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Forces inside a magnet

Abstract — This is an essay on the question of forces,
not a research paper.  I think the difficulty with
electromagnetic forces is less with theory and the
required mathematical formalism—quite demanding,
one must admit, than in modelling, that is to say,
in the translation of physical assumptions and facts
into mathematical statements.  Once this is done, a
clearcut result should emerge—Mathematics don't lie.
The thesis I defend is that ambiguities about the
formulation of constitutive laws are responsible for
the prevailing confusion, and the persistence of
controversies,  about forces.   More precisely,
constitutive relations between fields should be
known for all possible deformation states of the
material.  Under this proviso, there is a definite,
demonstrably correct expression for body forces.
But in confrontations with experiments,  this
expression will be worth what the constitutive laws
are worth.  Hence it all relies on the measurements
by which behavior laws are determined:  For they
ought to be observed, not theorized about.
Interestingly, a consistent theory of forces is a
prerequisite for such observations, which unavoid-
a b l y involve coupled problems.

Index terms — Magnet, energy, coenergy, virtual
work principle, force, differential forms, Lagrangian
f o r m a l i s m .

I.  INTRODUCTION

Isn't it surprising that forces in electromagnetism are still an
issue?  After all, Electromagnetism comes after Mechanics,
in the genesis of classical physics, and such concepts as
work, energy, and force are considered as already there, as
parts of the accepted framework, when foundations for
electromagnetics are laid out.  Best evidence for that, the fact
that both electric and magnetic field are defined in terms of the
(pre-existing) concept of force, just after the introduction of
the concept of "electric charge".  Electric and magnetic field
are defined as the agencies responsible for forces over steady
and moving test charges, respectively, and described,
mathematically, by the same objects that describe forces:
The total force, called Lorentz force , on a test charge  Q
(small enough not to perturb the field) is  Q(E + υ × B),
where  υ  stands for the charge's velocity.  Since forces are
there from the beginning, where does the difficulty lie?  Can't
we just determine where charges are, compute the fields, and
sum up the Lorentz forces on all charges present in some
body to know which force acts on it?

We can't, in most situations, because a detailed account
of charge motion is not part of the modelling.  We use
constitutive laws, such as the  B–H  relation in magnets or
ferromagnetic materials, which imply a distinction between
conduction charges, or "free" charges, which constitute the
current density  J, and "bound" charges, whose motion at a
microscopic scale, responsible for magnetization, is roughly
described by a magnetization vector field, linked with  B  via
the  B–H  relation one adopts.  These laws are the mesoscopic1

summary of a lot of microscopic phenomena, involving the
dynamics of bound charges, which we cannot, and don't want
to, know about.  How Lorentz forces balance at the microscopic
level, what the microscopic fluctuations of fields  B  and  H
are (they appear in the  B–H  law via their meso-scale
averages), all that is ignored.  Hence the danger inherent in
trying to derive the mesoscopic force by summation of some
of the microscopic ones, based on solid-state physics
considerations:  Odds are high that the selective ignorance at
work in such a process, on the one hand, and the selective
ignorance inherent in the design of constitutive laws, on the
other hand, be not consistent.

That will be our red thread:  In need of a link between
Electromagnetics and Mechanics, we replace Lorentz force, in
this function, by a statement about energy exchanges, called
in what follows the "energetic postulate", that will have the
required consistency built in.  Then, we shall derive the
force, by mathematical arguments, from a well-defined set of
relations:  Maxwell equations, constitutive laws, and the
postulate.  If we can trust the postulate (and we can, as we
shall see at once), the force field will be predicted with just as
much certainty and accuracy (but no more) as can be achieved
in setting up the constitutive laws.   Moreover, it will be
apparent that such a consistent theory of forces is just what
one needs to determine (via measurements) the constitutive
laws in the first place.

The basic energetic statement is derived from the Lorentz
force law as follows.  Suppose free charges (electrons in a
solid metal, ions in a fluid) so tiny and numerous that one
may describe their distribution at a given instant  t  (not
explicitly mentioned) by a scalar function  Q Ÿ(x, υ)  of position
x  and velocity  υ, and thus defined over "position–velocity
space":  Namely, the total charge of conduction electrons,
etc., present in a small volume  dx  surrounding a point  x,
and whose velocity lies in a box of volume  dυ  around  υ  in
velocity space, is  QŸ(x, υ) dx dυ.  Thus, the total free charge
present in volume  dx  around  x  is the integral  Q(x) =
∫ QŸ(x, υ) dυ  with respect to  υ, hence the charge density  Q.
Now, to account for the collective motion of charges, one
introduces  J(x) = ∫ QŸ(x, υ) υ dυ, again an integral over
velocity space, but now vector valued, called "current density".
In the field  {E, B}, a moving charge carrier feels the force
Q(E + υ × B) , and the power it taps from the field is
Q E · υ, since  (υ × B)  · υ = 0.  (Note that, since the field is

1  Behavior laws are relations between averages of the fields at
some definite spatial scale (which depends on the modelling).
The prefix "meso" will refer to this scale.  This leaves "micro" to
connote what happens at a much smaller spatial scale (atomic,
for instance), and "macro" for what laboratory instruments are
able to record.  For instance, a relation such as  V = RI, as read off
an Ohmmeter, is macroscopic, and the knowledge of  R, for a
particular sample, may help determine  σ  in the mesoscopic relation
J = σE  that holds for this sample's material.  Of course, this
Ohm's law ceases to be valid at a smaller-scale microscopic level.

thus able to yield power, it must also be able to store it,



hence the concept of field's energy, the expression for which
will come later.)  For a charge distribution  QŸ(x, υ)  in
position-velocity space, the sum of these powers with respect
to  υ  is  E(x) · ∫ QŸ(x, υ) υ dυ, i.e.,  E(x) · J(x).  Hence this:
the field yields power, a power that distributes with the
density  E  · J, to the mechanical system the moving charges
are part of.  That will be the foundation for our basic energetic
postulate.  Note the enormous loss of information when
going from  Q Ÿ  to  Q  and  J.  This loss must be compensated
by a constitutive law:  Ohm's law, for instance, which says
that  J = σE, for a non-moving2 conductor (and we shall not
attempt to derive this from a detailed analysis of the field–charge
interaction!).

