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Handbook for the computation
of electromagnetic forces in a continuous medium

Abstract — An energy-based theory for electromagnetic forces in
continuous media is proposed, aiming at providing a guide and
a complete toolbox for their numerical computation. In an Eu-
clidean space, the electromechanical coupling is shown to be re-
alised by a stress tensor, in terms of which the classical electromag-
netic force formulae can be re-interpreted, unified, and sometimes
generalised.

I. INTRODUCTION

Prof. Dave Lowther maintained in his excellent communica-
tion at the EMF Conference in Stratford-upon-Avon [1] that the
question of the computation of forces in computational elec-
tromagnetics had been solved for long within a sufficient ac-
curacy. One may however notice, by going through the refer-
ences he mentions, that the techniques he refers to assume very
simple materials and do not consider the problem with a suffi-
cient generality. In modern computational electromagnetics, one
needs indeed more and more to compute local forces in material
exhibiting not only saturation and anisotropy but also magne-
tostriction and hysteresis. The issue of forces comes then into
play entangled with energy and multiphysics considerations.

Whereas the profound theoretical issue and the fundamental
understanding of this difficult topic have been tackled with by
Alain Bossavit in the previous edition of the newsletter [2] and
in former publications [3, 4, 5], we have found it useful in this
paper to provide a more operative formalism, i.e. a set of general
rules and formulae that lead straightfully from the very statement
of the electromechanical problem up to a practical implementa-
tion of a solution method for it.

The existence of such a long controversy about the compu-
tation of electromagnetic forces and of so many uncertainties
among the practitioners is certainly to ascribe to the fact that the
issue can not be completely clarified with the concepts of Vec-
tor analysis. The mathematical analysis of this problem requires
to consider a deforming body, and to apply energy conservation
rules to it. The background required to perform such operations
is Differential geometry (See e.g. [6]).

The paper begins therefore with a presentation, which as-
sumes no prior knowledge, of Differential geometry. In just four
pages, the concepts required to the discussion are presented in
a way that is intended to be didactic and understandable to non-
specialists.

The second part is an energy-based formulation, entirely
based upon the notions introduced in the first part, of electro-
magnetism and of the electromechanical coupling. Casting the
famous Maxwell equations into a coherent energy framework is
indeed essential to our purpose and the discussion of electro-
magnetic forces ensues then naturally. Continuous media and no
relativistic effects are however assumed.

The third part is the transcription of the results of the second
part in terms of vector and tensor fields. This reveals that the
coupling can be expressed in general in terms of a stress tensor.
The procedure to determine that stress tensor is described.

Finally, it is shown in the last part of the paper that the wide
range of forces formulae and methods that are found in litera-
ture and applied in numerical simulations, can be unified quite
straightforwardly thanks to this coupling stress tensor, which is
not only a backwards result but also a solid departure point to
advisedly tackle with more complex materials.

II. DIFFERENTIAL GEOMETRY

A. Manifold

Differential geometry is the branch of Mathematics that stud-
ies functions and fields defined on continuous sets, and their
mappings. A manifold M of dimension n is a set of points of
which any neighbourhood can be mapped by a differentiable 1-1
mapping onto a subset of R

n. Each such mapping determines by
the way a valid local coordinate system on that neighbourhood
of P in M . By assuming only the existence of the mapping,
without requiring it to be specified, the manifold is solely en-
dowed with differentiability properties (it actually inherits those
of R

n) without getting already equipped with a preferred global
coordinate system or even the notion of distance or angle.

In summary : By definition, a manifold is endowed with the
differentiable structure of R

n but not with its metric structure
(lengths, angles, scalar product, norm, ...). This gives the mathe-
matical definition we need for a deformable continuous medium.

B. Vector

Let us first introduce the notation

u : x ∈ D ⊂ M 7→ y ∈ E ⊂ N (1)

for a function (or a map). In this exhaustive notation, u stands for
the name of the function, x and y are respectively the name of the
variable and the name of the value of the function, so that we can
write y = u(x). Finally, D ⊂ M and E ⊂ N are respectively
the domain and the codomain of the function. The alternative
notations D ≡ u−1(E) and E ≡ u(D) can be used if neces-
sary. All elements of the complete definition (1) are of course
not always relevant, and shortened notations are used whenever
no confusion is possible. It will prove to be essential in the fol-
lowing, for the correct definition of electromagnetic forces, to
clearly make the difference between the function (here u) and its
value (here y).

