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Higher-Order Non-standard FDTD Schemes in Generalised Curvilinear 
Coordinates – A Systematic Strategy for Advanced Numerical Modeling  
and Consistent Topological Perspectives 

 
Abstract – An advanced higher-order Finite-Difference Time-
Domain (FDTD) method for the accurate solution of complex 
electromagnetic field problems is developed in this paper. Es-
tablishing an essentially algebraic covariant/contravariant ap-
proach to the discretisation of the curvilinear div-curl problem, 
the new technique introduces a generalised set of non-standard 
operators that fits the exterior calculus of differential forms 
and their discrete counterparts (cochains). Therefore, the 
physical properties of Maxwell’s laws are precisely assessed, 
without the need of artificial constraints or lattice reflections, 
whereas the termination of unbounded domains is performed 
via optimally designed Perfectly Matched Layers (PMLs). For 
the temporal variable, the proposed method employs a multi-
stage leapfrog integration that guarantees stability and excita-
tion universality. Numerical investigation demonstrates that 
the proposed methodology accomplishes highly precise simu-
lations, evades late time-instabilities and provides an over-
whelming suppression of dispersion or dissipation errors. 

 
Introduction 

 

The successful development and popularity of a numerical 
procedure in the demanding area of computational electromag-
netics depends on a multitude of modeling perspectives whose 
primary objective is to preserve the fundamental structure of 
the physical problem under investigation. Among them, we 
can indicatively discern the discretisation consistency, the 
strict mathematical robustness, the high accuracy and the well-
posed reciprocity profile; issues that additionally guarantee the 
correct construction of infinitely divisible space-time lattices 
and bridge the gap between the continuous and discrete state. 
As a matter of fact, the above stipulations, along with the thriv-
ing advances in computer facilities, constitute the essential 
guidelines for the ongoing evolution of several broadly-
acknowledged numerical techniques, such as the Finite Ele-
ment [1]-[2], the Edge Element [1]-[3], the Finite Integration 
[4]-[5], the Transmission Line Modeling [6] and the Finite-
Difference Time-Domain (FDTD) [7]-[8] method. Concentrat-
ing on the solution of Maxwell’s equations in the time domain, 
one can easily ascertain the dominant impact of the FDTD 
scheme, which since its inceptive advent has established for-
midable (if not aspiring) modeling goals and radically ad-
vanced simulation standards.  
 

Notwithstanding its algorithmic elegance and routine feasi-
bility, the classical FDTD method presents a principal hin-
drance: its inability to successfully cope with abrupt curvatures 
and complicated geometries in open-region problems. This in-
nately involved deficiency is proven to be critical, since it ren-
ders the well-known "staircasing" procedure inadequate to 
provide consistent numerical simulations and generates severe 
discretisation and lattice reflection errors. As the original 

Yee’s approach encompasses a linear mapping to unbounded 
grids with respect to overall burden, any effort concerning 
space minimisation is very expedient. Furthermore, the tech-
nique's second-order differencing regime, especially on non-
orthogonal meshes, is basically answerable to longer execution 
time and consecutively lower-rates of convergence. Actually, 
for 3-D structures, the truncation error is manifested in dissipa-
tive, dispersive and anisotropic behaviour. Bearing in mind 
that these vector parasites stem primarily from the improper 
discrete representation of the unknown field quantities in 
Maxwell’s div-curl equations, it is evident that the FDTD ap-
proximation framework should be thoroughly reconsidered. In 
particular, the use of vector calculus as the basic tool for the 
extraction of general models, embedded in unstructured 
meshes, seems to be insufficient, since the resulting forms de-
pend on the underlying coordinate system. Moreover, vector 
analysis requires that the whole FDTD discretisation strategy 
must be strongly related to the set of metrics in terms of which 
the respective continuum field theory is described. Thus, the 
geometrical attributes and the metric independence of Max-
well’s laws remain totally unexplored, while during the con-
struction of the dual-character lattices the centres of primary 
cells may not coincide with the middle point of any secondary 
edge, spoiling so the staggered philosophy of the method.  

 

As anticipated, the previous abstractions motivated the in-
troduction of various efficient non-orthogonal FDTD tech-
niques, extensively reviewed in [8]. According to their specific 
topics, these approaches mainly launch second-order curvilin-
ear schemes applied to diverse scattering, radiation, waveguide 
and microstrip problems [9]-[15]. Sharing the fundamental no-
tion of consistent cell interfaces, all methods contemplate di-
verse feasible accuracy enhancements associated with the ap-
propriate FDTD elements in order to manipulate every difficult 
curvature. Nonetheless, serious attention has been also drawn 
towards the reflectionless termination of every unbounded do-
main encountered in the aforementioned applications. Conse-
quently, scientific research concentrated on the extension of 
existing absorbing boundary conditions (ABCs) to the most 
frequently-utilised curvilinear coordinate systems. Among the 
multitude of ABCs, the perfectly matched layer (PML) [16] 
exhibits the best wave-annihilating characteristics for a wide 
range of structures. Its prevalent merits became immediately 
the subject of intensive studies which led to its successful de-
velopment in cylindrical and spherical coordinates [17]-[18]. 
Mainly, based on the theory of complex coordinate stretching, 
these absorbers follow a diagonally anisotropic tensorial for-
mulation in order to circumvent the original split-field (non-
Maxwellian) rationale [19]-[21]. 

