be
obtained by combining both FE systems and eliminating the set
of unknowns at one side of the interface. The time discretisation
of (2) can be carried out by any time integration scheme.

The degrees of freedom for the z-component of the mag-
netic vector potential allocated at Γst and Γrt are collected in
the vectors ũst and ũrt and are selected from the vectors ust

and urt by the rectangular selection matrices Qst and Qrt, i.e.,
ũst = Qstust and ũrt = Qrturt.

III. STATOR-ROTOR COUPLING

When classifying approaches for stator-rotor coupling accord-
ing to the nature of the geometrical decomposition of the ma-
chine model, one can distinguish between sliding-surface and
air-gap interface models.

In sliding-surface techniques, the movement of the rotor is
modelled at a common interface Γ somewhere in the air gap.
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Figure 2: Computation domain Ω = Ωst ∪ Ωag ∪ Ωrt.

For the locked-step approach [3], an equidistant discretisation is
applied at Γ and the time step is chosen such that the rotor rotates
with an integral number of mesh steps with respect to the stator.
In general, the restriction to matching meshes is too severe for
technical machine models. General sliding-surface techniques
allow non-matching grids at Γ and differ in the kind of inter-
polation which is applied at Γ, e.g. polynomial interpolation,
mortar projection [4, 5] or trigonometric interpolation [6, 2].

In air-gap interface techniques, the air gap or a part of it is
considered as a separate domain Ωag with an interface both to
stator and rotor. The air-gap region is commonly discretised by
a technique which allows a more convenient introduction of the
relative motion than the standard FE method. Examples are the
boundary integral method [7], the discontinuous Galerkin tech-
nique [8], the air-gap macro element [1] and a single-layer mov-
ing band [9, 10].

IV. AIR-GAP ELEMENT

The idea of the air-gap macro element is to model the air gap
by a truncated series of sines and cosines which converges to the
analytical solution if the number of FE vertices at Γst and Γrt

tends to infinity [1, 11]. No additional degrees of freedom are
introduced. The air-gap element is traditionally formulated as a
particular transmission condition between the FE vertices at Γst

and Γrt. The air-gap element idea has been extended to higher-
order elements [12] and anti-periodic boundary conditions [13].
Attempts to reduce the computational costs dedicated to the air-
gap element are reported in [13].

This paper develops a general framework for the air-gap el-
ement wherein the formulations of [1], [11] and [13] are com-
prised. The paper frames the air-gap element within the more
general theory of spectral-element methods and offers an at first
sight more abstract but at the end more convenient notation. The
more efficient implementation is different from the approaches
in [1], [12] and [13] and involves a so-called variational crime,
i.e., the weakening of the continuity conditions of the coupled
discretisations. A major concern is to keep the computational
cost of the air-gap macro element to a strict minimum.

The air-gap macro element is based on the analytical solution
for the 2D magnetic vector potential Az in the air gap of the 2D

cylindrical machine model

Aag,z(r, θ) = a0 + b0 log
(

r

ρrt

)

+
∑
λ∈Λ

(
aλ

(
r

ρrt

)λ

+ bλ

(
r

ρrt

)−λ
)

e−λθ (4)

where aλ and bλ are complex-valued coefficients and λ ∈ Λ
is the harmonic order. The air-gap element considers a finite
set Λ of harmonic orders. In the formulation developed here,
the component with λ = 0 is not considered. Instead, it is
assumed that a Dirichlet boundary condition is applied at both
the stator and rotor sides such that the arbitrary constant of Az

is defined. In the case of a real-valued formulation, u(r, θ) is
real and hence a−λ = a∗

λ and b−λ = b∗λ where ∗ stands for
conjugate or conjugate transpose for variables and matrices re-
spectively. Notice that by inserting Le Moivre’s formula, i.e.,
e−λpλθ = cos pλθ −  sin pλθ, the notation of [1], [12] and
[13] is regained. The magnetic field strength in the θ-direction is
computed from (4):

Hag,θ(r, θ) = b0

ν0

r

+
∑
λ∈Λ

ν0λ

r

(
aλ

(
r

ρrt

)λ

− bλ

(
r

ρrt

)−λ

:

)
e−λθ .(5)

The air-gap fields (4) and (5), evaluated at Γst and Γrt, are
matched to harmonic decomposition at the interfaces, e.g.

