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Electromagnetic hysteresis modelling: from material science 
to finite element analysis of devices   
 
Abstract — This paper deals with numerical modelling techniques 
for hysteresis properties in magnetic materials.  Physical and 
phenomenological models are discussed. First some basic 
hysteresis properties are described in order to proceed gradually 
to more sophisticated models, which can be included into finite 
element formulations.   Scalar and vector hysteresis models are 
considered.  We distinguish between rate-independent and rate 
dependent material behaviour. 
 

I. INTRODUCTION 
 
The phenomenon of hysteresis has been observed for a long 
time in many different areas of science and engineering.  
Examples of hysteresis in material systems include mechanical 
hysteresis, magnetic hysteresis, ferroelectric hysteresis and 
many others.  In some applications hysteresis can be employed 
for a useful purpose.  Such is the case in systems relying on 
permanent magnets and in magnetic recording.  In other cases 
such as positioning systems, electrical machines, hysteresis 
phenomena are often unwanted and consequently must be 
avoided as much as possible. 
In general two types of modelling techniques are used to 
describe hysteresis processes: physical modelling and 
phenomenological modelling.  In physical modelling, the basic 
processes involved are simulated in order to be able to 
describe the basic magnetizing modes.  In phenomenological 
models, the gross behaviour of the material is described 
mathematically by generating curves, following predefined 
rules, for the material properties.  The latter models are often 
computationally more efficient than the former, but they do 
not give any insight into the physical principles involved.   
For the design of electromagnetic devices, accurate 
evaluations of the magnetic field patterns in the device are 
often essential for a realistic prediction of the performance 
characteristics of the device. Consequently, in many cases, the 
magnetic field computations should account for the precise 
features of the magnetic materials used, including the 
hysteresis effects.  At this point, the macroscopic properties, 
described by phenomenological models are coupled with the 
Maxwell’s equations so as to obtain accurate solutions for 
electromagnetic field problems. 
Hysteresis modelling becomes even more important when one 
aims at the evaluation of properties directly related to 
hysteresis processes, e.g. the calculation of iron losses in 
electromagnetic devices.  We recall that the hysteresis loss is 
related to the fact that the relationship between the magnetic 
induction vector B and the magnetic field vector H in the 
material depends on the history of the magnetic field.  For 
these cases a phenomenological hysteresis model describing 
the B-H-relation is sufficient as long as the desired accuracy is 
obtained.   
For other applications, such as magnetic hysteretic non-
destructive testing (NDT), there is a preference for a physical 
hysteresis model, or a model the parameters of which can be 
directly related to microstructural features of the material.  It is 
clear that a hysteresis model that has to be used for 
interpretation of NDT results should have at least a few 
parameters that are directly related to the metallurgical 
properties of the material. Changes in the material 

microstructure lead to a modification of the mechanical 
properties, which should be identified by the changes of the 
magnetic hysteresis properties, or the limited number of 
material parameters defined in the hysteresis model.   
Finally, one must distinguish between scalar hysteresis models 
and vectorial hysteresis models.  Indeed, depending on the 
application, the flux pattern may be unidirectional, i.e. the 
direction of the magnetic field or the magnetic induction is 
fixed but the amplitude is changing continuously.  For other 
applications, e.g. in rotating electrical machines, a non-
negligible part of the magnetic fields has a rotational 
character, i.e. the amplitude as well as the direction of the 
magnetic field and the magnetic induction vector change 
continuously.   
The aim of this paper is to describe the basic principles of 
hysteresis modelling and discuss some aspects in more detail. 
 
 

 II. SOME BASIC HYSTERESIS PROPERTIES 
   
Hysteresis modelling handles the problem of how to construct 
(predict) the transition curves, which correspond to any 
changes of the magnetic field H. In spite of the variety of 
characteristics among different magnetic materials some 
general features are observed in their magnetization processes.  
These features have been described already in 1905 [1] and are 
known as Mandelung’s rules. Considering the hysteresis 
curves in Fig.1, these experimentally established rules can be 
stated as follows: 
 
1) The path of any transition (reversal) curve is uniquely deter-
mined by the coordinates of the reversal point, from which this 
curve emanates. 
2) If any point 4 of the curve 3-4-1 becomes a new reversal 
point, then the curve 4-5-3 originating at point 4 returns to the 
initial point 3 (‘return-point-memory’) 
3) If the point 5 of the curve 4-5-3 becomes the newest 
reversal point and if the transition curve 5-4 extends beyond 
the point 4, it will pass along the part 4-1 of curve 3-4-1, as if 
the previous closed loop 4-5-4 did not exist at all (‘wiping-out 
property’) 

 
Fig.1: Transition curves illustrating Mandelung’s rules 

 
 



The closed loop 4-5-4 is called a minor loop.   
 

III. SCALAR PREISACH MODELLING 
  

One of the most widely used models for magnetic hysteresis is 
the Preisach model described in [2] or extensions of the 
original model. All these Preisach type models have a 
common feature:  the magnetization curves are constructed as 
a superposition of simple hysteresis non-linearities, i.e. 
rectangular loops, defined by an ‘up’ switching field α to the 
+1 state and a ‘down’ switching field β to the –1 state, α>β.  
Advanced hysteresis models, such as the Preisach models 
should reproduce all main features of magnetization, including 
the ‘return-point-memory’ and the ‘wiping-out’ property. 
 