After this preamble, let the map u : t ∈ R 7→ C ⊂ M
describe a differentiable curve C in M . Let f : M 7→ R be a
scalar smooth function defined on M . The curvilinear derivative
of the function f at a point P ∈ M , which we shall note

∂tf ≡ lim
∆t→0

f(u(t + ∆t)) − f(u(t))

∆t
(2)

is an intrinsic quantity as, by definition, it is determined with-
out the need to refer to any system of coordinates on M . But
this quantity is composite in the sense that it mixes up some-
thing depending on the curve u with something depending on



the function f . In order to take these two components apart,
keeping on however with intrinsic quantities, one resorts for a
moment to a coordinate system {xi} defined on M . The map u
is now a function u : t ∈ R 7→ {xi} ∈ R

n, whose value is not
any more a point in M but the coordinates referring to this point.
The curvilinear derivative writes now

∂tf = (∂xif) ∂tx
i. (3)

As (3) holds for any function f , one may consider

∂t = (∂tx
i) ∂xi . (4)

as being what depends specifically on the curve in the curvilinear
derivative, i.e. the vector tangent to the curve C at P . One in-
deed recognises in (∂tx

i) the components of that vector. Hence,
the ∂xi’s, which are the vectors tangent to the coordinate lines,
play the role of a basis for vectors anchored at P , and ∂t is the
notation for the vector itself.

This shows the set of all vectors tangent to the curves going
through a point P ∈ M has the structure of a linear space of
dimension n. This linear space is called tangent space and noted
TP M . But the point is this : Whereas the components of the
vector (∂tx

i) are not intrinsic, as they explicitly involve the co-
ordinates, the entire vector ∂t is, as suggested by the fact that
the differentials of the coordinates cancel each other out in (4).
More precisely, this cancellation means that the quantity noted
∂t and called vector, is independent of the chosen coordinates.
Indeed, if a change of coordinates xi 7→ yJ is performed, one
has by application of the chain rule

∂t = (∂tx
i) ∂xi = (∂yK xi) (∂ty

K) (∂xiyJ) ∂yJ

= (∂ty
K) ∂yK ,

since ΛJ
i ≡ (∂xiyJ) and Λi

K ≡ (∂yK xi) are the coefficients
of Jacobian matrix of the change of coordinates and its inverse,
Λi

KΛJ
i = δJ

K .
A vector field is a rule that associates a vector, i.e. an element

of TP M , to each point P ∈ M . The set of all vector fields
defined on M is called tangent manifold and noted TM .

In summary : By considering the curvilinear derivative of a
function, one finds that the vectors form, at each point of a mani-
fold, a linear space of the same dimension as the manifold itself.

C. Covector

Similarly, one may recognise in the (∂xif)’s in (3) the com-
ponents of the gradient of f in the coordinate system {xi}. Let
us agree to note df for the gradient of the function f 1. Since
the curvilinear derivative ∂tf is a scalar, (3) shows that the gra-
dient of f acts as a real-valued intrinsic (again the cancellation
of the coordinates’s differentials) operator on the tangent vector
∂t, which we shall write

∂tf = df (∂t) = 〈df, ∂t〉. (5)

This operator is (bi-)linear, as a consequence of the linearity of
the chain rule of partial derivatives in R

n. The set of all gradients
at P has therefore also the structure of a linear space of dimen-
sion n. It is noted T ∗

P M and called cotangent space. Its elements
are called covectors. The gradients dxi of the coordinates form
a basis for the covectors at P , so that

df = (∂xif) dxi (6)

1The operator d will later on be given a more general definition.

is the intrinsic representation of the gradient.
A covector field is a rule that associates a covector, i.e. an

element of T ∗

P M , to each point P ∈ M . The set of all covec-
tor fields defined on M is called cotangent manifold and noted
T ∗M .

In general however, vectors and covectors behave differently
under a change of coordinates :

dyJ = (∂xiyJ) dxi , ∂yJ = (∂yJ xi) ∂xi . (7)

The reason why covectors are however ignored in vector anal-
ysis is that they cannot be distinguished from the vectors in that
particular framework. As vector analysis exclusively works in
an Euclidean space and with orthonormal coordinate systems,
all change of coordinates are rotations and the associated Jaco-
bian matrices are orthogonal. Vectors and covectors have then
all the same properties.