Ast,z =
∑
λ∈Λ

cst,λe−λθ ; (6)

Hst,θ =
∑
λ∈Λ

dst,λe−λθ . (7)

The coefficients cst and crt are related to a and b by[
cst

crt

]
= T

[
a
b

]
(8)

where T is a block-diagonal matrix of which the blocks Tλ and
T0 are defined by

Tλ =
[

ξλ ξ−λ

1 1

]
; (9)

T0 =
[

1 ln ξ
1 0

]
(10)

and ξ = rst/ρrt denotes the air-gap radius ratio. The coefficients
dst and drt are related to a and b by[

dst

drt

]
= G

[
a
b

]
(11)

where G is a block-diagonal matrix of which the blocks Gλ are
defined by

Gλ = ν0λ

[ −ξλ/rst ξ−λ/rst

−1/ρrt 1/ρrt

]
(12)

where ν0 denotes the reluctivity of air. The air-gap element pro-
vides a so-called spectral Dirichlet-to-Neumann operator GT−1

[
dst

drt

]
= GT−1

[
cst

crt

]
(13)

mapping the harmonic coefficients for the magnetic vector po-
tential upon the corresponding harmonic coefficients for the
magnetic field strengths at Γst and Γrt.



V. COUPLING WITH FE MODEL PARTS

The air-gap element is matched to the FE solutions at the in-
terfaces Γst and Γrt. The necessary interface conditions for Az

and Hθ are applied in a weak way, i.e., by multiplying with test
functions wp(θ) and vζ(θ), e.g. at Γst∫

Γst

(Ast,z(rst, θ) − Aag,z(rst, θ)) wp(θ) dΓ = 0 ; (14)∫
Γrt

(Hst,θ(rst, θ) − Hag,θ(rst, θ)) vζ(θ) dΓ = 0 . (15)

In combination with appropriate test functions, (14) and (15)
correspond to the mortar element approach [5]. The particular
choice for test and trial functions made here, however, corre-
sponds to pointwise matching at the vertices of the FE meshes:

wp(θ) = δp(θ) ; (16)

vζ(θ) = eζθ ; (17)

hq(θ) = δq(θ) , (18)

where the delta function δp(θ) is defined such that δp(θ) is only
non-zero at θ = θp and its integral over Γst or Γrt equals 2πrst

or 2πρrt respectively. The choices for wp(θ) and hq(θ) in (14)
and (15) are such that the Fast Fourier Transform (FFT) algo-
rithm can be used for turning the FE degrees of freedom into the
harmonic coefficients and otherwise:[

cst

crt

]
=

[
F 0
0 F

] [
ũst

ũrt

]
; (19)[

g̃st

g̃rt

]
=

[
F−1 0
0 F−1

] [
dst

drt

]
(20)

where F denotes the FFT. Pointwise matching is a collocation
approach for which it is known that the discretisation error con-
vergence less favourably as for the FE method. In the follow-
ing, matrices for the stator and rotor part combined into block-
diagonal matrices are denoted similarly, but without subscript,
i.e.,

K =
[

Kst 0
0 Krt

]
. (21)

The combination of (2), (13), (19) and (20) results in the cou-
pled FE-SE system of equations

M
d

dt
u + Ku + QT F−1GT−1FQu = f . (22)

Despite of the asymmetrical notation in (22), it is easy to prove
that the air-gap stiffness matrix part

Kag = QT F−1GT−1FQ (23)

is a symmetric and real-valued operator. The symmetry fol-
lows from the symmetry of the 2-by-2 diagonal blocks of GT−1

and the fact that FH = nF−1 with n the number of vertices
at the interfaces. Moreover, real-valued field distributions ũst

and ũrt are transformed into harmonic components which sat-
isfy cst,−λ = cst,λ. This property is maintained by the spectral
Dirichlet-to-Neumann operator GT−1 from which can be con-
cluded that Kag will return a real-valued vector.