 
Fig.2: Magnetization curves illustrating the congruency properties 

 
Firstly, the classical Preisach model describes rate-
independent (quasi-static) hysteresis. Indeed, the hysteresis 
memory state at each time point is determined only by the 
extreme values (maxima and minima) of the field strength 
history (‘return-point-memory’).  The relevant extreme value 
Hextr is the last one stored in memory.  The closing of a minor 
loop deletes from memory the maximum and minimum H-
values associated with this minor loop (‘the wiping-out 
property’). When no extreme values are present in memory, 
the virgin magnetization curve is followed. The third 
important property of the classical Preisach model is the 
‘congruency property’, see Fig.2. It states that BH-loops 
between two fixed extreme field values h1 and h2 are 
independent of the induction level B.   In the classical Preisach 
model, the magnetization M corresponding with the magnetic 
field H and its history Hhist is obtained as the superposition of a 
reversible Mrev(H) part and an irreversible part Mirr(H, Hhist), 
the latter given by 
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Here, the φ(α,β,H,Hhist) has the value +1 or –1, respectively 
when the Preisach dipole with parameters α,β is in the ‘up’ 
state or the ‘down’ state at the considered time point.  The 
density of these dipoles is represented by the Preisach 
distribution function P(α,β) (PDF), characterizing the 
material. Mirr is determined by the magnetic state of all 
elementary dipoles, which, in turn, depends on the magnetic 
history of the material.   
Somewhat simultaneously, hysteresis effects were studied by 
D.H Everett [3]. The Everett function Ev(H1,H2) takes as value 
the variation of the magnetization when varying the magnetic 
field H from H1 to H2 without evading extremal values of the 
magnetic field from the memory. The function has a positive 

value in case of an ascending branch and a negative value in 
the opposite case.  The magnetization M is given by: 
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H1, H2, H3, … HN-1 are the extreme values of the magnetic field 
in memory at time point t and HN=H(t). It is well known that 
the Everett function Ev(H1,H2) can be identified 
experimentally using e.g. Epstein frame combined with an 
acquisition system and power amplifier able to enforce a 
quasi-static current of any shape in the excitation winding.  As 
the Everett function Ev(H1,H2)  is directly related to the 
Preisach function [4]:  
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Eq.(3) may be used to identify the Preisach distribution 
function [5].       
The density of the dipoles is represented by the Preisach 
distribution function P(α,β), characterizing the material. The 
resulting magnetization M of the entire material is obtained 
from the accumulated magnetization of all the dipoles. In 
order to quantify how the distribution changes due to a 
variation of grain size or of dislocation density, a Lorenzian 
PDF is considered [6].  It was shown in [6], that a Lorenzian 
distribution is a suitable distribution function to describe the 
experimentally obtained magnetization loops of steels.  In 
particular, the physical information contained in the longer tail 
of the Lorenzian distribution enables a better fit to 
experimentally obtained hysteresis data than other type of 
distributions, for example the Gaussian distribution.    
 

 
Fig.3: Definition of the Everett function Ev(H1,H2) 

 

 
Fig.4: Magnetization curves illustrating the non congruency properties 

 



The classical Preisach model has the ‘congruency property’ 
and thus is inapplicable to many real materials as 
experimentally non-congruent minor loops between two fixed 
extreme field values h1 and h2 are often observed.   
Moreover, the phenomenon of accommodation or reptation 
has been observed in many magnetic materials [7]. This 
phenomenon states that it takes many cycles before a minor 
hysteresis loop closes upon itself, see Fig.5.  In the classical 
Preisach model this is immediately, i.e. the classical Preisach 
formalism results in an immediate formation of the stable 
minor hysteresis loops after only one cycle of back and forth 
input variations between two consecutive extremum values. 

 

 
Fig.5: Magnetization curves illustrating the accommodation or reptation 

processes 
 

The accommodation processes are different from after-effects 
that refer to the drift in magnetization while the applied 
magnetic field is held constant, since accommodation requires 
a change in the applied field to occur. 
In [8] the ‘moving Preisach model’ and the ‘product Preisach 
model’ were introduced in order to be able to describe the 
experimentally observed non-congruency and accommodation. 
In the former model, the magnetic field H as input of the 
model is replaced by an effective field He=H+kM while in the 
latter the Preisach function P(α,β) in Eq.(1) is replaced by 
R(M)P(α,β) with R(M) an even function of the magnetization 
M.  Both extended models, the so called output-dependent 
Preisach models, were compared in [9].  An important 
consequence of the moving Preisach model is the ‘linear skew 
congruency’: congruent minor loops are connected by a line 
whose slope is –1/k, see Fig.6.  
Experiments show that the moving Preisach model is actually 
able to give a good description of hysteresis phenomena in 
magnetic recording [10] as well as in metallic materials [11].  

 
Fig.6: Magnetization curves illustrating the linear skew congruency 

 