 

However, extensive investigations revealed that the sec-
ond-order nature of the foregoing techniques can still comprise 
a serious obstacle for various demanding situations. More spe-



cifically, the inherent discretisation errors may contaminate the 
results and damage the overall simulation. Hence, the perspec-
tive for a firm and straightforward FDTD-PML procedure, able 
to precisely cope with such deficiencies, remains a challenging 
quest. It is the purpose of this paper to introduce a generalised 
higher-order FDTD methodology – founded on advanced non-
standard concepts – for the systematic and accurate analysis of 
intricate 3-D electromagnetic problems established in curvilin-
ear, fully non-orthogonal coordinate systems. Implementing, 
the language of differential geometry and algebraic topology, 
the unifying framework achieves the consistent transition from 
the continuous to lattice state and enables the unperturbed 
separation of the physical field laws into topological equations 
(namely, invariant under homeomorphisms) and metric equa-
tions which involve the familiar Hodge star operators. There-
fore, unlike previous realisations, differential forms and their 
discrete higher-order counterparts guarantee the natural inter-
action between field constituents and the rigorous satisfaction 
of the divergence-preserving relationships. Moreover, the pro-
posed algorithm reveals that numerical schemes, complying 
with the above specifications, can be naturally conveyed in 
terms of integrated field quantities related to the computational 
domain and the notion of dual space-time grids. These asser-
tions along with the fact that the validity of the discrete equa-
tions does not depend on the materials occupying the diverse 
grid regions, allow an alternative updating philosophy that 
evades unconditional late-time instabilities.  

 

The key premise of the method lies on the representation of 
electromagnetic fields via a modified higher-order non-
standard covariant and contravariant strategy that originates 
from an efficient treatment of the strenuous div-curl problem. 
Particularly, its scrupulous solution in any Euclidean space 
leads to the construction of reflectionless PMLs, whose addi-
tional degrees of design freedom and their optimal establish-
ment accomplish a critical attenuation of the outgoing and 
evanescent waves. Due to the notable reduction of lattice er-
rors in curvilinear domains, higher-order PMLs can handle 
rapidly increasing artificial losses, thus dictating the choice of 
novel conductivity profiles that capture steep wave fluctua-
tions. Overall, the proposed strategy – distinct from its en-
hanced accuracy – offers a salient annihilation of dispersion, 
dissipation or anisotropy errors, and so can constitute a useful 
tool for the solution of complex 3-D electromagnetic problems. 
 
The essence of numerical dispersion in the FDTD method 

 

Numerical dispersion is an undesired non-physical effect 
inherently present in the FDTD method. Generally, this artifi-
cially-created lattice deficiency affects the accurate update of 
the simulated waves in the computational space by enforcing a 
strict dependence of phase velocity on frequency (i.e. modal 
wavelength), propagation direction and grid discretisation. The 
consequences of dispersion are several and sometimes – along 
with the problem under study – may become very serious or 
yet prohibitive for the accomplishment of the analysis. Among 
them, we can distinguish the cumulative delay or phase errors 
and the unnatural refraction. According to the former, the in-
evitable discrepancies from the original speed of light arouse a 
series of phenomena such as amplification of single-pulse 
waveforms, generation of vector parasites and mesh anisot-
ropy. So, if a device is based on phase cancelling, even an ap-

parently small error in wave velocity is likely to accumulate to 
unacceptable levels. Additionally, this sort of error is princi-
pally responsible for the dislocation of resonances in the fre-
quency domain, an issue that is proven to be critical in the per-
formance of the second-order Yee scheme at waveguide appli-
cations. Conversely, pseudo-refraction is present when the cell 
shape varies over the lattice namely, in curvilinear, non-
orthogonal or unstructured ensembles. Under these circum-
stances, a wave experiences a diverse numerical speed in dif-
ferent mesh sections. Such a shortcoming corresponds to an 
inhomogeneous medium which causes refraction to take place. 
The above remarks demonstrate that dispersion comprises a 
serious issue in FDTD modeling able to specify its accuracy 
bounds and if neglected or not effectively suppressed it may 
easily spoil the entire solution, especially for electrically large 
structures. As it can not be totally eliminated (after all it is an 
intrinsic attribute of the discrete state), efforts have focused on 
its mitigation or, given the suitable conditions, on its compen-
sation. Particularly, every new technique aims at the improve-
ment of the dispersion relation governing plane wave propaga-
tion. Initial efforts were directed towards the case of a homo-
geneous medium and asserted that grid velocity may decrease 
as the discretisation becomes coarser. However, homogeneous 
waveforms, by themselves, do not create a complete basis ca-
pable of representing all valid field distributions. The general 
analysis reveals that, for very coarsely-resolved fields, homo-
geneous waves accept exponential decay, while constraints are 
established for the propagation speed in the grid. Hence, the 
use of finer grids could play the role of a definite treatment. 
Unfortunately, the idea of a larger lattice is not always viable 
since it implies excessive memory requirements. Bearing in 
mind that the problems where dispersion becomes more 
prominent, are already heavily-discretised due to their struc-
tural details, it is easy to realise the insufficiency of the above 
abstraction. Not to mention that after a specific maximum 
number of cells, the FDTD simulation can not receive further 
enhancements because of its inherently approximate nature.  