The air-gap stiffness matrix Kag contains a dense block of
dimension 2n× 2n. Hence, the insertion of Kag as an algebraic
matrix into the FE system matrix would cause a significant fill-
in (Fig. 3). This is not a problem for a relatively small machine
model, when sufficient memory is available and direct system

(a) (b)

Figure 3: Sparsity patterns of (a) βM + K (224172 nonzeros)
and (b) A = βM + K + Kag (809040 nonzeros) where β is a
factor determined by the time integration method.

solution techniques can be applied. For larger machine model,
however, the more expensive matrix-vector product leads to huge
computation times if standard iterative solution techniques are
used. Therefore, the explicit construction of Kag as an algebraic
matrix should be avoided by all means.

VI. ROTATION

When the rotor is rotated around its axis by an angle α, the
new local coordinate system reads (ρ, ϕ′) where ϕ′ = ϕ−α. The
harmonic coefficients c′rt with respect to (ρ, ϕ′) are related to crt

by crt = R−αc′rt where R−α is a diagonal matrix containing the
phasors

R−α,λ,λ = eλα . (24)

This remarkably simple way to account for rotor displacement is
particularly advantageous in case of transient simulation. Using
this extended air-gap model, there is no longer need to rotate the
rotor mesh while time-stepping. It is sufficient to adapt the ro-
tation matrix R−α in the formulation to the actual angular rotor
position. The astonishing simplicity of considering rotor motion
is one of the major advantages of the air-gap element [2, 14].

VII. ROTOR OR STATOR SKEWING

Rotor or stator skewing is commonly introduced in 2D ma-
chine models by considering multiple slices at different axial po-
sitions of the machine. The different slices are connected by the
external electric circuit [15, 16]. It is possible to account for the
skewing even if only 1 slice is modelled when the spatial har-
monic decomposition of the air-gap field is available [17]. The
harmonic coefficients at one of the interfaces, e.g. at Γst, are
multiplied by analytical skew factors depending on the skew an-
gle γskew: c′st = Sskewcst where

Sskew,λ,λ =
2

λγskew
sin
(

λγskew

2

)
. (25)

Nevertheless, multiple slices have to be considered in order to
deal with the axial variation of the ferromagnetic saturation. In
that case, the skew angle of each slice is γskew�z,q/�z where �z,q

and �z are the axial length of slice q and of the entire machine
respectively.

VIII. STATIC AND DYNAMIC ECCENTRICITY

In case of an eccentric rotor, the coordinate transformation (1)
is introduced in the air-gap element formula (4). The nested loop
is rearranged into increasing powers of ρ. It may be assumed
that the magnitude of the eccentricity is small compared to the
radius of the rotor, i.e., ε = decc/ρrt � 1. Then, all higher-
order contributions εk starting from k = 2 can be neglected in



the series expansion:

Az(ρ, ϕ)

=
∑
λ∈Λ

[( ρ

ρrt

)λ (
aλ + (λ + 1)εecce

−γeccaλ+1

)

+
(

ρ

ρrt

)−λ (
bλ − (λ − 1)εecce

γeccbλ−1

) ]
e−λϕ

+O (ε2
ecc

)
. (26)

The relative eccentricity and the eccentricity angle are combined
in a single complex number εecc = εecce

γecc . The azimuthal
magnetic field strength with respect to the rotor coordinate sys-
tem (ρ, ϕ) reads

Hϕ(ρ, ϕ)