A question that has been widely debated is whether the 
Preisach model mathematical structure is able to describe the 
physical aspects of ferromagnetic hysteresis.  For this reason, 
it is often convenient to describe the Preisach formalism in 
terms of the ‘interaction fields’ hi=(α+β)/2 and the critical 
fields hc=(α−β)/2.  In [12] it is described in detail that the 
interpretation of hysteresis data through the moving Preisach 
model should permit one to separate pinning and interaction 
effects, described by P(α,β), and associated with the inherent 
disorder of ordinary materials (fluctuations in particle size, 
shape orientation, presence of grain boundaries,…) from mean 
field interactions, described by the moving parameter k.  A 
valuable approach to the characterization of magnetic 
interactions is represented by the so-called Henkel plot [13].  
Moreover, it has been found in [12] that the moving parameter 
k can be associated with the longitudinal magnetostatic 
interactions responsible for the Barkhausen effect. 
For magnetic recording material, the moving Preisach model 
has even been extended to a complete-moving hysteresis 
model [14].  It is shown that the reversible as well as the 
irreversible components of the magnetization are Preisach 
state-dependent and are coupled through the feedback 
parameter k.  Therefore, in the complete moving Preisach 
model, the rectangular hysteresis loop for one dipole is 
replaced by a more realistic, non-rectangular hysteresis loop.  
This extension results in a non-linear skew congruency 
property, i.e. the locus created by congruent minor loops is not 
a straight line.  The parameter identification of the complete 
moving Preisach model is described in [15]. 
The product model [16], [17] computes the total magnetization 
M when the magnetic field is increasing according to  
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The non-congruency function R(M) in the product model is an 
even function of M/Ms. It also has the turn-off property, that 
is, it is equal to zero when the magnitude of M is equal to 
saturation magnetisation Ms.  This property prevents the 
magnetization from exceeding saturation for any 
magnetization process.  The integral of Eq. (4) corresponds to 
the irreversible magnetization while the parameter b in (4) 
corresponds to a reversible process.  Just like He in the 
complete moving Preisach model, the parameter b may be 
function of both H and M.     
Finally, notice that relaxation effects in magnetic materials 
and their influence on the hysteresis behaviour of these 
materials have been studied in detail in literature. In [18] the 
connection between hysteresis and time effects due to thermal 
relaxation is studied in the frame of Preisach hysteresis 
modelling.   Relaxation effects are generally studied by 
measuring the magnetization decay at constant field (magnetic 
viscosity, after effects).  The state line [19] in the Preisach 
model, splitting up the Preisach plane in a sub region of 
dipoles in the ‘up’-state and a sub region of dipoles in the 
‘down’-state, is not defined only by the extreme values of the 
magnetic field kept in memory of the material but by the 
whole field history H(t).   
In [20] the modelling of after effect phenomena in hysteretic 
systems using Preisach type models is driven by stochastic 
inputs. Thermal perturbations, which result in the gradual loss 
of memory in hysteretic systems, are modelled by discrete and 
continuous time stochastic inputs.   This temporal loss of 
memory of a hysteretic can be of practical significance in 
various engineering applications where hysteresis is utilized.  



One important example is the magnetic storage where the 
viscosity effect is important as far as the time reliability of 
recorded information is concerned.    
 
 
 

IV. THE DIFFERENTIAL EQUATION BASED HYSTERESIS MODEL 
 
The Hodgdon’s model [21] assumes a constitutive relation 
between H and B given by the differential equation: 
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With a proper choice of α and of the material functions f and 
g, it is possible to describe hysteresis loops of various 
ferromagnetic materials.  The most interesting properties of 
this model concern the behaviour of the minor loops.  If H 
oscillates between a minimum and maximum value of the 
magnetic field H, the resulting magnetization loop moves 
towards a stable loop, independent of the initial state.  This 
behaviour is experimentally observed on some type of 
materials and is known as the already mentioned 
accommodation phenomenon.      
 
Another well known differential equation based hysteresis 
model is the Jiles-Atherton model [22], [23].  The proper 
equations are obtained from the principle that the total energy 
supplied to the ferromagnet may be split into two terms:  the 
energy dissipated against pinning (hysteresis loss) and the 
change in energy due to the change in magnetization of the 
solid which may be considered reversible. [24] 
In this model the total magnetization M is the sum of a 
reversible (Mrev) and an irreversible (Mirr) component. These 
components are given by 
 

( )irranjrev MMcM −=                       (6) 

e

irrj
anirr dH

dMk
MM

0µ

δ
−=            (7) 

 
Here, Man is the anhysteretic magnetization, and where He is 
the effective magnetic field inside the material, i.e. 
He=H+αjMan. The anhysteretic curve is often described by the 
Langevin function and the parameters Msj, aj.   The number δ, 
taking the value +1 or –1, depending on whether H is 
increasing or decreasing, corresponds mathematically to the 
hysteresis. Eq.(6) describes the reversible processes: reversible 
domain wall bowing, reversible translation and rotation.  In 
[25] it is shown how the material parameters Msj, cj, aj kj, and 
αj can be obtained starting from the following magnetic 
properties:  the initial normal susceptibility, the initial 
anhysteretic susceptibility, the coercivity, the differential 
susceptibility at remanence and the coordinates Hm,  Mm of a 
loop tip, together with the differential susceptibility of the 
initial magnetization curve at the loop tip. However, using (6) 
and (7) results in unrealistic minor order loops, e.g. negative 
values for the differential permeability.   Therefore, a 
generalization of the theory of hysteresis was described in [26] 
which allows self consistent description of all forms of minor 
hysteresis loops without the need to invoke any additional 
parameters.   Volume fractions for the irreversible and the 
reversible components were introduced. 

Although the Jiles-Atherton model and the Preisach models 
are defined in a completely different way, in [27] it is shown 
that by referring to fundamental energy relations, which can be 
used to describe the models in terms of stored and dissipated 
energy, one is able to derive the fundamental expressions of 
magnetization laws of the Jiles-Atherton model by applying a 
physical meaningful set of assumptions to the Preisach model. 
 