In summary : When applying a change of coordinates, the
chain rule of derivatives induces naturally a fundamental distinc-
tion between covariant and contravariant quantities. If by con-
vention the coordinates, e.g. {xi}, are represented with an upper
index, covariant quantities have a lower index and contravariant
quantities have an upper index. Whereas the components of a
covector and the basis vectors ∂xi are covariant quantities (an
upper index in a subscript counts as a lower index), the com-
ponents of a vector and the basis covectors dxi are contravari-
ant quantities, see (4) and (6). Intrinsic quantities are those for
which all upper indices are involved in an implicit summation
with a corresponding lower index.

D. Tensor

By a direct generalisation of (5), a tensor at a point P ∈ M is
defined as a real-valued multilinear operator acting on an ordered
set of vectors v, . . . ∈ TP M and covectors a, . . . ∈ T ∗

P M :

A(v, . . . ; a, . . .) = Aj···
i···v

i · · · aj · · · (8)

A = Aj···
i··· dxi ⊗ · · · ⊗ ∂xj ⊗ · · · (9)

with ⊗ the tensor product.
In summary : Tensors are (multi-)linear operators on vectors

and covectors. Their coordinate representation is throughout
consistent with the upper (contravariant) and lower (covariant)
index notation. Change of coordinates are performed by apply-
ing the Jacobian matrix to all indices according to the implicit
summation rule.

E. Integral

The trajectory C of a particle in M is the codomain of the
map u : t ∈ [tA, tB ] ⊂ R 7→ xi ∈ C ⊂ M . It is a curve. The
velocity is the vector tangent to that curve. According to the pre-
vious section, it can be simply noted ∂t. On the other hand, the
force F applied to that particle is a covector. The scalar result of
the application of F to ∂t is the instantaneous mechanical power
Ẇ = F (∂t). Given a force field, say a covector at each point
P ∈ M , which is still noted F , the mechanical work W can be
expressed by selecting on the trajectory C a discrete set of points
Pr, r = 0, ..., N , corresponding with the values r tB−tA

N
= r∆t

of the parameter t. One has then for W the intrinsic expression

W =

∫

C

F = lim
N→∞

N
∑

r=1

F (∆t ∂t)|Pr
(10)



where ∆t ∂t represents at Pr a finite walk along C. This is the
definition of the (curvilinear) integral of F over C. It shows the
role played by the covector as an operator on vectors.

Similarly, a smooth surface is defined by a mapping u : s, t ∈
D ⊂ R

2 7→ S ⊂ M . By analogy with (10), the surface integral
of a tensor field A should have an expression like

∫

S

A = lim
N→∞

N
∑

r=1

A (∆s ∂s,∆t ∂t)|Pr
(11)

where the Pr’s are a set of points defining the vertices of a con-
venient regular grid on the surface S. This means that the ten-
sor should have two vector-arguments and that A(∆s ∂s,∆t ∂t)
should represent the flux of A through the finite grid cell un-
derlain by the vectors ∆s ∂s and ∆t ∂t. The tensor A must
therefore be such that the flux is reversed whenever the surface
itself is reversed (i.e. the vectors are permuted) and the flux is
zero whenever the surface vanishes (i.e. the vectors are paral-
lel). This amounts to require A to be antisymmetric. Further on,
an antisymmetrised tensor with 3 vector-arguments represents a
volume density. The assertion is actually also valid for higher
order tensors, so that it is worth giving those tensors a special
name. A p−covector is a tensor with no covector-argument and
p vector-arguments, verifying

A(. . . , v, . . . , w, . . .) = −A(. . . , w, . . . , v, . . .) (12)

for any pair of arguments.
Similarly, a p−vector is a completely antisymmetrised ten-

sor with no vector-argument and p covector-arguments. In a 3D
space, antisymmetrisation only leaves p−(co)vectors for which
p = 0, 1, 2, 3, the other ones are identically zero.

In summary : Antisymmetrisation of covariant indices is the
operation that selects the particular tensors that play a role for
integration.

F. p−forms

A p−form, or a differential form of degree p, is a field of
p−covectors. It is fundamentally an argument for an intrinsic
p−fold integral. Let Λp(M) be the set of all p−forms defined
on M . In a 3D space, it is easily deduced from (12) that 0–
forms and 3–forms have 1 component at each point, whereas
1–forms and 2–forms have 3. Electromagnetic fields can be seen
as paradigms for the p−forms. The electric potential is a 0–
form; the magnetic vector potential, the magnetic field and the
electric field are 1–forms; the induction field, the electric dis-
placement and the current density are 2–forms; the charge den-
sity finally is a 3–form. Of course, p−forms need specific in-
trinsic antisymmetry-preserving operators. The antisymmetry-
preserving tensor product is the exterior product ∧ (13) and the
antisymmetry-preserving spatial derivative is the exterior deriva-
tive d (14).