Where does this energy go?  In a non-moving conductor,
no mechanical degrees of freedom (DoF) vary, or rather, all
DoFs that would account for microscopic motion have been
excluded from the modelling, which means that whatever
work is associated with their variation must be written off as
heat.  (Nothing new with that:  In Mechanics, too, a lot of
DoFs are ignored and the associated work, attributed to various
undescribed "friction" mechanisms, is reckoned as heat.)  Hence
the expression for Joule loss,  E  · J, the density of power lost
by the field to the "thermal compartment" of the system.
This holds whatever the conduction law, irrespective of the
details of microscopic motion and friction mechanisms that
damp it, and in perfect agreement with the Lorentz law of
forces, so this will make a reliable pillar for the theory to be
built.

Exception must be taken, however, about conductors
belonging to the network that brings electrical power into the
system.  Conduction charges, there, are not left to the interplay
of Lorentz forces and friction forces;  they are driven by some
electromotive field the details of which, again, we'd rather
ignore.  This is conveniently done by specifying a source
current density,  Js, a given function of space and time,
supported in a region of space we consider as "the feeding
network", and by taking  σ = 0  there.  This way, Ohm's law
can be expressed as  J = Js + σ(E + v × B), in one stroke (this
time,  v  is the material velocity), valid in all space, and the
scalar  – J s

 · E, again in full agreement with the Lorentz force
law, is taken as the power density injected into the system
by the network.

Remark.  For the reasons alluded to in Note 2, we need not
treat the case of moving conductors, though it would be easy:
One readily sees that the sum  ∫ QŸ(x, υ)(E + υ × B) dυ  of
Lorentz forces (still an integral over velocity space) is equal
to  QE + J × B.  So the total force on the bundle of
conduction charges that happen to be in the volume element
dx  around  x  is  [Q(x) E(x) + J(x) × B(x)] dx.  These charges
transfer the momentum imparted to them by the field to the
conductor they belong to, which results in a bulk force  QE +
J × B.  We don't pursue this line of reasoning, because the
J × B  force will be recovered in another way later.  As for
the Coulomb force (the  Q-times-E  term),  Q  is so small

2  Otherwise,  J = σ(E + v × B),  where  v  is the conductor's
velocity, because the electric field in the comoving frame is  E
+ v × B , as can be derived from the Maxwell equation.  Therefore,
knowing the conduction law for immobile bodies is knowing
enough.  This may help to make more intuitive the idea, developed
later on, that stating the energetic postulate for non-moving bodies
is enough too.

inside conductors (yet, not on their surface) that only  J × B

matters.  Coulomb forces will be ignored in this article, as
well as the displacement-current term  ∂ tD  in Maxwell's
equations.  (The two things are closely linked, but showing
how would lead us too far astray.)  ◊

In the next Section, we shall formulate these physical
premises in mathematical language.  This could be done in
the received formalism:  Eulerian setup, with a privileged
reference frame in which the physical field is represented by
the vector fields  E, B, etc.  But we need a theory that applies
to discrete formulations, with finite elements and all that, and
Lagrangian discretizations (with a "comoving" mesh, where
each element is linked with a specific chunk of matter, and
moves with it) are more popular than Eulerian ones, with a
fixed grid.  (It's only for a subclass of problems, those with
liquid metals in motion especially, that one resigns oneself to
use a fixed grid, and the  v × B  term then comes in the way.)

Moreover, what the literature has to say about forces
strongly suggests a Lagrangian formalism as preferable.  For
there is this folk theorem that "force is obtained by differentiating
the coenergy with respect to the configuration parameter,
while keeping currents constant".  When such currents are
those in threads and coils, one well understands what it means
for them to be "constant" in spite of the conductor's deformation.
But what about massive conductors, where current lines may
and will change with deformation, if we take the deformation
field as the (infinite dimensional, then) configuration parameter?
"Constant" cannot mean that  J(x), at any spatial point  x,
stays constant in time.  Rather, some relation with the
underlying matter is implied.  What makes perfect sense, in
this respect, is for the intensity through a given "material"
surface (one that always contains the same grains of matter,
irrespective of the deformation), to stay the same as time
goes by.  Eventually, we shall verify that the old rule is
indeed correct, if thus understood, but first, we need to lay
down the mathematical formalism by which such concepts as
the previous "material intensity", and connected ones ("material"
flux, "material" emf) can be expressed.  This done, we state
the Maxwell equations and constitutive laws within this
formalism, formulate the energetic postulate, and from this
point on, it's only a matter of formula manipulations and
logic to derive the force law.  We then interpret this result, in
a variety of situations, including the "deformable permanent
magnet" one.  There are some surprises in store.

II.  ELECTROMAGNETISM IN "MATERIAL FORM"
(LAGRANGIAN FORMULATION).

The very first thing to deal with is kinematics:  We need to
describe the mechanical configuration of the system by an
appropriate set of variables, one which retains aspects of
motion we are interested about, and ignores others.  In many
applications, a single kinematical parameter  u, which can
stand for a translation, a rotation angle, etc., may be enough.
In such one-mechanical DoF modellings, the moving part is
considered as rigid, and one is willing to ignore stresses
inside it.  Figure 1 gives a toy example, which it will be
useful to keep in mind.

To address the "force-field inside a magnet" issue, for
instance when the piece  M  in Fig. 1 is deformable, we need
more:  The configuration parameter  u  must then be a record
of positions of all material points, what we describe below as
a "placement", thus an infinite-dimensional object.  (Finite-



dimensionality, as for  u, is connoted by underlining.)  We
shall try, at the price of a few harmless notational abuses, to
treat both kinds of situations (rigid bodies moving apart,
deformable bodies) in a unified manner.
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Fig. 1.  Typical one-DoF problem.  Grey parts (suspension spring and
vertical column), electrically neutral, are intended to limit the movement
of the mobile part  M  to a vertical line, hence a single real kinematical
parameter  u.   M  is a magnet (characterized by its remanent induction
Br, roughly vertical), attracted by a fixed ferromagnetic plate at the
bottom.