=
∑
λ∈Λ

ν0λ

ρ

[( ρ

ρrt

)λ (
aλ + (λ + 1)εecc aλ+1

)

−
(

ρ

ρrt

)−λ (
bλ − (λ − 1)εecc bλ−1

) ]
e−λϕ

+O (ε2
ecc

)
. (27)

The eccentricity is modelled as a perturbation of the classical
air-gap macro element [18]. The matrices Tε and Gε are tri-
diagonal block matrices where the diagonal blocks are the same
as in T and G and the off-diagonal blocks are obtained by writ-
ing (26) and (27) for ρ = ρrt and collecting the appropriate co-
efficients. An eccentric air-gap element is obtained by replacing
T and G in (8) and (11) by Tε and Gε.

IX. ARBITRARY FE MESHES AT Γst AND Γrt

The assumption that the FE meshes at Γst and Γrt should be
equidistant and should have the same number of nodes, is too re-
strictive for technically relevant models. The classical FFT algo-
rithm, however, dictates the uniform distribution of FE vertices
at Γst and Γrt. Recently, FFT algorithms for non-equispaced
data are developed [19]. Their application is slightly more ex-
pensive compared to the classical FFT algorithm. The compu-
tational complexity, however, remains O(n log n) such that the
overall computation time of the FE simulation is barely influ-
enced by the application of the air-gap element. When different
numbers of FE vertices are applied at Γst and Γrt, the sets of har-
monic orders present in cst = Fstũst and crt = Frtũrt, denoted
by Λst and Λrt respectively, are different. The coupling through
the eccentric air-gap element is only applied for a user-defined
subset of the available components: Λ ⊂ Λst ∪ Λrt. The se-
lectors Xst and Xrt select the harmonic coefficients with orders
λ ∈ Λ from cst and crt respectively. Only these components are
treated by the modified air-gap reluctance matrix:

Kag = QT F−1XT GT−1XFQ . (28)

The harmonic coefficients which are not considered by the air-
gap element are not influenced by the air-gap and experience
homogeneous Neumann boundary conditions at Γst and Γrt.

X. PROCEDURE

After introduction of rotation, skewing and eccentricity, the
air-gap stiffness matrix reads

Kag = QT F−1XT RαSskewGεT−1
ε SskewR−αXFQ . (29)

The heavy matrix notation used for developing the air-gap ele-
ment in the previous sections is misleading. The application of
the air-gap element as a procedure acting upon the distributions
of the magnetic vector potential at Γst and Γrt provides both a
better understanding and a more efficient algorithm. The air-gap
element computes the surface currents g̃st and g̃rt occurring at
Γst and Γrt for particular field distributions ũst and ũrt applied
at the same boundaries. The procedure for explicitly carrying
out this computation is depicted in Fig. 4.

• Given a temporary FE solution vector [ust urt]T for the
magnetic vector potentials in Ωst and Ωrt, the values at the
air-gap interfaces Γst and Γrt are selected by the selection
matrices Qst and Qrt, yielding ũst and ũrt. This opera-
tions are implemented on a computer by subscripting the
FE solution vectors by predefined index sets.

• The vectors of harmonics cst and crt are obtained by ap-
plying Fast Fourier Transforms to ũst and ũrt. The FFTW
algorithm which is used for that purpose, consists of a setup
step, which is only carried out once, and a computation step
which has to be invoked 4 times per application of Kag

[20].

• At one of both sides, the rotation operator R−α and the
skewing operator Sskew are applied. This corresponds to a
vector-vector multiplication by phasors and scaling factors
respectively.

• From the (modified) harmonic coefficients cst and crt re-
lated to the magnetic vector potential distribution at Γst

and Γrt, the harmonic coefficients dst and drt related to
the fictitious surface currents at Γst and Γrt are computed
by applying the precomputed 2-by-2 blocks GλT−1

λ or in
the eccentric case by applying GεT−1

ε .