∧ : Λp(M) × Λq(M) 7→ Λp+q(M) (13)
d : Λp(M) 7→ Λp+1(M) (14)

Complete definitions can be found in any Differential geometry
treatise, e.g. [6]. One has in particular

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ (15)

for all p−forms α and β.
Exterior derivative obeys also the Stokes theorem

∫

Ω

dα =

∫

∂Ω

α (16)

where ∂Ω denotes the boundary of the integration domain
Ω ∈ M . It reveals the duality pairing between p−forms and
p−dimensional integration domains, and it shows how p−forms
carry topological information from the boundary of the domain
inwards through their exterior derivative. From their being es-
sentially arguments for p−fold integrals, p−forms are endowed
with specific continuity properties. If A is a p−form defined
on a 3D domain Ω, the continuous part of A across any surface
Σ ⊂ Ω is by definition its trace A|Σ on that surface. The trace
of a 0–form is determined by its value at the points of Σ, i.e. the
trace is the 0–form itself. The trace of a 1–form is determined
by its circulation over all curves defined in Σ, i.e. the trace is
the tangential component. The trace of a 2–form is determined
by the fluxes through all subsets of Σ, i.e. the trace is the nor-
mal component. Finally, the trace of a 3–form is determined
by the surface integral of a volume density, which gives always
zero and hence no continuity condition for a 3-form. Further-
more, the p−forms inherit of a specific way of interpolation on
a finite element mesh. Only the 0–forms have the right to be in-
terpolated in terms of their value at the nodes of the mesh. For
the other kinds of p−forms, the adequate interpolation parame-
ters are respectively the integrals over the edges of the mesh for
the 1–forms, the integrals over the facets for the 2–forms and
the integrals over the elements for the 3-forms. Shape functions
corresponding with these node-, edge-, facet- and element-based
connectors are called Whitney forms.

In summary : Whitney forms ensure a finite element interpo-
lation that preserves the continuity properties of p−forms at the
discrete level.

III. MECHANICAL FRAMEWORK

A. Placement map

The theoretical framework we need to analyse the electrome-
chanical coupling, relies upon two manifolds with distinct func-
tions : the material manifold M of which each point is associated
with a material particle of the deforming body (e.g. an atom),
and the Euclidean space E which is a manifold where a metric
(See further) has been defined and which represents the space
where the motion takes place.

Let the placement map

pt : X ∈ M ⊂ R 7→ x = ptX ∈ E, (17)

be the map that associates its position in E to each material par-
ticle X ∈ M at all instants of time t ∈ [tA, tB ]. The codomain
of the placement map, ptM , is the deformed state. On the other
hand, the codomain of the map t ∈ [tA, tB ] 7→ ptX ∈ E is the
trajectory of a particular material particle X . The velocity field,
v = ∂tx ∈ TE, is the field of tangent vectors to all trajectories
of the flow at a given instant of time.

The placement pt is assumed to be regular and invertible at
each instant of time. It induces a 1-1 mapping, also noted pt, of
all tensor quantities defined on M to corresponding tensor quan-
tities defined on E. If quantities defined on M are denoted with
a uppercase symbol, and if quantities defined on E are denoted
with a lowercase, one has ptA = a, p−1

t a = A. In index no-
tation, the components of a and A are related by the Jacobian
matrix of pt, e.g. ai = Λi

JAJ with Λi
J = ∂XJ xi. The place-

ment map of p−forms commutes with the exterior derivative d,
thus the commutation property

d pt = pt d. (18)



For all p−forms α, β, one has also

pt(α ∧ β) = (ptα) ∧ (ptβ) (19)

and
∫

ptM

a =

∫

M

p−1
t a. (20)

B. Material derivative

The material derivative of a tensor field a defined on E is by
definition

Lv a = lim
∆t→0

pt p−1
t+∆ta(t + ∆t) − a(t)

∆t
(21)