V. DYNAMIC SCALAR HYSTERESIS MODELS 
 
In previous sections the presented hysteresis models are static 
in nature.  The term ‘static’ implies that in these models only 
past input leave their mark upon the values of output, while 
the speed of input variations has no influence on the hysteresis 
branching.  The magnetization curves, or hysteresis loops of 
ferromagnetic materials change as a function of the frequency 
and waveform of the applied magnetic field. There are many 
hysteresis models which take dynamic broadening of the 
hysteresis loop with frequency into account.  Most of these are 
built on a static hysteresis model.   
The dynamic model of Jiles [28], [29] is based on his static 
hysteresis model [24].  The dynamic model of [28] is based on 
the second order linear differential equation of motion of 
domain walls, which is averaged to describe the behaviour of 
the whole material.  The result is a differential equation of 
second order describing the displacement magnetization 
∆M=M(t)-M0(H) where M0(H) is the locus of points on the 
DC hysteresis curve.  The frequency dependent hysteresis 
curves therefore consist of two independent contributions to 
the magnetization.  These are the dc hysteresis curve, which 
represents the locus of equilibrium magnetization as a function 
of the field and the displacement magnetization, which obeys 
the damped harmonic motion equation. 
The main idea behind the dynamic Preisach model described 
in [19] is to introduce the dependence of Preisach functions on 
the speed of change of the magnetization dM/dt.  There, it is 
suggested to use a power series expansion for the Preisach 
function with respect to dM/dt in order to simplify the 
identification of the material parameters.  According to that 
model, the dynamic effects can be described by a differential 
equation for dM/dt.  By retaining a limited number of terms in 
the power series expansion, the order of the differential 
equation for dM/dt can be chosen according to the accuracy 
needs with respect to measurements results. 
In [30] a generalized scalar Preisach model is presented where 
rate-dependent effects are introduced by assuming that the 
switching of each elementary Preisach dipole is not 
instantaneously, as is the case for the standard Preisach model, 
but at a finite rate controlled by the external magnetic field.  
The basic consequence of this assumption is that the width of 
the hysteresis loop increases with increasing magnetizing 
frequency.  In soft magnetic materials the proposed 
generalization has a direct physical interpretation in terms of 
domain wall dynamics [31].  Moreover, the results of this rate-
dependent Preisach model could be directly related to the 
statistical loss theory [32], [33] and physically interpreted 
[34].  A general approach to the calculation of iron losses in 
soft magnetic materials is based on the separation of losses 
into three components: the hysteresis losses Ph, the classical 
eddy current losses Pc and the excess losses Pe.  Each 
component has its own peak induction and frequency 
dependence [35].  In [30] a switching speed proportional to the 
difference between H(t) and the elementary loop switching 
fields α or β is described, resulting in an excess loss term 
varying according to the f3/2 law.  In [36] and [37], this 
switching law was generalized and related to the n(Hexc) – 



characteristic defined in the statistical loss theory. In  [38], 
[39] a model was presented taking into account all dynamic 
effects.  The model is based on the equation: 
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directly related to the statistical loss theory.  For a given 
induction B – the mean induction in the thickness of the sheet-, 
the magnetic field Htot - at the surface of the sheet – has two 
components: a DC-contribution Hhyst(t), directly related to a 
rate-independent Preisach model and a dynamic contribution 
Hdyn(t) describing all dynamic processes (classical eddy 
current losses and excess losses), see Fig.7.  The dynamic 
behaviour of the material is described by the function 
Hdyn(B(t), dB(t)/dt) which can be identified experimentally 
[39]. 

 
 

Fig.7: Static and dynamic magnetization curves illustrating 
two components of the total field Htot 

 
 
 

VI. VECTOR HYSTERESIS MODELLING 
 
The previous discussions were limited to scalar models. 
However, in many cases the magnetizing processes is vectorial 
in nature.   
The magnetization processes, under rotational fields, undergo 
several changes at different magnetization levels: at low fields 
180° domain wall motion prevails, while at intermediate fields 
the role of the 90° walls becomes important.  Finally at high 
induction level the local magnetization inside a grain can 
deviate from the easy direction for coherent rotation. The 
coherent rotation process is in fact responsible for the decrease 
of rotational losses at high fields, when the magnetizing vector 
saturates and becomes parallel to the field. Aiming at the 
development of a physically based vector hysteresis model 
includes the construction of a model able to describe domain 
wall motion and coherent rotation and able to depict the 
transition from domain wall motion to coherent rotation. 
This makes the design of a proper vector hysteresis model a 
difficult task.  One approach to vector hysteresis is the particle 
assembly approach.  In [40] vector hysteresis was treated by 
considering the material consisting of an assembly of 
identical, non-interacting, single-domain uniaxial particles.  
This model was extended in [41] and the switching criterium 
was modified to that derived from the Stoner-Wohlfarth model 
[42].   
 
There has been numerous attempts to generalize the original 
Preisach model to bring it closer to the physical reality by 

including vectorial field magnetization relations.  Several 
models have been proposed to introduce a vector component 
in Preisach modelling.  In general, vector hysteresis models 
have to obey the ‘saturation property’:  the magnetization must 
be limited to saturation for any magnetizing process, and the 
‘loss property’: for large rotating fields, the hysteresis loss 
should go to zero.   
A vector Preisach model of great generality was introduced in 
[43].  In this model there is a set of scalar Preisach models, 
each one having a different magnetization direction and 
responding to the component of the applied field in that 
direction, see Fig. 8 in case the set contains two scalar 
Preisach models along orthogonal axes. The identification 
problem for both isotropic and anisotropic materials is 
discussed in [19].   
 

 
Fig.8: Principle of the ‘Mayergoyz’ vector Preisach model.  The H-vector is 

projected on the axes of each scalar model in the set.  In each scalar model the 
projection of H is used as input.  The vector B is obtained as the vector sum of 

all contributions of B-components  of the scalar models. 
 