For this, consider a reference configuration—the one at
time  t = 0, for instance.  Each material point occupies a
position  x  in the computational domain  D  to which we
intend to limit the modelling (the enclosing box, in Fig. 1).
At time  t, this material point occupies another position,
denoted  u(t, x) , and we shall denote by  u(t)  the one-to-one
mapping  x → u(t, x), from  D  to itself, called placement at
time  t.   Note that  u(0)  is thus the identity.  (This is not
essential, as other configurations could be taken as reference.)
For non-moving parts (walls of the box, points of the bottom
plate),  u(t, x) = x  for all  t.  For moving parts, the
derivative  v(t, x) = ∂tu(t, x)  is the velocity of the material
particle that passes at point  x  at time  t.  (We assume from
now on that  v  is continuous in  x, as required by material
continuity.)  The placement at time  t  (which we shall feel
free to denote  ut, or even  u, omitting the  t) can be
considered as a point in a large set (an infinite-dimensional
manifold, actually), that we denote by  U.  So much for
kinematics, thus described as a continuously differentiable
curve, or trajectory  t → u(t)  in  U.  We shall not here
address dynamics, that is, how to determine this trajectory,
together with the electromagnetic field's evolution, because
this depends on how matter reacts to electromagnetic forces.
We are only interested in the latter, and considering a virtual
trajectory, for values of  t  near  0, will prove sufficient for
that.  We may therefore consider the velocity field  v  only at
time 0, and treat it as a steady vector field.

The concept of material surface, and of intensity through
it, can now be made precise:  Let  S  be a smooth surface
inside  D, and consider its image  u(t, S)  under the placement,
at time  t, that is to say, the set  {u(t, x) :  x ∈ S}.  The
"material intensity" through  S, at time  t, is defined as the
flux  ∫u(t, S) n(t) · J(t)  of the current density vector field  J,
taken as time  t.  (We shall omit the  t  in the field of unit
normals  n(t)  from now on.)  This intensity will be denoted,
for both typographical comfort and deeper reasons on which
more later, by  ∫S J(t), with a SMALL CAPITAL  J.  A similar
definition applies to the "material induction flux embraced by
S", denoted by  ∫S B(t).

The integration domain is  S, in both cases, not  u(t, S):
If we conceive  S  as representing a thin membrane of
material particles, these very same particles form  u(t, S)  at
time  t, so the intensity  ∫S J(t)  is indeed taken with respect
to a fixed material reference.  "Material" may sound like a
misnomer when  S  belongs to the air, rather than hard
matter.  Yet, since  u(t)  maps all  D  to itself, points in the
air at time 0 get a specific placement at time  t, so it makes
sense to speak not only of  ∫S J(t)  (which is null), but of
∫S B(t)  (which need not be).  In spite of the lack of material
support for the family of surfaces  u(t, S)  in this case, we
shall keep referring to  ∫S J(t)  and  ∫S B(t)  as the "material"
intensities and fluxes.  One may imagine the air filled out by
some flexible putty, compliant enough to make no difference
mechanically, the deformation of which is described by  u  on
the same footing as for all other materials.

This raises a question, however, that we should dispose
of immediately.  Suppose two placements  u1  and  u2

coincide, at all times, for points  x  which belong to conductors,
magnets, iron pieces, etc., in the reference configuration, but
may differ at points in the air, and more generally, in electrically
irrelevant materials.  Is there a risk that our theory could
predict different forces for  u1  and  u 2 ?  Fortunately, this is
not the case, as will later be proved, so we shall call dynamically
equivalent two such placements.  Now, we can replace  U
by the set  U  of equivalence classes with respect to this
relation, which in some cases may well reduce to a one-
dimensional manifold.  For instance, if we consider  M  in
Fig. 1 as a rigid body, in order to concentrate on the vertical
force, there are a lot of dynamically equivalent placements  u
which correspond to a given value of the height  u:  Just set
(calling  k  the vertical unit vector)  u(t, x) = x +
(u(t) – u(0))k  for all  x  which belong to  M  at time 0,
u(t, x) = x  for points in all other electrically active parts
(including the boundary  ∂D  of the box), and for points that
remain, attribute to  ut  any value compatible with the
one-to-oneness and continuous differentiability requirements.
Such flexibility in the choice of placements will prove useful
later.  This example shows how the effective dimension of  U
can be reduced to a small number, and we shall treat in a
similar way, abusing the notation if required, the full-fledged
placement  u  and the reduced set of parameters  u  (the
dynamically meaningful ones).

Having thus clarified the meaning of "material", let us
focus on the mappings  S → ∫S B  and  S → ∫S J, at a given
instant, which we shall denote3 by  B  and  J  (t  understood).
They are obviously additive with respect to  S  (the flux
through  S1  plus the flux through  S2  is the flux through
the two-piece surface  S1 + S 2), and continuous (a small
deformation of  S  slightly changes the flux).  Such
objects—additive continuous mappings from  p-dimensional
manifolds to real numbers—are called differential forms of
degree  p, with  p = 2  here.  The vector fields  B  and  J  by
which they were defined are called the "proxy" fields of  B

and  J, which stresses the point that  B  and  J, which give the
physically meaningful material fluxes, are the real thing,
whereas  B  and  J  are mere representations of them.  It is
extremely important,  at this juncture, to notice that the
correspondences  B—B  and  J—J  depend on the placement

3This makes perfect sense:  The function  x → f(x)  that maps  x
to the value  f(x)  is denoted by  f.  Same mechanism.

ut  and hence, depend on time:  If  J  is to be constant, as in



the above "constant currents" clause about force, the proxy
field  J(t)  must, as a rule, vary with  t —which is why it
would be so difficult to make sense of this clause in a
Eulerian framework.  Conversely, when a conductor moves
through a steady magnetic field  B, the material fluxes change,
so  B  does depend on  t.

What we are up to is a formulation of Maxwell's equations
in terms of differential forms (DF) which "live", like  B  and
J, on the "material manifold", so let us define the material
counterparts  H  and  E  of  H  and  E.

The "material magnetic strength" at time  t  is the
1-form  H(t)  whose proxy is  H(t).  So it assigns to a
material curve  c  the circulation  ∫u(t, c) τ  · H, where  τ
denotes the unit tangent vector along  c.  This number is the
"material magnetomotive force" (mmf) associated with  c.
As we see by applying the Stokes theorem, Ampère's relation
rot H = J  takes the very simple form

(1) ∫∂S H = ∫S J   for all material surfaces  S,

where  ∂S  denotes the boundary of  S.  (Orientations of  S
and  ∂S  are matched by the right-hand rule.)  Another way to
state (1) is  dH = J, where  d  is an operator4, called "exterior
derivative", which is defined by the clause  ∫∂S H = ∫S dH  for
all  S.  (So  d  is a kind of adjoint of  ∂, as the alternative
notation  <∂S ; H> = <S ; dH> ∀ S  suggests more forcibly.)