 

The decisive role of numerical dispersion in the devel-
opment of the Yee algorithm has been the subject of consider-
able research. Arguably, one of the most efficient and contem-
porary approaches are the conventional higher-order FDTD 
techniques [22]-[27] which adopt an advanced tessellation pol-
icy that remains in absolute consistency with the specifications 
pertinent to the modeling of the geometry and the assignment 
of global field quantities to space-time entities. The principles 
of the leapfrog integration process are then firmly established 
by the discrete constitutive equations that guarantee a correct 
time-advancing without any peculiar unstable results. Owing 
to the strong relation of higher-order finite-difference schemes 
to the principles of differential geometry and algebraic topol-
ogy, especially in curvilinear implementations, our analysis 
will start by considering a general quantitative framework that 
delves into their most significant properties. As a matter of 
fact, the language of differential forms and their discrete coun-
terparts (namely, the cochains) provides an eloquent means for 
the derivation of dispersionless and stable FDTD simulations.   
 
The differential nature of Maxwell’s laws 

 

Despite the fact that the second-order approximation ra-
tionale applied to many electromagnetic field problems has 



been proven instructive for the extraction of acceptable solu-
tions, their accuracy is sometimes deceptive, since the tenet to 
regard electric and magnetic fields as plain vectors and func-
tions is essentially misleading. Actually, these quantities must 
be considered as differential forms i.e. mappings assigning 
values to oriented manifolds of diverse dimensions. In this 
manner, we can attain a substantial profit from a design, com-
prehension and error analysis point of view, whereas our dis-
cretisation schemes are more general and consistent.  

 

The theory of differential forms [28]-[41] enables the sepa-
ration of field equations into topological and metric dependent 
issues under a unified perspective. Unlike other approaches, 
the ensuing topological formulae remain completely invariant 
under different structures or grids thus accepting an exact spa-
tial rendering. Hence, various theoretical constraints (such as 
divergence-preserving conditions and unisolvence) are inher-
ently fulfilled after discretisation. On the other hand, metric 
notions have to be enforced only in conjunction with Hodge 
operators whose primary task is the involvement of constitu-
tive relations in the solution process. In brief, due to differen-
tial forms, we accomplish discrete models that inherit the ma-
jority of the global attributes of the physical problem and shed 
light to the interpretation of several rudimentary mechanisms. 

 

Let us assume a general electromagnetic field formulation 
defined on a (piecewise) smooth oriented and bounded Rie-
mannian manifold M of dimension D in a Euclidean affine 
space ( )nA . A differential form pΩ  of order p is a mapping 
from M into the (D, p)-dimensional space of alternating p-
multilinear forms on n . In our analysis, the fundamental tool 
is the exterior derivative d, which maps p-forms into (p+1)-
forms. In 3-D problems, d defines the conventional differential 
operators grad, div and curl for 0-forms through 2-forms, re-
spectively. Alternatively, the exterior derivative may be ap-
plied to any differentiable manifold without the need of speci-
fying a certain metric. According to the above, our initial the-
ory can be constructed by using the following concepts: p-
forms, pΩ , which are typically generalised antisymmetric ten-
sors, the exterior derivative 1: p pd Ω Ω +→ , the Hodge star 
operator * : p D pΩ Ω −→ , required to prescribe scalar quanti-
ties, and the exterior product : p q p qΩ Ω Ω +∧ ∧ = . Our objec-
tive is the development of discrete analogues of these concepts 
via the satisfaction of the subsequent relations 
 

 ( 1)p q pq q pΩ Ω Ω Ω∧ = − ∧ , (1) 
              ( ) ( 1)p q p q p p qd d dΩ Ω Ω Ω Ω Ω∧ = ∧ + − ∧ , (2) 
 * p D pΩ Ω −= ,           1** ( 1)Dp+= − ,  (3a) 
 2 0d = ,           * 2( ) 0d = . (3b) 
 

Furthermore, it is important to define two additional objects: 
(a) the Laplacian on p-forms * *

1 1L p p p p pd d d d− += +  and (b) the 

inner product , *p q p q

M
Ω Ω Ω Ω= ∧∫  which will be proven 

very useful during the establishment of the higher-order non-
standard FDTD schemes. In this manner, the hyperbolic sys-
tem of Maxwell’s equations may be expressed as 
 

 M Mj dE j B Jω ω∇× = − − ⇒ = − −E B J , (4) 
 E Ej dH j D Jω ω∇× = + ⇒ = +H D J , (5) 

 0 0dB∇⋅ = ⇒ =B ,          dDρ ρ∇ ⋅ = ⇒ =D . (6) 
 
The bold face letters in (4)-(6) indicate the vectorial nature of 
field quantities, while E and H represent electric and magnetic 
intensity 1-forms, D and B are the corresponding flux 2-forms, 
JE and JM the electric and magnetic current density 2-forms 
and ρ the electric charge density 3-form. To complete the de-
scription of Maxwell’s laws, it is mandatory to link the 1-
forms Ε, Η to the 2-forms D, B through the proper *ε and *µ 
Hodge operators and the resulting constitutive relations. Con-
sequently, for an arbitrary set of media, we can write that 
 

 *D Eε= ,           *B Hµ= . (7),(8) 
 

Basically, Hodge constituents defy a straightforward way 
for discretising spaces of differential forms on general meshes 
sharing attributes of intrinsic duality. The discrete nature of 
these expressions is confirmed not only from their application 
as differential operators inside infinitesimal domains, but also 
from their unperturbed validity in macroscopic regions. They 
are consequently natural candidates for robust time integrators 
in the FDTD method. Such a statement, however, requires that 
the very first stage in the discretisation of a problem should be 
the punctual discrimination of this special set of relations. 
Given their initial profile, (4)-(6) can now be rigorously ex-
pressed as algebraic linkages between integrated field vectors 
from which the respective differential forms are derived. Con-
versely, this kind of distinction to algebraic and differential 
representations is compatible to the separation of discrete and 
continuous analogues of physical terms. A very instructive 
way to realise the importance of the previous remarks is the 
comprehension of the fundamental difference that distin-
guishes quantities related to points (i.e. obtained by means of a 
limit process) from those associated with domains of non-
infinitesimal extension (i.e. obtained via integration). Keeping 
in mind that all approximations, in a numerical technique, are 
meant to be a function of the latter terms – directly connected 
to the elementary cells of the discretised meshes – it is reason-
able to prefer them as the state variables of our simulation.  
 