This vector Preisach model has been critized [44], [45] as it 
fails to properly describe the rotational properties of magnetic 
materials.  In particular, for a large rotating field, every 
member of the scalar models must describe a complete 
hysteresis loop and the calculated rotational hysteresis loss 
reaches a constant nonzero value.  The disagreements with 
experimental observations can be mainly traced to the 
inadequacy of the ‘effective’ input components, which cannot 
introduce sufficient changes in the orthogonal output 
components.  Indeed, if the set of scalar Preisach models are 
permitted to be independent, then the saturation property is 
violated for large fields.  This fact prompted further research 
efforts to develop new vector Preisach models.  In an effort to 
develop a more accurate vector model, the original model of 
[43] was generalized by defining a new type of projection for 
the applied field vector on each direction corresponding with 
one scalar Preisach model [46]. In [47] a model was 
introduced in which the scalar Preisach models respond to 
perpendicular field components:  the fundamental assumption 
of the proposed model is that field components perpendicular 
to the axis associated with a scalar Preisach model have the 
effect of a partial ac demagnetisation on that model.  This 
model was based on a series of measurements that showed that 
when a material is magnetized in one direction, it eventually 
becomes demagnetised in the perpendicular direction.  The 
degree of demagnetisation depends on the magnitude of the 
field, and is complete for large magnetic fields.  The vector 
Preisach models proposed in [47] and [48] involve 
modification of the scalar Preisach model by including a 
response to field components normal to the axes of the model.   
It was recognized that models that combine the efficiency of 
the Preisach models and the vector response of the particle 
assembly models are required for magnetic simulations of 
vector hysteresis processes.  In [49] and [45] a composite of 



scalar Preisach and particle assembly modelling in which the 
asteroids, see also Fig.9, of the Stoner-Wohlfarth model [42] 
replace the simple rectangular loops of the scalar Preisach 
model and are shifted to represent interactions.  Indeed, it was 
assumed that each point in the Preisach plane represents the 
average behaviour of a certain group of real particles in the 
medium, i.e. each point in the Preisach plane corresponds to a 
pseudo particle of the medium.  In that case, each point in the 
Preisach space is defined by the two switching fields α and β 
and two angles (a polar angle and an azimuthal angle in a 
spherical coordinate system) defining the orientation of the 
pseudo particle.  Connecting the Preisach model and the 
Stoner-Wohlfarth model resulted in combining moving 
domain walls processes with the intrinsic rotation of the 
domain walls. In [50] a straightforward identification 
procedure for combined Preisach – Stoner-Wohlfarth vector 
hysteresis models has been presented.  
 

 
Fig.9: Principle of the vector Preisach – Stoner Wohlfarth model  

 
A memory mechanism was postulated by Mayergoyz [19], and 
used in its vector Preisach model, designed as the extension of 
the classical Preisach model. This model is however 
computationally intensive [51].  In [52] a specific property of 
the ‘Mayergoyz’ vector hysteresis model was discussed, the so 
called ‘spiral reduction’ property or the wipe-out memory 
property:  two line segments that subtend a part of the 
magnetic field locus can be used to replace this part of the 
locus without change in the current model output (the 
magnetization vector).  This is illustrated in Fig. 10. 
 

 
 

Fig.10: (a) Original magnetic field input curve (full line) with two dotted lines 
subtending a part of it from the current input point (b)  Relevant input 

magnetic field –locus after wiping-out  
 

In [53], this vector form of wipe out memory was tested 
experimentally for particulate iron oxide magnetic medium 
using a vibrating sample magnetometer by generating 
magnetic field trajectories that are self-crossing. 
Several other vector hysteresis models have been proposed in 
the literature [54], [55], [56], [57], [58], [59] but they still have 
certain limitations.  Also dynamic vector hysteresis models 
have been introduced in [19].   
Especially in the case of arbitrary two-dimensional 
magnetization patterns (i.e. patterns different from circles and 
ellipses), there is very little information available on the 
applicability and accuracy of the various models. A major 

difficulty hereby is the determination of the actual memory 
state of the material depending on the history of the magnetic 
excitation. 

 
VII. NEURAL NETWORK SCALAR HYSTERESIS MODELS 

 
The finite element analysis of electromagnetic devices is a 
commonly used design tool.  Critical to this process is the 
development of effective material models.  During the non-
linear finite element iteration process, it is necessary to 
evaluate the appropriate MH or BH relationship many times 
for each element. Thus there is a requirement for a hysteresis 
modelling approach that is both memory efficient and fast.  In 
case of unidirectional magnetization, i.e. H(t) and B(t) are 
scalars, denoted H(t) and B(t)), one of the most widely used 
models for magnetic hysteresis is the Preisach model.  
However, the extension of the model to two-dimensional (e.g. 
circular) magnetization, as occurring in the laminations of 
rotating electrical machines, but also to a less extent in 
transformers, is not straightforward [19].  "Black box" input-
output mathematical models, based on artificial neural 
networks (ANN) [60], are emerging as a powerful modelling 
tool and could form an alternative to hysteresis modelling 
techniques like the Preisach model.  
Several authors have considered the use of an artificial neural 
network as a method of providing a functional representation 
of the hysteresis curve whilst minimizing the storage and time 
requirements [61], [62]. 
Artificial neural networks (ANN) are "black box" 
mathematical tools that can be used for modelling non-linear 
dynamic input-output relations [60].  The outputs yl of such a 
network are determined as weighed sums of its inputs ui, 
combined with a non-linear sigmoidal activation function g (a 
linear activation g~  is used for the output layer and one hidden 
layer): 
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The weights wij

(k) are determined by network training [60].  A 
theorem states that any continuous non linear function f of an 
arbitrary number of variables can be approximated arbitrary 
well over a compact interval by a multilayer Feed-Forward 
Neural Network (FFNN) consisting of one or more hidden 
layers, provided the number of hidden units is sufficiently 
large [60]. 
During the design of the neural network model, the design of 
the input vector is critical.  If the inputs are not independent 
then the training time for the neural network can increase with 
little benefit in the modelling.  If the input set is not complete 
then the result will not provide an accurate representation of 
the system.  The performance of a neural network is 
determined both by its architecture and the values of the 
weights associated with the inputs and output of each neuron.  
The weights are found through a training process in which the 
network is presented with a large number of sets of the input 
data and corresponding outputs.  The weights are adjusted 
until the trained response of the network matches the desired 
response.  The set of available data is usually broken into two 
parts:  the first for the actual training, the second for testing 
the performance of the trained network. In general a classical 
feed forward neural network is used in literature, trained using 
error back propagation. 
In [63] the chosen input vector of the neural network for one 
space component of H consists of 5 variables:  the previous 