Last, what about  E?  We want it to capture the physical
notion of electromotive force (emf).  The "material emf",
along a material line  c, is the (virtual) work associated with
the motion of a unit electric charge along  ut(c)  at time  t
(this is virtual motion, during which time is frozen at  t), so
we define  E(t)  as the map that assigns to any material line  c
the "material emf"  ∫c E(t) = ∫u(t, c) τ  · (E + v × B) .  So the
proxy of  E  is not  E, but  E + v × B, the Lorentz force.
(The asymmetric way in which  H  and  E  are thus treated
stems from our decision to neglect displacement currents.)
This allows us to state Faraday's law in a very neat way:  For
all material surfaces  S,

(2) dt ∫S B + ∫∂S E = 0,

that is to say, "the rate of change of the flux through a
material surface balances the emf around its rim," irrespective
of why the flux changes (time-variations of  B  or movement,
or both).  So (2) subsumes all "cut flux", "embraced flux",
etc., rules.  Just as with Ampère's law, there is a differential
version of (2), which is  ∂tB + dE = 0.  The time-derivative,
here, should not be misinterpreted:  ∂tB  is, like  B  itself, a
2-form, that assigns to a material surface  S  the rate of
change of the induction flux, i.e., the time derivative
dt [∫u(t, S)  n · B(t)].  So its proxy, as shown by the classical
calculation of this derivative (more on this below), is the
vector field  ∂ tB – v × B, and not  ∂ tB.  This is why the
velocity field does not appear explicitly in (1)(2).  At this
stage, we have expressed the Maxwell equations—but not the
constitutive laws, yet—"in material form".

A digression, before moving on.  Just as there is a vector
calculus, with a lot of involved formulas such as—one example
among many— div(E × H) = H · rot E – E · rot H, there is a

4  More generally,  d  maps a  p-form to a  (p + 1)-form, and is
the differential geometric expression of  grad, rot, or div, when  p
= 0, 1, or 2.

formulary to do calculus with differential forms, and a dictionary

of correspondences between proxies and vector calculus
operations, on the one hand, forms and their specific operations,
on the other hand.  For instance,  d  is the counterpart of
grad, rot, or  div  acting on proxies.  Dot product and cross
product also have their counterparts in the so-called wedge
product, thus defined:  If  Eu  and  Hu  are proxies for the
1-forms  E  and  H, then  Eu × Hu  is the proxy for a  2-form,
denoted  E ∧ H, defined at time  t  as the map  S →
∫u(t, S) n  · Eu × Hu.  If  Hu  and  Bu  are proxies for the 1-form
H  and the  2-form  B, then  Hu · Bu  is proxy for a 3-form,
denoted  H ∧ B, defined as the map  Ω  → ∫u(t, Ω) Hu · Bu, where
Ω   is a material volume (i.e., a 3-dimensional manifold, as
befits a 3-form).  The above formula, recast in terms of DFs,
is  d (E ∧ H) = d E ∧ H – E ∧ d H.  Weak formulations such as
"∫D rot H · E' = ∫D J · E'  for all  E' " rewrite as  "∫D dH ∧ E' =
∫D J ∧ E'  for all E' ", which means that all tricks of the trade
in finite element variational techniques are available.

Some tools of functional analysis also can be transposed.
For instance, one may define the scalar product of two 1-forms
H  and  H', in configuration  u, by  (H, H')u = ∫D µ0 Hu · H'u,
thus putting a Hilbertian structure, configuration-dependent,
on the space of 1-forms.  A well-known result, the Riesz
theorem, says that a linear continuous functional over a Hilbert
space can be represented via a scalar product.  It implies here
that, given a 2-form  B, there is a 1-form  H  such that
∫D B ∧ H'  (which is linear continuous with respect to  H') is
equal to  (H, H')u  for all  H'.  As  H  depends linearly on  B,
we may write  H = νu B, hence an operator  νu  from 2-forms
to 1-forms (a variant of what differential geometers call the
"Hodge operator"), and it should be obvious that  H = νu B  is
equivalent to the relation  Bu = µ0Hu  between the proxies, in
configuration  u, of  B  and  H.  Notice that  ∫c H(t) =
∫u(t, c) τ  · (µ0

–1 B), which illustrates the fact that  νu  sets up a
correspondence between material fluxes (accounted for
by  B) and material mmf's (accounted for by  H) in
configuration  u.

Let us proceed, addressing now the constitutive laws
needed to close the system (1)(2).  Ohm's law, in material
form, is

(3) J = Js + σu E,

where  Js  is defined like  J  (its proxy is  J s), and  σu  is the
operator such that  ∫S J(t) = ∫u(t, S) n · (σ E).  For linear
materials, the  B–H  law has a similar form,  B = µu H  or  H =
νu B, where  νu  is the same as in last paragraph.  The
operators  σu  and  νu  do indeed depend on the placement,
even if the intrinsic conductivity and reluctivity of the materials
do not change in time, because of a shape effect that will be
found again later in relation with forces:  Imagine, at a
material point  x, a small material line  c  and a small
material surface  S.  Suppose  B  steady, so that  ∫u(t, S) n · B
is kept constant in time, and set  H = ν(u(t, x)) B.  Unless
the placement realizes a rigid motion of the matter around  x,
the circulation of  H  along  u(t, c)  will not stay fixed,
which means  H  varies in time, while  B  doesn't.

The conduction law plays no role in the question of
forces, so we shall leave it at that, but a linear  B–H  law is
too much of a restriction for what we have in view.  For
enough generality, let us introduce a pair of so-called "convex
functions in duality",  Ψ (u, B)  and  Φ(u, H)  such that
Ψ (u, B) = sup{H' :  ∫D B ∧ H' – Φ(u, H')}  and vice versa.  For
example, if  B = µ0H  all over, the simplest case, then



Ψ (u, B) = 1/2 ∫ µ0
–1 |Bu|

2  and  Φ(u, H) = 1/2 ∫ µ0 |Hu|
2  are in

such a relation.  Then, the equality

(4)  Ψ (u, B) + Φ(u, H) = ∫D B ∧ H

establishes a correspondence between  B  and  H  which one
can take, as the linear example shows, as constitutive law.
Adding a function of  u  alone to  Ψ , and subtracting this
same function from  Φ, doesn't change this  B–H  relation,
obviously, so we make the convention that  Ψ (u, 0) = 0.
Functions  Ψ   and  Φ  are called energy and coenergy of the
material fields  B  and  H, respectively, but be careful, that  Ψ
deserves to be called "energy" needs proving!  (This will
come in due time.)  The formulation is general enough to
cover the case of linear materials with different permeabilities
(anisotropic permeability tensors are allowed) and of nonlinear
ferromagnetic materials (provided there is no hysteresis).
Functions  Ψ   and  Φ  need not be smooth, but if they are,
the partial derivative  ∂BΨ   is  H, by which we mean (this is
the concept of "Fréchet derivative") that the linear part of the
map  δB  → Ψ (u, B + δB) – Ψ (u, B)  is the map  δB →
∫D H ∧ δB.  Symmetrically,  ∂HΦ  is  B.