• The discretized surface currents g̃st and g̃rt at Γst and Γrt

follow by an inverse Fourier transformation applied to dst

and drt.

• Finally, ũst and ũrt are prolongated to vectors accord-
ing to the FE problems by computing gst = QT

stg̃st and
grt = QT

rtg̃rt again by invoking subscripting using appro-
priate index sets on the computer.

This procedure is made available as a separate software routine

g = airgapelement(u, alpha, gammaskew, decc, gecc)
(30)

taking the vectors ust and urt, the rotation angle α(t), the skew
angle γskew and the magnitude decc(t) and angle γecc(t) of the
eccentricity as parameters and returning the vectors gst and grt.

XI. DISCRETISATION AND CONSISTENCY ERRORS

A. Discretisation error of the air-gap element

When the range of the harmonic orders λ is limited to Λ in-
stead of λ ∈ {,−∞, . . . ,+∞} as for the analytical model, a
truncation error is introduced. The analytical air-gap solution
is equivalent to a spectral element (SE) discretization using an
orthogonal set of harmonic functions as test and trial functions
[21]. The SE approach is known to achieve an exponential con-
vergence rate of the discretization error as long as no sharp cor-
ners and no jumps of the material coefficients are present in the
SE model part, which is the case for the air gap of an electrical
machine. Hence, the overall discretization error of the coupled
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Figure 4: Procedure to apply the eccentric air-gap element coupling the FE model parts of stator and rotor.

FE-SE formulation will be dominated by the discretization error
of the FE model parts and the consistency error introduced by
the non-matching discretizations at Γst and Γrt.

B. Consistency error at the interfaces

A consistency error is introduced by the choice of non-
matching shape functions for Az and Hθ at the interfaces. It
is shown in literature dealing with the mortar-element method
(see e.g. [22]) that the consistency error at Γst and Γrt may
have a lower convergence rate than the one for the FE and SE
discretizations at Ωst, Ωrt and Ωag, which leads to a degener-
ated convergence of the overall discretization error for the hybrid
model. Moreover, for triangulations of cylindrical machines, Γst

and Γrt are polygons instead of circles such that the hybrid inte-
grals in (14) and (15) connect the SE degrees of freedom not only
to the FE degrees of freedom at the nodes of the interfaces but
also to the FE degrees of freedom associated with the first layer
of nodes inside Ωst and Ωrt [22]. The approach in [22] offers
a better convergence of the consistency error but causes a sub-
stantial increase of the computational work, especially because
FFT is not longer applicable. An acceptable trade-off consists
of integrating the interface conditions at the circles r = rst and
ρ = ρrt and assuming a linear variation of the FE shape func-
tions at the circle segments. This improvement is introduced in
the formulation described above by replacing F by SintF where

Sint,λ,λ =
2n

λ
sin(

λ

2n
) . (31)

This approach exactly corresponds to the original macro element
[1]. By substituting cos λθ− sin λθ for e−λθ, the notation used
in [1] and [13] is achieved.

C. Stability

For a stable numerical approach, arbitrarily small differences
in the results can be uniformly bounded by arbitrarily small dif-
ferences in the input data. When simulating solid-body motion,
the modelling of the geometrical changes is an important part of
the simulation scheme. When using a moving-band technique,

d

Figure 5: Topological change of the FE mesh due to a small dis-
placement of a part of the model. The displacement d of one
node belonging to the rotor causes a small distortion of a quadri-
lateral consisting of two triangles in the moving band. The di-
agonal edge of the original mesh is now shorter than the edge
between the two other opposite nodes. In that case, the Delau-
nay mesh procedure selects the other diagonal as a division of the
quadrangle into two triangles and thereby changes the topology
of the mesh.

the moving band is remeshed between two successive simulation
steps. An arbitrary small displacement of the rotor (either rota-
tion or eccentricity) can result in a topological change of the FE
mesh, e.g. a different number of FE vertices or an edge that is
oriented otherwise (Fig. 5). Hence, the remeshing of the moving
band is not stable with respect to the solid-body displacement of
the rotor, i.e., there does not exist a constant C < ∞ such that