Consider now a tensor field A defined on M with A =
p−1

t (a). One has

∂tA = ∂tp
−1a

= lim
∆t→0

p−1
t+∆ta(t + ∆t) − p−1

t a(t)

∆t

= p−1
t lim

∆t→0

pt p−1
t+∆ta(t + ∆t) − a(t)

∆t

= p−1
t Lv a,

which is the fundamental commutation property

∂t p−1
t = p−1

t Lv . (22)

By (20) and (22), the material derivative verifies

∂t

∫

Ω

a = ∂t

∫

ptM

a = ∂t

∫

M

p−1
t a =

∫

M

∂tp
−1
t a

=

∫

M

p−1
t Lv a =

∫

ptM

Lv a =

∫

Ω

Lv a

which means
∂t

∫

Ω

a =

∫

Ω

Lv a. (23)

C. Metric

The notions of length and angle are defined in a manifold Ω
by means of the metric g which, at each point x ∈ Ω, associates
a number to any pair of anchored vectors :

g : v, w ∈ TxΩ 7→ g(v, w) = gijv
iwj ∈ R. (24)

In this theory, the metric is only defined in the Euclidean space
E, where one has gE

ij = δij . The metric can of course be pulled
back to M , gM = p−1

t gE where it then depends on time. The
metric not only determines the lengths but also the intensity of
the fields, and consequently the energies, as we shall see further.

IV. ENERGY-BASED FORMULATION OF ELECTROMAGNETISM

A. With Differential geometry

The state variables that represent the electromagnetic fields in
our system are two 2–forms defined on the material manifold.
Let

D,B ∈ Λ2(M). (25)

be respectively the electric flux density and the magnetic flux
density. The metric is required in order to attribute them an in-
tensity. The magnetic flux density B, for instance, associates a
flux ϕ (in Weber) to any material surface Σ in M . But one needs

to know the measure of ptΣ in E, hence the metric on E, to de-
termine the intensity of the field ϕ/measure(ptΣ). As energy is
a function of the intensity of the fields, the electromagnetic en-
ergy density ρΨ is a function taking as arguments the image by
the placement of the state variables :

ρΨ : d ≡ ptD, b ≡ ptB ∈ Λ2(E) 7→ Λ3(E). (26)

A particular shortcut notation is adopted for the value of the
Frechet derivatives of ρΨ :

(

∂dρ
Ψ
)

(ptD, ptB) ≡ ẽ ∈ Λ1(E),
(

∂bρ
Ψ
)

(ptD, ptB) ≡ h̃ ∈ Λ1(E),

where the tilde reminds that these 1–forms not only depend on
the state variables D and B, but also on the definition of the
electromagnetic energy density ρΨ and on the placement map
pt. Note that we do not consider these relations as constitutive
laws, but rather as shorthand notations.

We can now establish the terms of the energy balance.
a) The electromagnetic energy of the system writes

Ψ =

∫

Ω

ρΨ(ptD, ptB), (27)

where Ω ≡ ptM ⊂ E is the deformed state of the material
manifold.
b) The electromagnetic power exchanged by the system through
its surface ∂Ω writes

Ṡ =

∫

∂Ω

{

ẽ ∧ h̃
}

. (28)

We shall assume that all voltage and current sources are left out-
side the system, so that their contribution is taken into consider-
ation by the term Ṡ.
c) We have now to describe the interface between the electro-
magnetic energy compartment and the other energy compart-
ments, i.e. the conversion of electromagnetic energy into other
forms of energy. At the macroscopic level, it suffices for that
purpose to distinguish the charges that are free to move in the
conduction bands of the material from the charges (or electric
dipoles, or magnetic moments, . . . ) that are bound to the rigid
crystallographic structure. The electromagnetic power converted
in the system has therefore two terms :

Ṙ =

∫

Ω

{

ẽ ∧ ptJ + ρẆ
em

}

. (29)

The first one is the mechanical power delivered by electrostatic
forces to the free charges flowing in the material. The current
density J , which represents the flow of free charges, is by defi-
nition the 2–form J ∈ Λ2(M) giving for each material surface in
M the amount of free charges crossing it per second. In practice,
the current density can also be given as a function of the electric
field : ptJ = σẽ ∈ Λ2(Ω), with σ the electrical conductivity of
the material.

The second term in (29), ρẆ
em ∈ Λ3(E), is the mechanical

power delivered by the electromagnetic forces to the solid struc-
ture of the matter. This is the term we want to evaluate.