Spatial mapping of differential forms via algebraic topology 

 

In this section, we will proceed to the spatial and temporal 
discretisation of equations (4)-(6) by assigning linear functions 
of particular lattice elements to the previously defined differ-
ential forms. In other words, the transition from the continuous 
to discrete state postulates the establishment of the suitable 
correspondence between the physical domain and the FDTD 
mesh. For this objective, our method will incorporate several 
topological aspects such as those of a cell complex, a chain 
and a cochain [35]-[41]. These notions are going to permit the 
consistent construction of well-posed higher-order schemes as 
well as prepare the systematic development of reflectionless 
absorbers for open-boundary problems.  

 

Let us consider a set of affine points spanning over a region 
in the Euclidean space which is further divided into a set of 
subdomains composed of adjacent (not overlapping) cells of 
arbitrary shape and dimension. This set is designated as a cell 
complex K whose elements – depending on the system’s di-
mensionality – may be vertices (0-cells), edges (1-cells), faces 
(2-cells) and volumes (3-cells). Presuming a constant orienta-



tion for every p
ic ( 0,1,2,3)p =  cell, a p-dimensional chain or 

simply a p-chain is defined as the linear combination of p-cells 
in K by means of the following relation 
 

 ,p p
p i i i

i
w c c K= ∈∑c , (9) 

 

where coefficients wi are integers that take the value of 0, 1, or 
-1 to indicate whether a cell of the complex does not belong to 
cp or is included in it with the default or opposite orientation. It 
is to be stressed that the space of chains is a vector space over 

, since we may easily classify an operation of addition of 
chains and one of multiplication of a chain by a real number. 
In a similar manner and given a p-chain cp, its boundary ∂ccp is 
a (p-1)-chain that comprises no overlapping cells of lower di-
mension. The boundary operator ∂c: cp → cp-1  (not to be con-
fused with partial derivative ∂) is a very important element of 
algebraic topology acting linearly on the space of chains.  

 

It becomes apparent that the theory of chains has a great 
deal of common abstractions with that of differential forms. In 
fact, the space of p-forms can be viewed as the dual counter-
part of the space of p-dimensional surfaces. Nonetheless, what 
is the exact relation between the two quantitative tools? To an-
swer this question, we utilise the meaning of cochains which 
enable the discrete representation of differential forms on the 
mesh. Assuming, again, an oriented cell complex K and a field 
F, a function Cp, which appoints an element f i of F to each cell 

p
ic of K, under the notation of ,p p i

ic f=C  is called a p-

cochain. Observe that Cp satisfies  
 

 , , ,p p p p p
p i i i iw c w c= =∑ ∑c C C C . (10) 

 
In essence, the preceding ideas demonstrate the operation 

of physical fields on domains divided into cell complexes, 
where the cochain, like a field, associates a value with each 
cell in an additive way◊. Apart from electromagnetic quantities 
in (4)-(6) that will be described through the dual lattice coun-
terparts of (9) and (10), the principle of exterior derivative d  
should also be analogously denoted. This is accomplished by 
defining the coboundary operator, ∆, which transforms a p-
cochain Cp into a (p+1)-cochain ∆Cp, fulfils the relation  
 

 1 1, ,p c p
p p p pC+ +∆ ∂ ∀ ∈c C c C c , (11) 

 
and provides an exact definition of d . Equation (11) implies 
that operator ∆  associates to each (p+1)-cell the sum of the 
values that the p-cochain assigns to the p-cells forming the 
boundary of the (p+1)-cell. In other words, ∆  takes a quantity 
assigned to the boundary of a geometric object and transfers it 
to the object itself.  

 

The theoretical framework, so far described, achieves an 
exact discretisation of div, and grad operators corresponding to 
the application of ∂c on 3-, 2- and 1-cells, respectively. Conse-
quently, if we, now, recall the system of Maxwell’s equations 
in (4)-(6) and utilise the concepts of (9)-(11), we obtain 

                                                      
◊ This mapping procedure from the space of p-forms to the space of p-cochains 
is called the de Rham map, while the “inverse” process of associating pΩ  to 

pC  is known as the Whitney map.  

  
Fig. 1. A generalised curvilinear lattice with its two oriented cell complexes 
and the locations of field cochains as the discrete counterparts of the corre-
sponding differential forms. 
 

 1 1 2 2
2 2 2 2, , , ,c

Mjω∆ = ∂ = − −c E c E c B c J , (12) 

 1 1 2 2
2 2 2 2, , , ,c

Ejω∆ = ∂ = +c H c H c D c J , (13) 

                                2 2
3 3, , 0c∆ = ∂ =c B c B , (14a) 

 2 2
3 3 3, , ,c ρ∆ = ∂ =c D c D c , (14b) 

 

where E1, H1 are 1-cochains and B2, D2 are 2-cochains. The 
bars over the 2- and 3-chains indicate the two dual (oppositely 
oriented) cell complexes involved in our calculations whose 
basic attributes will be analysed in the next section. Equations 
(12)-(14) give the exact grid counterparts of (4)-(6) and remain 
unchanged for any mesh with the same structural profile, 
namely invariant under diverse homeomorphisms.  
 