It remains to treat boundary conditions.  To keep things
simple, we shall suppose the wall  ∂D  is a perfect conductor,
so that  ∫c E(t) = 0, at all times, for any curve  c  included in
∂D, which we write as

(5) E = 0  on  ∂D,

the counterpart of the standard vectorial notation  n × E = 0.

Equations (1)(2)(3)(4)(5) fully describe5 the electrody-
namics of the system:  Given initial conditions at  t = 0  and
a trajectory  t → u(t), they determine the field.  If we can find
the force from this, it will be possible to couple these equations
with the dynamic ones.  As announced earlier, a postulate
about energetic exchanges must be proferred (and justified) to
replace the Lorentz law.  We now have what it takes to
phrase it:

Power exchange postulate.   The network brings power
– ∫D E ∧ J

s  to the system.  Joule losses are  ∫D E ∧ (J – J
s).

Power and losses do not balance.  Power not dissipated goes
into the field's energy reservoir and is used to perform mechanical
work, in proportions which we shall determine in next Section.
But we should first satisfy ourselves that the postulate is
justified:  Indeed  E ∧ J = E · J, in terms of proxy fields,  if
there is no motion,  and we have assessed earlier, by an analysis
of Lorentz forces, that  E  · J  is the Joule power density in
that case.  A similar argument applies to  E ∧ J

s.  Now, for
moving parts, one may reckon in the local comoving reference
frame, where the electromotive field is  E' = E + v × B, and
assert that  E' · J  is Joule power.  But this is precisely  E ∧ J,
considering how  E  has been defined.

III.  ENERGETIC BALANCE, FORCES

First, let us establish the status of  Ψ (u, B)  as, in actual
fact, magnetic energy.  Consider a system's evolution  t →
{u(t), B(t)}, and  set  W(t) = Ψ (u(t), B(t))  at time  t.  The rate

5  Not quite:  The electric field outside conductors is determined
up to a gradient only, as usual in eddy-current theory.  This is no
problem if Coulomb forces are to be ignored, as we assume.
Anyhow, electric charge can be computed a posteriori, as  Q =
div(ε0E), hence Coulomb forces as a by-product.

of change of this quantity, by the chain rule and the above

remark about the derivative  ∂BΨ , is

(6) dtW = 〈∂uΨ , ∂tu〉 + ∫D ∂BΨ  ∧ ∂tB

      = 〈∂uΨ , ∂tu〉 + ∫D H ∧ ∂tB.

Here,  ∂uΨ   is a Fréchet derivative again, namely, the linear
functional that maps a vector field  v  to the real number
〈∂uΨ , v〉, that is to say, the rate of change of  W  when  ∂tB =
0  and  ∂tu = v.  These brackets are a non-committal notation,
which allows one, when  v  is determined by a finite array of
of parameters  v, as discussed earlier, to write the bracket
〈∂uΨ , v〉, where  ∂uΨ   is an array of same dimension as  u
and  v = ∂tu, a point to which we soon return.6

Now, let us address equations (1)(2), which we use in
their local differential form,  dH = J  ≡ (J – J

s) + J
s  (to

distinguish source current and conduction current) and  ∂tB +
dE = 0.  Wedge-multiplying them from the right by  –H  and
E, respectively, adding, and integrating over  D, we get

(7) – ∫D E ∧ J = ∫D H ∧ ∂tB + ∫D d(E ∧ H) ≡ ∫D H ∧ ∂tB,

because  ∫D d(E ∧ H) = ∫∂D E ∧ H = 0, thanks to (5).  This kind
of manipulation, easy to get used to thanks to the above-
mentioned "dictionary", gives some of the flavor of calculus
in geometrical electromagnetics.

Putting (6) and (7) together, we obtain this:

(8) dtW(t) – 〈∂uΨ , ∂tu〉 + ∫D E ∧ (J – J
s) = – ∫D E ∧ J

s.

Suppose  u(t) = u(0) = u  at all times (no motion,  ∂tu = 0),
and  B(0) = 0. Integrating (8) in time, and remembering that
Ψ (u, 0) = 0, we get

Ψ (u, B(t)) ≡ W(t) = ∫0
t dsW(s) ds

= – ∫0
t [∫D E(s) ∧ J

s(s)] ds – ∫0
t [∫D E(s) ∧ (J – J

s)(s)] ds

= <supplied energy> – <Joule losses>

by the energetic postulate.  In the absence of any motion, the
energy at the right-hand side has had no other outlet than the
field's energetic reservoir, hence  Ψ (u, B)  does qualify as the
"magnetic energy" of the induction field  B  in configuration
u.  The energy stored by the system is therefore  W(t).

Remark.  Do not confuse energy as a function (of  B) and
energy as a number—just as  f  and  f(x)  should not be
confused (Note 3).  The point is important in linear situations
where the values of energy and coenergy always coincide, in
spite of  Ψ   and  Φ  being different functions.  ◊

Next, the force.  We may need it at any given instant, for
any electromagnetic field  {E, B}, and any mechanical
configuration  u, but this instant can always be taken as  t =
0, with  {E, B}  as initial conditions, and the trajectory of
placements may start at  u(0) = u.  Equations (1—5) then
determine the field's evolution.  As a passage to the limit  t =
0  will be involved, one may assume that  u(t, x) = u(x) +
t v(x), where  v  is the velocity field at  t = 0, neglecting
higher-order terms.  Recall that this is virtual motion, the

6  In geometric terms:  v  is a tangent vector, at point  u  of the
configuration manifold  U, and  ∂uΨ  is a co-vector at this point.
Since  U  is of infinite dimension, some work would be needed to
make these notions rigorous, and we gloss over this.  When  U  is
reduced to the quotient  U, composed of classes of dynamically
equivalent placements, the dimension of  U  is as a rule finite,
often as low as 1, and  v  reduces to  v, tangent to  U.

idea being that force will result from an application of the



virtual power principle.  So  v  is any arbitrary continuous
vector field.  Whether  u(t)  is dynamically plausible, or even
possible, is not an issue.