The energy balance of the system Ω writes

∂tΨ + Ṡ + Ṙ = 0, (30)

and under local form, making use of (16) and (23),

Lv

{

ρΨ(ptD, ptB)
}

+ ρẆ
em

+ẽ ∧ ptJ + d{ẽ ∧ h̃} = 0. (31)



Note that this is not Poynting’s relation.
The application of the chain rule of derivatives gives

Lv

{

ρΨ(ptD, ptB)
}

= {Lv ρΨ}(ptD, ptB) (32)

+ ẽ ∧ Lv ptD + Lv ptB ∧ h̃.

Note the importance of the grouping brackets. One has got at the
left-hand side the Lie derivative of the value of the function ρΨ,
which is a 3–form, whereas one has at the right-hand side the Lie
derivative of the function itself, which is another function, with
the same domain of definition.

Evaluating the exterior derivative in (31) using (15), and reor-
ganising terms yields

0 = ẽ ∧ {Lv ptD + ptJ − dh̃}

+ {Lv ptB + dẽ} ∧ h̃

+ {Lv ρΨ}(ptD, ptB) + ρẆ
em,

which has to be verified whatever the choice of Ψ and pt. It
follows

0 = Lv ptD + ptJ − dh̃ (33)
0 = Lv ptB + dẽ (34)

ρẆ
em = −{Lv ρΨ}(ptD, ptB) (35)

which are the Maxwell equations (Ampere and Faraday laws) in
the Euclidean space E, and the sought definition of ρẆ

em.
But the local balance can as well be expressed in material

form, i.e. on the material manifold M . One finds by applying
p−1

t to (31) and using (23), (18) and (19)

∂t{{p
−1
t ρΨ}(D,B)} + p−1

t ρẆ
em

+Ẽ ∧ J + d{Ẽ ∧ H̃} = 0 (36)

with Ẽ ≡ p−1
t ẽ and H̃ ≡ p−1

t h̃. Applying again the chain rule
of derivatives gives

0 = Ẽ ∧ {∂tD + J − dH̃}

+ {∂tB + Ẽ} ∧ H̃

+ {∂tp
−1
t ρΨ}(D,B) + p−1

t ρẆ
em,

whence finally the Maxwell equations in their familiar (material)
form and another definition of ρẆ

em :

0 = ∂tD + J − dH̃ (37)
0 = ∂tB + dẼ (38)

p−1
t ρẆ

em = −{∂tp
−1
t ρΨ}(D,B). (39)

B. Back to Vector analysis

The development of the last section shows that the Maxwell
equations in their customary form are valid on the material mani-
fold (i.e. Lagrangian formulation and comoving mesh). The cor-
responding equations for the Eulerian formulation (fixed mesh)
are also given. But most important to our discussion is that the
general expression of the mechanical power conveyed from the
electromagnetic compartment to the mechanical compartment is
obtained, resp. (35) and (39). Since this expression involves
the placement map pt, and therefore the velocity field v, it con-
tains hidden expressions for the electromagnetic forces, which
we shall now work out.

The simplest way to do so is to revert to Vector analysis so
as to work with vector and tensor fields in the Euclidean space

E. There is finally not much to add to the framework of classical
Vector analysis to make the bridge with the results of last section.

One has first to recognise the existence of 2 different kinds of
scalar fields, namely the 0–forms and the 3–forms, and the ex-
istence of 2 different kinds of vector fields, namely the 1–forms
and the 2–forms. Then, Differential geometry provides the ex-
pressions of their respective material derivatives, in terms of the
gradient of the velocity field :

Lv f = ḟ (40)
Lv h = ḣ + (∇v) · h (41)
Lv b = ḃ − b · (∇v) + b tr(∇v) (42)
Lv ρ = ρ̇ + tr(∇v) ρ (43)

where ż = ∂tz + v · ∇z denotes the total derivative of z(t, xk),
applied component by component if z is a vector field. Whereas
(40) and (43) are classical in fluid dynamics, (41) and (42) are
less often encountered and they should certainly be added to the
panoply of the differential equations ruling electromagnetism.