Duality of oriented cell complexes and Hodge operators 

 

In the previous section, we encountered the idea of dual 
cell complexes which, also, characterises the fundamental 
structure of the FDTD algorithm. Duality in lattice construc-
tion is strongly related to the issue of oriented forms. Actually, 
one can discern two kinds of orientations for 3-D discretisa-
tions (Fig. 1); the externally-oriented regime (external or outer 
orientation) that circulates the object and involves additional 
dimensions and the internal one (internal or inner orientation) 
specifying a certain direction along the object without increas-
ing its dimensionality. Obviously, from a geometrical point of 
view, there are two types of forms associated with these orien-
tations. The primary forms which are internally-oriented and 
the secondary forms sharing an outer orientation. It is stressed 
that this designation is not unique, since in [37], the terms or-
dinary and twisted forms are, respectively, utilised. 

 

As anticipated, the meaning of orientation should be appli-
cable to cell complexes, establishing thus the duality premise 
in the discrete state. Therefore, a primary cell complex, K, 
consists of internally-oriented cells linked to cochains that rep-
resent primary forms, while the secondary cell complex, K , 
contains cells with external orientation associated with co-
chains that are secondary forms. Then, for every p-cell of the 
primary complex there exists a corresponding (D-p)-cell of the 
dual one. This assignment consists in the fact that a primary p-
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cell contains or crosses a dual (D-p)-cell, as shown in Fig. 1. 
To conduct an one-to-one mapping between electromagnetic 
fields and the prior classification, we denote the electric field, 
E, as a primary 1-form (internally-oriented lines), the magnetic 
field, H , as a secondary 1-form (externally-oriented lines), the 
magnetic flux, B, as a primary 2-form (internally-oriented sur-
face), the electric flux, D , as a secondary 2-form (externally-
oriented surface) and the electric charge density, ρ, as a secon-
dary 3-form (externally-oriented volume).  

 

Having determined the dual character of the lattice, our 
analysis proceeds to the action of the discrete Hodge operators 
which must relate the primary to the secondary forms and in-
corporate the properties of the media occupying the computa-
tional domain. Since, the continuous operators attain a linear 
assignment of p-forms to (D-p)-forms, one may write 
 

 2 1
2 1[* ] : , [* ] ,K Kε ε→ =c D c E , (15) 

 2 1
2 1[* ] : , [* ] ,K Kµ µ→ =c B c H , (16) 

 
in which [*ε] and [*µ] are square and sparse matrices (tensors). 
The most striking difference between the discretised constitu-
tive equations (15)-(16) and the topological entities of (12)-
(14) is the metric nature of the former. This implies that they 
require the use of lengths, surfaces, volumes etc, exhibiting so 
a completely approximating profile as opposed to their physi-
cal counterparts. This is exactly where numerical methods 
should be applied for the best accuracy. Unfortunately, second-
order Yee schemes have been found insufficient for several 
categories of complex 3-D problems, such as scattering or 
waveguide applications. In fact, this crucial observation has 
been the essential motive for the formulation of our higher-
order non-standard FDTD methodology, especially in curvilin-
ear coordinates, where discrepancies are usually so serious that 
prohibit the entire simulation. 
 
The higher-order non-standard FDTD methodology 

 

The basic features of the proposed 3-D strategy are the new 
higher-order (HO) non-standard concepts that overwhelm all 
conventional formulae. Their superior profile is further en-
hanced by the low wavelength-to-stencil ratio and the reduced 
number of iterations. In fact, non-standard differencing [42]-
[45] is an extremely promising theoretical framework for the 
accurate analysis of complicated problems in electromagnetics 
and the approximation of 1- and 2-cochains in (15) and (16). 
We start by introducing three spatial operators which corre-
spond to u,v,w axes of a general coordinate system (u,v,w) – 
defined as Su[.], Sv[.], Sw[.] – and one temporal operator T[.]. 
These are given by  
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Fig. 2. Graphical depiction of the sampling points for the three difference op-
erators in a general cell complex. The +1 and -1 numbers at the faces indicate 
the sign of summation for the values of the approximated function. 
 
with Sv[.] and Sw[.] designed in a similar manner to compute 
spatial derivatives with respect to v and w, respectively. The 
summation parameter τ, in (18), is running from 3 to Ts, where 
Ts is an odd predefined upper limit that controls the order of 
time derivative approximation according to the accuracy level. 
Let us, now, focus on the HO non-standard schemes and ex-
plain their structure. By setting b1 = 9/8, b2 = –1/24, b3 = 0, we 
get the basic member of the class, while for b1 = 11/12, b2 = 
1/24, b3 = 1/24 the second counterpart is extracted, with δu, δv, 
δw its spatial and δt its temporal increments. In (17), [.]u

hP  for 
h = δu, 3δu, is the 3-D non-standard operator, defined as   
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Correction functions cS(kh), cT(k∆t) are selected to minimise 
the lattice errors and guarantee the smooth transition from the 
continuous physical space to the discrete confined domain. In-
vestigating cS(kh), mathematical analysis reveals that kh values 
should be chosen in order [ ] / 1u jku jku

h ue e∂ →P . It is stressed, 
that the second-order FDTD technique can not satisfy this im-
portant requirement in curvilinear applications inducing thus, 
severe instabilities. To select an acceptable kh for several 
wavenumbers k, the Fourier transform of the already computed 
transient electric (magnetic) components, at prefixed mesh lo-
cations, is used. After their frequency range is acquired, we use 
the spectrum’s maximum value for the specification of the op-
timal argument. The process, which does not affect the total 
overhead, takes place at every time-step, whereas its accuracy 
increases as the number of the preset points becomes larger 
regardless the problem’s geometry, incident angles or frequen-
cies and time intervals. It is clear, that the same holds for 
cT(k∆t), especially from a convergence point of view.  
 