From (8) with  ∂tu = v ≠ 0, we see that the power
supplied to the mechanical compartment of the system is
– 〈∂uΨ , v 〉, by mere bookkeeping:  Network-supplied power
which doesn't go as heat or into the field's reservoir is mechanical
power, which from the point of view of the mechanical
compartment of the system comes in addition to whatever it
receives from other agencies, and hence is attributed to the
electromagnetic field.  This enables us, by unplugging the
virtual field  v, to define force as the mapping  v →
– 〈∂uΨ , v 〉, that is to say (cf. Note 6) as the covector  –  ∂uΨ
at point  u  of  U.

Remark.  The scrupulous reader may object to the assumption
Ψ (u, 0) = 0.  But remark that, should any term  g(u)  be
added to  Ψ (u, B), which as we have noticed doesn't change
the  B–H  law if the same term is subtracted from  Φ(u, H),
force as predicted by the previous theory would be  v →
〈∂u[g(u) – ∂ u(Ψ (u, B) + g(u))], v〉 — the same result.  With
our convention,  Ψ (u, 0) = 0  for an "electrically dead"
system, that is to say  B = 0  and7  E = 0, from which no
electromagnetic forces come.  ◊

Since  Φ  and  Ψ   play symmetric roles, it should be
possible to express the force in terms of variations of the
co-energy,  Φ(u, H), in a similar way.  Indeed,

Proposition 1.  If  B  and  H  satisfy  Ψ (u, B) + Φ(u, H) =
(B, H), then

(9)  ∂uΦ(u, H) = – ∂uΨ (u, B).

Proof.  Given a velocity field  v, consider a trajectory
t → u(t)   in  U  such that  v = ∂tu  at  t = 0, and let  t →
{B(t), H(t)}  be a correlative evolution of  B  and  H  such that
Ψ (u, B) + Φ(u, H) = (B, H).  [Such evolutions exist:  for
instance, keep  B  fixed, and take  H = ∂uΨ (u, B).  The
Maxwell equations need not be satisfied for our present purpose.]
Differentiate in  t:

〈∂uΨ , v〉 + ∫ H ∧ ∂tB + 〈∂uΦ, v〉 + ∫ B ∧ ∂tH

           = ∫ B ∧ ∂tH + ∫ H ∧ ∂tB,

hence  〈∂uΨ , v〉 + 〈∂uΦ, v〉 = 0  for all  v, hence (9).  ◊

So force is the partial derivative of coenergy with respect
to the configuration parameter, which amounts to saying it
is obtained by varying the coenergy while keeping fixed the
material magnetic strength  H, i.e., the material mmf's, which
implies "keeping the material currents constant".  We have
found back the classical rule (a weakened form of it, actually,
which is for the better).

The simplest example, already evoked, is when  B =
µ0 H.  Then  Ψ (u, B) = 1/2 ∫ µ0

–1 |Bu|
2, where  Bu  is  B's

proxy.  Differentiating with respect to  u  boils down to
computing the rate of change of  Bu  under the condition  ∂tB

= 0, the placement being  u(t, x) = u(x) + tv(x).  An auxiliary

7  Notice again (cf. Note 5) how we drag  E   along as extra
weight.  If displacement currents were not ignored, there would be
an electric energy  Ψe l(u, D)  and an associated coenergy  Φe l(u, E)
which together would prescribe the  D–E  law, both defined up to
some arbitrary function of  u.  The natural convention is then
Ψe l(u, D) = 0  when  ∂DΨe l(u, D) = 0, i.e., when  E = 0.

result, first:

Lemma 1.  Let  B  (not necessarily divergence-free) be a
steady vector field.  The time derivative of the material flux
∫u(t, S) n · B  of  B, at  t = 0, is

(10) ∫u(t, S) n · [v div B – rot(v × B)].

Proof.  For convenience, let us define the extrusion
extr(x, v, t)  of point  x  by the velocity flow  v  between
time  0  and time  t  as the segment  [x, x + tv].  The
extrusion of a set of points is defined as the union of their
extrusions, hence the extrusion of a line [resp. a surface] is
(generically) a surface [resp. a volume].  By Ostrogradskii,

  ∫extr(S, v, t) div B = ∫u(t, S) n · B – ∫S n · B + ∫extr(∂S, v, t) n · B,

with all the normals  n  directed as shown on Fig. 2.  When
t  tends to 0, one has

lim t → 0  t
–1 ∫extr(S, v, t) div B = ∫S n · (v div B),

lim t → 0  t
–1 ∫extr(∂S, v, t) n · B = ∫∂S (τ × v) · B

               = ∫∂S τ  · (v × B) = ∫S n · rot(v × B),

hence (10).  ◊

S

n

u(t, S)

x

t v(x)

n

n

τ
∂S

Fig. 2.  Notations for Lemma 1.  (The associated computation is a
standard in differential geometry, in connexion with the so-called "Lie
derivative".)

 Now, if  ∂ tB = 0, the rate of change of the proxy  Bu

must compensate for (10), hence the following corollary

(11) ∂tBu = – v div B + rot(v × B),

where  B  stands for  Bu  at time 0.  The rate of change of
1/2 ∫D µ0

–1 |Bu|
2  is thus (since  div B = 0),

∫D µ0
–1 B · rot(v × B) = ∫D H · rot(v × B)

                            = ∫D rot H · (v × B)

(no boundary term, because  v = 0  on  ∂D).  The force field
is therefore  J × B, as expected.

A second corollary:  Suppose two velocity fields  v1  and
v2  such that  v = v2 – v1  is supported by a region  Ω
entirely contained in the air, or in an "electrically passive"
material, i.e., non-conductor with permeability  µ0.  The
variations of  Ψ (u, B), for these two velocities, differ by that
of  1/2 ∫Ω µ0

–1 |Bu|
2, which is zero by what precedes, since

rot H = 0  in  Ω .  Two dynamically equivalent placements,
therefore, generate the same forces, which justifies this
terminology, and more importantly, allows one to reduce  U
to a much smaller configuration manifold.