Considering now a material for which the energy density is
a function of the induction only, ρΨ : b ≡ ptB ∈ Λ2(E) 7→
Λ3(E), one has successively

Lv {ρΨ(b)}

= ρ̇Ψ(b) + tr(∇v) ρΨ(b)

= ∂bρΨ(b) · ḃ + tr(∇v) ρΨ(b)

= h̃ · Lv b (44)
+ {b · ∇v · h̃ − tr(∇v) {h̃ · b − ρΨ(b)}}

by applying (43) and then (42).
A formal identification with (32) assuming D = 0 and (35)

shows that the second term at the right-hand side of (44) is the
mechanical power developed by the magnetic forces, so that one
can write

ρẆ
em = −σem : ∇v (45)

with the Maxwell stress tensor

σem = b h̃ − {h̃ · b − ρΨ(b)}I (46)

defined as the factor of ∇v. Note the use of the dyadic (un-
dotted) vector product (v w)ij = viwj , the tensor product
a : b = aijbij and the identity matrix I.

V. COMPUTATION OF ELECTROMAGNETIC FORCES

Equation (45) represents the transcription into classical terms
of the fundamental result (35) found by the energy-based ap-
proach. In the last part of this paper, the implications of this
result to the definition of electromagnetic forces are listed. It is
shown in particular that the variety of existing methods to com-
pute electromagnetic forces in finite element models can be all
found back from (45), by considering different virtual velocity
fields v.

a) Maxwell stress : The electromechanical coupling happens to
be realised by the work done by a stress tensor on the gradient of
a (virtual) velocity field. This is due to the fact that the material
derivatives of the p−forms (40–43) involve ∇v, but not v itself.

b) energy density : Each material has to be given its own ex-
pression of the Maxwell stress tensor σem, by applying the same
procedure as above. If, for example, the energy density is also
a known function of strain, ρΨ : b, ε 7→ Λ3(E), the Maxwell
stress tensor turns out to have just one extra term

σem = b h̃ + ∂ερ
Ψ − (h̃ · b − ρΨ)I (47)



and this is already enough for magnetostriction. Other examples
can be found in [7].

c) force density : The link between the Maxwell stress tensor
σem and the electromagnetic force density ρf

em is found by inte-
grating (45) by part over Ω. One has

∫

Ω

σem : ∇v = −

∫

Ω

ρf

em · v +

∫

∂Ω

n · σem · v (48)

with ρf
em = div σem by definition and n the exterior normal to

∂Ω.
For instance, by applying the useful formula

−ai ∂bk

∂xi
+ ai ∂bi

∂xk
= (a × curlb)k, (49)

the force density derived from

σem = d ẽ + b h̃ − {ẽ · d + h̃ · b − ρΨ(d,b)}I (50)

is found to be

ρF

em = curl ẽ × d + curl h̃ × b + ẽ div d + h̃ div b. (51)

Substituting Maxwell equations gives

ρF

em = −Lv {b × d} + j × b + ẽ div d + h̃ div b. (52)

This expression of the electromagnetic force density is applica-
ble to all materials for which the energy density can be repre-
sented by ρΨ : d,b 7→ Λ3(E), i.e. a function of the fields b and
d only.

d) sign convention : It should be carefully noted that the
Maxwell stress tensor σem is a true mechanical stress, i.e. its
work is delivered by the mechanical compartment and received
by the electromagnetic compartment. On the other hand, ρf

em

is a magnetic force. Its work is withdrawn from the electro-
magnetic compartment and received by the mechanical compart-
ment.

e) continuity : At material interfaces, the Maxwell stress ten-
sor is in general discontinuous. The force is there defined, in
the sense of distributions, as the jump σem · n, as can be seen
by applying (48) material domain by material domain, and then
summing up the surface contribution on the inner material inter-
faces.

f) applied stress : The Maxwell stress tensor can be used directly
as an applied stress in the structural equations and boundary con-
ditions of the system. One has

div {σ + σem} + ρf = 0, (53)

which is easier than coupling through the forces

div σ + {ρf

em + ρf} = 0, (54)

since ρf
em requires a special treatment at material interfaces.

g) force-free region Z : Applying (48) to a force-free region,
i.e. ρf

em = 0 on Z (cf Fig. 1), yields

−

∫

Z

ρẆ
em ≡

∫

Z

σem : ∇v =

∫

∂Z

n · σem · v. (55)

This shows that the velocity field v is arbitrary on the interior
of any force-free region, in the sense that it does not affect the
mechanical power exchanged with that region. In all cases, v

needs however to remain continuous.