Through these notions, a possible (but not unique) choice 
for the correction functions [44] could be  
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On the other hand, operators ( )
, [.]i

u hD  for i = A,B,C, in (19), 
lead to a set of formulae which offer a systematic cochain in-
terconnection. Establishing the general curvilinear geometry of 
Fig. 2, one derives 
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Fig. 3. A non-orthogonal FDTD lattice comprising two dual cell complexes. 
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where only the respective lattice increments towards the u,v,w 
are indicated (i.e. the subscript h/2,–δv,0 means u+h/2,v–δv,w). 
Of particular importance, also, are the pi parameters, since they 
evade the ill-posedness of the conventional second-order PML 
arrangements and certify algorithmic consistency. Therefore, 
 

 A (1 ) / 3p q qη= + −  , (24a) 
 B (1 ) / 3p qη= − , (24b)              
 C 1 2 (1 ) / 3p q qη= − − − , (24c) 
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−
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while coefficients Qi are computed through the components of 
wavenumber k, as  
 

 A cos cos cos 3u v wQ k k k= + + − , (26) 
 B cos cos cos 1u v wQ k k k= − , (27) 
   C 0.5(cos cos cos cos cos cos 3)u v u w v wQ k k k k k k= + + − . (28) 

 
Notice that as soon as the space-time domain quantities of 

the problem, under investigation, are properly discerned and 
the correct discretisation strategy has been chosen, the type of 
time integration is uniquely determined. This is opposed to 
other existing approaches which conduct two separate actions 
for the solution of a problem i.e. they first discretise the do-
main in space and then form the set of differential equations 
that are approximated in the time variable through one of the 
many techniques developed for numerical update. The topo-
logical interpretation of the proposed method has an additional 

advantage; it reveals the pitfalls of the classical outlook, which 
if disregarded, yield an unstable algorithm that does not adhere 
to the physics of the problem, an instance more frequently en-
countered in curvilinear implementations. 
 
Modeling the curvilinear div-curl formulation 

 

Consider a 3-D domain described by an arbitrary (u = iδu,  
v = jδv, w = kδw) system and discretised into uniform cells 
which form two dual cell complexes. From the Figure 3, we 
observe that covariant, hm, and contravariant, hl, components 
(l,m = u,v,w) of magnetic vectors, H, are located at secondary 
edges remaining so in complete interleaving with em and el 
quantities of electric vectors, E, placed at primary edge cen-
ters. The new scheme hosts the idea of fluxes for the fields 
across the faces defined by f (l) = g1/2f l (f = e,h), with glm the 
coordinate metrics. Representation of fm with f l is achieved via 
the chain rules fm = gmlf 

l and f l = glmfm. Next, we introduce the 
linear operator Q(l) such that f (l) = Q(l)[fm], which uses the local 
components mf  and the neighboring ones fm+1, fm+2 (m+1, m+2 
denote a consecutive cyclic permutation of u,v,w), multiplied 
by the discrete metric terms. For instance, the Q(u)[hu] becomes 
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where slm = g1/2glm. Flux analysis is indeed very instructive as it 
circumvents all complicated projections for primary and sec-
ondary fields (cochains). By substituting operators (17), (18) 
into Maxwell’s laws (12)-(15), it is derived that 
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in which cv are the covariant components, Yt, Rt the constitu-
tive matrices and GF, TF (for F = E, H) metric tensors and ma-
trices of HO time derivatives, respectively. Notice that all 
quantities in (30), (31) retain their algebraic structure accord-
ing to the theory of chains and cochains. More specifically, 
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1,
nn

cv cv
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nn
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++ =H c H . (32) 
 
For the widened spatial stencils near absorbing or perfectly 

conducting walls, a broad classification of compact self-
adaptive schemes is developed. 
 

 1
A B C1

( ) 0n n n
u u ui s i i ss

a f a f a f
+ −=−
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where aA, aB, aC are pre-selected real numbers. It is apparent 
that the time-marching procedure for the update of E and H 
fields in (30), (31), should be selected in order to avoid late-
time instabilities or slow convergence. Among the existing 
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techniques, we can distinguish the one described in [22] and 
the Runge-Kutta integrators [24]. The former converts the HO 
order time derivatives into spatial ones by the consecutive use 
of Maxwell’s equations, while the latter staggers the variables 
in space but not in time via an implicit system of equations. 
Although efficient up to the fourth-order, these schemes be-
come impractically complicated at HO non-standard cases and 
inhibit the entire simulation. Therefore, to avoid a complicated 
time marching, we employ a generalised leapfrog formulation, 
suitably built to account for lossy dielectrics as well. Integrat-
ing field components in a constant regime, the technique di-
vides each time-step to a number of stages equal to the order of 
approximation and requires resources that hardly influence the 
total burden. For instance, the update of H is given by 
 

    1/ 2
A ( / ) ntδ ε += ∇×HΘ ,        B A( / )tδ µ= − ∇×Θ Θ ,    (34a) 

 

    C B( / )tδ ε= ∇×Θ Θ ,       1
A C / 24n n+ = + +E E Θ Θ . (34b) 

 
The major issue of stability for the HO non-standard algo-

rithm is attained by the non-orthogonal Courant criterion  
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Finally, to demonstrate the efficiency of our technique, we 

compare its dispersion relation with that of the Yee scheme (c΄ 
the numerical velocity, β = 2π/(kδw) and θ the incident angle) 
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to attain the remarkable reduction of five orders of magnitude. 
This implies that the proposed topological strategy diminishes 
grid defects and annihilates the undesired curvilinear disper-
sion mechanisms. 
 