IV.  ONE-DOF SYSTEMS

To test our understanding, consider two parallel plates with
opposite parallel currents (Fig. 3).  Neglecting side effects,
we have a uniform field  H  in the airgap.  Imagine a kind of
finite-difference net in the airgap, each edge of which bears a
definite mmf which we keep constant, according to the force
computation rule, as the airgap width is varied.  For definiteness,
let  d  stand for this width in the reference configuration, the
modified one then being  u.  Only the horizontal edges bear a
nonzero mmf, and since their length doesn't change with  u,
the intensity of the proxy  Hu  doesn't change either.  The
coenergy in the airgap is thus proportional to  u, from which
we conclude that  ∂uΦ > 0 —a repulsive force.

H

d

x

x0

c u c

Fig. 3.   Virtual deformation of an imaginary material grid in the airgap
to compute the force between two parallel conducting plates.

To better quantify this information, compute the coenergy,
µ0/2 ∫ |Hu|

2, for one square-meter of plate surface, which is
u µ0  |H|2/2  in the  u-modified configuration.  The derivative
µ0  |H|2/2  of  Φ(u, H), as taken at the reference value  u = d,
is the magnetic pressure exerted on the plates.

Reasoning in terms of the energy should give the same
result, which we check.  Now, it's the horizontal fluxes
(through the vertical faces of the imaginary net that helps
visualize the material manifold) that are kept constant.  Suppose
the placement  u  associated with  u  is a uniform widening
of the gap.  Then areas of these faces behave like  u, hence
the vector proxy is a horizontal uniform  Bu  with  u Bu =
d B.  Energy per square meter is  u–1 d2 |B|2/(2µ0), and minus
the derivative of that, at  u = d, yields  |B|2/(2µ0) —the same
pressure, indeed.

Implicitly, the placement we have been using in the
latter computation was  u(x) = x + u(x – x0)/d  in the airgap,
where  x0  is the point of the symmetry plane above or below
x, and  u(x) = x ± d/2  for other points (sign + above the
symmetry plane, – below).  This shows how cumbersome it
may be to specify a placement  u  that corrresponds to the
parameter  u  one is really interested about.  Fortunately,
such definiteness is rarely required (to wit our reasoning about
coenergy), and the possibility to choose between a whole
family of dynamically equivalent placements may help a lot.

For instance (Fig. 3, bottom), one might imagine all
horizontal layers of our imaginary net unchanged, except one
of them, the width of which is  uc, with now  u = 1  in the
reference configuration.  This amounts to tailor  u  in such a
way that all the gap-widening is due to the swelling of this
layer.  The proxy is  B  all over except within this thin layer,

where it's  B/u.  A factor  c/d  thus affects the derivative of
the energy, but the factor  d/c  must be thrown in to achieve
the same airgap width variation, hence the same result for the
pressure.

This example has general value:  Each time one has to
compute forces, torques, etc., involving the relative motion
of rigid bodies, the placement may be imagined as supported
by the airgap, or, to use a previous metaphor, only the putty
that fills up the voids between conductors, magnets, etc., is
virtually stretched, and this stretching can be designed as
most convenient.  A classical method to compute forces
consists in selecting a surface that separates bodies in relative
motion, and in designing  u  to confine the stretching to a
thin layer of air on one side of this surface.  I won't spoil the
pleasure readers may find in checking that what is recovered,
from this procedure, is the standard integration of the Maxwell
stress tensor.

It may be more instructive to wonder how this will be
transposed in real-life finite element computations.  A case
such as displayed on Fig. 1 would be treated as follows:  (1)
A finite element mesh of the whole computation box is
designed, element boundaries fitting material interfaces, as
usual.  (2)  Arrange elements so that a small subset of them,
for instance those forming a separating layer between the
magnet and the bottom plate, in the airgap, have variable
geometry under the placement.  (3) At the assembly phase,
when computing the magnetic stiffness matrix (which
corresponds to the discretization of energy or coenergy,
depending on which kind of field-DoF is used), precompute
the derivatives of the elementary stiffness matrices with
respect to  u.  (4)  Compute the field, hence either edge
mmf's or edge circulations of the vector potential.  (5) Using
these values, sum up the variation of coenergy, or energy, in
the deformable elements, hence the virtual (co-)energy variation,
hence the force.

Step (3) of this recipe can be detailed as follows:  (a) For
all "stretchable" elements, take the relative positions of one
or more nodes as "local" configuration parameters—say  un

for node  n  (a translation vector).  Precompute the elementary
stiffness matrix derivatives with respect to  un.  (b) Throw in
the derivative of the position of node  n  with respect to  u,
and sum up the matrices thus obtained.  Left- and right-
multiplying the matrix sum by the DoF arrays, at step (5),
will give the force.  But one may as well, equivalently,
postpone step (3b) until edge DoF's are known, then left- and
right-multiply the elementary matrix derivatives w.r.t.  un  by
the DoF arrays, and sum up.  At this stage, "nodal generalized
forces"  f n, vector valued, will have been obtained, the variation
of the coenergy (let's say) being  δΦ = ∑n fn · δun.  It remains
to substitute ∂un/∂u δu, there, hence  δΦ = f δu, to have the
force.

Obviously, once such a computational chain is in place,
one could use it to compute nodal forces, independently, and
hence the force field.  One should just be aware that, in such
a process, the generalized nodal force  f n  is not the value at
node  n  of the force field  f:  For the latter is the field such
that  ∫D f(x) · δu(x) = ∑n fn · δun, hence the necessity to ponder
by the elementary volumes to relate  f n  with  f(xn).  Apart
from this, it would seem that we have solved, at least practically,
the problem of computing the force field inside a deformable
body, by this procedure.



Yet we are not there, because the elementary matrix
differentiation requires knowing the  B–H  law inside the
element as a function of the deformation, which is no problem
in what precedes, since all stretchable elements are in the air,
where the law suffers no ambiguity (it's  Bu = µ0 Hu  in terms
of the proxies), but may be a problem inside, say, a magnet.
Do we know, really, about the   B–H  law inside a  permanent
magnet?