‖u(d) − u(0)‖ < C‖d‖, ∀‖d‖ > 0 (32)

where u(d) represent the FE solution for a solid-body displace-
ment d. Such changes have a significant influence upon the com-
puted FE solutions. As a consequence, it is not always possi-
ble to obtain an arbitrary small difference between two succes-
sive FE solutions even if a very small displacement d is applied.
A similar phenomenon is reported as torque ripple when simu-
lating rotating machines using the moving-band approach [23].
The moving-band technique has been generalized for FE ma-
chine models with static and dynamic eccentricity [24, 25]. Al-
though a moving-band approach which is stable with respect to
eccentricity has been developed [26], the stability with respect
to rotation is still not given. This phenomenon is particularly
annoying when the displacements are smaller than the FE mesh
size, as is commonly the case when accounting for eccentricity



in FE machine models. One of the major benefits of the eccen-
tric air-gap element, is the guaranteed stability of the air-gap dis-
cretization with respect to small displacements of the rotor. This
property is indispensable to ensure a reliable torque and force
computation.

XII. ITERATIVE SOLUTION

The assembly of Kag into βM + K drastically increases the
density of the matrix and, as a consequence, will decrease the nu-
merical efficiency of the air-gap element approach. To our opin-
ion, this is the major reason why the air-gap element approach
is not so widespread as the moving-band technique. Here, an it-
erative approach is proposed which alleviates this problem. The
key point is that the air-gap stiffness matrix is not assembled into
the FE system matrix. Instead, the air-gap stiffness matrix Kag

is provided as a routine (30) turning an arbitrary vector u of FE
degrees of freedom into the corresponding surface currents g re-
flecting the reluctance of the air gap as illustrated by Fig. 4. At
the k-th CG step, the matrix-vector product fk = Auk is carried
out by adding the contribution of the conventional matrix-vector
product of uk by βM + K and the vector gk obtained by apply-
ing the routine (30) to uk. The operations in (23) needed to com-
pute gk from uk are applied successively as depicted in Fig. 4.
By applying the Fast Fourier Transform (FFT) algorithm for F
and F−1, the computational cost of the discrete Fourier trans-
forms, and thus of the eccentric air-gap element, can be kept as
low as O(n log n). The application of FFT is absolutely neces-
sary to ensure that the eccentric air-gap element is competitive
to moving-band and sliding-surface approaches [14]. Inserting
the operator (23) and combining real-valued and complex-valued
arithmetic is not possible in many black-box CG solvers. Hence,
a specialized CG algorithm has to be developed, which is the
major disadvantage of the improved air-gap element approach
described here.

The convergence of CG can be improved considerably by ap-
plying preconditioning. Since no algebraic matrix representing
A is available, pure algebraic preconditioning techniques such
as e.g. Successive Overrelaxation, Incomplete Cholesky and Al-
gebraic Multigrid (AMG) are not applicable [14]. A straightfor-
ward preconditioner is e.g. an additive Schwarz approach

(I − Q)T Ã−1(I − Q) + QT F−1TεG−1
ε FQ (33)

where Ã−1 denotes the application of 1 V-cycle of AMG. Also
the preconditioning step involves operations defined by a routine
similar to (30).