Convergent treatment of complex material interfaces 
 

The effects of staircasing and the lack of properly enforced 
jump-conditions on both sides of arbitrarily-embedded general 
material interfaces have notable consequences on the stability 
of the FDTD method. In fact, for cases where a field compo-
nent is discontinuous along a 3-D curvilinear grid line, the Yee 
scheme exhibits loss of global convergence. To overcome this 
drawback, a HO convergent formulation is developed. The 
technique, unlike other approaches, modifies the stencils 
around media interfaces to correctly represent their physical 
location and enforce the proper continuity conditions. 
 

Assume the curvilinear material boundary of Fig. 4, with 
Tˆ ˆ ˆ ˆ( , , )u v wn n n=n  a normal unit vector. Connecting Emat, Hmat in 

the different materials, εmat and µmat (mat = A,B) by the suitable 
tangential/normal continuity conditions, we use covariant 
components and correct the problematic ∂whu at the interface as 
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Fig. 4. Treatment of an arbitrary-aligned media interface in a curvilinear mesh. 
 
with , , , ,0.5i j k i j kβ βΑ Β= − . (37b) 
 
The material term in (37) receives the following calculation 
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where the three transitional variables in the nominator of (38) 
are recovered directly by extrapolation. So,    
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with analogous expressions holding for e components. Evalua-
tion of the tilded variables in (39) gives  
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The implementation of (37)-(40) involves a predictor-

corrector scheme in which the HO non-standard FDTD algo-
rithm, serving as the predictor stage, is used to solve Max-
well’s equations in the entire domain, while a corrector stage 
modifies the solutions locally via the above technique. The 
slightly increased mathematical complexity is compensated by 
the impressive accuracy at no additional computational cost 
and the efficient handling of internal curvilinear interfaces.  
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Fig. 5. The 3-D geometry of space S in spherical coordinates. 

 
Construction of dispersionless curvilinear PMLs 

 

The development of the enhanced unsplit-field PMLs in 
curvilinear coordinates stems from the decomposition of a 3-D 
space, S, into two regions such that CS PMLS S S= ∪ , where SCS 
refers to the computational domain and SPML is the area occu-
pied by the PML. Essential in our formulation, is the extension 
of the stretched-coordinate technique to the HO non-standard 
models. Establishing the principles of our algorithm, we intro-
duce the following steps: 

 

• Postulation of the field profile in the layer via stretched 
coordinate metrics.  

• Development of the essential equations whose solutions 
exhibit the required attenuation rate.  

• Manifestation of the resulting expressions in the format 
of HO time-dependent laws. 

• Deduction of the constitutive relations in SPML to com-
pletely identify the absorber. 
 

Now, let us concentrate, without loss of generality, on 
spherical coordinates (r,θ,φ) where highly dispersive non-
physical reflections generate bands of transmitted modes grow-
ing spatially instead of being damped in the layer. Hence, 
simulations exhibit a totally ill-posed performance even under 
small perturbations. For our analysis, we examine an inhomo-
geneous, isotropic and loseless dielectric medium, described in 
the frequency domain by 

 

 jωε ′ ′ ′= ∇ ×E H ,         ( ) 0ε′ ′∇ ⋅ =E , (41a)         
 

 jωµ ′ ′ ′− = ∇ ×H E  ,       ( ) 0µ′ ′∇ ⋅ =H . (41b) 
 

Here, SCS is a sphere of radius r0, and SPML the area to be ter-
minated up to a radius r1 by a perfectly electric wall, as shown 
in Fig. 5. The optimised PML, is built through the decent scal-
ing between the independent (primed) and dependent variables 
in (41) which preserve the original field variation in SCS and 
launch the proper coordinate stretching in SPML. This procedure 
may be viewed as a mapping of the homogeneous isotropic 
dielectric to an inhomogeneous uniaxial one. So, 
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with r΄ = diag{ξr,1,1}, r = (r,θ,φ)Τ and F = E,H. Application 
of (42) to the equations of (41) yields 
 
 jωεΞ ⋅ = ∇×E H ,          jωµ− Ξ ⋅ = ∇×H E , (43) 
 

where the material tensor 2 1 1{ , , }r r r rdiag ξ ζ ζ ζ− −Ξ =   for a ho-
mogeneous dielectric background with constant constitutive 
parameters. Gauss law for the E and H field yields  
 

 ( ) 0ε∇ ⋅ Ξ ⋅ =E ,              ( ) 0ε∇ ⋅ Ξ ⋅ =E . (44) 
 

Equations (43), (44) compose a causal and strongly well-posed 
hyperbolic system which permits the physical realisation of the 
unsplit PML concept. In the above  
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with SPML restricted to a sphere of radius r0 + δ and δ the 
layer’s depth. Concentrating on Ampere’s law in (41) and after 
the substitution of (45), we obtain  

 

 [ ] ( ) [ ] [ ]r r rB r B g E g Eϕ ϕ θ θ θ ϕσ ′+ = −T S S , (46a) 
 

with [ ] ( ) [ ] ( )r r r r r rB r B H r Hσ µ µσ ′+ = +T T ; 
 

 [ ] [ ] [ ]r r rB g E g Eθ ϕ ϕ ϕ= −T S S , (46b) 
 

with [ ] [ ] ( )rB H r Bθ θ θµ µσ= +T T ; 
 

 [ ] [ ] [ ]r r rB g E g Eϕ θ θ θ= −T S S , (46c) 
 

with [ ] [ ] ( )rB H r Hϕ ϕ ϕµ µσ= +T T , 
 
in which Br = µξrζrHr and gm (m = r,θ,φ) the spherical system 
metrics. Apart from the previous merits, the proposed strategy 
assigns a key characteristic to HO PMLs; the ability to intro-
duce supplementary attenuation terms along more directions in 
the layer which entail a considerable suppression of the strenu-
ous anisotropy discrepancies, especially in multi-frequency 
environments with many scattering objects.  
 