V.  WHAT IS A "PERMANENT" MAGNET, EXACTLY?

There is no such thing as a "permanent" magnet, obviously—if
magnetization was an immovable feature of matter, no magnet
could be made in the first place.  What counts as a permanent
magnet, in practice, is a chunk of magnetized material placed
in circumstances where its  B–H  curve is approximately
linear:8  B = µ0(H + Hc), or equivalently  B = µ0H + Br,
where the "coercive field"  Hc  or the "remanent induction"  Br

= µ0H
c  (thus called by analogy) do not depend on the ambient

field.  They are vector fields, borne by a bounded region  M,
the magnet, which they characterize.

Or do they?  That  Hc  and  Br  do not change with time
is granted, but what of their dependence on the deformation of
the material, that is, on  u?  If   Hc  and  Br  do not depend on
u, the associated material coercive field   H

c  and material
induction field   B

r  for which they stand as proxies have to,
and we need to know how in order to estimate  Ψ (u, B)  and
Φ(u, H).  One may, trying another tack, choose to define as
"permanent" a magnet for which the material  B–H  law
contains an invariable material coercive field,

(12) H = νu B – H
c,

which derives from the magnetic energy

Ψ (u, B) = 1/2 ∫D νu B ∧ B – ∫D B ∧ H
c.

This is an attractive proposition, because the additional term
term  – ∫D B ∧ H

c  does not depend on  u, so we may recycle
the previous computation of the rate of change of
1/2 ∫D µ0

–1 |Bu|
2 ≡ 1/2 ∫D νu B  ∧ B, which we found was

∫D µ0
–1 B · rot(v × B).  Proceeding from this point on, we find

now

– 〈∂uΨ , v〉 = ∫D µ0
–1 B · rot(B × v)

                = ∫D (H + Hc) · rot(B × v)

      = ∫D rot(H + Hc) · (B × v) = ∫D (J + Jc) × B · v,

if we denote by  J c ≡ rot Hc  the Amperian currents.  The
field force inside the magnet is

(12') f = rot(H + Hc) × B,

exactly what the  J × B  rule would give if applied not only
to the conduction currents (if any) but to the Amperian currents
as well.

Reassuring as this result may seem, we should take it
with much suspicion, because the following alternative to
(12):

(13) H = νu (B – B
r),

8  One rather has  B = µ(H + H c), with  µ ≠ µ0  and independent of
the ambient field, for actual magnets (µ ~ 4  µ0  is a typical value).
We take  µ = µ0  here to simplify the discussion.

with an invariable material remanent induction, has just as

good a claim to describe a "permanent" magnet, as the following
thought experiments suggest.  First, sprinkle some plastic
substrate with a large number of small hard magnets, evenly
distributed, all roughly oriented the same way.  The "micro"
scale, for such a composite, has the small magnet's size as
characteristic length.  Consider a material surface  S  whose
dimensions correspond to an appropriately larger "meso" scale.
It cuts a large number of magnets.  The fluxes of their fixed
magnetizations sum up to some number, an additive function
of  S, independent of both time and the deformation of the
composite, which is therefore properly represented by a fixed
2-form  B

r.  So at such a mesoscale, the composite behaves
like a homogeneous material, whose constitutive law is (13).
It is not too difficult to imagine how (12) could be realized:
Instead of the magnets, immerse a large number of small
solenoids, arranged more or less like mattress springs, each
bearing a constant intensity provided by some unobtrusive
power source.  This time, any mesoscale material circuit
encloses a definite intensity, whatever the overall deformation,
and (12) is the appropriate "homogenized" mesoscale law.

Thus (13), too, is a plausible constitutive law for a
permanent magnet.  But the force field it predicts differs from
(12'), for the magnetic energy is now

Ψ (u, B) = 1/2 ∫D νu B ∧ B – ∫D νu B ∧ B
r,

           ≡≡≡≡    1/2 ∫D µ0
–1 |Bu|

2 – ∫D µ0
–1 Bu · B

r
u

in terms of proxy fields.  By (11),  ∂ tB
r
u = – v div Br +

rot(v × B r), hence an easy calculation of the rate of change of
∫D µ0

–1 Br
u · Bu.  Collecting all such rates of change, we have

– 〈∂uΨ , v〉 = ∫D µ0
–1 (B – Br) · rot(B × v)

                  + ∫D µ0
–1 B · [– v div Br + rot(v × Br)]

             = ∫D rot H · (B × v) – ∫D div Br (H + Hc) · v

                  + ∫D rot(H + Hc) · v × Br.

The force field is therefore

(13') f = J × B – (H + Hc) div Br – (J + Jc) × Br.

Now which is right, of (12') and (13')?  Which of the laws
(12) or (13) does describe a "permanent" deformable magnet?

Wrong questions, obviously.  You don't speculate about
constitutive laws, you measure them.   Being handed a sample
of the material our permanent magnet is made of, it's up to
us to determine what the  B–H  law is for various deformation
states (likely, neither (12) nor (13), but something in-between),
and to encode this information in functionals such as  Ψ  and
Φ.  In practice, this is done by a complex process, which
allies experiments with numerical simulations, as suggested
by Fig. 4.  One may take a sample rod, plunge it in some
known magnetic field created by a current  I, pull on it with
force  P, record the length  L  and the flux  F, for a series of
values of  I  and  P.  The "macroscopic" relations thus
observed between  F, I, L, and  P  do not immediately
translate into "mesoscopic" constitutive laws between  B, H,
ε  (strain), and  σ  (stress).  One must posit an appropriate
mesoscopic law, with a number of adjustable parameters, set
up the functionals  Ψ (u, B)  and  Φ(u, H)  that apply in the
particular experimental situation, predict the  F, I, L, P
charts by computations (simple computations, if at all
possible—but one well imagines that finite element
simulations become necessary in some cases), compare that
with the experimental results, and adjust the parameters



accordingly, in an iterative and hopefully converging
identification process.
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Fig. 4.  From mesoscopic constitutive laws to macroscopic observations
and back.

This is the first application for a theory of forces:  to
experimentally determine the  B–H  laws as parameterized
by the local deformation of the material, and also, for the
two things cannot be separated as Fig. 4 suggests, determine
the  σ–ε  mechanical behavior laws as parameterized by
the local magnetic field.  Once this is done, that is to say,
once materials are characterized at the mesoscopic level, the
road is open to the numerical simulation of magnetostriction
phenomena, static and dynamic, in order to predict the
macroscopic quantities our sponsors and clients may be
interested in.
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