(M,H) pair, the current (M,H) pair and the next H.  The output 
is the next value of M.  This type of neural networks is good 
for the description of scalar limit hysteresis cycles but has its 
limitations for modelling minor order loops. 
The approaches described in [64] and [65] are based on the 
assumption that one can reasonably describe the memory 
mechanism in systems with rate-independent hysteresis 
through Preisach state updating rules.  Then, the resulting 
neural model is constituted by two blocks.  The first one is a 
memory block while the second one is a feed forward neural 
network.  The model identification consists then in training the 
neural network. In [65] one uses the Preisach dipole formalism 
in the memory block while in [64] the memory block contains 
play operators.   The disadvantage of these neural models is 
the large number of inputs (number of Preisach dipoles - 
number of play operators). 
In [66] a neural network hysteresis model that offers the same 
accuracy as the classical scalar Preisach model was presented. 
The neural network topology and input parameters are chosen 
based on the properties of the Preisach model and the theory 
of dynamic systems.  Two important properties of the classical 
scalar Preisach model [19] are taken into account for the 
development of the neural network model. Firstly, the Preisach 
model describes rate-independent (quasi-static) hysteresis. 
Indeed, the hysteresis memory state at each time step k is 
determined only by the extreme values (maxima and minima) 
of the field strength history H0, H1, …, Hk-1, Hk, The change of 
the magnetic induction Bk (the model output) is determined 
from the current field value Hk and exactly one stored extreme 
field value Hk

extr, at each time step k (Fig. 11). The relevant 
extreme value Hk

extr is the last one stored in memory. The 
closing of a minor loop deletes from memory the maximum 
and minimum H-values associated with this minor loop (the 
wiping-out property [19]. When no extreme values are present 
in memory, the virgin magnetization curve is followed. The 
relevant extreme value Hk

extrcan be determined at each time 
step k by an algorithm that stores the encountered extreme 
values and implements the wiping-out property.  The second 
important property of the classical Preisach model is the 
congruency property. It states that BH-loops between two 
fixed extreme field values are independent of the induction 
level B.  
Combining the two properties, the classical scalar Preisach 
model can be expressed mathematically as: 
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where Bk

extr is the corresponding induction level at the relevant 
extreme field value Hk

extr and f is a nonlinear function of three 
variables.  The variable FLAGk can take only two different 
values, e.g. –1 and 1, to distinguish between the virgin curve 
(no extreme values present in memory) and a hysteresis 
branch, respectively. Indeed, for the special case Hk

extr=0, 
there exist two distinct curves: Bk=Bk

extr+f1(0,Hk) when 
following the virgin curve (Bk

extr=0), and 
Bk=Bk

extr+f2(Hk
extr,Hk) when following a hysteresis branch. 

Note that Eq.(10) is similar to the description of the Preisach 
model with the Everett function Ev(H1,H2)

 [3]: 
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depending whether a hysteresis branch or the virgin curve is 
followed, respectively.  Here, Ev(H1,H2) is the two 

dimensional function giving the variation of the magnetic 
induction when varying the magnetic field from H1 to H2, 
where H1 or H2 are extremal values and during the variation no 
extremal values are wiped out of the memory, see above.  
 

 
 
Fig.11: Wiping out (deletion) property of rate-independent hysteresis (a) input 

sequence and corresponding extreme values; (b) input-output trajectory 
 
With regard to computational efficiency and required training 
sets, it is convenient to model only the non-linear part of (10), 
and use: 
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Fig.12: A possible training set for the feed-forward neural network.  
 

Note the similarity with the Everett function description.  The 
FFNNstat fully describes the Everett function Ev(H1,H2).  In 
order to use the neural network of Eq.(9) for hysteresis loop 
prediction, it should be trained, i.e. the weights wij

(k) 
determined. A suitable training set of known input and output 
pairs is used for this task.  The (measured) training set should 
span the whole range of possible network input values, 
because a neural network is capable of performing accurate 
non-linear interpolations, but is not suitable for extrapolation. 
For a fixed maximum field strength Hmax, a possible training 
set providing all the necessary information is shown in Fig.12. 
The neural network model was also tested with a test set 
shown in Fig.13a, which was not used during training. Fig.13b 



shows that both major and minor hysteresis loops can be 
predicted very accurately, thereby proving that the neural 
network technique is suitable for hysteresis modelling. 

 

 
 

Fig.13: Comparison between congruent loops neural network model and 
classical Preisach model for FeSi steel: (ainput history) (b) input-output 

trajectory. 
 
Dynamic hysteresis, or the relation between the time 
dependent B(t) and Htot(t), can be treated conveniently based 
on the loss-separation property of SiFe alloys [67]. According 
to this property, the total power loss of the ferromagnetic 
lamination can be divided into quasi-static (hysteresis) and 
dynamic (classical, including skin-effect, and excess) loss 
components, Physt and Pdyn respectively. The quasi-static field 
Hhyst(t) and the dynamic field Hdyn(t), see Fig.7, can be 
associated with the corresponding loss components for each 
time point t, leading to Eq.(8) for the instantaneous power loss 
Ptot(t) at time t [67]. 
The quasi-static and dynamic contributions can thus be treated 
independently [68]. Using neural networks, (9) suggests 
combining two feed-forward neural networks (FFNN), one 
that determines the quasi-static BHhyst-loop and one that yields 
the dynamic field Hdyn(t), for a given B(t) as input.  The 
modelling of quasi-static magnetic hysteresis, which obeys the 
wiping-out and congruency properties of the classical Preisach 
model, was presented in the previous section. The system state 
is determined by the last extreme magnetic field value 
Hhyst

extr(t), kept in memory, and the corresponding induction 
value Bextr(t). Both can easily be determined from the magnetic 
field and induction history. This model can be used to 
iteratively determine the quasi-static BHhyst-loop for a given 
B(t). 
The dynamic field Hdyn(t) depends on the induction B(t) and 
its rate of change dB/dt [67]., but is assumed not to depend on 
the magnetization history of the material. The dynamic field 
Hdyn(t) can thus be modelled by a FFNN with 2 inputs: 
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In order to use the network (14) for the prediction of Hdyn(t), it 
should be trained, i.e. the weights wij