Numerical verification 

 

The merits of the HO non-standard FDTD-PML method 
are validated via an indicative set of 3-D curvilinear problems. 
In the first example, we compare the global error induced by 
second-order split-field and our HO Maxwellian PML ar-
rangements in spherical coordinates. The dielectric scatterer   
(ε = 4.3ε0), of radius rs = 0.5λ, is located at the centre of the 
origin and excited by E(t) = 17 – 11cosω1t – 8cosω2t + 2cosω3t 
with ωk = 2πk/T (k = 1,2,3) and 9[0, 10 ]t T −∈ = . As deduced 
from the results of Fig. 6, the proposed absorbers are far more 
superior to the common ones since they achieve their objective 
with a sufficiently smaller amount of layers.  
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Fig. 6. Global error versus time steps for various second-order and HO PMLs. 
 

 
 

Fig. 7. Convergence rate of global error vs grid resolution for a second-order 
and a HO non-standard PML at various angles of impingement. 

 
To realise the influence of the grid size on computational 

resources, we consider a spherical domain SCS = 11×25×38, 
with a PEC scatterer of rs = 0.8 m. Given that the radius of SCS 
is r0 = 1.2 m, the rest of the FDTD details are δr = 0.109 m,   
δθ = 0.1256 rad, δφ = 0.1653 rad and δt = 0.2097 nsec. For the 
excitation of the structure, we use the steeper Ricker wavelet,  
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0[( ) / ]
0( ) / 2 ( )t tdP t P e h t

dt
γγ − −= , (47) 

 
placed one cell from the PML, with γ = 0.4391  µs,  t0 = 1.5 µs 
and h(t) the Heaviside pulse. Fig. 7 gives the convergence rate 
of the global error versus grid resolution, δr/λmin, for different 
angles (even near-grazing ones) of wave impingement on the 
normal to the vacuum-PML interface. For comparison, we 
choose a second-order PML (δ =10 cells), also imposed one 
cell from the source. Results present that such a short distance 
is not enough for the ordinary absorber, since its error is very 
high and does not converge. Observe that when δr/λmin has a 
low value, e.g. 1/5, this PML has a global error of 010  namely, 
it reflects all outgoing waves. In opposition, its HO non-
standard counterpart converges very fast, regardless of its 
small depth, yielding a striking set of reflection errors as well.   

 
 

Fig. 8. Maximum global error vs distance from two lossy dielectric spheres 
induced by different HO non-standard PMLs. 

 
Finally, a set of two lossy dielectric spheres, which are not 

co-centric, is investigated. The larger sphere (ε1 = 2.3ε0, rs1 = 
0.7 m, σ1 = 0.002 S/m) contains the smaller one (ε2 = 5.2ε0, rs2 
= 0.2 m, σ2 = 0.75 S/m whose centre is set 0.4 m away from 
the origin and more specifically at point (0.4,π/2,0). The do-
main is discretised in 14×29×41 cells with δr = 0.16 m, δθ = 
0.1083 rad, δφ = 0.1532 rad and δt = 0.1547 nsec, and excited 
by a plane wave. The interesting issue here, is that the bound-
ary of the two objects does not coincide with any of the grid 
axes making thus, the modeling of the small scatterer via the 
simple FDTD algorithm, absolutely unfeasible. The chief rea-
son of this shortcoming is the violation of the continuity condi-
tions for the field components at the above boundary, which in 
its turn induces serious dispersion errors. In Fig. 8, the maxi-
mum global error versus distance from the scatterers, for vari-
ous HO PMLs, is presented. Results are indeed very good and 
exhibit a smooth evolution for reasonable values of δ.  

 
Conclusions 
 

We have presented a HO non-standard FDTD-PML strat-
egy for the efficient and precise analysis of 3-D electromag-
netic problems in general non-orthogonal coordinates. 
Founded on the principles of differential forms and the theory 
of algebraic topology, the novel method starts from an elegant 
way of factorising Maxwell’s equations and proceeds to the 
establishment of a linearly independent covariant/contravariant 
regime enabling thus, the consistent modeling of the div-curl 
problem. Moreover, HO concepts assure the philosophy of the 
oriented dual grids and postulate a concise outline for the 
analysis of the discrete vector fields. As a consequence, a class 
of accurate dispersionless HO PMLs operators, ideal for curvi-
linear mapping, is designed. Numerical results, addressing 
several demanding applications, prove that the proposed algo-
rithm eliminates the intricacy of fictitious waves, conducts re-
markably accurate simulations and achieves significant savings 
of total computational requirements. Considering the constant 
needs for advanced numerical models and the continuous stud-
ies in the evolution of numerical absorption, it is expected that 
the theory of HO non-standard forms will constitute a func-
tional tool for the treatment of demanding applications. 
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