X

S
Y

Z

Figure 1: Typical resultant magnetic force problem, Y is the
moving rigid region (body), Z is the force-free region, X is
fixed, S is the eggshell.

h) rigid region Y : Considering a region Y with a rigid body
velocity field v = v0 + w0 × r, (48) gives

∫

Y

σ̂em · w0 +

∫

Y

ρf

em · {v0 + w0 × r}

=

∫

∂Y

n · σem · {v0 + w0 × r} (56)

with σ̂k
em = εijk(σem)ij . The vectors v0 and w0 being constant,

one may define the resultant magnetic force

FY =

∫

Y

ρf

em =

∫

∂Y

n · σem (57)

and the resultant magnetic torque

TY =

∫

Y

{

σ̂em + r × ρf

em

}

=

∫

∂Y

r × (n · σem) (58)

acting on the rigid region Y . The term σ̂em is zero when σem is
symmetric.

Equations (57) and (58) show that the resultant force FY and
the resultant torque TY acting on a rigid region Y can both be
evaluated by means of a surface integral on its boundary ∂Y .
This classical result implies however a surface integration, which
requires a specific implementation. Note that the rigid region
need not be identified with a material body. It may be larger,
provided that the extra domain enclosed is force-free.

i) eggshell method : In practice, it is easier to work with volume
integrations which are already implemented in the finite element
programme. In order to get rid of the surface integration in (57)
and (58), one chooses a domain Ω larger than the rigid region Y ,
i.e. enclosing as well a part of a force-free region (generally air).
One chooses a velocity field which describes a rigid motion of
Y , decays smoothly outside Y and vanishes on ∂Ω, i.e

v = {v0 + w0 × r} γ, (59)

where γ is any smooth function whose value is 1 on Y and 0 on
∂Ω. Applying now (55) to the force-free region Ω − Y yields
successively

−

∫

Ω−Y

σem : ∇v = −

∫

∂Ω−∂Y

n · σem · v

=

∫

∂Y

n · σem · {v0 + w0 × r}

= FY · v0 + TY · w0, (60)



by the definition of γ , (57) and (58). This gives an alternative
way to compute the resultants FY and TY , now by means of a
volume integral, with σem the Maxwell stress tensor of empty
space.

In the particular case of a translation velocity field v = v0γ,
one has

FY = −

∫

Ω−Y

σem · ∇γ. (61)

In practice, the support of v is reduced to a minimum, i.e. the
rigid region plus a thin shell S ≡ Ω − Y of air around it. The
shell can be defined explicitly by the user, like in Fig. 1, and γ is
then an also user-defined analytic function. In general, it is easier
to have the eggshell automatically defined. A natural choice is
to take one layer of finite elements around the moving region,
i.e. all elements touching the boundary ∂Y on the outer side.
The function γ is then simply, on that support, the sum of the
shape functions associated with the nodes of Y . This alternative
method to compute the resultant force on rigid bodies has been
proposed in [8] and [9].

j) Arkkio’s method : The torque in 2D models of electrical ro-
tating machines can be calculated with the eggshell method by
considering the rotation velocity field

v = γw0 × r =
Ro − r

Ro − Ri

{w0ez} × {rer} (62)

in cylindrical coordinates, where Ro and Ri are respectively the
outer and inner radius of any cylindrical air region S contained
in the airgap. The gradient of the velocity field is

∇v =

(

∂rv
r 1

r
∂θv

r

r∂r(
vθ

r
) ∂θ(

vθ

r
)

)

=
−w0r

Ro − Ri

er eθ, (63)

whence by (60), the formula of Arkkio [10] :

TY =
ez

Ro − Ri

∫

S

r(σem)rθ. (64)

k) Coulomb’s method : The Coulomb’s formula to compute
nodal electromagnetic forces by the local derivative of the Jaco-
bian [11], is obtained by identifying v0 with the virtual velocity
of one node and the function γ with the shape function of that
node in the real axes. One obtains

{

−

∫

Ω

σem : ∇γ

}

· v0 =

{
∫

Ω

ρf

emγ

}

· v0. (65)

where the domain of integration can be limited to the support
of γ, which is in general not a force-free region. This allows to
define the nodal net force FN acting on the node by

FN ≡

∫

Ω

ρf

emγ = −

∫

Ω

σem : ∇γ, (66)

which is identical to the formula proposed in [12]. It can also
be shown to be equivalent to the formulae presented in [13] for
linear materials and in [11, 14] for non-linear materials. Equa-
tion (66) is however more general, as it does not assume any
particular form of σem.
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