Special care has to be taken if the constant components
a0 + b0 log(r/ρrt) are considered in the air-gap element. The
solution for Az is known up to a constant field. When e.g. only
Dirichlet constraints are applied to the stator model part, Krt is
singular and the constant at the rotor side should be fixed by the
air-gap element formulation. Then, a problem rises for the mag-
netic field strength because G0 is a singular matrix. K−1

ag is not
defined for the constant components such that the analytical for-
mulae (4) and (5) fail to compute dst,0 and drt,0 from cst,0 and
crt,0. The constant component of the magnetic field strength is
determined by the total current irt through the rotor:

Hst,θ =
irt

2πrst
(34)

Hrt,θ =
irt

2πρrt
(35)

which necessitates the coupling of the air-gap element to the
degrees of freedom of the external circuit model. An easier

procedure consists of applying at least one Dirichlet boundary
condition at the rotor side and replacing the 2-by-2 block matri-
ces G0T−1

0 and T0G−1
0 by zero matrices such that no constant

components have to be propagated through the air-gap model.
This approach is, however, not applicable for machine models
where the total current through the rotor does not vanish.

XIII. TORQUE AND UNBALANCED MAGNETIC PULL

When the air-gap harmonics are available, a highly accurate
value for the torque can be computed using the formula [27]

T =
∑
λ∈Λ

8πν0�zIm
{
aHb

}
. (36)

Thanks to the stability of the air-gap element approach, torque
ripple is avoided [6].

The availability of the harmonic coefficients of the air-gap
field also allows to compute the unbalanced magnetic pull up
to the highest possible accuracy achieved by the FE model. The
magnetic flux density (Br, Bθ) with respect to the standstill po-
lar coordinate system can be gathered into a complex-valued
field:

B = Br + Bθ =
∑
λ∈Λ

−λ

r
2aλ

(
r

ρrt

)λ

e−λθ . (37)

Similarly, the force components Fx and Fy , expressed by the
Maxwell stress tensor, can be brought together:

F = Fx + Fy = �z

∫ 2π

0

ν0

2
B2eθr dθ . (38)

Introducing (37) into (38) and working out the integral leads to

F = −4π�zν0

ρrt

∑
λ∈Λ

λ(1 − λ)aλa1−λ . (39)

XIV. EXAMPLE

The 2D FE model of a magnetic bearing (Fig. 6a) is equipped
with the eccentric air-gap element. Transient simulations are
carried out to test the numerical behaviour of the eccentric air-
gap element and the embedded force computation. The rotor
is submitted to a prescribed movement which is a combination
of a translation from the position (0.5 mm, 9π/8) to the posi-
tion (0.5 mm, π/8) and a rotation around its axis. The stator
coils are excited such that a force under an angle of 22.5 degrees
is generated. Both unbiased and biased current excitations are
considered. The magnetic fluxes when the rotor is at the cen-
ter position are shown for both unbiased and biased excitation in
Fig. 6.

During the transient simulation, the stator and rotor FE
meshes do not have to be reconstructed. The movement of the
rotor between two successive time steps only affect the operators
Tε, Gε and Rα which are embedded in the eccentric air-gap
stiffness operator Kag. In practice, only the parameters spec-
ified in the routine (30) have to be adapted. The FE systems
βMst + Kst and βMrt + Krt are only reassembled as to ac-
count for the saturation of the ferromagnetic parts. The AMG
preconditioner is only constructed once before starting the time-
stepping procedure. The formulation based on the eccentric air-
gap element substantially diminishes the time for system set-up
during the transient simulation. No ripple on the results for the
force is encountered, indicating the stability of the discretization
scheme with respect to small displacements.



(a) (b) (c)

Figure 6: Magnetic-bearing model: (a) FE mesh; (b) magnetic flux lines (unbiased excitation) and (c) magnetic flux lines (biased
excitation).

XV. CONCLUSIONS

The reformulation of the air-gap element and its interpreta-
tion as a spectral-element discretisation in the air gap leads to
a formulation for which the major part of the work can be car-
ried out by Fast Fourier Transforms. Rotor rotation, stator or
rotor skewing and rotor eccentricity can be incorporated in the
air-gap element in a natural and convenient way. The develop-
ment of an efficient iterative solution scheme indicates that the
air-gap element approach is applicable to technical models with
a computational cost which is comparable to the one of standard
moving-band and sliding-surface techniques.
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