(k) determined. A suitable 
training set of known input and output pairs is used for this 
task [60]. The (measured) training set should span the whole 
range of possible network input values, because a neural 

network is capable of performing accurate non-linear 
interpolations, but is not suitable for extrapolation. For the 
network (14), a possible training set providing all the 
necessary information consists of the sinusoidal BHtot-loops at 
saturation, for a set of different frequencies. For each BHtot-
loop, the quasi-static BHhyst-loop is calculated by the classical 
Preisach-model or the neural network model, yielding the 
dynamic field Hdyn(t) and thus the input-output pairs for the 
training of the network (14). A quasi-static loop at saturation 
(with dB/dt and Hdyn(t) identically zero) is included in the 
training set to improve the network performance for low 
values of dB/dt. The number of different frequencies that 
should be used, as well as the number of elements in the 
hidden layer of the neural network, are determined 
experimentally to ensure the generalization capability of the 
network and avoid overfitting [60]. A set of test loops, 
different from the training loops, is used to investigate the 
network performance. 
 

 
 

Fig.14: Comparison between FFNN prediction and results from Preisach 
model: (a) sinusoidal magnetization at 0.87 T, 100 Hz; (b) sinusoidal 

magnetization at 50Hz, distorted with third and fifth harmonics. 
 
In order to test the proposed approach, a measured training set 
was used.  A feed-forward neural network with 10 neurons 
was trained with loops for only 6 different frequencies from 50 
Hz to 400 Hz, using the Levenberg-Marquardt training 
algorithm [60]. for 200 epochs (iterations).  The accuracy of 
the results for all the test loops is good. For the loops at 
saturation, the error for the calculated power loss is less than 1 
% above 50 Hz. The saturation loops below 50 Hz as well as 
the loops at lower induction levels and for distorted 
waveforms yield higher deviations in the loss values, up to 10 
%. Fig.14 shows typical results. The reduced accuracy for 
lower inductions suggests that the maximum induction Bmax in 
the BHtot-loop slightly affects the dynamic field Hdyn(t). 
In [69], three versions of a vector hysteresis model for 
electrical steel sheets are presented, based on the function 
approximation capabilities of feed-forward neural networks 
and the memory mechanism of vector hysteresis proposed by 
Mayergoyz [19]. In the memory mechanism postulated by 
Mayergoyz, the past extrema Hψ,k

extr of the projections of the 
input vector Hk along all possible directions ψ in the plane of 
the sheet may influence the future evolution of the output Bk 
and thus contain the vector memory state of the material   
The first model handles arbitrary vector magnetization 
patterns, but requires a very extended data set for the training 
of the neural network. The second model is suitable for 
convex induction loci and allows a reduction of the required 
training set. The third model handles the features of the 
considered magnetization pattern in an alternative way and 
relaxes the convexity requirement. The choice of the specific 



model, its parameters and the network training set depends on 
the types of magnetization patterns concerned. Arbitrary high 
accuracy can be reached by extending the complexity of the 
model and/or the size of the training set. Experimental results 
for the third model are presented and show the good accuracy 
of the approach. Standard neural network algorithms are used. 
In these vector hysteresis models, both field vectors are 
restricted to vary in the plane of the laminated SiFe steel and 
are denoted H(t)=|H(t)|exp(jϕH(t)) and B(t)=|B(t)|exp(jϕB(t)), 
see Fig.15a. A FFNN model for arbitrary vector magnetization 
patterns, resolving the limitations of the Preisach-Mayergoyz 
model, can be constructed as follows. The inputs of the FFNN 
at each time step k are the amplitude |Hk| and phase ϕk

H of the 
field strength Hk, along with the relevant extrema Hψp,k

extr  of 
the projections of Hk and the corresponding Bψp,k

extr  along a 
set of P directions ψp, p = 1, …, P. The outputs of the FFNN 
are the induction amplitude |Bk| and the lag angle θk (see 
Fig.15.a): 
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Note that this model 1 is an extension of the Preisach-
Mayergoyz model, as it takes the complete memory state of 
the material into account in the limit of an infinite number of 
directions ψ. The model is thus capable of approximating the 
relation between Hk and Bk for arbitrary vector magnetization 
patterns, provided the memory mechanism of Mayergoyz 
correctly determines the memory state of the material. The 
approximation accuracy of the model is increased by using a 
denser set of directions ψ. A major practical disadvantage of 
this method is that the FFNN requires a very extensive training 
set, consisting of experimental data spanning the whole range 
of possible magnetization patterns, including various 
combinations of vector minor loops. However, if one disposes 
of such an extensive training set and the FFNN is trained 
correctly, it can yield a very accurate vector hysteresis model. 
The previous method has the additional disadvantage that the 
measurement of the magnetization patterns for the training set 
is mostly performed under the condition of a controlled 
induction waveform on a Rotational Single Sheet Tester 
(RSST).  It is thus difficult to obtain experimental data for 
predetermined field strength patterns and we would therefore 
prefer a model with Bk as input and Hk as output. In the case of 
convex vector induction patterns such a B-to-H model can be 
constructed in a way analogous to the already discussed H-to-
B model. The convex vector induction patterns do not yield 
minor loops in the projection on any direction ψ. In this case 
each extreme field value Hψ,k

extr corresponds to a unique 
extreme induction value Bψ,k

extr. We can thus construct a 
FFNN with inputs |Bk| and ϕk

B, along with the values Bψp,k
extr 

for a set of P directions ψp (Fig.15.b). The outputs of the 
FFNN are |Hk| and θk: 
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This model 2 yields an arbitrary accurate vector hysteresis 
model for convex induction patterns. The training of the 
FFNN should use an extended set of such convex patterns. 
Note that a training with circular and elliptical magnetization 
patterns only is not correct. In such a case the FFNN would 
not be able to calculate accurately any pattern different from a 
circle or an ellipse. 

 

       
Fig.15: Notations: (a) B(t) and H(t) in lamination plane; (b) Bψp,k

extr  and 
Bψp,k

max for an induction pattern   
 
 

 
Fig.16: Measured and calculated Hk and Bk for patterns from the test set of the 

FFNN |B|max=1T; |H|max=105 A/m 
 
In order to relax the requirement for convex induction 
patterns, we note that we can take hysteresis memory into 
account in an alternative way, using as inputs of the FFNN the 
specific features of each considered induction pattern. In 
particular, the maximum values Bψp

max of |Bk| along a set of P 
directions ψp (Fig.15b), along with information about the 
direction of rotation of the induction pattern (clockwise or 
counter clockwise), contain sufficient information about the 
considered pattern in the case there are no vector minor loops. 
This data can thus be used as inputs of the FFNN instead of 
Bψp,k

extr. Note that in the limit of an infinite number of different 
directions ψ, these values Bψ

max uniquely determine the 
induction pattern for a known direction of rotation. The 
training of the FFNN of this model 3 uses again an extended 
set of measured magnetization patterns. Note that one can 
adapt the complexity of this vector hysteresis model 
depending on the required accuracy of the application or the 
specific types of the considered induction patterns, for 
example by reducing or increasing the number P of directions 
ψp. These models were experimentally verified in [69].  Some 
results are shown in Fig. 16. 
In [70], a dynamic vector hysteresis model based on neural 
networks, was presented, based on the loss separation property 
of SiFe steels [67]:   
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The time dependent field at the surface of the lamination is 
denoted Htot(t) = Htot,x(t) 1x+ Htot,y(t)1y and the induction 
averaged out over the cross section of the lamination is B(t) 
 = Bx(t)1x + By(t)1y, with t the time, in Cartesian represen-
tation.  As in the scalar case, Hdyn(t) = Hdyn,x(t) 1x+ Hdyn,y(t)1y is 
modeled with a suitable additional feed-forward neural 
network. 
 

VIII. FINITE ELEMENT FORMULATIONS 
 
The industrial characterisation of soft magnetic materials is 
based on measurements performed on laminations packed 
inside an Epstein frame under imposed sinusoidal flux 
conditions.  The actual operating conditions of the material 
inside an electromagnetic device are far from those reproduced 
on Epstein frame:  distorted flux patterns are very often found 
inside devices, due to saturation, slot effects and non-
sinusoidal electronic supply systems. The capability to 
numerically simulate the complicated conditions could give an 
important tool for a deeper insight into iron losses. A possible 
approach to the analysis of the phenomena inside the 
ferromagnetic laminations is to describe the interacting 
hysteresis and eddy current effects in terms of the macroscopic 
fields.  This is performed by means of numerical methods for 
the solution of Maxwell equations in magnetic cores combined 
with advanced hysteresis models, described above.  The 
corresponding 1D-diffusion problems in laminated structures 
are described in detail in e.g. [71], [72], [73], [74]. 
In the conventional magnetic field analyses that are applied for 
the design of electromagnetic devices, the magnetic properties 
have been modelled by simplified material models.   
There has been publications [75], [76] [77] were hysteresis 
models were included in 2D finite element analysis.  However, 
the material models are scalar models, even though the 
electromagnetic field analysis with ferromagnetic materials 
needs a 2D or even a 3D vector hysteresis modelling. 
In [78] a numerical scheme was proposed in order to include 
the modelling of the two-dimensional magnetic properties 
using the magnetic reluctivity tensor.   
In  [79] a 2D vector hysteresis model using the play and stop 
hysteron models is presented and included in 2D eddy current 
finite element analysis. The play and stop hysteron theory 
allows to construct a hysteresis model with the B-vector as 
input, which simplies the finite element scheme when using a 
vector potential formulation.  
In [80] the finite element computations taking into account the 
materials properties by the Mayergoyz vector hysteresis model 
have been verified experimentally by comparing the numerical 
results with measurements on a transformer type device. Also 
neural network hysteresis modelling has been included in 
finite element analysis, see e.g. [81]. 
 

IX. CONCLUSIONS 
 
The finite element analysis of electromagnetic devices may 
require a computationally efficient material hysteresis model 
describing the time-dependent non-linear relation between the 
magnetic field strength vector H(t) and the magnetic induction 

vector B(t), both under unidirectional and two-dimensional 
magnetization. Without claiming completeness, this paper 
gives an overview of scalar and vector hysteresis models 
studied and discussed in the past. Physical based and 
phenomenological hysteresis models were considered.  
Mathematical models, based on artificial neural networks, 
could form an alternative to e.g. Preisach-type hysteresis 
models, resulting in substantial savings of computation time. 
The development of general purpose numerical schemes for 
solving Maxwell’s equations in 2 and 3 dimensions in 
combination with complex constitutive laws describing vector 
hysteresis properties is probably one of the challenges for the 
next few years.  Here, the Compumag community may play an 
important role.  
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